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Abstract. The goal of a statistical database is to provide statistics
about a population while simultaneously protecting the privacy of the
individual records in the database. The tension between privacy and us-
ability of statistical databases has attracted much attention in statistics,
theoretical computer science, security, and database communities in re-
cent years. A line of research initiated by Dinur and Nissim investigates
for a particular type of queries, lower bounds on the distortion needed in
order to prevent gross violations of privacy. The first result in the current
paper simplifies and sharpens the Dinur and Nissim result.
The Dinur-Nissim style results are strong because they demonstrate in-
security of all low-distortion privacy mechanisms. The attacks have an
all-or-nothing flavor: letting n denote the size of the database, Ω(n)
queries are made before anything is learned, at which point Θ(n) secret
bits are revealed. Restricting attention to a wide and realistic subset of
possible low-distortion mechanisms, our second result is a more acute
attack, requiring only a fixed number of queries for each bit revealed.

1 Introduction

The goal of a statistical database is to provide statistics about a population while
simultaneously protecting the privacy of the individual records in the database.
A natural example that highlights the tension between usability and preserving
privacy is a hospital database containing medical records of the patients. On
one hand, the hospital would like allow medical research that is based on the
information in the database. On the other hand, the hospital is legally obliged to
protect the privacy of its patients, i.e., leak no information regarding the medical
condition of any specific patient that can be “traced back” to the individual.

The tension between privacy and usability of statistical databases has at-
tracted considerable attention in the statistics, theoretical computer science,
cryptography, security, and database communities since late 1970s. There is a a
vast body of work on this subject (for references, see [1, 25, 10, 26, 24, 6]). How-
ever, the formal treatment of privacy has generally been unsatisfactory, either
due to lack of specificity or because the notion of privacy compromise was not
sufficiently general to capture many forms of leakage that ordinary people would
still find unacceptable, or the schemes ensure security only against certain spe-
cific class of attacks.



In a seminal paper [12] Dinur and Nissim initiated a rigorous study of the
tradeoff between privacy and usability. They focused on a class of techniques
that Adam and Wortmann, in their encyclopedic 1989 survey [1] of statistical
disclosure control methods, call output perturbation. Roughly speaking, a query
is a function that maps the database to a (real) number, and an output pertur-
bation statistical disclosure control mechanism (curator) simply adds noise to
the answers. Thus, the true answer of (say) 1910, may be reported as 1914 or
1907. The degree of distortion, that is, the magnitude of the noise, is an impor-
tant measure of the utility of the mechanism. Dinur and Nissim formulated and
investigated the question of how large the noise magnitude needs to be in order
to ensure privacy in the following setting: each of the n rows in the database is
a single bit, a query is specified by naming a subset S ⊆ [n] of the rows, and
the true answer to the query is the number of 1’s in the specified set of rows:∑

i∈S di, where di is the bit in the ith row, 1 ≤ i ≤ n. They demonstrated a
powerful attack on database curators, and concluded that every database cura-
tor that gives too accurate answers to too many queries inherently leaks private
information [12].

The negative results of [12] have been highly influential. On one hand, they
were a catalyst for a fruitful direction of obtaining provably secure statistical dis-
closure control mechanisms [12, 18, 9, 23, 21, 3, 16, 4, 20]. Provably secure mecha-
nisms are now available [18, 9, 16, 3] for many standard data-mining tasks such
as singular value decomposition, k-means clustering, principal component anal-
ysis, the perceptron algorithm, and contingency table release, several tasks in
learning theory [9, 4, 20], and distributed implementations of these [15]. All these
mechanisms have the property, shown to be inherent by [12], the magnitude of
the noise increases with the number of questions asked. On the other hand, the
results of Dinur and Nissim are important, unexpected, and rather disappointing
for many research statisticians who often assumed, or at least hoped, that pri-
vacy can be achieved via a hypothetical clever “one-shot” procedure, that would
turn the database into a sanitized object, permitting significantly accurate an-
swers to be derived for queries that are not specified on the outset, without a
risk of privacy violation.

