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Abstract. This paper deals with threshold public-key encryption which
allows a pool of players to decrypt a ciphertext if a given threshold of
authorized players cooperate. We generalize this primitive to the dy-
namic setting, where any user can dynamically join the system, as a
possible recipient; the sender can dynamically choose the authorized set
of recipients, for each ciphertext; and the sender can dynamically set
the threshold t for decryption capability among the authorized set. We
first give a formal security model, which includes strong robustness no-
tions, and then we propose a candidate achieving all the above dynamic
properties, that is semantically secure in the standard model, under a
new non-interactive assumption, that fits into the general Diffie-Hellman
exponent framework on groups with a bilinear map. It furthermore com-
pares favorably with previous proposals, a.k.a. threshold broadcast en-
cryption, since this is the first threshold public-key encryption, with dy-
namic authorized set of recipients and dynamic threshold that provides
constant-size ciphertexts.

1 Introduction

In a threshold public-key encryption (in short, TPKE) system [6, 15, 9, 18, 12,
35], the decryption key corresponding to a public key is shared among a set of
n users (or servers). In such a system, a ciphertext can be decrypted only if at
least t users cooperate. Below this threshold, no information about the plaintext
is leaked, which is crucial in all the applications where one cannot fully trust a
unique person, but possibly a pool of individuals.

Electronic voting is a classical example for such a threshold encryption prim-
itive: only a pool of bodies is trusted not to cooperate for decrypting individual
ballots, but for opening the final result only. The scrutineers cannot be individ-
ually trusted, but they globally are, since they control each other. Key-escrow
is another application where the distribution of trust is a requirement, or in
identity-based cryptography for the secret key extraction [6], as well as any de-
cryption procedure requiring a judge decision.

However, one of the main limitation of standard TPKE is that authorized
sets (the public keys) and the threshold t are often fixed during the setup, or
at least t is fixed during the key generation phase: the threshold is intrinsic to
the public key, and thus cannot be tuned at the encryption time. Additional
flexibility could be useful in many applications in order to avoid the generation
of multiple keys for the same purpose, but with different properties only, such
as different partners in the authorized set or different thresholds.
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Related Work. To this aim, different notions were proposed, like identity-based
threshold encryption (decryption) [1, 26], or threshold broadcast encryption (or
dynamic threshold encryption) [11, 10, 20, 9].

The scheme proposed in [11] appears to be the closest to what we are dealing
with is this paper, and the most efficient. Indeed, this is the first (threshold
broadcast encryption) scheme that provides ciphertexts of length smaller than
O(s) (actually, this is O(s− t)), where s is the size of the authorized set, and t is
the threshold, and they are not fixed during the setup, but at the encryption time
only. They proposed a scheme in the PKI scenario, and then in the identity-based
case. But they let as an open problem to find a scheme with smaller ciphertexts.

Note that such a threshold encryption primitive is close to broadcast en-
cryption [16, 27, 24, 22, 8, 14]: A ciphertext c sent to an authorized set S, un-
der a threshold t = 1, actually allows any player in S to individually decrypt
c. However, for a larger threshold, such a primitive does not seem related to
broadcast anymore, hence the name of (dynamic) threshold public-key encryp-
tion. A quite recent primitive, the so-called attribute-based encryption [23], is
also related to this threshold decryption capability, according to the number of
common attributes owned by the recipient. However, the first constructions were
not dynamic, since the required attributes were decided at the key-generation
phase (key-policy). Ciphertext-policy for attribute-based encryption is more dy-
namic [3], since it allows to decide about the threshold at the encryption time.
However, no join-computation is required/possible for the decryption, contrarily
to the usual notion of threshold cryptography, where a pool of players are needed
to cooperate in order to perform the private computation. For practical reasons,
it is preferable when the private computation needs the cooperation of several
players, but in a non-interactive way. In the following, we are thus interested
in non-interactive threshold public-key encryption systems. The latter feature of
non-interactivity is also considered as an important one in [19], which deals with
dynamic threshold cryptography too, but for signatures only.

Our contributions. In this paper, to capture previous notions, we propose a gen-
eralization of threshold public-key encryption (TPKE) to the dynamic setting,
where any user can dynamically join the system, as a possible recipient; the
sender can dynamically choose the authorized set of recipients, for each cipher-
text; the sender can dynamically set the threshold t for decryption capability
among the authorized set.

We first formalize this notion, and propose a security model, which deals
with all the usual notions of secrecy, but also of robustness, which is important
in group-oriented protocols. For our security model we start from [11]. Then, we
enhance it with algorithms able to check the validity of all the objects: first a
ValidateCT algorithm that (publicly) checks whether a ciphertext is valid with
respect to the authorized set and the threshold; and a ShareVerify algorithm that
(publicly) checks whether the players honestly computed their partial decryp-
tions. We then present a new scheme, which is fully dynamic, and secure in the
standard model. Our scheme is the first one with constant-size ciphertexts, which
answers positively to the above problem, for the non-adaptive case. For the se-
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curity analysis, we introduce a new assumption. Whereas it is a non-interactive
assumption and thus easily falsifiable [28], it is non-standard. Since it falls un-
der the Boneh, Boyen and Goh [5] paradigm, in the generic group model, we
can have some confidence into the actual intractability, but relying on a more
standard assumption remains an interesting open problem. For the robustness,
for efficiency reasons, we achieve it in the random oracle model [2].

