
Collusion-Free Protocols in the Mediated Model

Joël Alwen1, abhi shelat2, and Ivan Visconti3

1 New York University
251 Mercer St. New York, NY, 10012, USA

jalwen@cs.nyu.edu
2 University of Virginia

Charlottesville 22904, USA
shelat@virginia.edu

3 Dipartimento di Informatica ed Appl., Università di Salerno
84084 Fisciano (SA), Italy.
visconti@dia.unisa.it

Abstract. Prior approaches [15, 14] to building collusion-free protocols
require exotic channels. By taking a conceptually new approach, we are
able to use a more digitally-friendly communication channel to construct
protocols that achieve a stronger collusion-free property.

We consider a communication channel which can filter and rerandomize
message traffic. We then provide a new security definition that captures
collusion-freeness in this new setting; our new setting even allows for the
mediator to be corrupted in which case the security gracefully fails to
providing standard privacy and correctness. This stronger notion makes
the property useful in more settings.

To illustrate feasibility, we construct a commitment scheme and a zero-
knowledge proof of knowledge that meet our definition in its two varia-
tions.

Keywords: Secure Collusion Free, Mediated Communication, ZKPoK, Commit-
ments

1 Introduction

The Federal Communication Commission in the United States just finished auc-
tioning several bands of communication spectrum. This was the seventeenth such
auction run by the FCC and the commission has gained quite a bit of experience
in running them. In particular, based on behavior in prior auctions, the commis-
sion employed several ad-hoc rules in order to maximize the revenue generated
by this auction. One major concern for them is the problem of collusion between
bidders. As documented in [9], in a prior auction, although many rules prohibited
explicit collusion between the bidders, bidders have nonetheless devised clever
signaling strategies during the auction in order to cheaply divide the auctioned
rights. Thus, it is safe to say that an issue at the forefront of FCC’s auction
design team is to prevent bidders from engaging in such collaborative bidding
strategies.

2 Joël Alwen, abhi shelat, and Ivan Visconti

1.1 Does Cryptography Help the FCC?

It has long been held that secure multi-party computation protocols provide the
most robust and secure way for implementing any collaborative task, including
the running of an auction. Indeed, on face, secure multi-party protocols would
mimic the role of a trusted-third party who ran the auction—without actually
needing to trust a third party. While in practice, the FCC can function as such
a third-party, doing so is not optimal. The FCC is a huge organization and
the participants in high-value auctions might naturally question whether FCC
“insiders” are helping the competition, by say leaking bid information during
the auction. Thus, from both a practical and theoretical perspective, we ask
how cryptography can improve the security of an auction.

There is unfortunately a serious problem which complicates the use of cryp-
tography in such auctions. As pointed out by Lepinski, Micali, and shelat [15],
the use of a cryptographic protocol can undo all of the carefully planned mea-
sures designed by the auctioneer to prevent collaborative bidding. In particular,
since secure cryptographic protocols are randomized, a protocol may uninten-
tionally produce a steganographic channel which bidders may use to communi-
cate illegally about their bidding strategies. Thus, a careless use of cryptographic
protocols would undo all of the mechanism rules designed to avoid collusion. This
is one of the first examples of how cryptographic protocols may in fact be worse
than trusted-third parties from a conceptual (as opposed to efficiency) point of
view.

Fortunately, the authors of [15] do suggest a solution. They define and con-
struct collusion-free protocols in a model in which players can exchange physical
envelopes. Their security notion guarantees that no new method for players to
collude are introduced by the protocol itself. Thus, their solution represents the
best of both worlds: all of the auction rules which prevent collusive bidding re-
main effective, and yet all of the privacy and correctness properties implied by
good cryptography are enjoyed as well.

To achieve the collusion-free property, the authors of [15] design a verifiably
deterministic protocol in which at each point, a participant can only send a
single message that the other players will accept: while each protocol message is
unpredictable by the others, it is nonetheless, verifiable as the only appropriate
next message. This property has also been called forced action to capture the
idea that a player has only one (forced) action which it can take to continue the
protocol. All other messages are interpreted by the other players as a signal to
abort. Later, Izmalkov, Lepinski, and Micali [14] also use the idea of forced action
and, by employing a new assumption concerning a physical randomizing ballot
box, are able to construct protocols which are both information theoretically
secure and collusion-free.