In this paper we continue the line of research initiated by Dinur and Nissim.
Our first result in the current paper simplifies and sharpens the Dinur and Nissim
result. Our second result shows a limitation for a type of privacy mechanisms
that includes tabular data release and synthetic data sets. We show a class of
queries for which even adding arbitrary noise to a (1/2−ε) fraction of the answers
fails to protect privacy against an adversary running in time independent of the
database size. Thus, no mechanism of the specified type can safely provide very
accurate answers to even a (1/2 + ε) fraction of these queries.

Before stating our contributions formally we discuss the results of Dinur and
Nissim [12] and Dwork et al. [17] in more detail.



1.1 Results and earlier work

In an interactive privacy mechanism the database curator is a trusted entity
that sits between the possibly adversarial user of the database and the actual
data. Given a query, the curator computes the correct answer and adds some
noise to the response. When the database is a vector of bits a mechanism is
blatantly non-private if, after interacting with a database curator, an adversary
can produce a candidate database c that agrees with the real database on all
but o(n) entries, i.e., di = ci for all but o(n) values of 1 ≤ i ≤ n. This model,
while at first blush simplistic, is in fact sufficiently rich to capture many natural
questions. A detailed discussion of the model can be found in [12, 17, 14].

Dinur and Nissim [12] showed that a mechanism in which curator that adds
o(
√
n) noise to every response is blatantly non-private against a polynomial-time

bounded adversary asking O(n log2 n) questions1.
At a high level, the attack of [12] proceeds in two steps. In the first step

the adversary poses O(n log2 n) random subset-sum queries, chosen by including
each database record uniformly and independently with probability 1/2. In the
second step the adversary solves a linear system of equations with n variables
and O(n log2 n) constraints in order to find a candidate database that fits all
available data. The second step of the attack carries most of the computational
burden. The most efficient linear programming algorithm to date is due to Pravin
M. Vaidya [27]. It requires O(((m+n)n2 +(m+n)1.5n)L) arithmetic operations
where m is the number of constraints, n is the number of variables, and L is
bounded by the number of bits in the input. In the setting of [12] this yields an
O(n5 log4 n) worst case running time.

Our first result sharpens the Dinur-Nissim attack. The new attack requires
only n deterministically chosen queries, requires significantly less computation.
Also of value, our analysis is much simpler, relying only on basic properties of
the Fourier transform over the group Zk

2 .

The key message of the Dinur-Nissim work is that any database curator that
gives reasonably accurate answers to too many queries leaks private information.
This however leaves open a possibility that some curator giving wildly inaccurate
answers to a (small) fraction of the queries, and reasonably accurate answers to
the rest may preserve privacy. Existence of such curators was studied by Dwork
et al. [17], who have showed that if the query is now a vector of n standard
normals, and the true answer is the inner product of the database with the
vector, then any database mechanism adding noise bounded by o(

√
n) to at

least 0.761 fraction of its responses is blatantly non-private2. Inspired by the LP
decoding methods from the literature on compressed sensing of signals, e.g. [8,

1 Dinur and Nissim also showed that if the adversary can ask 2n queries then the
mechanism is blatantly non-private as long as the noise is magnitude is o(n); however,
here we restrict our attention to efficient adversaries.

2 We think of this as a natural generalization of the Dinur-Nissim attack, in which the
query vector is restricted to having binary entries.



7, 5], this attack also requires solving a random linear program with n variables
and O(n) constraints, and so has a worst case running time of O(n5).

