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Abstract. We introduce a new information-theoretic primitive called
programmable hash functions (PHFs). PHFs can be used to program the
output of a hash function such that it contains solved or unsolved dis-
crete logarithm instances with a certain probability. This is a technique
originally used for security proofs in the random oracle model. We give
a variety of standard model realizations of PHFs (with different param-
eters).
The programmability of PHFs make them a suitable tool to obtain black-
box proofs of cryptographic protocols when considering adaptive attacks.
We propose generic digital signature schemes from the strong RSA prob-
lem and from some hardness assumption on bilinear maps that can be
instantiated with any PHF. Our schemes offer various improvements over
known constructions. In particular, for a reasonable choice of parameters,
we obtain short standard model digital signatures over bilinear maps.

1 Introduction

1.1 Programmable Hash Functions

A group hash function is an efficiently computable function that maps binary
strings into a group G. We propose the concept of a programmable hash function
which is a keyed group hash function that can behave in two indistinguishable
ways, depending on how the key is generated. If the standard key generation
algorithm is used, then the hash function fulfills its normal functionality, i.e., it
properly hashes its inputs into a group G. The alternative (trapdoor) key gener-
ation algorithm outputs a key that is indistinguishable from the one output by
the standard algorithm. It furthermore generates some additional secret trap-
door information that depends on two generators g and h from the group. This
trapdoor information makes it possible to relate the output of the hash function
to g and h: for any input X, one obtains integers aX and bX such that the
relation H(X) = gaXhbX ∈ G holds. For the PHF to be (m,n)-programmable
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we require that for all choices of X1, . . . , Xm and Z1, . . . , Zn with Xi 6= Zj , it
holds that aXi

= 0 but aZj
6= 0, with some non-negligible probability. Hence

parameter m controls the number of elements X for which we can hope to have
H(X) = hbX ; parameter n controls the number of elements Z for which we can
hope to have H(Z) = gaZhbZ for some aZ 6= 0.

The concept becomes useful in groups with hard discrete logarithms and when
the trapdoor key generation algorithm does not know the discrete logarithm of
h to the basis g. It is then possible to program the hash function such that the
hash images of all possible choices X1, . . . , Xm of m inputs are H(Xi) = hbXi ,
i.e., they do not depend on g (since aXi

= 0). At the same time the hash images
of all possible choices Z1, . . . , Zn of n (different) inputs are H(Zi) = gbZi · hbZi ,
i.e., they do depend on g in a known way (since aZi

6= 0). Intuitively, this
resembles a scenario we are often confronted with in “provable security”: for
some of the hash outputs we know the discrete logarithm, and for some we
do not. This situation appears naturally during a reduction that involves an
adaptive adversary. Concretely, knowledge of the discrete logarithms of some
hash queries can be used to simulate, e.g., a signing oracle for an adversary
(which would normally require knowledge of a secret signing key). On the other
hand, once the adversary produces, e.g., a signature on its own, our hope is that
this signature corresponds to a hash query for which the we do not know the
discrete logarithm. This way, the adversary has produced a piece of nontrivial
secret information which can be used to break an underlying computational
assumption.

This way of “programming” a hash function is very popular in the context of
random oracles [3] (which, in a sense, are ideally programmable hash functions),
and has been used to derive proofs of the adaptive security of simple signature
schemes [4]. An (m, poly)-PHF is a (m,n)-PHF for all polynomials n. A (poly,m)-
PHF is defined the same way. Using this notation, a random oracle implies a
(poly, 1)-PHF.1

Instantiations. As our central instantiation of a PHF we use the following
function which was originally introduced by Chaum et. al. [13] as a collision-
resistant hash function. The “multi-generator” hash function HMG : {0, 1}` → G
is defined as HMG(X) := h0

∏`
i=1 h

Xi
i , where the hi are public generators of

the group and X = (X1, . . . , X`). After its discovery in [13] it was also used in
other constructions (e.g., [11,14,2,25]), relying on other useful properties beyond
collision resistance. Specifically, in the analysis of his identity-based encryption
scheme, Waters [25] implicitly proved that, using our notation, HMG is a (1, poly)-
programmable hash function.

Our main result concerning instantiations of PHFs is a new analysis of HMG

showing that it is also a (2, 1)-PHF. Furthermore, we can use our new techniques
to prove better bounds on the (1, poly)-programmability of HMG. We stress that

1 By “programming” the random oracle as H(X) = gaX hbX (for random aX , bX) with
some sufficiently small but noticeable probability p and H(X) = hbX with probability
1− p [16].
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our analysis uses random walk techniques and is different from the one implicitly
given in [25].

Unfortunately, the PHF HMG has a relatively large public evaluation key.
(Its key consists of ` + 1 group elements.) In our main application, signature
schemes, this will lead to a tradeoff between public key size and signature size:
using PHFs decreases the signature size, at the price of an increased public key
size. See below for more details.

Variations. The concept of PHFs can be extended to randomized program-
mable hash functions (RPHFs). An RPHF is like a PHF whose input takes an
additional parameter, the randomness. Our main construction of a randomized
hash function is RHPolym , which is (m, 1)-programmable. Note that unlike HMG,
the construction of the hash function depends on the parameter m. In particular,
the complexity of RHPolym grows quadratically in m.

In some applications (e.g., for RSA signatures) we need a special type a PHF
which we call bounded PHF. Essentially, for bounded PHFs we need to know a
certain upper bound on the |aX |, for all X. Whereas HMG is bounded, RHPolym

is only bounded for m = 1.

