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Abstract. In this paper we identify the (P, Q)-DDH assumption, as an
extreme, powerful generalization of the Decisional Diffie-Hellman (DDH)
assumption: virtually all previously proposed generalizations of DDH are
instances of the (P, Q)-DDH problem. We prove that our generalization
is no harder than DDH through a concrete reduction that we show to be
rather tight in most practical cases. One important consequence of our
result is that it yields significantly simpler security proofs for protocols
that use extensions of DDH. We exemplify in the case of several group-key
exchange protocols (among others we give an elementary, direct proof for
the Burmester-Desmedt protocol). Finally, we use our generalization of
DDH to extend the celebrated computational soundness result of Abadi
and Rogaway [1] so that it can also handle exponentiation and Diffie-
Hellman-like keys. The extension that we propose crucially relies on our
generalization and seems hard to achieve through other means.
Keywords: Diffie-Hellman Assumptions, Protocol Security, Provable
Security, Computational Soundness.

1 Introduction

The Decisional Diffie-Hellman (DDH) assumption postulates that, even if given
gx and gy, it is difficult for any feasible computation to distinguish between gxy

and gr, when x, y and r are selected at random. The simplicity of the state-
ment and several other nice properties (for example random self-reducibility)
make the DDH assumption a powerful building block for cryptographic primitives
and protocols. Examples of its use include provably secure public-key cryptosys-
tems [13,11], pseudo-random functions [19,9], and pseudo-random generators [4].
The assumption has been particularly successful in the design of efficient and
provably secure protocols for key-exchange: two parties can exchange a key by
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mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

1

emmanuel@bresson.org
yassine.lakhnech@imag.fr
laurent.mazare@m4x.org
bogdan@cs.bris.ac.uk


2 E. Bresson, Y. Lakhnech, L. Mazaré and B. Warinschi

sending to each other gx and gy (for randomly chosen x and y). Pseudorandom-
ness of the established common key gxy is ensured by the DDH assumption.

Several generalizations of the DDH assumption naturally appear in the con-
text of extending the above scenario from the two-party case to group key-
exchange protocols. Perhaps the best known such generalization is the Group
Decisional Diffie-Hellman assumption proposed by Steiner et al. [23] and refined
by Bresson et al. [7]. Here, the assumption is that given all values g

Q
i xi , for

up to n − 1 exponents, it is hard to distinguish gx1···xn from a random power
gr. The assumption is sufficient to prove secure a protocol where users that pri-
vately select powers x1, x2, . . . xn agree on a common shared key gx1···xn . Such
generalizations serve two goals. On the one hand they provide simple solutions
to the problem that inspired them. More importantly, whenever such general
assumptions can be reduced to a more standard assumption (as is the case of
many generalizations of DDH), security proofs for protocols can be made more
modular: First, prove once and for all the equivalence between the general and
the basic assumption. Then, use the more general assumption as a more conve-
nient basic building block for protocols. In this paper we investigate the limits
of extending the DDH assumption. Our results are as follows.

Generalization of DDH. Our generalization of DDH is as follows:

– The adversary receives elements of the form gp(x1,x2,...,xn); here p ranges over
a fixed set of polynomials P . This setting generalizes significantly all of the
previous work where only monomials were allowed in the exponents (i.e. the
adversary was given only elements g

Q
I xi for some subset I).

– The adversary receives several challenges of the form gq(x1,x2,...,xn); here q
ranges over a fixed set of polynomials Q and the adversary has to determine
if he is confronted with these challenges or random group elements. The
adversary can see the challenges at any moment (i.e., not necessarily at the
end).

We call the problem associated to polynomial sets P and Q, the (P,Q)-DDH
problem. In spite of its generality we show that the (P,Q)-DDH assumption
reduces to the basic DDH assumption under several mild restrictions on the
polynomials in P and Q. In particular, polynomials in Q have to be linearly
independent from those in P since otherwise the problem becomes trivial. In
general, the loss of security in the reduction that we provide from (P,Q)-DDH
to DDH may be exponential. This is to be expected, and perhaps unavoidable,
due to the general setting in which we work. Fortunately, we identify several
situations where the security loss stays within practical bounds and note that
all practical scenarios that we are aware of are instances of these situations.
Furthermore, we show that the quality of the reduction can be often improved
by using the random self reducibility property of DDH. We prove the equivalence
with DDH via a hybrid argument which generalizes those used previously for
other generalizations of DDH. We give the formal description of the (P,Q)-DDH
problem and clarify its relation to basic DDH in Section 2.
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Applications to protocol security. Next, we demonstrate the versatility
of the (P,Q)-DDH assumption through several examples:
– we show that the multi-decisional Diffie-Hellman [6] and the Group Deci-

sional Diffie-Hellman assumptions [7] are instances of the (P,Q)-DDH as-
sumption for appropriately chosen P and Q. Interestingly, for the latter
assumption our main theorem yields a better reduction to DDH than in
previous works.

– we use the (P,Q)-DDH assumption to provide proofs for some DDH-based
key-exchange protocols in the presence of passive adversaries. In particular,
we supply a simple security proof for the Burmester-Desmedt protocol, and
exemplify the use of our assumption for a simple protocol that we introduce.

Our examples show that the (P,Q)-DDH problem is an extremely convenient
tool for proving the security of protocols in the presence of passive adversaries.
In combination with generic results that map such protocols to protocols se-
cure against active adversaries, our simple proofs form the basis of a powerful
two-step methodology for the design of provably secure protocols. 1) Prove the
protocol secure against passive adversaries using our flexible assumption 2) map
the protocol to one secure against active adversaries using special purpose com-
pilers such as the one developed by Katz and Yung for the case of group-key
exchange protocols [14]. We develop the ideas sketched above in Section 3.
Application to computational soundness. Our final application is in the
context of computational soundness framework. The general goal of this research
direction is to allow symbolic, and thus mechanical reasoning about protocols
at an abstract, symbolic level, in such a way that symbolically derived results
imply security in the standard cryptographic sense. This would permit to prove
the cryptographic security of protocols, but it would avoid the standard hand-
made, error-prone cryptographic proofs through the use of automated tools.