Notice, however, that both of these solutions employ exotic physical commu-
nication channels: the envelope and the ballot box. A principle criticism with
these assumptions is that they have no analogues in the digital world. A physical
ballot box relies on the forces of nature to provide randomness. But no party
can ever be trusted to implement this in a digital (remote) setting because the

Collusion-Free Protocols in the Mediated Model 3

moment some entity is trusted with generating the ballot box randomness, that
entity essentially becomes entrusted with all of the security properties. Thus it
might as well act as the trusted party computing the ideal functionality. Another
(potentially less problematic) argument is that envelopes are both perfectly bind-
ing and perfectly hiding which again can not be implemented in a digital setting.
Thus we are left with no choice but to implement these protocols in a physical
setting.

Yet the engineering requirements of implementing such a physical commu-
nication model without introducing a subliminal channel seem daunting. Every
last detail would have to be precisely controlled, from how exactly envelopes are
transported from one player to another player, the timing of all events, marks on
envelopes must be avoided and even their ambient temperature must be regu-
lated. In the past, attacks such as reconstructing computer screens from reflection
off of walls, extracting secret keys from smart cards meters away via the electric
fields from card readers, or listening to private conversations by measuring the
vibrations of window panes with lasers have shown that physical security and in
particular physical isolation can be a very difficult to achieve.

Despite the difficulties with implementing these physical channels, some extra
communication channel are provably necessary [15] in order to achieve collusion-
freeness. Nonetheless, in a digital world, the (im)practicality of such physical
channels makes it worthwhile to explore other solutions to the problem of collu-
sion in cryptographic protocols, and our approach does precisely this.

1.2 Our New Approach

This paper addresses the problem of building collusion-free protocols without
using physical channels.

Our insight comes from studying the opposite of verifiable determinism. Re-
call, the motivation behind forced-action was to remove the inherent entropy of
cryptographic messages. Removing the entropy was necessary to remove the pos-
sibility of using steganography to collude during a protocol execution. Instead
of taking this approach, we consider adding more randomness to each message
so that any hidden message is smothered.

A protocol step in our approach may allow many acceptable messages and
may require a lot of randomness—even randomness chosen by the prover and
verifier. To avoid the previous problems of steganographic channels, our protocols
only allow communication via a mediator communication channel. This channel
has a very simple task: it removes any steganographic information from the
messages sent by players by “rerandomizing” the messages. The mediator is
similar to the “warden” model introduced by Simmons [20]. A first step in this
direction was done in [1].

At first, it may seem that a mediator requires a substantial trust invest-
ment on behalf of the players. Let us first note that the amount of trust placed
in the channel is no more than that placed in other such secure protocols. In
particular, the private channel model used by Ben-Or, Goldwasser and Widger-
son [4], the ballot box [14] and the communication model in [16] also assume that

4 Joël Alwen, abhi shelat, and Ivan Visconti

the adversary does not control or modify the messages sent by players. In fact,
many protocols make implicit assumptions about their communication channels,
be they private channels, common reference strings, synchronous channels, syn-
chronous broadcast, envelopes [16], or ballot boxes [14]. Often the assumptions
made on the communication channel are neither made explicit, nor understood
explicitly.

While our channel is incomparable to these other ones, it remains plausible
since any modern day router can implement the protocol instructions we require
of the mediator. In particular, many modern Internet routers implementing IPsec
already do many similar cryptographic operations on the data that they relay.
In this sense, our mediator channel seems to be a digital rather than physical
way to achieve the collusion-free property. As such we eliminate the need for
stringent engineering requirements as players may be physically separated by
great distances and any contact is on a purely informational basis.