2 Definitions

This section is dedicated to the definition of the new primitive, and the security
model.

2.1 Dynamic Threshold Public-Key Encryption

Our goal is to generalize the notion of threshold public-key encryption to the
dynamic setting, where

– any user can dynamically join the system (the Join algorithm), as a possible
recipient,

– the sender can dynamically choose the authorized set S of recipients, for
each ciphertext,

– the sender can dynamically set the threshold t for decryption capability
among the authorized set S.

A (robust) dynamic threshold public-key encryption scheme is a tuple of algo-
rithms DT PKE = (Setup, Join, Encrypt, ValidateCT, ShareDecrypt, ShareVerify,
Combine) described as follows:

Setup(λ). Takes as input a security parameter λ. It outputs a set of parameters
Param = (MK,EK,DK,VK,CK), where MK is the master secret key, EK is
the encryption key, DK is the decryption key, VK is the verification key, and
CK the combining key. The master secret key MK is kept secret by the issuer,
whereas the four other keys are public parameters.

Join(MK, ID). Takes as input the master secret key MK and the identity ID
of a new user who wants to join the system. It outputs the user’s keys
(usk, upk, uvk), the private key usk, for decryption; the public key upk, for
encryption; and the verification key uvk. The private key usk is privately
given to the user, whereas upk and uvk are widely distributed, with an au-
thentic link to ID.

Encrypt(EK,S, t,M). Takes as input the encryption key EK, the authorized set
S (or the public keys upk of users lying in S), a threshold t, and a message
M to be encrypted. It outputs a ciphertext.

ValidateCT(EK,S, t, C). Takes as input the encryption key EK, the authorized
set S (or the users’ public keys upk), a threshold t, and a ciphertext C. It
checks whether C is a valid ciphertext with respect to EK, S and t.
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ShareDecrypt(DK, ID, usk, C). Takes as input the decryption key DK, a user ID
and his private key usk, as well as a ciphertext C. It outputs a decryption
share σ or ⊥.

ShareVerify(VK, ID, uvk, C, σ). Takes as input the verification key VK, a user ID
and his verification key uvk, as well as a ciphertext C and a decryption share
σ. It checks whether σ is a valid decryption share with respect to uvk. This
algorihtm is crucial if robustness is required.

Combine(CK,S, t, C, T,Σ). Takes as input the combining key CK, a ciphertext
C, a subset T ⊆ S of t authorized users, and Σ = (σ1, . . . , σt) a list of t
decryption shares. It outputs a cleartext M or ⊥.

Remark 1. As already explained, for practical efficiency, we focus on non-inter-
active ShareDecrypt algorithms, and public Combine algorithm.

2.2 Key Encapsulation Method

For content distribution, or any encryption of a large plaintext, the by-now
classical technique is the KEM-DEM methodology [34], where an ephemeral
secret key is first generated, and used with an appropriate symmetric mechanism
to encrypt the data. In such a case, we modify the above algorithms:

Encrypt(EK,S, t). Takes as input the encryption key EK, the authorized set S
(or the users’ public keys upk) and a threshold t. It outputs an ephemeral
key K, and the key encapsulation material, called the header Hdr. The key
K will be later used with the message to be encrypted with the DEM;

The header Hdr is thus the encryption of the ephemeral key, whereas the full
header will denote the concatenation of the header and the authorized set S,
with the threshold t. The ciphertext will denote the concatenation of all the
data: the full header and the DEM part (the data encrypted with the ephemeral
key).

ValidateCT(EK,S, t,Hdr). Takes as input the encryption key EK and a full header
(S, t,Hdr). It checks whether Hdr is a valid header with respect to EK, S and
t.

In ShareDecrypt and ShareVerify, the header Hdr only is given, instead of C;

Combine(CK,S, t,Hdr, T,Σ). Takes as input the combining key CK, a full header
(S, t,Hdr), a subset T of t authorized users in S, and Σ = (σ1, . . . , σt) a list
of t decryption shares. It outputs the ephemeral key K or ⊥. The key K will
be later used with the ciphertext to be decrypted with the DEM;

In the following, we thus focus on this KEM-DEM methodology, and thus use
the header Hdr only.
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2.3 Security Model

Such a scheme must satisfy the following informal properties. They will be for-
malized later.