In all of the prior work in this direction, the translation of results from the
symbolic world to the cryptographic world is done using so-called “soundness
theorems”. Notice that these theorems have to deal with all arbitrary uses of the
primitives in all possible protocols! This explains perhaps why exponentiation
and Diffie-Hellman like keys are conspicuously missing from all existing compu-
tational soundness results: one needs to identify precisely, and in a generic way
which of all possible uses of exponentiation are secure and which not. The main
result of this paper accomplishes precisely that.

Based on our result we incorporate Diffie-Hellman keys in the framework
proposed by Abadi and Rogaway [1]. We extend appropriately the symbolic lan-
guage introduced in [1] and show that it is possible to use the resulting language
to symbolically prove indistinguishability of cryptographic distributions. In par-
ticular, this result yields a mechanical way of proving security of key-exchange
protocols (in the presence of passive adversaries, with no corruption). The sym-
bolic language and the soundness theorem are in Section 4.

Related work. A generalization of Diffie-Hellman to more general polynomials
expressions was investigated by Kiltz in 2001 [15], where a (single) challenge of
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the form gP (a,b), with the adversary seeing ga and gb, is considered. We enlarge
the setting in two distinct directions: first we allow many variables instead of just
two (and thus, allow the adversary to “see” many polynomials in the exponent),
second we allow multiple challenges. Moreover, we provide direct and concrete
applications of our main results to the analysis of cryptographic protocols. We
note that the work in [15] also studies the case of computational problems in
generic groups [21]. Here we concentrate on the decisional case only, and use the
standard cryptographic model. Essentially, all previous generalizations of DDH
are particular case of our framework. This thus include the so-called “group
Diffie-Hellman” assumptions [7], in which the challenge is gx1···xn , but also the
so-called “parallel Diffie-Hellman” assumption [6], in which the adversary sees
(gx1 , . . . , gxn) and must distinguish tuples of the form (grx1 , . . . , grxn) from ran-
dom ones (gy1 , . . . , gyn). Perhaps the closest assumption to the one that we study
here is the General Diffie-Hellman Exponent (GDHE) introduced by Boneh et
al. in the full version of [5]. We remark that GDHE has been designed to handle
bilinear pairings, it has been designed with a single challenge, and its hardness
has only been studied in the generic group model. Finally we notice that Square
Exponent [16,10,22] and Inverse Exponent can [20] can be seen as instances of
our setting.

2 A Generalization of the Decisional Diffie-Hellman
problem

2.1 The DDH Problem.

A group family G is a set of finite cyclic groups G = {Gλ} where λ ranges over
an infinite index set. We assume in the following that there exists a polynomial-
time (in the bit-length of λ) algorithm that given λ and two elements in Gλ

outputs their product. (We adopt the multiplicative notation for groups).
Let η be the security parameter. An Instance Generator IG for G is a prob-

abilistic polynomial-time (in η) algorithm that outputs some index λ and a
generator g of Gλ; therefore, IG induces a distribution on set of indexes λ.
The Decisional Diffie-Hellman assumption states that for every probabilistic
polynomial-time algorithm A, every constant α and all sufficiently large η’s,
we have:∣∣∣∣ Pr

[
A(λ, g, ga, gb, gab) = 1

]
− Pr

[
A(λ, g, ga, gb, gc) = 1

] ∣∣∣∣ <
1
ηα

,

where the probabilities are taken over the random bits of A, the choice of 〈λ, g〉
according to the distribution IG(1η) and the choice of a, b and c uniformly at
random in [1, |Gλ|].

In the remaining of the paper we will need to deal with concrete security
results. We define the advantage of any algorithm A as the difference of proba-
bilities above. We say that the DDH problem is (ε, t)-hard on G if the advantage
of any algorithm running in time t is upper-bounded by ε. The (asymptotic)
DDH assumption states it is the case for t polynomial and ε negligible (in η).
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2.2 The (P,Q)-DDH Problem.

Here we introduce formally our generalization of the Decisional Diffie-Hellman
problem. As discussed in the introduction we generalize the DDH problem in two
crucial directions. First, the group elements that the adversary sees are powers of
g that are polynomials (instead of monomials as in the original problem and prior
generalizations). Second the adversary is confronted with multiple challenges
simultaneously. That is, his goal is to distinguish a list of values obtained by
raising g to various polynomials from a list of random powers of g.

Let P and Q be two sets of polynomials in Zq[X1, X2, . . . , Xn]. We assume
that these sets are ordered, and write p1, p2, . . . and q1, q2, . . . for their elements,
respectively. Informally, the (P,Q)-DDH-problem asks an adversary to distin-
guish the distributions:(

{gpi(x1,x2,...,xn)}pi∈P , {gqj(x1,x2,...,xn)}qj∈Q

)
,with xi

$←Zq (1)

and
(
{gpi(x1,x2,...,xn)}pi∈P , {grj}j∈[|Q|]

)
,with xi

$←Zq, rj
$←Zq (2)

Notice that our generalization is quite powerful. All previous generalizations
of the DDH problem can be seen as instances of the (P,Q)-DDH problem for
suitably chosen P and Q. For example:

– For sets P = {X1, X2} and Q = {X1X2}, the associated (P,Q)-DDH is the
standard DDH problem.