1.2 Applications

Collision Resistant Hashing. We aim to use PHFs as a tool to provide black-
box proofs for various cryptographic protocols. As a toy example let us sketch
why, in prime-order groups with hard discrete logarithms, any (1, 1)-PHF implies
collision resistant hashing. Setting up H using the trapdoor generation algorithm
will remain unnoticed for an adversary, but any collision H(X) = H(Z) with
X 6= Z gives rise to an equation gaXhbX = H(X) = H(Z) = gaZhbZ with known
exponents. Since the hash function is (1, 1)-programmable we have that, with
non-negligible probability, aX = 0 and aZ 6= 0. This implies g = h(bX−bZ)/aZ ,
revealing the discrete logarithm of h to the base g.

Generic Bilinear Map signatures. We propose the following generic Bi-
linear Maps signature scheme with respect to a group hash function H. The
signature of a message X is defined as the tuple

SIGBM[H] : sig = (H(X)
1

x+s , s) ∈ G× {0, 1}η, (1)

where s is a random η bit-string. Here x ∈ Z|G| is the secret key. The signature
can be verified with the help of the public key g, gx and a bilinear map. Our main
theorem concerning the Bilinear Map signatures states that if, for some m ≥ 1,
H is an (m, 1)-programmable hash function and the q-Strong Diffie-Hellman
(q-SDH) assumption [6] holds, then the above signature scheme is unforgeable
against chosen message attacks [23]. Here, the parameter m controls the size
η = η(m) of the randomness s. For “80-bit security” and assuming the scheme
establishes no more than q = 230 signatures [4], we can choose η = 30+80/m such
that η = 70 is sufficient when using our (2, 1)-PHF HMG. The total signature size
amounts to 160+70 = 230 bits. (See below for details.) Furthermore, our generic
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Bilinear Map scheme can also be instantiated with any randomized PHF. Then
the signature of SIGBM[RH] is defined as sig := (RH(X; r)1/(x+s), s, r), where r
is chosen from the PRHF’s randomness space.

Generic RSA signatures. We propose the following generic RSA signature
scheme with respect to a group hash function H. The signature of a message X
is defined as the tuple

SIGRSA[H] : sig = (H(X)1/e, r) ∈ ZN × {0, 1}η, (2)

where e is a η bit prime. The eth root can be computed using the factorization of
N = pq which is contained in the secret key. Our main theorem concerning RSA
signatures states that if, for some m ≥ 1, H is a bounded (m, 1)-programmable
hash function and the strong RSA assumption holds, then the above signature
scheme is unforgeable against chosen message attacks. Again, the parameter m
controls the size of the prime as η ≈ 30 + 80/m. Our generic RSA scheme can
also be instantiated with a bounded randomized PHF.

Other applications. BLS signatures [8,9] are examples of “full-domain hash”
(FDH) signature schemes [4]. Using the properties of a (poly, 1)-programmable
hash function, one can give a black-box reduction from unforgeability of SIGBLS

to breaking the CDH assumption. The same reduction also holds for all full-
domain hash signatures, for example also RSA-FDH [4]. Unfortunately, we do
not know of any standard-model instantiation of (poly, 1)-PHFs. This fact may
be not too surprising given the impossibility results from [18].2

It is furthermore possible to reduce the security of Waters signatures [25] to
breaking the CDH assumption, when instantiated with a (1, poly)-programmable
hash function. This explains Waters’ specific analysis in our PHF framework.
Furthermore, our improved bound on the (1, poly)-programmability of HMG gives
a (slightly) tighter security reduction for Waters IBE and signature scheme.

1.3 Short Signatures

Our main application of PHFs are short signatures in the standard model. We
now discuss our results in more detail. We refer to [9,6] for applications of short
signatures.

The birthday paradox and randomized signatures. A signature scheme
SIGFisch by Fischlin [19] (itself a variant of the RSA-based Cramer-Shoup sig-
natures [17]) is defined as follows. The signature for a message m is given by
sig := (e, r, (h0h

r
1h

m+r mod 2`

2 )1/e mod N), where e is a random η-bit prime and
r is a random ` bit mask. The birthday paradox (for uniformly sampled primes)

2 We remark that the impossibility results from [18] do not imply that (poly, 1)-
programmable hash functions do not exist since they only rule out the possibility of
proving the security of such constructions based on any assumption which is satisfied
by random functions, thus it might still be possible to construct such objects using,
say homomorphic properties.



Programmable Hash Functions and Their Applications 5

tells us that after establishing q distinct Fischlin signatures, the probability
that there exist two signatures, (e, r1, y1) on m1 and (e, r2, y2) on m2, with
the same prime e is roughly q2η/2η. One can verify that in case of a collision,
(e, 2r1 − r2, 2y1 − y2) is a valid signature on the “message” 2m1 − m2 (with
constant probability). Usually, for “k bit security” one requires the adversary’s
success ratio (i.e., the forging probability of an adversary divided by its running
time) to be upper bounded by 2−k. For k = 80 and assuming the number of
signature queries is upper bounded by q = 230, the length of the prime must
therefore be at least η > 80+30 = 110 bits to immunize against this birthday at-
tack. We remark that for a different, more technical reason, Fischlin’s signatures
even require η ≥ 160 bits.