Correctness. For any header Hdr associated to an ephemeral key K during an
encryption with a set S of registered users and a threshold t, if t users from
this authorized set correctly produced the partial decryptions σi,
– the ShareVerify algorithm on any (VK, IDi, uvki, C, σi) accepts;
– the Combine algorithm on set Σ = {σi, i = 1, . . . , t} outputs K;

Robustness. For any header Hdr associated to an ephemeral key K during
an encryption with a set S of registered users and a threshold t, if t users
(assumed to be) from this authorized set produce partial decryptions σi that
are all accepted by the ShareVerify algorithm, then the Combine algorithm
outputs K;

Privacy. For any header Hdr encrypted for a set S of registered users with a
threshold t, any collusion that contains less than t users from this authorized
set cannot learn any information about the ephemeral key.

Following [35] and [6], we can more formally define the above privacy notion,
under the classical semantic-security notion [21], under various attacks [29, 31],
using a game between an adversary A and a challenger. Both the adversary and
the challenger are given as input a security parameter λ.

Setup: The challenger runs Setup(λ) to obtain the set of parameters Param =
(MK,EK,DK,VK,CK). The public parameters (EK,DK,VK,CK) are given to
the adversary.

Query phase 1: The adversary A adaptively issues queries:
– Join query, on input an ID: The challenger runs the Join algorithm on

input (MK, ID), to create a new user in the system.
– Corrupt query, on input an identity ID: The challenger forwards the cor-

responding private key to the adversary.
– ShareDecrypt query, on input an ID and a header Hdr: The challenger

runs the ShareDecrypt algorithm on Hdr, using the corresponding secret
keys, and forwards the resulting partial decryption to the adversary.

Challenge: A outputs a target set of users S? and a threshold t?. The chal-
lenger randomly selects b ← {0, 1} and runs algorithm Encrypt to obtain
(K0,Hdr?) = Encrypt(EK,S?, t?), and randomly chooses an ephemeral key
K1. The challenger then returns (Kb,Hdr?) to A.
There is the natural constraint that S? contains at most t? − 1 corrupted
ID’s.

Query phase 2: The adversary continues to adaptively issue Join, Corrupt and
ShareDecrypt queries, as in phase 1, but with the constraint that the number
of identities ID such that Corrupt(ID) or ShareDecrypt(ID,Hdr?) queries have
been asked is less than t? − 1.

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins the game
if b = b′.
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The advantage of A is defined as Advcca
A (λ) =

∣∣Pr[b′ = b]− 1
2

∣∣. As usual, we
denote by Advcca

T,n,s,t,qC ,qD (λ) the maximal value of Advcca
A (λ), over the adversaries

A that run within time T , and where n, s, t, qC and qD are upper-bounds
for the numbers of Join-queries, the size of S?, t?, the number of Corrupt and
ShareDecrypt queries respectively.

Non-Adaptive Adversary (NAA). We can restrict the adversary to decide before
the setup which set S? as well as the threshold t? will be sent to the challenger.

Non-Adaptive Corruption (NAC). We can also restrict the adversary to decide
before the setup which identities will be corrupted.

Chosen-Plaintext Adversary (CPA). As usual, we can also prevent the adversary
from issuing share decryption queries (qD = 0).

Of course, the more adaptive the adversary is in the security analysis, the
more secure the scheme is. But as a first step, in the following, we will focus on
a basic security level:

Definition 2. (n, s, t, qC)-IND-NAA-NAC-CPA security (non-adaptive adver-
sary, non-adaptive corruption, chosen-plaintext attacks). At initialization time,
the attacker outputs the set S? of size s and a set C of identities that it wants to
corrupt, of size qC . The threshold t? is set to t. Then the attacker does not have
access to the ShareDecrypt-oracle.

2.4 Extensions

Our threshold public-key encryption definition can be extended in various ways:
first, in the ID-based setting, and then with improved access structures.

ID-Based Threshold Encryption. In the ID-based setting, the Join algorithm is
replaced by the Extract algorithm that just generates the user’s decryption key
from the identity, in a similar way as done in [13], and let the public key and
the verification key to be this identity.

More General Access Structure. To any identity ID, one can virtually asso-
ciate several sub-identities ID‖1, . . . , ID‖k, and then derive several sets of keys
(usk1, upk1, uvk1), . . . , (uskk, upkk, uvkk). By including several sub-identities of
the same user in an authorized set S, one can give different weights for each user
in the decryption capability.

This description is quite general and covers all the classical cases, but also
quite sophisticated access structures, according to the way the private keys of
the sub-identities are distributed:

– If the private keys of a given identity are all given to the same party, by
including several sub-ID of the same party in the set S one gives a bigger
weight to this party (and even the possibility for him to decrypt alone,
whereas two other parties need to cooperate, etc).
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– If the private keys (related to the sub-identities of ID) are distributed to
distinct users, a threshold among these users will be needed to decrypt a
message sent to ID (implicitly using S = (ID‖1, . . . , ID‖w)). This is the clas-
sical t-out-of-n threshold decryption scheme.