– For sets P = {
∏

i∈E Xi | E ( [1, n]} and Q = {X1X2 · · ·Xn} the associ-
ated (P,Q)-DDH problem corresponds to the group decisional Diffie-Hellman
problem.

– For sets P = {X1, X2, . . . , Xn} and Q = {X1Xn+1, X2Xn+1, . . . , XnXn+1}
the associated (P,Q)-DDH problem is the parallel Diffie-Hellman problem
(see for instance [6]).

We call a pair of sets of polynomials (P,Q) a challenge. Our formalization of
the (P,Q)-DDH problem departs from the more established formulations where
an adversary is explicitly given as input samples from either distribution (1) or
distribution (2) and has to decide which is the case. However here the size of
sets P and Q may be exponential (for instance for the GDH problem the set P
contains exponentially many polynomials), and yet we are typically interested in
polynomial-time adversaries who may not have the time to read all the inputs.
Therefore we provide the adversary with access to the two distributions via
oracles.

Definition 1 ((P,Q)-DDH). Let q be a prime number. Let G be a group of
order q, g a generator of G, and P,Q ⊆ Zq[X1, X2, . . . , Xn] two sets of polyno-
mials. We define the oracles Real(P,Q) and Fake(P,Q) as follows. Both oracles first
select uniformly at random xi

$←Zq, for i ∈ [n]. Then they answer two types of
queries. On input (info, i) for 1 ≤ i ≤ |P |, both Real(P,Q) and Fake(P,Q) answer
with gpi(x1,x2,...,xn). On each new input (chall, j) for some 1 ≤ j ≤ |Q|, oracle
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Real(P,Q) answers with gqj(x1,x2,...,xn) whereas oracle Fake(P,Q) selects rj
$←Zq

and answers with grj . The adversary can intertwine info and chall queries.
His goal is to distinguish between these two oracles.

We define the advantage of an adversary A to solve the (P,Q)-DDH problem
by:

Adv(P,Q)-DDH
A =

∣∣∣ Pr
[
AReal(P,Q)(g) = 1

]
− Pr

[
AFake(P,Q)(g) = 1

] ∣∣∣
where the probabilities are over the coins of the adversary and those used by the
oracles. We say that the (P,Q)-DDH problem is (ε, t)-hard in G, if for any A
running within time t, Adv(P,Q)-DDH

A ≤ ε.

2.3 Our main result: DDH implies (P,Q)-DDH

Before giving our main theorem, we introduce some necessary notions and no-
tations. For a polynomial p we write mon(p) for the set of monomials occurring
in p and write var(p) for the set of variables that occur in p. The notation is
naturally extended to sets of polynomials1. For a monomial m we denote by
ord(m) the order of m (i.e., the sum of the powers of its variables). We say p is
power-free if any Xi ∈ var(p) appears at power at most 1 (our results hold only
for such polynomials). We write PF(Zq[X1, X2, . . . , Xn]) for the set of power-free
polynomials with variables {X1, . . . , Xn} and coefficients in Zq. Finally, we write
Span(P ) for the vector space over Zq generated by P .

For some choice of the (P,Q) challenge, the (P,Q)-DDH problem is trivial
(think of the case when P = {x1, x2} and Q = {x1 + x2}). We therefore restrict
the class of challenges only to the interesting cases where the polynomials in Q
are linearly independent from those in P . Our main technical result will state
that for all non-trivial challenges solving the (P,Q)-DDH problem reduces to
solving DDH.

Definition 2 (Non-trivial challenge). We say that challenge (P,Q) is non-
trivial if Span(P )∩Span(Q) = {0} and polynomials in Q are linearly independent.

First we identify a syntactic condition on the sets P and Q which ensures that
the adversary has 0 advantage in breaking the (P,Q)-DDH problem. Our condi-
tion enforces that for these challenges, which we call impossible challenges the
distribution of the gq(x1, x2, . . . , xn) (for all polynomials q ∈ Q) is statistically
independent from the joint distribution (gp)p∈P . The definition is somewhat
technical, and uses the graph G(P,Q) whose vertexes are mon(P ∪ Q), and in
which there is an edge between monomials m1 and m2 if there exists p ∈ P
such that m1,m2 are in mon(p). We denote by mon+

P (Q) the set of monomials
reachable in this graph from mon(Q) (that is, the strongly connected compo-
nents of G(P,Q) containg mon(Q)). This set, informally, is the smallest superset
of mon(Q) that is stable through linear combinations with any polynomials of
P containing a monomial of mon+

P (Q).
1 For example, for set P = {X1X3 + X1X4, X2 + X1X4} it holds that var(P ) =
{X1, X2, X3, X4}, mon(P ) = {X2, X1X3, X1X4}.
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Definition 3 (Impossible Challenge). We say that a non-trivial challenge
(P,Q) is impossible if the two following conditions hold:

1. ∀m ∈ mon+
P (Q), ord(m) = 1: all monomials in mon+

P (Q) are variables,
2. ∀m ∈ mon+

P (Q),∀m′ ∈ mon(P )\mon+
P (Q),m /∈ var(m′): any monomial

that occurs in P but not in mon+
P (Q) cannot contain an element of mon+

P (Q)
as a variable.

The first requirement asks that all polynomials in Q are actually sums of vari-
ables. The second requirement asks that all polynomials in P either do not use
any variable linked to Q (i.e. from mon+

P (Q)) or are sums of variables. The next
lemma formally captures that for all challenges that satisfy these two require-
ments no adversary can win the associated (P,Q)-DDH problem.

Lemma 4. If (P,Q) is an impossible challenge then Adv(P,Q)-DDH
A = 0 for all

adversaries A.