Beyond the birthday paradox. In fact, Fischlin’s signature scheme can be
seen as our generic RSA signatures scheme from (2), instantiated with a concrete
(1, 1)-RPHF (RHPoly1). In our notation, the programmability of the hash function
is used at the point where an adversary uses a given signature (e, y1) to create
a forgery (e, y) with the same prime e. A simulator in the security reduction
has to be able to compute y1 = H(X)1/e but must use y = H(Z)1/e to break
the strong RSA challenge, i.e., to compute g1/e′ and e′ > 1 from g. However,
since the hash function is (1, 1)-programmable we can program H with g and
h = ge such that, with some non-negligible probability, H(X)1/e = hbX = gbX1

can be computed but H(Z)1/e = (gaZhbZ )1/e = gaZ/egbZ can be used to break
the strong RSA assumption since aZ 6= 0.

Our central improvement consists of instantiating the generic RSA signature
scheme with a (m, 1)-PHF to break the birthday bound. The observation is that
such hash functions can guarantee that after establishing up to m signatures
with respect to the same prime, forging is still impossible. In analogy to the
above, with a (m, 1)-PHF the simulation is successful as long as there are at
most m many signatures that use the same prime as in the forgery. By the
generalized birthday paradox we know that after establishing q distinct generic
RSA signatures the probability that there exists m signatures with the same
prime is roughly qm+1( η

2η )m. Again, the success ration has to be bounded by
2−80 for q = 230 which means that SIGRSA[H] instantiated with a (2, 1)-PHF can
have primes as small as η = 80 bits to be provably secure.

The security proof for the bilinear map scheme SIGBM[H] is similar. Due to the
extended birthday paradox (for uniform random strings), SIGBM[H] instantiated
with a (m, 1)-PHF only needs η = 30 + 80/m bits of randomness to be provably
secure. For example, with our (2, 1)-PHF HMG we need 70 bits of randomness.

Comparison. Table 1 compares the signature sizes of our and known signatures
assuming q = 230. For RSA signatures our scheme SIGRSA[HMG] offers a short
alternative to Fischlin’s signature scheme. More importantly, generating a ran-
dom 80 bit prime will be considerably faster than a 160 bit one. We expect that,
compared to the one by Fischlin, our new scheme roughly halves the signing
time.

The main advantage of our bilinear maps scheme SIGBM[HMG] is its very
compact signatures of only 230 bits. This saves 90 bits compared to the short
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Scheme Type Signature Size Key Size

Boneh-Boyen [6] Bilinear |G|+ |Zp| = 320 2|G| = 320

Ours: SIGBM[HMG] Bilinear |G|+ |s| = 230 (` + 2)|G| = 26k

Cramer-Shoup [17] RSA 2 · |ZN |+ |e| = 2208 3 · |ZN |+ |e| = 3232

Fischlin [19] (=SIGRSA[RHPoly1 ]) RSA |ZN |+ |r|+ |e| = 1344 4 · |ZN | = 4096

Ours: SIGRSA[HMG] RSA |ZN |+ |e| = 1104 (` + 1)|ZN | = 164k

Table 1. Recommended signature sizes of different schemes. The parameters
are chosen to provide unforgeability with k = 80 bits security after revealing
maximal q = 230 signatures. RSA signatures are instantiated with a modulus
of |N | = 1024 bits, bilinear maps signatures in asymmetric pairings with |G| =
log p = 160 bits. We assume without loss of generality that messages are of size
` bits (otherwise, we can apply a collision-resistant hash function first), where `
must be in the order of 2k = 160 in order to provide k bits of security.

signatures scheme from Boneh-Boyen [6,7] and is only 70 bits larger than the
random oracle BLS signatures. However, a drawback of our constructions is the
size of the verification key since it includes the group hash key κ. For example, for
HMG : {0, 1}` → G, κ contains `+ 1 group elements, where ` = 160. Concretely,
that makes a verification key of 26k bits compared to 320 bits from [6].

We remark that our concrete security reductions for the two generic schemes
are not tight, i.e., the reductions roughly lose log(q/δ) bits of security (cf. The-
orems 10 and 13). Strictly speaking, a non-tight reduction has to be penalized
by having to choose a larger group order. Even though this is usually not done
in the literature [17,19], we also consider concrete signature size when addition-
ally taking the non-tight security reduction into account. Since all known RSA
schemes [17,19] have the same non-tight reduction as we have, we only con-
sider schemes based on bilinear maps. A rigorous comparison appears in the full
version.

Related Signature Schemes. Our generic bilinear map signature scheme
belongs to the class of “inversion-based” signature schemes originally proposed
in [24] and first formally analyzed in [6]. Other related standard-model schemes
can be found in [22,10]. We stress that our signatures derive from the above since
the message does not appear in the denominator of the exponent. This is an
essential feature to get around the birthday bounds. Our generic RSA signature
scheme builds on [19] which itself is based on the early work by Cramer and
Shoup [17]. Other standard-model RSA schemes are [21,12,26,15].

1.4 Open problems

We show that PHFs provide a useful primitive to obtain black-box proofs for cer-
tain signature schemes. We leave it for future research to extend the application
of PHFs to other types of protocols.
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We leave it as an open problem to prove or disprove the standard-model
existence of (poly, 1)-RPHFs. (Note that a positive result would imply a secu-
rity proof for FDH signatures like [9]). Moreover, we are asking for a concrete
construction of a deterministic (3, 1)-PHF that would make it possible to shrink
the signature size of SIGBM[H] to ≈ 215 bits. A bounded (10, 1)-RPHF would
make it possible to shrink the size of the prime in SIGRSA[RH] to roughly 40
bits. This is interesting since generating random 40 bit primes is very inexpen-
sive. Finally, a (2, 1) or (1, poly)-PHF with more compact parameters would have
dramatic impact on the practicability of our signature schemes or Waters’ IBE
scheme [25].