3 Computational Assumptions

Our construction will make use of groups with bilinear maps [25, 7], and a new
computational assumption, that fits into the general Diffie-Hellman exponent
framework proposed by Boneh, Boyen and Goh [5]. This framework does not
provide a definite answer about the real intractability, but is a starting point for
getting confidence.

3.1 Bilinear Maps

Let G1, G2 and GT be three cyclic groups of prime order p. A bilinear map e (·, ·)
is a map G1 × G2 → GT such that for any generators g1 ∈ G1, g2 ∈ G2 and
a, b ∈ Zp,

– e
(
g1
a, g2

b
)

= e (g1, g2)ab (Bilinearity)
– e (g1, g2) 6= 1 (Non-degeneracy).

A bilinear map group system is a tuple B = (p,G1,G2,GT , e (·, ·)), composed of
objects as described above. B may also include a group generator. We impose all
group operations as well as the bilinear map e (·, ·) to be efficiently computable,
i.e. in time poly(|p|).

Note that our construction just makes use of an arbitrary bilinear map group
system, without any particular additional property. In particular, we do not need
G1 and G2 to be distinct or equal. Neither do we require the existence of an
efficient isomorphism going either way between G1 and G2, as it is the case for
some pairing-based systems.

3.2 The Multi-Sequence of Exponents Diffie-Hellman Assumption

As in [14], our security proof uses the general Diffie-Hellman exponent theorem
due to Boneh, Boyen and Goh [5]. They indeed introduced a class of assumptions
which includes a lot of (by-now familiar) assumptions, that appeared in the
past with new pairing-based schemes. It includes for example DDH (in GT ),
BDH, q−BDHI, and q−BDHE assumptions. Even if group systems equipped
with bilinear maps are far from being generic, an intractability result in this
framework is a first step for getting some confidence in the actual intractability.
In our case, we assume the intractability of the following decisional problem
(`,m, t)-MSE-DDH:

Let B = (p,G1,G2,GT , e (·, ·)) be a bilinear map group system and let `,
m and t be three integers. Let g0 be a generator of G1 and h0 a generator of
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G2. Given two random coprime polynomials f and g, of respective orders ` and
m, with pairwise distinct roots x1, . . . , x` and y1, . . . , ym respectively, as well as
several sequences of exponentiations

x1, . . . , x`, y1, . . . , ym
g0 , g0

γ , . . . , g0
γ`+t−2

, g0
k·γ·f(γ) ,

g0
α , g0

α·γ , . . . , g0
α·γ`+t ,

h0 , h0
γ , . . . , h0

γm−2
,

h0
α , h0

α·γ , . . . , h0
α·γ2m−1

, h0
k·g(γ) ,

and T ∈ GT , decide whether T is equal to e (g0, h0)k·f(γ) or to some random
element of GT .

The following statement is a corollary of Theorem 7 [5] which can be found
in section 6. It provides an intractability bound in the generic model [33], but
in groups equipped with pairings. We emphasize on the fact that, whereas the
assumption has several parameters, it is non-interactive, and thus easily falsifi-
able [28].

Corollary 3 (Generic Security). For any probabilistic algorithm A that to-
talizes of at most qG queries to the oracles performing the group operations in
G1,G2,GT and the bilinear map e (·, ·),

Advmse-ddh(`,m, t,A) ≤ (qG + 4(`+ t) + 6m+ 4)2 · d
2p

with d = 4(`+ t) + 6m+ 2.

4 Our Construction

4.1 Description

In this section we present our new dynamic threshold public-key encryption
(DT PKE), with constant size ciphertexts. Basically, the encryption algorithm
specifies the authorized-user set with an inclusion technique as in the broadcast
encryption schemes [8, 13]. Moreover this authorized set is combined with a set
of dummy users, in order to be consistent with the value of the threshold (this is
a well-known technique in threshold encryption). We make use of the Aggregate
algorithm (over GT ) described in [14] to combine the decryption shares. The
Aggregate algorithm simply exploits the fact that a product of inverses of coprime
polynomials can be written as a sum of inverses of affine polynomials. Thus given
some elements in GT of the right form, one can combine the exponents using some
group operations. We provide below a description of the case which interests us
and refer to [14] for more details.

Setup(λ). Given the security parameter λ, a system with groups and a bilinear
map B = (p,G1,G2,GT , e (·, ·)) is constructed such that |p| = λ. Also, two
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generators g ∈ G1 and h ∈ G2 are randomly selected as well as two secret
values γ and α ∈ Z?p. Finally, a set D = {di}m−1

i=1 of values in Zp is randomly
selected, where m is the maximal size of an authorized set. This corresponds
to a set of dummy users, that will be used to complete a set of authorized
users.
B constitutes the system parameters. The master secret key is defined as
MK = (g, γ, α). The encryption key is EK =

(
m,u, v, hα, {hα.γi}2m−1

i=1 ,D
)

,

and the combining key is CK =
(
m,h, {hγi}m−2

i=1 ,D
)

, where u = gα.γ , and

v = e (g, h)α. In the following, we denote by Di the i first elements of D.
Note that DK = ∅, since no general data are needed for partial decryption.
Furthermore, this version of the scheme does not provide robustness, we thus
do not define VK yet. Robustness will be studied later.