Although the actual constant (≈ 0.761) is shown to be sharp threshold for
LP decoding [17], other attacks may be possible. Indeed, it is plausible that
every statistical disclosure control mechanism that adds low noise to (1/2 + ε)
fraction of its responses (and allows for sufficiently many queries) leaks private
information, for any ε > 0. Dwork et al. [17] have made a step towards proving
this claim. Namely, they came up with an inefficient (i.e., exp(n)-time) adversary
that asks O(n) questions from the curator and achieves blatant nonprivacy, in
case the curator gives reasonably accurate responses to (1/2 + ε) fraction of
queries.3

In our second result we address the question of whether a mechanism that
adds unbounded noise to a (1/2− ε) fraction of its responses can ensure privacy,
and prove the contrary for a certain range of parameters. We obtain an attack
running in poly(e/ε) time that can tolerate the optimal (1/2 − ε) fraction of
unbounded noise provided the noise on the rest of the queries is at most e. As
in the case of the previous attacks, the query is a vector of length n, and the
true answer is the inner product of the (binary) database and the query vector.
Note that the running time is independent of n; we are not counting the time
needed to formulate the query (not hard, but depends on n) and to compute the
response.

Note that one needs to be careful when specifying a fraction of queries to
which a certain curator adds unbounded (or low) noise since curators can be of
very different nature. In particular some curators may allow only for a certain
(small) number of queries, and some may give different answers to the same
query asked two times in a row.

Our attack applies to database curators that for certain values of p, given a
(randomized) p-sized collection of queries coming from a 2-independent family
add low noise to (1/2 + ε)p of their responses with a probability bounded away
from 1/2.

The class of curators that fall into the above category is quite broad. Specif-
ically (as we later prove) it includes curators that may study the database and
release an “object” that the adversary/analyst can study as desired. This cap-
tures, for example, completely non-interactive solutions such as: summary tables,
statistics, synthetic data sets, and all other known forms of statistical data re-
lease in use today, but it also includes (hypothetical) programs for handling
certain classes of queries with obfuscated data hard-wired in. Our model also
(obviously) captures interactive curators (i.e., curators that keep a query log

3 Note that there are database curators that reveal no information about specific
database records and give correct answers to exactly 1/2 of the queries. For instance,
consider a database curator that answers one half of the queries according to a
database x and the other half of the queries according to a complement database x̄.
Clearly, an interaction with such a curator will not help an adversary distinguish an
all-zeros database from an all-ones database.



and adjust their responses to incoming queries based on such a log) that allow
for p queries, and add unbounded noise to at most (1/2− ε)p responses.

Our attack has important differences from the earlier attacks in the literature:

One Bit at a Time. Conceptually, our adversary attacks one bit at a time. That
is, the adversary chooses a bit to attack and runs a simple program in which
it forms queries and interacts with a database curator in order to obtain a
(potentially wildly) noisy version of the true answer. The adversary can increase
its success probability by running the attack multiple times. The adversary can
attack the entire database by running the attack n times.

Small Noise is Very Small. The magnitude of the noise on the (1/2 + ε) fraction
of “good” responses will be bounded by something smaller than the maximum
allowable coefficient in the query vector. This is the weakest aspect of our result.
However, prior to this work no efficient attack was known even when a (1/2 + ε)
fraction of the responses have zero noise.

Viewed differently, the result says that if the “good” responses must, for
reasons of utility, have noise bounded by some number p, then the system cannot
safely permit O(p) subset sum queries with coefficients even as large as 2p+ 1.

Our attack is based on a new interplay between the basic properties of polyno-
mials over reals and ideas coming from the theory of error-correcting codes [22].

2 Preliminaries

We start with the basic definitions. A database for us is simply an n-bit string
d = (d1, . . . , dn) ∈ {0, 1}n.

Definition 1. Let d be an n-bit database. A query is a vector q ∈ Rn. The true
answer to a query q is the inner product q · d, i.e., the weighted sum of database
bits aq =

∑
i∈q qidi. A disclosure control mechanism C takes as input a query

q and database d and provides a possibly noisy response in R, for which C may
employ randomness. We say that a response C(x, q) carries noise of at most σ
if |C(x, q)− aq| ≤ σ.

The following formalization of non-privacy, due to Dinur and Nissim [12],
has come to be called blatant non-privacy.