2 Preliminaries

Notation. If x is a string, then |x| denotes its length, while if S is a set then |S|
denotes its size. If k ∈ N then 1k denotes the string of k ones. For n ∈ N, we write
[n] shorthand for {1, . . . , n}. If S is a set then s

$← S denotes the operation of
picking an element s of S uniformly at random. We write A(x, y, . . .) to indicate
that A is an algorithm with inputs x, y, . . . and by z $← A(x, y, . . .) we denote the
operation of running A with inputs (x, y, . . .) and letting z be the output. With
PPT we denote probabilistic polynomial time. For random variables X and Y ,
we write X

γ
≡ Y if their statistical distance is at most γ.

Digital Signatures. A digital signature scheme SIG consists of the PPT al-
gorithms. The key generation algorithm generates a secret signing and a public
verification key. The signing algorithm inputs the signing key and a message and
returns a signature. The deterministic verification algorithm inputs the verifica-
tion key and returns accept or reject. We demand the usual correctness proper-
ties. We recall the definition for unforgeability against chosen-message attacks
(UF-CMA), played between a challenger and a forger F :

1. The challenger generates verification/signing key, and gives the verification
key to F ;

2. F makes a number of signing queries to the challenger; each such query is a
message mi; the challenger signs mi, and sends the result sig i to F ;

3. F outputs a message m and a signature sig .

We say that forger F wins the game if sig is a valid signature on m and it has not
queried a signature on m before. Forger F (t, q, ε)-breaks the UF-CMA security
of SIG if its running time is bounded by t, it makes at most Q signing queries,
and the probability that it wins the above game is bounded by ε. Finally, SIG is
UF-CMA secure if no forger can (t, q, ε)-break the UF-CMA security of SIG for
polynomial t and q and non-negligible ε.

Pairing groups and the q-SDH assumption. Our pairing schemes will be
defined on families of bilinear groups (PGk)k∈N. A pairing group PG = PGk =
(G,GT , p, ê, g) consist of a multiplicative cyclic group G of prime order p, where
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2k < p < 2k+1, a multiplicative cyclic group GT of the same order, a generator
g ∈ G, and a non-degenerate bilinear pairing ê: G × G → GT . See [6] for a
description of the properties of such pairings. We say an adversary A (t, ε)-
breaks the q-strong Diffie-Hellman (q-SDH) assumption if its running time is
bounded by t and

Pr[(s, g
1

x+s ) $← A(g, gx, . . . , gxq

)] ≥ ε,

where g $← GT and x
$← Z∗

p. We require that in PG the q-SDH [5] assump-
tion holds meaning that no adversary can (t, ε) break the q-SDH problem for a
polynomial t and non-negligible ε.

RSA groups and the strong RSA assumption. Our RSA schemes will be
defined on families of RSA groups (RGk)k∈N. A safe RSA group RG = RGk =
(p, q) consists of two distinct safe prime p and q of k/2 bits. Let QRN denote
the cyclic group of quadratic residues modulo an RSA number N = pq. We say
an adversary A (t, ε)-breaks the strong RSA assumption if its running time is
bounded by t and

Pr[(e > 1, z1/e) $← A(N = pq, z)] ≥ ε,

where z $← ZN . We require that in RG the strong RSA assumption [1,20] holds
meaning that no adversary can (t, ε)-break the strong RSA problem for a poly-
nomial t and non-negligible ε.

3 Programmable Hash Functions

A group family G = (Gk) is a family of cyclic groups Gk, indexed by the security
parameter k ∈ N. When the reference to the security parameter k is clear, we will
simply write G instead of Gk. A group hash function H = (PHF.Gen,PHF.Eval)
for a group family G = (Gk) and with input length ` = `(k) consists of two
PPT algorithms. For security parameter k ∈ N, a key κ

$← PHF.Gen(1k) is
generated by the key generation algorithm PHF.Gen. This key κ can then be
used for the deterministic evaluation algorithm PHF.Eval to evaluate H via y ←
PHF.Eval(κ,X) ∈ G for any X ∈ {0, 1}`. We write Hκ(X) = PHF.Eval(κ,X).

Definition 1. A group hash function H is an (m,n, γ, δ)-programmable hash
function if there are PPT algorithms PHF.TrapGen (the trapdoor key generation
algorithm) and PHF.TrapEval (the deterministic trapdoor evaluation algorithm)
such that the following holds:

Syntactics: For group elements g, h ∈ G, the trapdoor key generation (κ′, t) $←
PHF.TrapGen(1k, g, h) produces a key κ′ along with a trapdoor t. Moreover,
(aX , bX)← PHF.TrapEval(t,X) produces aX , bX ∈ Z for any X ∈ {0, 1}`.

Correctness: We demand Hκ′(X) = PHF.Eval(κ′, X) = gaXhbX for all gen-
erators g, h ∈ G and all possible (κ′, t) $← PHF.TrapGen(1k, g, h), for all
X ∈ {0, 1}` and the corresponding (aX , bX)← PHF.TrapEval(t,X).
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Statistically close trapdoor keys: For all generators g, h ∈ G and for κ $←
PHF.Eval(1k) and (κ′, t) $← PHF.Eval(1k, g, h), the keys κ and κ′ are statis-
tically γ-close: κ

γ
≡ κ′.