Join(MK, ID). Given MK = (g, γ, α), and an identity ID, it randomly chooses
x ∈ Z?p (different from all previous ones, included dummy users data in D),
and outputs the user’s keys (usk, upk) with:

upk = x , usk = g
1

γ+x .

The private key usk is privately given to the user, whereas upk is widely
published, in an authentic way (again, since robustness is not dealt with
here, we do not set uvk yet).

Encrypt(EK,S, t). Given the encryption key EK, a set S of users, which is iden-
tified to S = {upk1 = x1, . . . , upks = xs} and a threshold t (with t ≤ s =
|S| ≤ m), Encrypt randomly picks k ∈ Z?p, and computes Hdr = (C1, C2) and
K, where

C1 = u−k , C2 = h
k·α·

Q
xi∈S

(γ+xi)·
Q
x∈Dm+t−s−1

(γ+x)
, K = vk .

Encrypt then outputs the full header (S, t,Hdr = (C1, C2)) and the secret
key K, which will be used to encrypt the message. The crucial point is that
Encrypt includes a set of m + t − s − 1 dummy users, in order to obtain
a polynomial of degree exactly m + t − 1 in the exponent of h. This way,
exploiting the cooperation of t authorized users together with a combining
key that contains

(
h, {hγi}m−2

i=1

)
is sufficient to decrypt a ciphertext (see the

Combine algorithm).

ValidateCT(EK,S, t,Hdr). Given the encryption key EK and a full header (S, t)
and Hdr = (C1, C2)), as above, one can compute

C ′1 = u−1 , C ′2 = h
α·

Q
x∈S∪Dm+t−s−1

(γ+x)
.

One should notice that a header Hdr = (C1, C2) is valid with respect to S
if and only if there exists a scalar k such that C1 = C ′1

k and C2 = C ′2
k.

Moreover, one can note that in such a header, a correct S contains at least
t keys of some users. As a consequence, ValidateCT simply checks whether
e (C1, C

′
2) = e (C ′1, C2) and S is correct, or not.
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ShareDecrypt(ID, usk,Hdr). In order to retrieve a share σ of a decryption key
encapsulated in the header Hdr = (C1, C2), user with identity ID and the
corresponding public key upk and private key usk = g

1
γ+x computes

σ = e (usk, C2) = e (g, h)
k·α·

Q
xi∈S∪Dm+t−s−1

(γ+xi)

γ+x .

Combine(CK, C, T,Σ). Given S, t, Hdr = (C1, C2), CK, a subset T of t users
(T ⊆ S) and Σ the corresponding decryption shares, outputs

K =
(
e
(
C1, h

p(T,S)(γ)
)
· Aggregate(GT , Σ)

) 1
c(T,S) ,

with c(T,S) a constant in Zp and p(T,S) a polynomial of degree m − 2, that
both allow to cancel a part corresponding to the m − 1 decryption shares
(over m+ t− 1) that are not in the input. Note that since p(T,S) is of degree
m− 2, hp(T,S)(γ) is computable from CK. More precisely, we have:

p(T,S)(γ) =
1
γ
·

 ∏
x∈S∪Dm+t−s−1−T

(γ + x)− c(T,S)

 ,

c(T,S) =
∏

x∈S∪Dm+t−s−1−T
x ,

Aggregate(GT , Σ) = Aggregate

(
GT ,

{
e (g, C2)

1
γ+x

}
x∈T

)
= e (g, C2)

1Q
x∈T (γ+x)

= e (g, h)k·α·
Q
xi∈S∪Dm+t−s−1−T

(γ+xi)

Correctness. Assuming C is well-formed, and Σ is correct:

K ′ = e
(
C1, h

p(T,S)(γ)
)
· Aggregate(GT , Σ)

= e
(
g−k·α·γ , hp(T,S)(γ)

)
· e (g, C2)

1Q
x∈T (γ+x)

= e (g, h)−k·α·γ·(T,S)(γ) · e (g, h)k·α·
Q
x∈S∪Dm+t−s−1−T

(γ+x)

= e (g, h)k·α·c(T,S) = Kc(T,S) .

Thus K
′ 1
c(T,S) = K.