Definition 2. Let C be a privacy mechanism. We say that C is blatantly non-
private against a probabilistic algorithm A (an adversary) if after an interaction
with C, A recovers most of the database d with very high probability. Formally,
for all d ∈ {0, 1}n,

Pr[ACoutputs y ∈ {0, 1}n such that dH(d, y) ∈ o(n)] ≥ 1− neg(n),

where the probability is taken over the randomness of A, neg(n) denotes a func-
tion that is asymptotically smaller than any inverse polynomial in n, and dH(x, y)
stands for the Hamming distance.



Definition 3. We also say that C is (1 − δ)-non-private against an adversary
A if for an arbitrary i ∈ [n], A can recover the value of the bit di after an
interaction with C with probability 1− δ. Formally, ∀ d ∈ {0, 1}n, ∀ 1 ≤ i ≤ n,

Pr[AC(i)generates z ∈ {0, 1} such that z = di] ≥ 1− δ,

where the probability is taken over the random coin tosses of C and A.

Clearly, the the definition above is useful only if δ < 1/2. Note that the
definition is very strong. It says that the curator C fails to protect every database
record.

We measure the complexity of an attack on a statistical disclosure control
mechanism with respect to: 1. the number of queries asked by an adversary; 2. the
running time of an adversary. Our attacks (and all other attacks in the literature)
are non-adaptive. They proceed in two steps. First an adversary asks all its
questions from a curator; next the adversary processes the curator’s responses
in order to reveal some private information. We define the time complexity of
an attack to be the time complexity of the second step.

3 Fourier attack: o(
√
n) noise, n queries, O(n logn)

running time

The goal of this section is to establish the following theorem.

Theorem 1. There exists an adversary A that runs in O(n log n) time and
achieves a blatant privacy violation against any database curator C that allows for
n queries with integer {0, 1} coefficients and adds o(

√
n) noise to every response.

Our proof of theorem 1 relies on some standard properties of the Fourier
transform over the finite group Zk

2 . In the following subsection we briefly review
the properties that are important for us.

3.1 Fourier preliminaries

Characters of Zk
2 are homomorphisms from Zk

2 into the multiplicative group
{±1}. There exist 2k characters. We denote characters by χa, where a = (a1, . . . , ak)
ranges in Zk

2 , and set χa(x) = (−1)
∑n

i=1 aixi for every x = (x1, . . . , xk) ∈ Zk
2 .

Let f(x) be a function from Zk
2 into reals. For an arbitrary a ∈ Zk

2 the Fourier
coefficient f̂(χa) is defined by f̂(χa) =

∑
χa(x)f(x), where the sum is over all

x ∈ Zk
2 . For every a ∈ Zk

2 consider a set

Sa =

{
x ∈ Zk

2 |
k∑

i=1

aixi = 0 mod (2)

}
. (1)



It is easy to see that the size of Sa is equal to 2k if a = 0k, and is equal to 2k−1

otherwise. For every a ∈ Zk
2 consider the sum

σa(f) =
∑

x∈Sa

f(x). (2)

The Fourier coefficients of a function f can be easily expressed in terms of sums
σa(f) :

f̂(χa) =
{
σ0(f), if a = 0;
2σa(f)− σ0(f), otherwise. (3)

Let f̂ = (f̂(χa))a∈Zk
2

be a vector of Fourier coefficients of f. Consider a matrix

H ∈ {±1}2k×2k

. Rows and columns of H are labelled by elements of Zk
2 (taken

in the same order). Ha,b = χa(b). H is a (Sylvester type) Hadamard matrix. It
is not hard to verify that HH = 2kI, where I is the identity matrix. Note that
f̂ = Hf. Therefore

f =
1
2k
Hf̂, (4)

i.e., an inverse of a Fourier transform is simply another Fourier transform up to
a scalar multiplication. The following classical (Parseval’s ) identity relates the
absolute values of f to the absolute values of the Fourier coefficients of f :∑

x∈Zk
2

|f(x)|2 =
1
2k

∑
a∈Zk

2

|f̂(χa)|2. (5)