Most importantly, unlike other protocols that employ exotic communication
channels, we model the mediating communication channel as a party that can be
corrupted just like other participants. (Indeed, in real life, the mediator would
probably be an entity like the FCC and thus it is natural to consider what
happens when it is corrupted.) As it turns out, our protocols become secure with
respect to traditional multi-party protocol security notions when the mediator
is corrupted. Thus, we only rely on the mediator to guarantee the collusion-
free property—this is yet another reason our model is a more palatable one. If
the FCC were the mediator, it is their natural interest to act honestly so as to
prevent collusion. Even so, a cheating FCC would be unable to affect the privacy
or correctness of the auction thereby mitigating insider threats.

Why Universal Composability Does not address the Issue A natural question is
to consider why the strong notion of universally composable security [6] is not
sufficient for our purposes. Here the problem is one of modelling. Like prior secu-
rity notions, UC (and its various extensions) continues to model the adversary as
a monolithic entity. Thus, the security model already assumes that the corrupted
parties can collude at-will among one-another during the protocol execution.

Our Contributions To formalize our ideas, we present a new security defini-
tion for collusion-free security which models the communication channel as a
corruptible participant. As discussed, our definition captures “graceful failures”
with respect to the channel. Since this is an important part of our contribution,
we discuss the communication model and formally define and discuss the secu-
rity notions in Section 2. To illustrate the feasibility of our notions, we present
a collusion-free commitment scheme in Section 3. The proof for this protocol
illustrates technical issues of collusion-free security and serves as a warm-up for
the secure collusion-free zero-knowledge proof of knowledge protocol we present
in Section 4.

Collusion-Free Protocols in the Mediated Model 5

2 Model and Security Definition

We use the ideal versus real experiment indistinguishability paradigm introduced
in [11] to formalize our new ideas about secure computation. Real world players
are denoted with a san serif font like P, ideal players and functionalities are
denoted with a calligraphic font like P, and malicious (i.e., adversarial) players
have a tilde like P̃ and P̃. We introduce a new player M (and M) who controls
all communication between the players.

The standard security notion formalizes the idea that regardless of their input
to f , for any set of corrupted real world players there exists a single ideal world
simulator which can reconstruct everything the set of real players might learn
during the execution of the secure protocol. This means no information beyond
that exchanged in the ideal world can be exchanged between colluding real world
parties.

We use a different adversarial model than the traditional monolithic ap-
proach. In particular we consider malicious parties P̃1 . . . P̃t who are playing a
real world protocol with each other via the mediator M. In the ideal model,
we place restrictions on the way in which P̃1 . . . P̃t can communicate with each
other. In particular they can only communicate via a call to F or by using M̃
as in intermediary. (This idea comes from [15], but they do not model M̃.)

We wish to capture the intuition that the distinct adversaries P̃1 . . . P̃t should
not be able to use an execution of the secure real world protocol as a means of
computing any joint functionality beyond the intended ideal functionality im-
plemented by the protocol. Clearly this goal will require a steganography-free
real world protocol. Further we require that the real world protocol emulates F
even in the face of a set of coordinated malicious players. Traditional security
guarantees for multi-party computation are incomparable in this sense as they
only constrain a monolithic adversary and how it can affect other players. For
example although commitments are hiding if the sender is honest, a UC com-
mitment can be used to compute any other functionality if sender and receiver
are both corrupt and coordinated.

If mediator M is honest, it never sends messages to a player, and thus F
is the only means of inter-player communication. If, on the other hand, the
mediator M̃ is corrupt, then all other corrupt parties in both the ideal and
the real world models are able to perfectly coordinate their actions. Specifically,
they (in the worst case) can use M̃ in the real world and M̃ in the ideal world
as perfectly secret and authenticated channels. Thus, in this case our security
notion essentially collapses to the traditional monolithic model.

Per this discussion, our definition of a collusion free protocol comes in two
parts. The first captures the case when the mediator is honest, and the second
part adds the property of “secureness” by requiring that when the mediator is
corrupt then any real world attack can also can be simulated in the ideal world
by a monolithic adversary. In other words the mediator should only be trusted

6 Joël Alwen, abhi shelat, and Ivan Visconti

for avoiding collusions between players. If it is dishonest then the security of the
protocol is (almost4) the same as traditional SFE security.

Authenticated Channels Without a setup stage, it would be impossible for any
player to establish the authenticity of information which supposedly originated
from another player. This is particularly true in our model since all players
communicate through M, and so a corrupted M could mount a classic man in
the middle attack, hijack an identity mid protocol or route messages to the wrong
destinations.