Well-distributed logarithms: For all generators g, h ∈ G and all possible κ′

in the range of (the first output component of) PHF.TrapGen(1k, g, h), for
all X1, . . . , Xm, Z1, . . . , Zn ∈ {0, 1}` such that Xi 6= Zj for any i, j, and
for the corresponding (aXi

, bXi
) ← PHF.TrapEval(t,Xi) and (aZi

, bZi
) ←

PHF.TrapEval(t, Zi), we have

Pr [aX1 = . . . = aXm
= 0 ∧ aZ1 , . . . , aZn

6= 0] ≥ δ, (3)

where the probability is over the trapdoor t that was produced along with κ′.

We simply say that H is an (m,n)-programmable hash function if there is a negli-
gible γ and a noticeable δ such that H is (m,n, γ, δ)-programmable. Furthermore,
we call H (poly, n)-programmable if H is (q, n)-programmable for every polyno-
mial q = q(k). We say that H is (m, poly)-programmable (resp. (poly, poly)-
programmable) if the obvious holds.

Note that a group hash function can be a (m,n)-programmable hash function for
different parameters m,n with different trapdoor key generation and trapdoor
evaluation algorithms.

In our RSA application, the following additional definition will prove useful:

Definition 2. In the situation of Definition 1, we say that H is β-bounded
(m,n, γ, δ)-programmable if |ax| ≤ β(k) always.

As a first example, note that a (programmable) random oracle O (i.e., a
random oracle which we can completely control during a proof) is trivially a
(1, poly) or (poly, 2)-programmable hash function: given generators g and h, we
simply define the values O(Xi) and O(Zj) in dependence of the Xi and Zj as
suitable expressions gahb. (For example, by using Coron’s method [16].)

As already mentioned in the introduction, we can show a positive and natural
result with a similar reduction on the discrete logarithm problem: any (non-
trivially) programmable hash function is collision-resistant (a proof appears in
the full version).

Theorem 3. Assume |G| is known and prime, and the discrete logarithm prob-
lem in G is hard. Let H be a (1, 1)-programmable hash function. Then H is
collision-resistant.

We will now give an example of a programmable hash function in the standard
model.

Definition 4. Let G = (Gk) be a group family, and let ` = `(k) be a polynomial.
Then, HMG = (PHF.Gen,PHF.Eval) is the following group hash function:

– PHF.Gen(1k) returns a uniformly sampled κ = (h0, . . . , h`) ∈ G`+1.
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– PHF.Eval(κ,X) parses κ = (h0, . . . , h`) ∈ G`+1 and X = (x1, . . . , x`) ∈
{0, 1}` computes and returns

HMG
κ (X) = h0

∏̀
i=1

hxi
i

Essentially this function was already used, with an objective similar to ours
in mind, in a construction from [25]. Here we provide a new use case and a
useful abstraction of this function; also, we shed light on the properties of this
function from different angles (i.e., for different values of m and n). In [25], it
was implicitly proved that HMG is a (1, poly)-PHF:

Theorem 5. For any fixed polynomial q = q(k) and group G with known order,
the function HMG is a (1, q)-programmable hash function with γ = 0 and δ =
1/8(`+ 1)q.

The proof builds upon the fact that m = 1 and does not scale in the m-
component. With a completely different analysis, we can show that

Theorem 6. For any group G with known order, the function HMG is a (2, 1)-
programmable hash function with γ = 0 and δ = O(1/`).

Proof. We give only the intuition here. The full (and somewhat technical) proof
appears in the full version. Consider the following algorithms:

– PHF.TrapGen(1k, g, h) chooses a0, . . . , a` ∈ {−1, 0, 1} uniformly and indepen-
dently, as well as random group exponents3 b0, . . . , b`. It sets h0 = ga0−1hb0

and hi = gaihbi for 1 ≤ i ≤ ` and returns κ = (h0, . . . , h`) and t =
(a0, b0, . . . , a`, b`).

– PHF.TrapEval(t,X) parses X = (x1, . . . , x`) ∈ {0, 1}` and returns a = a0 −
1 +

∑`
i=1 aixi and b = b0 +

∑`
i=1 bixi.

It is clear that this fulfills the syntactic and correctness requirements of Defi-
nition 1. Also, since the bi are chosen independently and uniformly, so are the
hi, and the trapdoor keys indistinguishability requirement follows. It is more
annoying to prove (3), and we will only give an intuition here. First, note that
the X1, X2, Z1 ∈ {0, 1}` from (3) (for m = 2, n = 1) are independent of the ai,
since they are masked by the bi in hi = gaihbi . Hence, if we view, e.g., X1 as a
subset of [`] (where we define i ∈ X1 iff the i-th component x1i of X1 is 1), then

aX1 = a0 − 1 +
∑̀
i=1

aix1i = −1 + a0 +
∑
i∈X1

ai

essentially4 constitutes a random walk of length |X1| ≤ `. Theory says that it
is likely that this random walk ends up with an aX1 of small absolute value.
3 If |G| is not known, this may only be possible approximately.
4 Usually, random walks are formalized as a sum of independent values ai ∈ {−1, 1};

for us, it is more convenient to assume ai ∈ {−1, 0, 1}. However, this does not change
things significantly.
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That is, for any r with |r| = O(
√
`), the probability that aX1 = r is Θ(1/

√
`).