Strategies. The proof of our main theorem is based on a hybrid argument: it
uses a sequence of transformations from a non-trivial challenge (P,Q) into an
impossible challenge, such that if an adversary succeeds in the original challenge
with significantly better probability than in the transformed challenge, then DDH
is easy. In our formalization we use power-free polynomials with 2α variables,
that is polynomials in PF(Zq[X1, X2, . . . , X2α ]), for some natural number α. It is
convenient to identify the index of variables with subsets of [α], and by a slight
abuse of notation we identify Xi and X{i} (for each i ∈ [α]). Thus, we regard
Zq[X1, X2, . . . , Xα] as Zq[X{1}, X{2}, . . . , X{α}].

Given a non-trivial challenge (P,Q) with P,Q ⊆ PF(Zq[X1, . . . , Xα]) we
show how to build a sequence of challenges (P0, Q0), (P1, Q1), . . . , (Pl, Ql), with
Pi, Qi ∈ PF(Zq[X1, X2, . . . , X2α ]) such that:

(i). (P,Q) = (P0, Q0)
(ii). for each adversary A against the (Pi, Qi)-DDH there exists an adversary B

against DDH such that:

Adv(Pi,Qi)-DDH
A ≤ 2.AdvDDH

B + Adv(Pi+1,Qi+1)-DDH
A

(iii). (Pl, Ql) is an impossible challenge, so Adv(Pl,Ql)-DDH
A = 0

Our main result follows by finding an appropriate bound on the length l of the
sequence.

One possible way to construct a sequence as above is as follows. Set (P0, Q0)
to be (P,Q). To obtain (Pi+1, Qi+1) out of (Pi, Qi) we select a pair of variables
Xu and Xv that occur together in some monomial in mon(P ∪ Q), and merge
them into a new variable Xu∪v. More precisely, in each monomial m ∈ mon(P ∪
Q) where both Xu and Xv occur, we remove these two variables and replace them
with Xu∪v. (Recall that variables are indexed by subsets of [α].) We call one such
transformation a DDH step. The procedure ends when we obtain an impossible
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challenge (Pl, Ql) (condition (iii) above). We call a sequence of DDH reductions
as above a strategy, and we represent strategies as lists of pairs of variables
(Xu1 , Xv1), ..., (Xul

, Xvl
), with ui, vi ⊆ [α] for all i. The length of a strategy is

the length of the associated list. A strategy σ is successful for challenge (P,Q),
if the result of applying σ to (P,Q) is an impossible challenge.

Example 5. Take P = {X1, X2, X3} and Q = {X1X2X3}. A successful strategy
for (P,Q) is (X1, X2), (X1,2, X3). That is, in the first step we replace X1X2 by
X1,2, and obtain P1 = P and Q1 = {X1,2X3}. In the second step we replace
X1,2X3 by X1,2,3. The resulting challenge (P, {X1,2,3}) is impossible.

The following lemma shows the obtained strategies satisfy condition (ii)
above.

Lemma 6. Let (P ′, Q′) be a challenge obtained from challenge (P,Q) by a DDH
step. Then for any adversary A there exists an adversary B such that:

Adv(P,Q)-DDH
A = 2.AdvDDH

B + Adv(P ′,Q′)-DDH
A

Moreover, if tA is the execution time of A, NA is a bound on the number
of oracle queries made by A, then the execution time tB of B is bounded by
tA + NAt(P,Q), where t(P,Q) is (a bound on) the execution time of the oracle
related to challenge (P,Q). If (P,Q) is a non-trivial challenge then (P ′, Q′) is
also a non-trivial challenge.

The previous two lemmas yield the following concrete security relation between
DDH and (P,Q)-DDH.

Proposition 7. Let P,Q ∈ PF(Zq[X1, X2, . . . , Xα]) form a non-trivial chal-
lenge. If (P,Q) has a successful strategy of length n and if the DDH problem is
(ε, t)-hard, then the (P,Q)-DDH is (ε′, t′)-hard, for ε′ = 2n·ε and t′+Nt(P,Q) = t
where N is a bound on the number of oracle queries and t(P,Q) a bound on the
execution time of the oracle for challenge (P,Q).

Generic Strategies. We now exhibit a class of strategies, that we call generic
strategies that are successful for arbitrary challenges (P,Q). Recall that there
are two conditions for a challenge (P,Q) to be impossible: all the monomials
of mon+

P (Q) must be variables and these variables must not occur in any other
monomial of P . The idea behind generic strategies is rather simple. First, we
change monomials in mon+

P (Q) into monomials of order 1 by successively merg-
ing variables. This leads to an intermediate challenge (P ′, Q′) for which all mono-
mials of mon+

P ′(Q′) are variables. Next, we deal with the fact that some variables
in mon+

P ′(Q′) may occur elsewhere in P ′. Then, for any variable x in mon+
P ′(Q′),

if x appears in a monomial m of P ′ whose order is greater than 2, then m is
transformed using a DDH step so that x does not appear anymore in m. After
applying these two steps, we obtain an impossible challenge.

Example 8. Consider the challenge (P,Q) where P has as single element the
polynomial p = X1X2X3X4 and Q has as single element the polynomial q =
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X1X2. The first step transforms q into a variable by using the DDH step (X1, X2).
The resulting challenge is (P ′, Q′) = ({X1,2X3X4}, {X1,2}). Notice that X1,2

appears in P ′, so we apply the DDH step (X1,2, X3) and obtain the challenge
({X1,2,3X4}, {X1,2}). This challenge is impossible therefore we found a successful
strategy whose length is 2.

Next, we provide a bound on the length of generic strategies, which in turn gives
an upper bound on the length of successful strategies. Let (P,Q) be an arbitrary
challenge. First, we define the order of Q within P which we denote by ord+

P (Q).
This quantity is defined by ord+

P (Q) =
∑

m∈mon+
P (Q)

(
ord(m)− 1

)
.