We note that [15] also requires a pre-processing phase to setup keys. In
particular, they require a preprocessing round which must take place before
inputs are distributed. Arguably this is an even greater problem as in certain
settings (such as some auctions) it is unrealistic to expect players to meet before
inputs are ever distributed. The protocol in [14, 13] implicitly uses authenticated
channels since all of the participants are in physical proximity.

There are several approaches to handling this problem. The first is to assume
a Public Key Infrastructure (PKI) and assume that players have registered keys
and proven knowledge of the secret key. This is an approach implicitly taken by
many protocols; however it is unsuitable in our work for two reasons. First, it
implicitly requires that all parties perform some global action before receiving
their private inputs. And secondly, it creates a technical problem for simulation.
To handle a corrupt mediator, a simulator must feed messages on behalf of the
honest players. If these honest players have registered public keys, then we must
assume the mediator (who represents the communication channels) must also
know the public keys of the honest users, and will therefore expect signatures
under those keys for all messages. (Note, much like the GUC-model, we assume
that the mediator can probe the real PKI and retrieve the real public keys of
the players.) Thus, the simulator will need to know the secret keys of the honest
players which seems unreasonable.

A second method is to add a setup phase to a protocol during which keys
are shared. Since players know their inputs, to remain collusion-free, all commu-
nication must be passed through the mediator. In this case, however, a corrupt
mediator can “fork” the honest parties into separate groups by creating several
different public keys for some players. There is no broadcast channel when the
mediator is corrupt, so an honest player must take on faith that the key it has
received for some other player j is the one actually created and sent by player
j. The authors of [3] study this forking model and suggest protocols and def-
initions for the situation. The protocol is complicated because it must handle
non-malleability issues. We are currently working on using these tools for this
task.

However, because our goal is to focus on the collusion-free property, we re-
solve this issue in this preliminary version by only considering broadcast-honest

4 Even in the ideal world the mediator is allowed to choose a forced abort set. We have
chosen to make this explicit but we point out that in any model where the adversary
is given full control of the network this power is implicit.

Collusion-Free Protocols in the Mediated Model 7

mediators. These are mediators who cheat arbitrarily, but perform one broadcast
operation during the protocol honestly. Another way to consider such a mediator
is to assume that there is a public bulletin board that all players can see, and
that the mediator posts everyone’s public key on this board. Such a notion is
already considered in the electronic voting literature [7, 5, 18, 8]. Overall, re-
stricting attention to these simpler cheating mediators clarifies the collusion-free
issues; investigating ways to remove this restriction is a task for future work.

Aborts An overlooked problem when considering collusion free protocols is sig-
naling via aborts. The easiest solution is to simply assume no party will ever
abort. For game theoretic applications (with punishment strategies) this remains
an interesting security notion. Another approach might be to say that if one
party aborts then all parties are forced to abort and no subsequent protocol is
played. However in the interest of more general applications and a more robust
security notion we take a different approach. We explicitly model aborts in the
ideal world with greater detail.5

To pinpoint the issue, in prior ideal models for SFE, a party can simply
abort; but in the real model instead a party can abort at a given round. Thus,
it seems necessary that the ideal model allows a “round number” to be com-
municated during an abort in order to properly capture the full power of a
real-world adversary. To specifically accommodate this in the ideal world, every
abort message is accompanied by an integer. Let us emphasize that this phe-
nomena only becomes an issue when considering the problem of steganographic
communication and colluding parties since it might allow a second adversary to
benefit. So we point out that this is not actually a weakening of our ideal model
with respect to previous ones but rather a more detailed specification of the real
security achieved. We also mention that abort messages in the ideal world are
handled instantly. That is normally F will wait for all inputs before computing
f and returning output. However if it receives an abort message it immediately
sends this to all players and terminates. This corresponds to players knowing
immediately (at least at the end of the current communication round) when a
player has aborted in the real world rather then only finding out once the entire
computation is complete. In the interest of clarity we will describe the effects of
this design choice on our proofs (in the full version) in general terms. So as not
to get lost in unnecessary details we make almost no further mention of aborts
in the proofs and refer only to this section.