Efficiency. In our construction, ciphertexts remain constant (plus the authorized
set S that contains the xi’s of the authorized users only, which is unavoidable
and thus optimal). Moreover, our Encrypt algorithm is very efficient, since it does
not need any pairing computation, whereas in [11], 3(s−t) pairing computations
are needed, with s the size of the authorized set. Furthermore, any additional
encryption for the same target set only require 3 exponentiations.
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4.2 Aggregation of 1-degree terms: Aggregate

The Combine algorithm requires the computation of

L = e (g, C2)
1

(γ+x1)...(γ+xt) ∈ GT

given Σ = {σj = e (g, C2)
1

γ+xj }tj=1 where the xj ’s are pairwise distinct. We
recall how Aggregate(GT , · · · ) allows to compute L from the xj ’s and the σj ’s,
as described in [14].
Description. Given x1, . . . , xt and σj for 1 ≤ j ≤ t, let us define for any (j, `)
such that 1 ≤ j < ` ≤ r,

Lj,` = σ`

1Qj
κ=1(γ+xκ) = e (g, C2)

1
(γ+x`)

· 1Qj
κ=1(γ+xκ) .

The Aggregate algorithm consists in computing sequentially Lj,` for j = 1, . . . , t−
1 and ` = j + 1, . . . , t using the induction

Lj,` =
(
Lj−1,j

Lj−1,`

) 1
x`−xj

and posing L0,` = σ` for ` = 1, . . . , t. The algorithm finally outputs Lt = Lt−1,t.

4.3 Security Analysis

This section is devoted to the proof of the IND-NAA-NAC-CPA security level for
our system, under our new MSE-DDH assumption.

Security Result. Let DT PKE denote our construction, described above, Sec-
tion 4.1. We can state the following security result.

Theorem 4. For any `, m, t, Advind
DT PKE(`,m, t) ≤ 2 · Advmse-ddh(`,m, t).

The rest of this section is dedicated to proving Theorem 4. To establish the
semantic security of DT PKE against static adversaries, we assume an adversary
A that breaks the scheme under an (`,m, t)-collusion and we build an algorithm
R that distinguishes the two distributions of the (`,m, t)-MSE-DDH problem.

Both the adversary and the challenger are given as input m, the maximal
size of a set of authorized users S, ` the total number of Join queries that can
be issued by the adversary, and a threshold t.

AlgorithmR is given as input a group system B = (p,G1,G2,GT , e (·, ·)), and
an (`,m, t)-MSE-DDH instance in B (as described in Section 3.2). We thus have
two coprime polynomials f and g, of respective orders ` and m, with their pair-
wise distinct roots (x1, . . . , x`) and (x`+t, . . . , x`+t+m−1), and R is furthermore
given

g0 , g0
γ , . . . , g0

γ`+t−2
, g0

k·γ·f(γ) ,

g0
α , g0

α·γ , . . . , g0
α·γ`+t ,

h0 , h0
γ , . . . , h0

γm−2
,

h0
α , h0

α·γ , . . . , h0
α·γ2m−1

, h0
k·g(γ) ,
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as well as T ∈ GT which is either equal to e (g0, h0)k·f(γ) or to some random
element of GT . For the sake of simplicity, we state that f and g are unitary
polynomials, but this is not a mandatory requirement:

f(X) =
∏̀
i=1

(X + xi), q(X) =
`+t−1∏
i=`+1

(X + xi), g(X) =
`+t+m−1∏
i=`+t

(X + xi).

The polynomial f corresponds to a set of ` users not in the target set, that can
be corrupted. The polynomial q corresponds to a set of t− 1 users of the target
set that can be corrupted. The polynomial g corresponds to the m users of the
target set that cannot be corrupted. We will thus be able to simulate ` + t − 1
decryption keys (corruptions), with t− 1 of them, only, in the target set.

For i ∈ [1, `+ t− 1], we set

fi(x) =
f(x) · q(γ)
x+ xi

,

which is a polynomial of degree `+ t− 2.

Init: The adversary A outputs a set S? = {ID?1, . . . , ID
?
s?} of identities that he

wants to attack (the target authorized set), and a set C = {ID1, . . . , IDc} of
identities that he wants to corrupt, with c ≤ ` and |S? ∩ C| ≤ t− 1;

Setup: To generate the system parameters, R formally sets g = g0
f(γ)·q(γ) (but

without computing it, since it does not need to publish it) and sets

h = h0 , u = g0
α·γ·f(γ)·q(γ) = gα·γ ,

v = e (g0, h0)α·f(γ)·q(γ) = e (g, h)α .

The two latter formulae can be computed from the instance input, since f ·q
is of degree `+ t− 1;
R then sets the set D = {di}m−1

i=1 corresponding to dummy users:
– Dm+t−s?−1 = {di}m+t−s?−1

i=1 is a subset of {xj}`+t+m−1
j=`+t . This subset

corresponds to the dummy users included to complete the target set in
the challenge.

– {di}m−1
i=m+t−s? is a set of random elements in Zp

Finally, R defines the encryption key as EK =
(
m,u, v, hα, {hα.γi}2m−1

i=1 ,D
)

,

and the combining key as CK =
(
h, {hγi}m−2

i=1 ,D
)

. Note that R can by no
means compute the value of g. But we do not need it.