In particular, the probability for aX1 = 0 is Θ(1/
√
`). Now if X1 and X2 were

disjoint and there was no a0 in the sum, then aX1 and aX2 would be independent
and we would get that aX1 = aX2 = 0 with probability Θ(1/`). But even if
X1 ∩ X2 6= ∅, and taking into account a0, we can conclude similarly by lower
bounding the probability that aX1\X2 = aX2\X1 = −aX1∩X2 .

The additional requirement that aZ1 6= 0 with high probability is intuitively
much more obvious, but also much harder to formally prove. First, without loss of
generality, we can assume that Z1 ⊆ X1∪X2, since otherwise, there is a “partial
random walk” aZ1\(X1∪X2) that contributes to aZ1 but is independent of aX1 and
aX2 . Hence, even when already assuming aX1 = aX2 = 0, aZ1 still is sufficiently
randomized to take a nonzero value with constant probability. Also, we can
assume Z1 not to “split” X1 in the sense that Z1 ∩X1 ∈ {∅, X1} (similarly for
X2). Otherwise, even assuming a fixed value of aX1 , there is still some uncertainty
about aZ1∩X1 and hence about aZ1 (in which case with some probability, aZ1

does not equal any fixed value). The remaining cases can be handled with a
similar “no-splitting” argument. However, note that the additional “−1” in the
g-exponent of h0 is essential: without it, picking X1 and X2 disjoint and setting
Z1 = X1 ∪ X2 achieves aZ1 = aX1 + aX2 = 0. A full proof is given in the full
version.

Furthermore, using techniques from the proof of Theorem 6, we can asymp-
totically improve the bounds from Theorem 5 as follows (a proof can be found
in the full version):

Theorem 7. For any fixed polynomial q = q(k) and group G with known order,
the function HMG is a (1, q)-programmable hash function with γ = 0 and δ =
O( 1

q
√

`
).

One may wonder whether the scalability of HMG with respect to m reaches
further. Unfortunately, it does not (the proof for the following theorem appears
in the full version):

Theorem 8. Assume ` = `(k) ≥ 2. Say |G| is known and prime, and the dis-
crete logarithm problem in G is hard. Then HMG is not (3, 1)-programmable.

If the group order G is not known (as will be the case in our upcoming
RSA-based signature scheme), then it may not even be possible to sample group
exponents uniformly. However, for the special case where G = QRN is the group
of quadratic residues modulo N = pq for safe distinct primes p and q, we can
approximate a uniform exponent with a random element from ZN2 . In this case,
the statistical distance between keys produced by PHF.Gen and those produced
by PHF.TrapGen is smaller than (`+ 1)/N . We get

Theorem 9. For the group G = QRN of quadratic residues modulo N = pq
for safe distinct primes p and q, the function HMG is (`+ 2)-bounded (1, q, (`+
1)/N, 1/8(`+1)q)-programmable and also (`+2)-bounded (2, 1, (`+1)/N,O(1/`))-
programmable.
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Similarly, one can show analogues of Theorem 8 and Theorem 3 for G = QRN ,
only with the strong RSA assumption in place of the discrete log problem. We
omit the details.

Randomized Programmable Hash Functions (RPHFs). In the full ver-
sion we further generalize the notion of PHFs to randomized programmable hash
functions (RPHFs). Briefly, RPHFs are PHFs whose evaluation is randomized,
and where this randomness is added to the image (so that verification is possi-
ble). We show how to adapt the PHF definition to the randomized case, in a way
suitable for the upcoming applications. We also give instantiations of RPHFs for
parameters for which we do not know how to instantiate PHFs.

4 Applications of PHFs

4.1 Generic signatures from Bilinear Maps

Let PG = (G,GT , p = |G|, g, ê : G × G → GT ) be a pairing group. Let n =
n(k) and η = η(k) be two arbitrary polynomials. Our signature scheme signs
messages m ∈ {0, 1}n using randomness s ∈ {0, 1}η.5 Let a group hash function
H = (PHF.Gen,PHF.Eval) with inputs from {0, 1}n and outputs from G be given.
We are ready to define our generic bilinear map signature scheme SIGBM[H].

Key-Generation: Generate PG such that H can be used for the group G.
Generate a key for H via κ

$← PHF.Gen(1k). Pick a random index x ∈ Zp

and compute X = gx ∈ G. Return the public verification key (PG, X, κ) and
the secret signing key x.

Signing: To sign m ∈ {0, 1}n, pick a random η-bit integer s and compute
y = Hκ(m)

1
x+s ∈ G. The signature is the tuple (s, y) ∈ {0, 1}η ×G.

Verification: To verify that (s, y) ∈ {0, 1}η×G is a correct signature on a given
message m, check that s is of length η, and that

ê(y,X · gs) = ê(H(m), g).

Theorem 10. Let H be a (m, 1, γ, δ)-programmable hash function. Let F be a
(t, q, ε)-forger in the existential forgery under an adaptive chosen message attack
experiment with SIGBM. Then there exists an adversary A that (t′, ε′)-breaks the
q-SDH assumption with t′ ≈ t and

ε ≤ q

δ
· ε′ + qm+1

2mη−1
+ γ .