3.2 The attack

Proof of theorem 1: Let d = (d1, . . . , dn) be the database. Without a loss
of generality assume that n is a power of two, n = 2k. Consider an arbitrary
bijection g : Zk

2 → [n] between the group Zk
2 and the set [n]. Now database d

defines a map f from Zk
2 to {0, 1}, where we set f(x) = dg(x), for every x ∈ Zk

2 .
Our attack proceeds in three steps. Firstly, the adversary A asks n queries from
the curator C to obtain the noisy version of sums σa(f). Secondly, A performs a
simple computation to derive noisy Fourier coefficients of f from the curator’s
responses. Finally, A performs an inverse Fourier transform to (approximately)
recover the function f from its noisy Fourier spectrum. Below is a more formal
description.

– For every a ∈ Zk
2 , A asks for the sum of database bits in the set Sa, where

Sa is defined by formula (1). A obtains the noisy values σ̃a(f) of sums σa(f).
Note that for every a ∈ Zk

2 we have σ̃a(f) = σa(f) + o(
√
n).

– A uses formula (3) to obtain a vector f̃ of noisy Fourier coefficients of f.
Note that f̃ = f̂ + e, where the absolute value of every coordinate of e is
bounded by o(

√
n).

– A applies formula (4) to obtain a noisy version of f from f̃ . Specifically, A
computes h = 1

nHf̃, and for every coordinate i ∈ [n], sets yi = 0 if hi < 1/2
and yi = 1 otherwise.



Note that there areO(n log n) time algorithms to compute Fourier transform [11].
Therefore the overall running time of the attack is O(n log n). We now argue that
the attacker always recovers a database y such that dH(d, y) = o(n). The lin-
earity of the Fourier transform implies that it would suffice for us to show that
the vector 1

nHe, can not have Ω(n) coordinates with absolute values above 1/2.
This follows immediately from the Parseval’s identity (5) that asserts that the
L2 norm of e is n times larger than the L2 norm of 1

nHe. ut

3.3 Summary of First Result

We presented a novel attack on statistical disclosure control mechanism that
applies in the model considered earlier by Dinur and Nissim [12]. We believe that
the most important feature of our attack is its conceptual simplicity; in addition,
it is sharper than that of Dinur and Nissim [12] in the following respects:

– Our adversary makes fewer queries (n versus O(n log2 n)).
– Both algorithms first pose queries and then analyze the results. Our analy-

sis is computationally more efficient (O(n log n) vs Ω(n5 log4 n) worst case
running time).

– Our adversary always achieves blatant non-privacy; previous attacks have a
negligible probability of failure.

4 Interpolation attack: (1/2− ε) fraction of unbounded
noise, poly(e/ε) running time

In this section the query vectors will have integer coefficients chosen from some
range [0, . . . , p− 1]. Our goal is to establish the following theorem.

Theorem 2. Let p be a prime. Suppose 0 < ε ≤ 1/2, e ≥ 0, and δ < 1/2 are
such that

2
√

(p− 1)/δ + 8e+ 3 ≤ 2ε(p− 1) and e < (p− 1)/8; (6)

then any curator C that given a (randomized) (p− 1)-sized collection of queries
coming from a 2-independent family adds noise less than or equal to e to at
least (1/2 + ε)(p − 1) −

√
(p− 1)/δ of its responses with probability (1 − δ) is

(1 − δ)-non-private against an adversary that asks p − 1 queries and runs in
O(p4) time.

We defer the discussion of the type of curators that are vulnerable to the
attack above till later in this section, and we defer the proof of theorem 2 to the
following subsection. Below we state some of the immediate corollaries of the
theorem. The next corollary captures the asymptotic parameters of the attack
from theorem 2. To obtain it, one simply needs to set δ = 1/4 and use crude
estimates for p to satisfy (6).