2.1 Notation

Let f be an n-input and n-output function f : D ×D1 × . . .×Dn → R×R1 ×
. . .×Rn. Here Di is the domain of player i’s private input and D is the domain
of the public input. For example for zero knowledge D is the set of statements
and DP is the set of witnesses. Similarly R is the range of the public output

5 In particular in [15] aborts are modeled via a simple “abort flag” both in the ideal
and real games.

8 Joël Alwen, abhi shelat, and Ivan Visconti

while Ri is the range of player i’s private input. (The public input and public
output are just a special component of all players inputs and outputs which is
the same.)

We denote by Π = 〈P1(x1, aux1), . . . ,Pn(xn, auxn)〉 a protocol where player
i has input xi to f . (Note that honest players will faithfully use these as their
inputs, but malicious parties may not.) The strings aux1 through auxn model
prior information that players have at the beginning of an execution. Let [n] to
denote the set {1, 2, . . . , n}. If A ⊆ [n] then we write eA to refer to the arbitrary
output of all players in A. We write Ā to refer to the compliment of A in [n].

A subscript of I denotes an ideal world protocol while a subscript of R denotes
a real world protocol. For ideal world protocols a super script of F implies that
all parties have access to the ideal functionality F . Thus 〈S,R,M〉R is a real
world protocol between S and R with mediator M while 〈S,R,M〉FI is an ideal
world protocol between S and R who have access to ideal functionality F (and
ideal mediator M). We will use VU(P(x)) to denote the entire view of P for an
execution with input x (including random tape, inputs and messages recieved)
and we use IO(P(x)) to denote only the input and output pair of an execution.

Ideal execution In the ideal execution, all players, including the ideal mediator
M, have private channels to the ideal functionality F . In addition, M has bi-
directional channels to all ideal players.

A round of an ideal protocol begins with all players P1, . . . ,Pn andM sending
their input to F . The mediator’s input to F is a tuple (S1, . . . , S`, Ii, . . . , I`)
which allows the corrupt mediator to “fork” the different players into separate
groups. Namely, M inputs a list of non-empty disjoint subsets S1, . . . , S` that
partition the set of players {1, . . . , n}. In addition, for each Si, M specifies the
inputs Ii to F for the other players S̄i.

For each Si, the ideal functionality evaluates F on the inputs provided by
the players in Si and the inputs for the players in S̄i specified by Ii. It then
begins to deliver the outputs to the players in Si in some canonical order. When
it is player j’s turn to receive output, the ideal functionality queries M about
whether to deliver the output or whether to broadcast an integer a ∈ [poly(k)]
and halt. If M agrees to delivery, then the ideal functionality sends the output
to that player and continues to the next player in order. The output values for
the players in S̄i are sent toM. If insteadM chooses to broadcast an integer a,
then the ideal functionality sends (⊥, a) to all players and halts.
F can maintain internal state between rounds allowing for such functionalities

as commitment schemes. In the ideal model:

– an honest player never sends a message to M;
– an honest M never sends a message to a player, always inputs S0 = [n] and
I0 = ∅ to F and always agrees to output delivery;

– a corrupt ideal mediator M̃ does not see the private outputs of F (at least
for honest players). The only values related to the computation of honest
parties it learns is the public input and public output and the output values
for each of the corrupted players.

Collusion-Free Protocols in the Mediated Model 9

Real execution In the real world, there is no F and instead players have au-
thenticated private channels connecting them to a special party M called the
(real world) mediator. Thus M sits at the center of a star network connected to
P1 through Pn “mediating” all communication. As a result, M controls many
aspects of the computation which necessitates the complicated provisions given
to the ideal mediator described above.

Real world executions begin with each player and the mediator selecting
fresh independent uniform random strings and jointly executing an interactive
protocol. At the end of both a real and an ideal execution all players privately
output an arbitrary string which captures information they have learned. The
honest mediator always outputs the special message ⊥. Honest parties output
the results of computing f , but corrupted players can output whatever they
wish.