5 For signing arbitrary bitstrings, a collision resistant hash function CR : {0, 1}∗ →
{0, 1}n can be applied first. Due to the birthday paradox we choose n = 2k when k
bits of security are actually desired.
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We remark that the scheme can also be instantiated in asymmetric pairing
groups where the pairing is given by ê : G1×G2 → GT and G1 6= G2. In that case
we let the element y from the signature be in G1 such that y can be represented
in 160 bits [6]. Also, in asymmetric pairings, verification can equivalently check if
ê(y,X) = ê(H(m) ·y−1/s, g). This way we avoid any expensive exponentiation in
G2 and verification time becomes roughly the same as in the Boneh-Boyen short
signatures [6]. It can be verified that the following proof also holds in asymmetric
pairing groups (assuming there exists an efficiently computable isomorphism
ψ : G2 → G1).

An efficiency comparison of the scheme instantiated with the (2, 1)-PHF HMG

from Definition 4 appears in the full version.

Proof (Theorem 10). Let F be the adversary against the signature scheme.
Throughout this proof, we assume that H is a (m,n, γ, δ)-programmable hash
function. Furthermore, we fix some notation. Let mi be the i-th query to the
signing oracle and (si, yi) denote the answer. Let m and (s, y) be the forgery
output by the adversary. We introduce two types of forgers:
Type I: It always holds that s = si for some i.
Type II: It always holds that s 6= si for all i.
By F1 (resp., F2) we denote the forger who runs F but then only outputs the
forgery if it is of type I (resp., type II). We now show that both types of forgers
can be reduced to the q+1-SDH problem. Theorem 10 then follows by a standard
hybrid argument.

Type I forgers.

Lemma 11. Let F1 be a forger of type I that (t1, q, ε1)-breaks the existential
unforgeability of SIGBM[H]. Then there exists an adversary A that (t′, ε′)-breaks
the q-SDH assumption with t′ ≈ t and

ε′ ≥ δ

q

(
ε1 −

qm+1

2mη
− γ

)
.

To prove the lemma we proceed in games. In the following, Xi denotes the
probability for the adversary to successfully forge a signature in Game i.
Game 0. Let F1 be a type I forger that (t1, q, ε1)-breaks the existential unforge-
ability of SIGBM[H]. By definition, we have

Pr [X0] = ε1. (4)

Game 1. We now generate trapdoor keys (κ′, t) $← PHF.TrapGen(1k, g, h) for
uniformly selected generators g, h ∈ G to generate a H-key for public verification
key of SIGBM[H]. By the programmability of H,

Pr [X1] ≥ Pr [X0]− γ. (5)
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Game 2. Now we select the random values si used for answering signing queries
not upon each signing query, but at the beginning of the experiment. Since
the si were selected independently anyway, this change is only conceptual. Let
E =

⋃q
i=1{si} be the set of all si, and let Ei = E \ {i}. We also change the

selection of the elements g, h used during (κ′, t) $← PHF.TrapGen(1k, g, h) as
follows. First, we uniformly choose i∗ ∈ [q] and a generator g̃ ∈ G. Define
p∗(η) =

∏
t∈E∗(η + t) and p(η) =

∏
t∈E(η + t) and note that deg(p∗) ≤ q − 1

and deg(p) ≤ q. Hence the values g = g̃p∗(x), h = g̃p(x), and X = gx = g̃xp∗(x)

can be computed from g̃, g̃x, . . . , g̃xq

. Here the index x ∈ Z|G| is the secret key
of the scheme. We then set E∗ = E \ {si∗}, E∗,i = E∗ \ {i}, and

g = g̃p∗(x) = g̃
Q

t∈E∗ (x−t), h = g̃p(x) = g̃
Q

t∈E(x−t).

Note that we can compute (x+ si)-th roots for i 6= i∗ from g and for all i from
h. This change is purely conceptual:

Pr [X2] = Pr [X1] . (6)

Observe also that i∗ is independent of the adversary’s view.
Game 3. In this game, we change the way signature requests from the adversary
are answered. First, observe that the way we modified the generation of g and
h in Game 2 implies that for any i with si 6= si∗ , we have

yi = Hκ′(mi)
1

x+si =
(
gamihbmi

) 1
x+si

=
(
g̃ami

Q
t∈E∗ (x−t)g̃bmi

Q
t∈E(x−t)

) 1
x+si = g̃ami

Q
t∈E∗,i (x−t)g̃bmi

Q
t∈Ei (x−t) (7)

for (ami , bmi) ← PHF.TrapEval(t,mi). Hence for i 6= i∗, we can generate the
signature (si, yi) without explicitly knowing the secret key x, but instead using
the right-hand side of (7) for computing yi. Obviously, this change in computing
signatures is only conceptual, and so

Pr [X3] = Pr [X2] . (8)

Observe that i∗ is still independent of the adversary’s view.
Game 4. We now abort and raise event abortcoll if an si occurs more than m
times, i.e., if there are pairwise distinct indices i1, . . . , im+1 with si1 = . . . =
sim+1 . There are

(
q

m+1

)
such tuples (i1, . . . , im). For each tuple, the probability

for si1 = . . . = sim+1 is 1/2mη A union bound shows that a (m+1)-wise collision
occurs with probability at most

Pr [abortcoll] ≤
(

q

m+ 1

)
1

2mη
≤ qm+1

2mη
.