Corollary 1. Let 0 < ε ≤ 1/2 and e ≥ 0 be arbitrary. Let p be a prime such
that p ≥ 20/ε2 and p ≥ 15e/ε. Suppose a database curator C allows queries
with integer weights from [0, . . . , p− 1]. Also, assume that given a (randomized)
(p − 1)-sized collection of queries coming from a 2-independent family C adds
noise less than or equal to e to at least (1/2 + ε)(p − 1) −

√
(p− 1)/δ of its

responses with probability 3/4. Then C is 3/4-non-private against an adversary
that issues O(p) queries and runs in O(p4) time.

The corollary above may be somewhat unsatisfying since the adversary has
a substantial (1/4) probability of failing to correctly reveal private information.
Note however, that (assuming the curator allows for more queries) the adversary
can run its attack multiple times, to obtain independent estimates y(1)

i , . . . , y
(t)
i

for a ceratin specific bit di of the database d. Next the adversary can report the
majority of {y(j)

i }j∈[t] as a new estimate for di. A standard argument based on
the Chernoff bound [2] shows that the new estimate has a vastly lower probability
of an error.

Corollary 2. Let 0 < ε ≤ 1/2 and e ≥ 0 be arbitrary. Let p be a prime such
that p ≥ 20/ε2 and p ≥ 15e/ε. Suppose a database curator C allows queries
with integer weights from [0, . . . , p− 1]. Also, assume that given a (randomized)
(p − 1)-sized collection of queries coming from a 2-independent family C adds
noise less than or equal to e to at least (1/2 + ε)(p − 1) −

√
(p− 1)/δ of its

responses with probability 3/4. Then for every integer t ≥ 1, C is (1 − 2−t/12)-
non-private against an adversary that issues O(tp) queries and runs in O(tp4)
time.

We now argue that the condition of theorem 2 (and corollaries 1 and 2) holds
for non-interactive database curators whose responses to more than (1/2+ε) frac-
tion of all possible queries carry low noise. Our argument relies on the following
lemma that gives a well-known property of pairwise independent samples. The
lemma follows from the fact that for pairwise independent random variables, the
variance is the sum of the variances, and the Chebychev’s inequality [19, lemma
2].

Lemma 1. If S is a pairwise independent sample of elements from some domain
D and I maps elements of D to the range {0, 1}; then for any δ > 0,

Pr
[∣∣∣∣∑x∈S I(x)

|S|
− E[I(x)]

∣∣∣∣ ≥ 1/
√
δ|S|

]
≤ δ.

Let C be a database curator such that C’s responses to more than (1/2 + ε)
fraction of all possible queries carry low noise. Let D be the domain of all possible
queries and I(w) : {0, 1}n → {0, 1} to be the incidence function of the set of
queries that carry unbounded noise according to C. Clearly, E[I(x)] ≤ 1/2 − ε.
Therefore lemma 1 implies that with probability at least 1− δ the total number
of points that carry unbounded noise in a random sample S of size p − 1 is at
most (1/2− ε)(p− 1) +

√
(p− 1)/δ and theorem 2 applies.



We note that theorem 2 is weak in that the small noise is very small –
considerably less than the maximum allowable coefficient in a query. In fact, this
noise model even rules out a privacy mechanism that protects a single bit, say,
di, by “flipping” it – replacing di with its complement 1−di, and then answering
all queries accurately thereafter. On the other hand, to our knowledge, this is
the first efficient adversary that successfully attacks any mechanism that can
add arbitrary noise in a (1/2− ε) fraction of the responses.

4.1 The attack

The main idea behind the proof of Theorem 2 is to achieve error-correction
via polynomial interpolation. This idea has been previously extensively used (in
a related, yet distinct setting) of local decoding of Reed-Muller codes [22, 19].
Below is a high-level overview of our attack.

The attacker A thinks of its queries as points q = (q1, . . . , qn) ∈ Fn
p in an

n-dimensional linear space over a prime field Fp. A reduces all responses to its
queries modulo p, and treats the database d = (d1, . . . , dn) ∈ {0, 1}n as an
unknown n-variate linear form f(q1, . . . , qn) =

∑n
i=1 diqi over Fp. It is easy to

see that in order to recover (say) the first bit of d, it would suffice for A to
determine the value of f(q) for q = ((p−1)/2, 0, . . . , 0) with an error of less than
(p− 1)/4.