2.2 Collusion Free Protocols

As usual with ideal/real paradigm definitions, a protocol is considered secure if
the probability ensemble representing a real execution is indistinguishable from
an ensemble representing an ideal execution. The definition below, however,
changes the order of some quantifiers to capture a specific concern.

Definition 1. Let Π = 〈P1, . . . ,Pn,M〉R be an n player protocol with security
parameter k and let F be an ideal functionality computing the n-input and n-
output function f . A protocol Π is a collusion free protocol for F if for any
efficient real player P̃ (including those playing the honest protocol) there exists
an efficient ideal simulator P̃ with access to a common random tape R such
that for any vector of players (P̃1, . . . , P̃n) for all inputs xi ∈ {0, 1}∗ and for all
auxi ∈ {0, 1}∗, the following two ensembles are indistinguishable:{〈{

VU(P̃i(xi, auxi))
}

i∈[n]
, IO(M(auxM))

〉
R

}
k

and {〈{
VU(P̃i(xi, auxi, R))

}
i∈[n]

, IO(M(auxM))
〉F

I

}
R,k

Further, we call Π a secure collusion free protocol if in addition, every me-
diator M̃ also has a simulator M̃ for which the indistinguishability holds.

In the above definition, the ensembles are taken over the values of k,R and
the random choices of the players and mediator. By “efficient” adversaries we
mean a probabilistic polynomial time one in the size of the input and security
parameter.

10 Joël Alwen, abhi shelat, and Ivan Visconti

Comments Since the experiments’ outputs include the complete vector of arbi-
trary output strings, the components must have a similar joint distributions in
both experiments.

For the case of collusion freeness, M is honest, so the ideal adversaries must
be able to produce the same joint output distribution as in the real world, but
only by communicating via at most one call to F . Therefore these sets of dis-
tinct adversaries can not jointly compute anything more then what is revealed
by f . In particular they can not use the real world protocol to exchange infor-
mation steganographically or jointly compute anything beyond what one call to
f reveals.

Secure collusion-free protocols are more general. If mediator is corrupt then
since honest parties output their results from f , even a monolithic adversary
(i.e., distinct adversaries perfectly coordinating through the corrupt mediator)
can not alter the output of the joint functionality nor learn anything about it
beyond what their own output reveals. (The worst they can do is cause aborts
as M̃ gets to choose the forced abort set.) This guarantees the traditional se-
curity properties such as privacy and correctness for general SFE in much the
same way the UC framework captures these notions. (Though with weaker com-
posability properties since a distinguisher for multi-party collusion freeness only
sees inputs and outputs but does not have all the powers of the environment in
UC definitions.)

Another subtlety is a consequence of the order of the quantifiers and the intu-
itive attack scenario we model. For every corrupt player, there exists a simulator
with access to a common random tape R shared amongst all such simulators.
This means that the ideal simulators do not know which other parties are cor-
rupt. The only joint information they are given is the random tape R. One might
argue that it is meaningful for simulators to know the complete set of corrupt
parties and their code. After all colluding parties may well be perfectly coordi-
nated going into the protocol. However such a definition would not preclude real
world player from using an execution of Π to exchange information unrelated to
the current execution. So for example it might be that a pair of corrupt parties
which have had no previous contact could use an execution to exchange phone
numbers. Although they might have done this anyway in advance we still would
like to force them to have exchanged this information before hand. This allows
for applications such as the online poker house or security in a large intelligence
agencies network where individual players may never had contact before.

By requiring that all simulators only share the (read only) random tape R,
we model the fact that in the real world protocols, players observe common
randomness although they can not influence what this randomness is (via secure
secret sharing for example). However beyond this publicly visible randomness
no information is exchanged. We note that this is a strengthening with respect
to Definition 1 in [15]. Further, the fact that players can agree on common
randomness after a real execution is also a property of the ballot-box protocol
in [14] and so technically breaks the central theorem of perfectly emulating the
ideal game. In the context of game theoretic applications this may in fact present

Collusion-Free Protocols in the Mediated Model 11

a real problem as it is known that correlated randomness can be used to achieve
equilibria with better expected payoffs then otherwise possible [2]. Thus at a
minimum perfect composability is lost. The problem in [14] has been addressed
in follow up work [13]; we also resolve it for this protocol in the full version.