Hence,

Pr [X4] ≥ Pr [X3]− Pr [abortcoll] > Pr [X3]−
qm+1

2mη
. (9)
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Game 5. We now abort and raise event abortbad.s if the adversary returns an
s ∈ E∗, i.e., the adversary returns a forgery attempt (s, y) with s = si for
some i, but s 6= si∗ . Since i∗ is independent from the adversary’s view, we have
Pr [abortbad.s] ≤ 1− 1/q for any choice of the si, so we get

Pr [X5] = Pr [X4 ∧ ¬abortbad.s] ≥
1
q
Pr [X4] . (10)

Game 6. We now abort and raise event abortbad.a if there is an index i with
si = si∗ but ami

6= 0, or if am = 0 for the adversary’s forgery message. In other
words, we raise abortbad.a iff we do not have ami

= 0 for all i with si = si∗ and
ami
6= 0. Since we have limited the number of such i to m in Game 4, we can use

the programmability of H. We hence have Pr [abortbad.a] ≤ 1 − δ for any choice
of the mi and si, so we get

Pr [X6] ≥ Pr [X5 ∧ ¬abortbad.a] ≥ δ · Pr [X5] . (11)

Note that in Game 6, the experiment never really uses secret key x to generate
signatures: to generate the yi for si 6= si∗ , we already use (7), which requires
no x. But if abortbad.a does not occur, then ami = 0 whenever si = si∗ , so we
can also use (7) to sign without knowing x. On the other hand, if abortbad.a does
occur, we must abort anyway, so actually no signature is required.

This means that Game 6 does not use knowledge about the secret key x.
On the other hand, the adversary in Game 6 produces (whenever X6 happens,
which implies ¬abortbad.a and ¬abortbad.s) during a forgery

y = Hκ′(m)1/(x+s) =
(
g̃am

Q
t∈E∗ (x+t)g̃bm

Q
t∈E(x+t)

) 1
x+s

= g̃
amp∗(x)

x+s g̃bmp∗(x).

From y and its knowledge about h and the si, the experiment can derive

y′ =
(

y

gbm

)1/am

= g̃
p∗(x)
x+s .

Since gcd(η + s, p∗(η)) = 1 (where we interpret η + s and p∗(η) as polynomials
in η), we can write p∗(η)/(η+ s) = p′(η) + q0/(η+ s) for some polynomial p′(η)
of degree at most q− 2 and some q0 6= 0. Again, we can compute g′ = g̃p′(x). We
finally obtain

y′′ = (y′/g′)1/q0 =
(
g̃

p(x)
(x+s)−p′(x)

)1/q0

= g̃
1

x+s .

This means that the from the experiment performed in Game 6, we can construct
an adversary A that (t′, ε′)-breaks the q-SDH assumption. A’s running time t′

is approximately t plus a small number of exponentiations, and A is successful
whenever X6 happens:

ε′ ≥ Pr [X6] . (12)

Putting (4-12) together yields Lemma 11.
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Type II forgers.

Lemma 12. Let F2 be a forger of type II that (t1, q, ε1)-breaks the existential
unforgeability of SIGBM[H]. Then there exists an adversary A that (t′, ε′)-breaks
the q-SDH assumption such that t′ ≈ t and

ε′ ≥ δ

2
(ε2 − γ) .

The difference is that a type II forger returns a valid signature (s, y) with s 6∈
{s1, . . . , sq}. The idea of the reduction is that the simulation can be setup such
that from this forgery an element g̃

1
x+s can be computed which breaks the q-

SDH assumption. The simulation of the signature queries is simular the one for
type I forgers, where now we only have to use the (1, 1)-programmability of H.
A detailed proof is given in the full version.

4.2 Generic signatures from RSA

Let G = QRN be the group of quadratic residues modulo an RSA number
N = pq, where p and q are safe primes. Let n = n(k) and η = η(k) be two
polynomials. Let a group hash function H = (PHF.Gen,PHF.Eval) with inputs
from {0, 1}n and outputs from G be given. We are ready to define our generic
RSA-based signature scheme SIGRSA[H]:

Key-Generation: Generate N = pq for safe distinct primes p, q ≥ 2η+2, such
that H can be used for the group G = QRN . κ $← PHF.Gen(1k). Return the
public verification key (N,κ) and the secret signing key (p, q).

Signing: To sign m ∈ {0, 1}n, pick a random η-bit prime e and compute
y = Hκ(m)1/e mod N. The e-th root can be computed using p and q. The
signature is the tuple (e, y) ∈ {0, 1}η × ZN .

Verification: To verify that (e, y) ∈ {0, 1}η × ZN is a correct signature on
a given message m, check that e is odd and of length η, and that ye =
H(m) mod N .

Theorem 13. Let H be a β-bounded (m, 1, γ, δ)-programmable hash function for
β ≤ 2η and m ≥ 1. Let F be a (t, q, ε)-forger in the existential forgery under an
adaptive chosen message attack experiment with SIGRSA[H]. Then there exists
an adversary A that (t′, ε′)-breaks the strong RSA assumption with t′ ≈ t and

ε = Θ
(q
δ
· ε′

)
+
qm+1(η + 1)m

2mη−1
+ γ .

The proof is similar to the case of bilinear maps (Theorem 10). However, due to
the fact that the group order is not known some technical difficulties arise which
is the reason why we need the PHF to be β-bounded for some β ≤ 2η. The full
formal proof appears in the full version.

Let us again consider the instantiation SIGRSA[HMG] for the (2, 1)-PHF HMG.
Plugging in the values from Theorem 9 the reduction from Theorem 13 leads to
ε = Θ(q`ε′) + q3(η+1)2

22η−1 . As explained in the introduction, for q = 230 and k = 80
bits we are now able to choose η ≈ 80 bit primes.
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