The attacker does not directly ask the curator for the value of f(q), since the
response to the query q may carry unbounded noise (and therefore be mislead-
ing), but rather issues a randomized collection of (p− 1) queries q(1), . . . , q(p−1)

such that the value of f(q) can (with high probability) be deduced from curator’s
responses to q(1), . . . , q(p−1) up to a small error.

Below is the formal description and analysis of our attack. The attacker’s
goal is to obtain an approximately correct answer to q = ((p − 1)/2, 0, . . . , 0)
and thus recover the first bit of the database.

Proof of theorem 2:

– A picks u, v ∈ Fn
p uniformly at random, and considers the parametric degree

two curve χ = {q + tu+ t2v | t ∈ [1, . . . , p− 1]} in the space Fn
p through the

point q. Note that the points of χ form a pairwise independent sample of
Fn

p . A proof of this standard fact can be found for instance in [19, claim 1].
The condition of the theorem implies that with probability at least 1 − δ
the total number of points that carry unbounded noise on χ is at most
(1/2− ε)(p− 1) + c

√
p− 1.

– A issues p−1 queries
{
q(t) = q + tu+ t2v

}
t∈[1,...,p−1]

corresponding to points
of χ. Let R = (r1, . . . , rp−1) be a sequence of curator’s responses to those
queries reduced modulo p. In what follows we assume the attacker A is lucky
and at most (1/2−ε)(p−1)+c

√
p− 1 responses {rt}t∈[p−1] carry unbounded

noise.
We say that α ∈ Fp is e-small if either α ∈ [−e, . . . , 0, . . . , e] mod (p).



We say that a polynomial h(t) ∈ Fp[t] fits the sequence R if (h(t) − rt) is
e-small for (1/2 + ε)(p− 1)− c

√
p− 1 values of t. Note that the degree two

polynomial g(t) = f(q + tu + t2v) ∈ Fp[t], that is a restriction of the linear
function f to a degree two curve χ fits R. Also note that g(0) = f(q) is 0 if
the first bit of the database x is zero, and (p− 1)/2 otherwise.
We now argue that g(t) is the only polynomial that fits R up to a 2e-small
additive factor. To see this suppose that some other polynomial g1(t) also
fits R; then the polynomial g(t)− g1(t) has to take 2e-small values at

(p− 1)− 2((1/2− ε)(p− 1) + c
√
p− 1) = 2ε(p− 1)− 2c

√
p− 1 ≥ 8e+ 3

points in F∗p, where the inequality above follows from (6). Since a (non-
constant) quadratic polynomial can take the same value in at most two
points and 2(4e + 1) < 8e + 3 we conclude that g(t) − g1(t) is a 2e-small
constant in Fp.

– A applies a brute-force search over all quadratic polynomials g1(t) ∈ Fp[t]
to find a polynomial that fits the sequence R. A computes the value g1(0)
and outputs 0 if g1(0) is 2e-small, and 1 otherwise. According to (6), 2e <
(p− 1)/4 and therefore A correctly recovers the first bit of the database.

Observe that the running time of the attack is O(p4). The attack involves
a brute-force search over all O(p3) quadratic polynomials in Fp[t] and it takes
O(p) time to verify if a polynomial fits the sequence R. ut

4.2 Summary of Our Second Result

We presented a novel, efficient, attack on statistical disclosure control mecha-
nisms with several unique features. The most novel feature of the attack is the
use of polynomial interpolation in this context. The most interesting consequence
of the attack is that it succeeds against privacy mechanisms that add unbounded
noise to up to (1/2− ε) fraction of their responses, provided the noise on other
responses is sufficiently low; indeed, it even tolerates a small amount of noise in
the remaining (1/2 + ε) responses. No efficient attacks with such property have
been known earlier.
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