The set nm(P,Q) of non-maximal elements of mon+
P (Q) is the set of mono-

mials m which appear in mon+
P (Q) such that there exists a monomial m′ that

verifies the following two requirements:

1. m is a strict sub-monomial of m′: all the variables of m appear in m′ and m
is different from m′.

2. m′ is in mon(P ) but is not in mon+
P (Q).

Example 9. We still consider the challenge (P,Q) where P contains one element
p = X1X2X3X4 and Q has one element q = X1X2. Then mon+

P (Q) contains only
q. Moreover q is not maximal because p = qX3X4 hence the set of non-maximal
elements nm(P,Q) is also equal to {q}.

We are able to show that for any non-trivial challenge there exist strategies
whose length can be upper-bounded.

Proposition 10 (Bounded strategies). For any non-trivial challenge (P,Q),
there exists a successful strategy of length:

ord+
P (Q) +

(
2|nm(P,Q)| − 1

)
.
(
α + ord+

P (Q)
)

Combined with Proposition 7, we obtain our main theorem:

Theorem 11 (Relating (P,Q)-DDH to DDH). Let (P,Q) be a non-trivial
challenge on variables X1 to Xα. If the DDH problem is (ε, t)-hard, then (P,Q)-
DDH is (ε′, t′)-hard, for

ε′ = 2ε
(
ord+

P (Q) +
(
2|nm(P,Q)| − 1

)
.
(
α + ord+

P (Q)
))

and t′ + Nt(P,Q) = t where N is a bound on the number of oracle queries.

Several remarks are in order. We restrict challenges to sets of power-free polyno-
mials. Extending our result beyond this class, would require dealing with group
elements of the form gX2

. This seems to be a difficult problem since, for instance,
the indistinguishability of (gx, gx2

) and (gx, gr) under the DDH assumption is
an open problem [2]. On the other hand, we can easily lift the requirement that
polynomials in Q are linearly independent, and modifying appropriately the be-
havior of the Fake(P,Q) oracle. We choose to use the current formulation for
simplicity.
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The formulation of our theorem implies that in the worst case, the loss of
security in our reduction may be exponential. We note however that in most, if
not all, practical cases nm(P,Q) is empty, and in those cases the loss in security
is only linear. Moreover, notice that in the case when P and Q contain only
monomials the hypothesis of the theorem implies that mon+

P (Q) = mon(Q) = Q
and ord+

P (Q) =
∑

m∈Q

(
ord(m) − 1

)
. In the next section we consider a few ex-

amples where our theorem gives linear security reductions in several interesting
applications. However for some applications (like the Burmester-Desmedt proto-
col), better reductions can be found using the random self-reducibility property
of DDH.
Random Self-Reducibility. As said above, the DDH problems has the nice
property to be Random Self-Reducible (RSR for short). Roughly, this prop-
erty means that an efficient algorithm for the average case implies an efficient
algorithm for the worst case. In the case of DDH, when randomizing an in-
stance, one gets instances, which (1) are uniformly distributed, (2) have all the
same solution as the original instance. Thus, being able to solve a single ran-
dom instance implies that we can solve any instance. As an illustration, let
(X, Y, Z) = (gx, gy, [gxy|gz]) be an instance of DDH (the notation Z = [A|B]
means that the problem is to decide whether Z equals A or B). It is easy to see
that for α and β chosen at random, (Xα, Y β , Zαβ) is a new, random instance
with the same (decision) solution than the original one.

Here we use RSR as introduced in lemma 5.2 of [3]: from (gx, gy, [gxy|gz]) we
generate two new instances of DDH: (gαx, gy, [gαxy|gαz]), where α is randomly
sampled in Zq and (gαx, gβy, [gαβxy|gαβz]) where α and β are sampled in Zq.
Using this, we are able to lower the bound given in proposition 7 by giving a
finer definition of the weight of a sequence. The idea is that multiple steps can
be combined in a single step using RSR. A strategy (Xu1 , Xv1), . . . , (Xuk

, Xvk
)

is said to be randomly self-reducible (RSR) for a challenge (P,Q) if:

– For step i, Xui
and Xvi

have not been introduced in previous steps: for any
j < i, ui and vi are different from uj ∪ vj .

– For step i, Xvi
has to be fresh, i.e. this variable was never used in previous

steps: for any j < i, vi is different from uj and vj .
– Let Xu and Xv be two distinct variables from the strategy, if the product

Xu.Xv occurs in P or Q, then there exists a step i such that u = ui and
v = vi (or u = vi and v = ui).

Then the weight of such a sequence is 1 as it only counts as a single step and we
can extend the result of lemma 6. The idea is that all the kind of “independence”
of variables captured by the above conditions allows us to use a single DDH
challenge to deal with all the steps (Xui

, Xvi
) at once. Formally, we have the

following:

Lemma 12. Let (P ′, Q′) be a challenge obtained from challenge (P,Q) by a
RSR strategy. Then for any adversary A there exists an adversary B such that:

Adv(P,Q)-DDH
A = 2.AdvDDH

B + Adv(P ′,Q′)-DDH
A
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Moreover, if tA is the execution time of A, NA is a bound on the number of oracle
queries made by A, then the execution time tB of B is bounded by tA+NAt(P,Q),
where t(P,Q) is (a bound on) the execution time of the oracle related to challenge
(P,Q).

We exemplify the use of RSR strategies in obtaining better reductions in Sec-
tion 3 for the case of the Burmester-Desmedt protocol.