Generation of users’ keys:
– For each ID ∈ C, R computes and sends (usk, upk) to A with

upk = xi ,

usk = g0
fi(γ) = g

1
γ+xi ,

with the following constraint: if ID ∈ S?, then the corresponding xi must
be taken in {xj}`+t−1

j=`+1. Otherwise xi must be taken in {xj}`j=1
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– For each ID ∈ S? − S? ∩ C, R sends upk = xi to A, with the following
constraint: xi must be taken in {xj}`+t+m−1

j=`+t −Dm+t−s?−1.
– For each ID /∈ S? ∪ C, R sends upk = x to A, with x /∈ {xj}`+t+m−1

j=1 .

R runsA on the system parameters B and (EK,CK), and on the target set S?.

Challenge: Algorithm R computes Encrypt to obtain

(Hdr?,S?, t,K) = Encrypt(Param,EK,S?, t), with

C1 = g0
−k·γ·f(γ) , C2 = h0

k·g(γ) , K = T ,

|S| = s? , S? ⊆ {xi}`+m+t−1
i=`+1 −Dm+t−s?−1 .

One can verify that, if we set k′ := k
α·q(γ) , then

C1 = u−k
′
, C2 = h

k′·α·
Q
xi∈S?

(γ+xi)·
Q
x∈Dm+t−s?−1

(γ+x)
.

Note that if T = e (g0, h0)k·f(γ), then K = vk
′
.

The challenger then randomly selects b ← {0, 1}, sets Kb = K, and sets
K1−b to a random value in K. The challenger returns (Hdr?,K0,K1) to A.

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1} and wins the game
if b = b′.

One has

Advmse-ddh(R) = Pr[b′ = b|real]− Pr[b′ = b|random]

=
1
2
× (Pr[b′ = 1|b = 1 ∧ real]− Pr[b′ = 1|b = 0 ∧ real])

− 1
2
× (Pr[b′ = 1|b = 1 ∧ random] + Pr[b′ = 1|b = 0 ∧ random]) .

Now in the random case, the distribution of b is independent from the adversary’s
view wherefrom

Pr[b′ = 1|b = 1 ∧ random] = Pr[b′ = 1|b = 0 ∧ random] .

In the real case however, the distributions of all variables defined by R per-
fectly comply with the semantic security game since all simulations are perfect.
Therefore

Advind
DT PKE(A) = Pr[b′ = 1|b = 1 ∧ real]− Pr[b′ = 1|b = 0 ∧ real] .

Putting it altogether, we get the conclusion.

5 Extensions in the Random Oracle Model

We insist on the fact that the previous construction is in the standard model,
without any additional non-standard setup assumption. However, some improve-
ments can be achieved in the random oracle model [2].
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5.1 Robustness

First, note that in our security model, we defined the robustness, as a very
interesting feature (ShareVerify). Such a verification seems hard to do in the
standard model, in our previous scheme. It was not available in [11] either.
However, in the random oracle model, we can use proofs of equality of discrete
logarithms for providing it, at almost no additional cost in our scheme above:

– when decrypting (C1, C2), using usk, one can generate usk′ = uskδ, for a
random δ, together with σ = e (usk, C2).

– the validity can be checked by the existence of a common value δ such that

e
(
usk′, (hαγ)× (hα)upk

)
= vδ e

(
usk′, C2

)
= σδ.

The latter can be a usual Schnorr-like proof π of equality of discrete loga-
rithms [32] (the existence of a common exponent δ), and its non-interactive
version using the Fiat-Shamir paradigm [17, 30].

The verification key is thus simply uvk = upk = x, the partial decryption consists
of the triple (σ, usk′, π), and the ShareVerify algorithm checks the validity of π.

5.2 Identity-Based

It is also simple to get an ID-based version in the random oracle model, as in [11]
and [13], by simply taking upk = x = H(ID) as in [4].

6 Intractability of (`, m, t)-MSE-DDH

6.1 Notations

For the sake of simplicity, we focus to the symmetric case (G1 = G2 = G).
Let then B = (p,G,G,GT , e (·, ·)) be a bilinear map group system. Let g0 ∈ G
be a generator of G, and set g = e (g0, g0) ∈ GT . Let s, n be positive integers
and P,Q ∈ Fp[X1, . . . , Xn]s be two s-tuples of n-variate polynomials over Fp.
Thus, P and Q are just two lists containing s multivariate polynomials each:
we write P = (p1, p2, . . . , ps) and Q = (q1, q2, . . . , qs) and impose that p1 =
q1 = 1. For any function h : Fp → Ω and vector (x1, . . . , xn) ∈ Fnp , the notation
h(P (x1, . . . , xn)) stands for

(h(p1(x1, . . . , xn)), . . . , h(ps(x1, . . . , xn))) ∈ Ωs.