3 Applications: simple proofs for Diffie-Hellman-based
protocols

In this section, we show the applicability of our main theorem in a few differ-
ent contexts. First we apply it to reprove equivalence between the Group DDH
problem and basic DDH. Our result yield a tighter security reduction than pre-
vious result. As explained in the introduction, our theorem can be used to easily
obtain relation between the hardness of DDH and various of its extensions. To
illustrate the simplicity associated to using the (P,Q)-DDH assumption we show
how to use it to link the reverse DDH assumption (which we introduce) and basic
DDH. Finally, we demonstrate that our theorem yields simpler proofs of security
for group key-exchange protocols in the presence of passive adversaries, and we
show how to obtain a proof for the Burmester-Desmedt protocol.

Throughout this section, we work in a group in which the DDH problem is
(ε, t)-hard and work with polynomials with α variables X1, . . . , Xα (we assume
α to be equal to the security parameter.)
GDDH. The Group Decisional Diffie-Hellman (GDDH) problem [23] can be
formalized with the challenge (P,Q):

– P = {
∏

i∈E Xi | E ( [1, α]}, that is, P contains all the monomials of order
up to α− 1.

– Q = {
∏

1≤i≤α Xi}.

Clearly, Span(P ) ∩ Span(Q) = {0} and therefore we can apply Theorem 11.
Notice that sets P and Q contain only monomials and since X1X2 · · ·Xα is
trivially maximal in P , it follows that the (P,Q)-DDH problem is (ε′, t′)-hard,
with ε′ = 2(α − 1)ε and t′ = t − Nt(P,Q) ≥ t − t′t(P,Q). Thus t′ is greater
than t/(1+ t(P,Q)). Moreover, when calling the oracle, the worst case consists in
generating all the Xi and multiplying them, which can be done time polynomial
in α. Our results contrasts with that of [7] where the reduction is linear but
requires an exponential time in α.
Reverse GDDH. We illustrate the use of non-maximal elements through an
example that we call the Reverse GDDH problem. This problem is given by the
challenge (P,Q):

– P = {
∏

i∈E Xi | E ⊆ [1, α] ∧ E 6= {1}}, that is, P contains all the possible
monomials except X1.

– Q = {X1}.
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Since X1 is not maximal in P we have that |nm(P,Q)| = 1. By Theorem 11
we obtain that the loss of security is ε′ = 2αε, which is linear in the security
parameter.

The Burmester-Desmedt Protocol. Introduced in [8] and later analyzed
in [14], this protocol is a two-round key exchange protocol between α parties. In
the first round, each user Ui samples a random Xi and broadcasts gXi . In the
second round, Ui broadcasts gXiXi+1−Xi−1Xi (with the convention that X0 = Xα

and Xα+1 = X1). The common secret is gX1X2+···+XαX1 .
Recall that in the passive setting, security of such a group key-exchange pro-

tocol is roughly modeled as follows. First the (passive) adversary observes bit-
strings for the different messages exchanged by the participants (using so-called
Execute queries). At some point the adversary decides to challenge the shared
secret by trying to distinguish that secret from a random element (the so-called
Test query). The adversary is allowed to intertwine his queries. The model, ac-
tually corresponds to the (P,Q)-DDH assumption, where the polynomials that
correspond to the messages sent by parties are placed in P and the polyno-
mial that corresponds to the shared secret is in Q. Therefore the (P,Q)-DDH
assumption that corresponds to polynomials:

– P = {Xi | 1 ≤ i ≤ α} ∪ {XiXi+1 −Xi−1Xi | 1 ≤ i ≤ α} corresponds to the
broadcast messages.

– Q = {
∑α

i=1 XiXi+1} corresponds to the shared secret.

is equivalent to the security of the Burmester Desmedt protocol against passive
adversaries.

It is easy to check that Span(P ) ∩ Span(Q) = {0} (see for instance [14]).
Here again Q has only one element and this element is maximal in P . We get
ord+

P (Q) = α and after applying Theorem 11, ε′ = 2αε, that is we obtain a linear
reduction.

The reduction factor obtained through the use of Theorem 11 is based on
generic strategies and is not optimal. Next we show that it is possible to use
RSR strategies to obtain better reduction factors (essentially matching the ones
that appear in [14]). For simplicity, we assume that α is a multiple of 3. The as-
sumption does not change the asymptotic factors obtained through the reduction
bellow. We proceed in two steps: First, we apply the RSR strategy:

(X1, X2)(X4, X5) . . . (X3i+1, X3i+2) . . .

Let (P ′, Q′) be the resulting challenge. Finally, by applying the following RSR
strategy

(X2, X3)(X3, X4)(X5, X6)(X6, X7) . . . (X3i+2, X3i+3), (X3i+3, X3i+4) . . .

we obtain an impossible challenge. Using Lemma 12 twice, we get that for any
adversary A against (P,Q)-DDH there exists an adversary B (of similar time
complexity) against DDH such that Adv(P,Q)-DDH

A = 4AdvDDH
B .
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Centralized Diffie-Hellman. We introduce a toy group key exchange pro-
tocol in order to illustrate how our results can be used to easily prove such new
protocols. This key distribution protocol considers α− 2 users U1, . . . , Uα−2 and
a server S. Each user Ui randomly samples a group element Xi, while the server
S samples two group elements Xα−1, Xα. Then each user Ui sends gXi to S and
receives gXα+XiXα−1 . The server also broadcasts gXα−1 . The shared secret is
gXα . The security of the shared key is captured by the challenge (P,Q), where:

– P = {Xi | 1 ≤ i ≤ α− 1} ∪ {Xα + XiXα−1 | 1 ≤ i ≤ α− 2} corresponds to
the broadcast messages.

– Q = {Xα} corresponds to the shared secret.