We use a similar notation for the s-tuple Q. Let f ∈ Fp[X1, . . . , Xn]. It is said
that f depends on (P,Q), which we denote by f ∈ 〈P,Q〉, when there exists a
linear decomposition

f =
∑

1≤i,j≤s

ai,j · pi · pj +
∑

1≤i≤s

bi · qi , ai,j , bi ∈ Zp .

Let P,Q be as above and f ∈ Fp[X1, . . . , Xn]. The (P,Q, f)-General Diffie-
Hellman Exponent problems are defined as follows.
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Definition 5 ((P,Q, f)-GDHE). Given the tuple

H(x1, . . . , xn) =
(
g0
P (x1,...,xn), gQ(x1,...,xn)

)
∈ Gs ×Gs

T ,

compute gf(x1,...,xn).

Definition 6 ((P,Q, f)-GDDHE). Given H(x1, . . . , xn) ∈ Gs × Gs
T as above

and T ∈ GT , decide whether T = gf(x1,...,xn).

We refer to [5] for a proof that (P,Q, f)-GDHE and (P,Q, f)-GDDHE have
generic security when f 6∈ 〈P,Q〉. We will prove that our construction is secure
by first exhibiting the polynomials P , Q and f involved in the security proofs,
and then by showing that f 6∈ 〈P,Q〉.

6.2 (`, m, t)-MSE-DDH

In this section, we prove the intractability of distinguishing the two distributions
involved in the (`,m, t)-MSE-DDH problem (cf. Corollary 3, section 4.3). We first
review some results on the General Diffie-Hellman Exponent Problem, from [5].
In order to be the most general, we assume the easiest case for the adversary:
when G1 = G2, or at least that an isomorphism that can be easily computed in
either one or both ways is available.

Theorem 7 ([5]). Let P,Q ∈ Fp[X1, . . . , Xn] be two s-tuples of n-variate poly-
nomials over Fp and let F ∈ Fp[X1, . . . , Xn]. Let dP (resp. dQ, dF ) denote the
maximal degree of elements of P (resp. of Q,F ) and pose d = max(2dP , dQ, dF ).
If F /∈ 〈P,Q〉 then for any generic-model adversary A totalizing at most qG
queries to the oracles (group operations in G,GT and evaluations of e) which is
given H(x1, . . . , xn) as input and tries to distinguish gF (x1,...,xn) from a random
value in GT , one has

Adv(A) ≤ (qG + 2s+ 2)2 · d
2p

.

Proof (of Corollary 3). In order to conclude with Corollary 3, we need to prove
that our problem lies in the scope of Theorem 7. As already said, we consider
the weakest case G1 = G2 = G and thus pose h0 = g0

β . Our problem can be
reformulated as (P,Q, F )-GDHE where

P =


1, γ, γ2, . . . , γ`+t−2, k · γ · f(γ)
α, α · γ, α · γ2, . . . , α · γ`+t,
β, β · γ, β · γ2, . . . , β · γm−2

α · β, α · β · γ, α · β · γ2, . . . , α · β · γ2m−1, k · α · β · g(γ) · q(γ)


Q = 1
F = k · β · f(γ),

and thus n = 4 and s = 2(` + t) + 3m + 1. We have to show that F is in-
dependent of (P,Q), i.e. that no coefficients {ai,j}si,j=1 and b1 exist such that
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F =
∑s
i,j=1 ai,jpipj + b1 where the polynomials pi are the one listed in P above.

By making all possible products of two polynomials from P which are multiples
of k · β, we want to prove that no linear combination among the polynomials
from the list R below leads to F :

R =
(
k · β · g(γ), k · β · γ · g(γ), . . . , k · β · γ`+t−2 · g(γ),
k · β · γ · f(γ), k · β · γ2 · f(γ), . . . , k · β · γm−1 · f(γ)

)
.

We simplify the task to refuting a linear combination of elements of the list
R′ below which leads to f(γ):

R′ =
(
g(γ), γ · g(γ), . . . , γ`+t−2 · g(γ),
γ · f(γ), γ2 · f(γ), . . . , γm−1 · f(γ)

)
.

Any such linear combination can be written as

f(γ) = A(γ) · f(γ) +B(γ) · g(γ)
⇔ f(γ) · (1−A(γ)) = B(γ) · g(γ)

where A and B are polynomials such that A(0) = 0, degA ≤ m − 1 and
degB ≤ ` + t − 2. Since f and g are coprime by assumption, we must have
g | 1 − A. Since deg g = m and degA ≤ m − 1 this implies A = 1, which
contradicts A(0) = 0. ut

7 Conclusion

We presented a generalization of threshold public-key encryption to the dynamic
setting. We first proposed a security model and then a new scheme, which is
non-interactive, fully dynamic, and which is the first one to achieve constant-
size ciphertexts. However, our scheme can be viewed as a first step toward the
problem, since it still presents a few restrictions: our security proof relies on a
new and non-standard assumption, and does not prevent adaptive adversaries,
nor chosen-ciphertext attacks. However, it applies in the standard model.
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