Each monomial XiXα−1 appears only once, thus Span(P ) ∩ Span(Q) = {0}.
The set Q has only one element and this element which is maximal in P . Thus
mon(Q) = {Xα} and mon+

P (Q) = {Xα, X1Xα−1, . . . , Xα−2Xα−1} from which it
follows that ord+

P (Q) is α− 2. The loss of security in the reduction is thus only
linear.

4 A symbolic logic for Diffie-Hellman exponentials and
encryption

In this section we give a symbolic language for representing messages formed by
using nonces, symmetric encryption and exponentiation. In some sense, the lan-
guage that we give in this section is a formal “notation” for distributions. This
notation has the crucial property that it can be used to automatically reason
about the indistinguishability of distributions that arise in cryptographic pro-
tocols, without resorting to reduction proofs. For example, using this language,
one can define and reason about the security of keys in multicast protocols (see
for example [17]) in a way that is meaningful to standard cryptographic models.
The main ingredient that enables for such results is a soundness theorem which
explains how results at the abstract level of the notation that we introduce map
to results about the indistinguishability of distributions.
Syntax. First we make precise the set of symbolic messages that we consider.
Let Keys, Nonce and Exponents be three countable disjoint sets of symbols
for keys, random nonces, and exponents. We let Poly be the set of power-free
polynomials with variables in Exponents and coefficients in Zq. The set Msg
of message expressions is defined by the following grammar:

Msg ::= Keys | gPoly | Nonce | (Msg,Msg) | {Msg}Keys | {Msg}h(gPoly)

Equality for expressions is defined modulo polynomial equality. For exam-
ple, let p and q be two polynomials from Poly such that p = q (for classical
polynomial equality, e.g. p = X1 + X2 + X1 and q = 2X1 + X2), then gp = gq.
Computational Interpretation. One should think of the elements of Msg as
symbolic representation for (ensembles of) distributions . For instance, elements
of Keys represent (the distributions of) cryptographic keys obtained by running
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the key generation algorithm of some (fixed) encryption scheme. A term like
gX represents the distribution of gx when exponent x is chosen at random,
and h(gX1X2) represents the distribution of keys obtained by applying a hash
function to gx1x2 for random x1 and x2. A slightly more complex example is the
expression: (gx, gy, {K}h(gxy)) that represents the distribution of a conversation
between two parties that first exchange a Diffie-Hellman key, and then use this
key to encrypt a symmetric key.

Let us precise how symbolic expressions are mapped to distributions. Con-
sider a symmetric encryption scheme Π = (KG, E ,D), a family of groups G =
(Gη)η∈N which come with a publicly known generator g for each security pa-
rameter, and an efficiently computable function h : Gη → {0, 1}η to derive
cryptographic keys out of exponentials.

We associate to each expression E ∈ Msg and security parameter η ∈ N a
distribution Ê (to avoid cluttered notation we omit to show the dependency on
Π, G and η.) We define this distribution as the output of the following random-
ized algorithm: For each key symbol K that occurs in E we generate a value
K̂

$←KG(η); for each variable Xi ∈ Exponents we select X̂
$←{1, . . . , |Gη|}; for

every nonce N ∈ Nonce we select N̂
$←{0, 1}η. The output Ê is computed in-

ductively on the structure of E: ̂(E1, E2) = Ê1.Ê2, ̂gp(X1,...,Xn) = gp( cX1...,dXn),
{̂E}K = E(Ê, K̂), and ̂{E}h(gp) = E

(
Ê, h(ĝp)

)
.

The symbolic adversary. Now we explain how one can reason symbolically
about secrecy of message in expressions. Security of encryption in symbolic mes-
sages is captured by an axiomatically defined deduction relation `. The ` relation
defines precisely when an expression E ∈Msg can be deduced from a finite set
of expressions S ⊆Msg (written S ` E) by a passive eavesdropper. The deduc-
tion relation ` is an extension of the standard Dolev-Yao inference system [12]
and is given by the following rules:

E ∈ S

S ` E

S ` (E1, E2)
S ` E1

S ` (E1, E2)
S ` E2

S ` {E}K E ` k

S ` E

We only consider deduction rule in this axiomatisation. Indeed the ` relation
is only used to check that a key or an exponentiation can be deduced, thus
composition rules are useless.

To the standard Dolev-Yao rules that capture security of encryption, we add
several rules for dealing with exponentials, and keys derived from exponentials:

E ` g1

E ` gp E ` gq

E ` gλp+q
λ ∈ Zq

E ` {m}h(gp) E ` gp

E ` m

The first rule says that the adversary knows the generator g of the group; the
second says that the adversary can multiply group elements that it knows, and
raise group elements that it knows to arbitrary powers in Zq. The last rule allows
the adversary to decrypt a ciphertext under a key derived from an exponential,
provided that the adversary can compute that exponential.
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Symbolic equivalence of expressions. In a symbolic expression, the infor-
mation revealed via ` can be characterized using patterns [1,17]. Intuitively, the
pattern of expression E ∈ Msg is obtained by replacing all its unrecoverable
sub-expressions (those sub-expressions that occur encrypted under keys that the
adversary cannot derive from E) by the symbol � (undecryptable). For an ex-
pression E ∈ Msg its pattern is formally defined by the following inductive
rules:

pattern
(
(E1, E2)

)
=

(
pattern(E1), pattern(E2)

)
pattern

(
{E′}K

)
= {pattern(E′)}K if E ` K

pattern
(
{E′}K

)
= {�}K if E 6` K

pattern
(
{E′}h(gp)

)
= {pattern(E′)}h(gp) if E ` gp

pattern
(
{E′}h(gp)

)
= {�}h(gp) if E 6` gp

pattern(E′) = E′ if E′ ∈ Nonce ∪Keys ∪ gPoly

Two expressions E1, E2 ∈ Msg are deemed symbolically equivalent if they
have the same pattern (an adversary can gather the same information out of
both expressions): E1 ≡ E2 if and only if pattern(E1) = pattern(E2).

We would like to claim that equivalent expressions have associated indistin-
guishable distributions. However, the equivalence defined above is too stringent:
For example, expressions (K1, {K1}K2) and (K2, {K2}K3) are different, although
they clearly have equal distributions. The solution is to relax the equivalence by
allowing renaming of key and nonce symbols (and even renaming of polynomials).
The above expressions become equivalent by renaming (in the first expression)
K1 and K2 to K2 and K3, respectively.

Renaming the polynomials that occur in exponentials is more subtle. Notice
that we would like to identify the expressions E1 = (gX1 , gX2 , gX1X2) and E2 =
(gX1 , gX2 , gX3) by renaming the polynomial X1X2 to the polynomial X3 (this
models the DDH assumption). However not all renamings of polynomials should
be considered valid: the expression E1 and E3 = (gX1 , gX2 , gX1+X2) (which
are distinguishable since the linear dependency that the adversary can observe
in the second expression is absent in the first expression) should not be made
indistinguishable by mapping for example X1X2 to X1 + X2. Based on the
intuition that underlies our main theorem, we only consider linear dependence
preserving injective renamings of polynomials (which are renamings that preserve
all linear dependencies in the original expression).

Definition 13 (Linear dependance preserving renamings). Let E be an
expression and σ : poly(E)→ Poly be an injective renaming of the polynomials
in E. Then σ is said to be linear dependence preserving (ldp) if:

∀p1, p2, . . . , pn ∈ poly(E), ∀a1, ..., an, b ∈ Z,
n∑

i=1

ai.pi = b⇔
n∑

i=1

ai.piσ = b

For the expression E1 given above, it can be verified that σ defined by σ(X1) =
X1, σ(X2) = X2 and σ(X1X2) = X3 is ldp whereas if we set σ(X1X2) = X1+X2,
σ the resulting renaming is not.
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We say that two expressions E1 and E2 are equivalent up to renaming, and
we write E1

∼= E2 if there exists a renaming σ that is injective on the sets of
nonces, keys, and injective and dependence preserving on the set of polynomials,
such that σ(m) ≡ n.
Soundness Theorem. We are now ready to state our soundness theorem. Sim-
ilarly to the original paper of Abadi and Rogaway [1], we implement encryption
using a scheme that besides being IND-CPA secure also hides the length of the
plaintext. We write IND-CPA∗ for the resulting security notion. We emphasize
that we use the additional requirement only for simplicity – this requirement
can be easily lifted by refining the pattern definition as in [18,17]. The imple-
mentation that we consider uses a family of groups where the DDH problem
is (asymptotically) hard. Finally, we require that the key derivation function h
is such that KG(η) and h(gr) output equal distributions when r is selected at
random. The soundness result holds for acyclic expressions, that is expressions
where encryption cycles do not occur.

Definition 14 (Acyclic expression). An expression E is acyclic if the two
following conditions are satisfied:

1. If p is a polynomial such that h(gp) occurs as an encryption key in E, then
p is not a linear combination of the polynomials that occur in E (and are
different from p).

2. There exists an order ≺ between keys and polynomials from poly(E): if u
appears encrypted using v or gv then u ≺ v. This order must not have any
cycles.

The first condition is intended to avoid encryptions in which the plaintext and the
encryption key are linearly dependent, as for example in {gX1 , gX1+X2}h(gX2 ). It
can be easily shown that the occurrence of such a ciphertext can reveal the en-
cryption key without contradicting IND-CPA-security of the encryption scheme.

The next theorem establishes the main result of this section: the distributions
of equivalent expressions are computationally indistinguishable.

Theorem 15 (Symbolic equivalence implies indistinguishability). Let
E1 and E2 be two acyclic expressions, such that E1

∼= E2. Let Π be a symmetric
encryption scheme that is IND-CPA∗ secure and G be a group such that the DDH
assumption holds, then Ê1 ≈ Ê2.

To appreciate the power that the above soundness theorem provides, consider
the expression:

E(F ) =
(
gX1 , gX2 , gX3 , gX1X2 , gX1X3 , gX2X3 , {K}h(gX1X2X3 ), {F}K

)
where F is some arbitrary expression. Expression E represents the transcript of
the executions of the following (toy) protocol: three parties with secret keys X1,
X2 and X3 first agree on a common secret key h(gX1X2X3) (by broadcasting the
first 6 messages in the expression). Then, one of the parties generates a new key
K which it broadcasts to the other parties encrypted under h(gX1X2X3). Finally,
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one of the parties, sends some secret expression F encrypted under K. To argue
about the security of the secret expression (against a passive adversary) it is
sufficient to show that the distributions associated to the expressions E(F ) and
E(0) are indistinguishable.

Although conceptually simple, a full cryptographic proof would require sev-
eral reductions (to DDH and security of encryption), and most likely would
involve at least one hybrid argument (for proving the security of encrypting K
under h(gX1X2X3)). The tedious details of such a proof can be entirely avoided by
using our soundness theorem: it is straightforward to verify that E(F ) ∼= E(0),
and this procedure can be automated. Since E(F ) is acyclic, the desired result
follows immediately by Theorem 15.

5 Conclusion

In this paper we propose a significant generalization of the DDH problem. We
show that in most of the important cases our generalization is not harder than
the classical two-parties DDH. As applications, we demonstrate that our general-
ization enables simple and tight security proofs for several existing key exchange
protocols. Moreover, the generalization is instrumental in obtaining a computa-
tional soundness theorem that deals with exponentiation and Diffie-Hellman-like
keys. We leave as an interesting open problem the question of how to extend this
last result to the case of active adversaries.
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