Another improvement over the collusion free definition in [15] is that we no
longer require a “reconciliation function” to compare the real and ideal world
outputs. This simplifies both the definition of collusion-free protocols and sim-
plifies the security proof strategy.

2.3 Authenticated Channels

Typically, key registration is handled by a trusted-third party. As mentioned
above, since we do not want to assume such a PKI and also want to model secu-
rity when external trust assumptions fail, we describe a pre-processing protocol
using the mediator. Naturally, our process provides a somewhat weaker form of
security then might be achieved with a trusted key registration server. In partic-
ular there is no guarantee that an honest player will successfully register his key
when the mediator has been corrupted. But on the other hand even if identities
were established perfectly once computation starts M̃ can always cut off a player
i and no other player j can tell whether this is because of a corrupt M̃ or corrupt
player i. In some sense, this is unavoidable.

The other weakness of our preprocessing is that M̃ can fake the presence of a
player by including a public key for them. However this too is unavoidable since
even with perfect authentication M̃ could simply setup a dummy player with
an identity and take part in the authentication and joint computation stages
through the dummy. As such, this is a problem which is outside the scope of this
work.

Initialization of the set of parties. A first approach to key-setup might be to have
parties generate a key pair, register their public key with M and run a ZKPoK
to prove they know the corresponding secret keys. However, as noted by [15], if
public keys are selected by the parties, the keys may not be chosen honestly. For
example, they can be chosen from intentionally “weak” or special distributions
which allow other parties to break the key. This could allow parties to exchange
information during the protocol. To solve this problem, a more elaborate reg-
istration procedure is executed. First each player runs a coin-flipping protocol
with M (without the final decommitment) such that only the player knows the
result of the coin flipping. The player then uses this randomness as input to the
algorithm that generates the key pair. Then the public key is sent to M along
with a ZKPoK that it used the result of the coin flipping to generate the pair.
Once all public keys have been registered with M it broadcasts the set and the
joint computation phase can begin. We call the resulting initialization stage ∆M

n .
There is one technicality to handle. We require that the ZKPoK enjoys the

concurrent zero knowledge property [10, 19]. Indeed, an adversarial M could
run as verifier of the ZKPoKs by coordinating the executions in an adaptive and

12 Joël Alwen, abhi shelat, and Ivan Visconti

malicious way with all honest parties. In order to avoid such attacks we require
a concurrent ZKPoK protocol [19, 17].

Collusion Free Authentication. Once keys have been shared, there are various
ways in which they can be used to emulate authenticated channels. Since it is
not our principle focus, we describe the following correct but not necessarily
most efficient method for doing so. Let us briefly note the subtle requirements
which prevent standard protocols from being adopted. On the one hand, we
cannot allow one player to send a signature to another (since that would enable
steganography), but we must provide enough evidence to the second player to
accept authenticated messages.

At the beginning of each real world collusion free-protocol execution e each
player Pi sends a random k-bit string re to M along with a signature σ of
re (where k is the security parameter). The string re will act as Pi’s session
identifier for e. M sends Com(re) and Com(σ) to all other players Pj and proves
in ZK that Com(σ) decommits to a signature of the decommitment of Com(re)
which verifies under svki. A subsequent round t, message me to player j of the
execution e is accompanied by a signature of σ′ = Sigi(re, t, svkj ,me). M proves
in zero knowledge to player j that there is a signature σ′ of a message with the
following prefix. σ (i.e., the decommitment of the first message Com(σ)) is a valid
signature for the first part of the prefix, and the second part of the prefix t,
is the current round number, and the third part of the prefix equals player j’s
verification key. Thus the player j knows that me came from Pi playing a session
with the current random identifier, that it is the t-th round message in such a
session and that it is the intended recipient. With overwhelming probability (in
k) there will only be a single session with this session identifier so the message
must be from Pi during this session.

Calling Subroutines One issue remains with this approach. The collusion free
protocol e may use another collusion free protocols e′ as subroutines. To make
sure that M can not run replay attacks emulating Pi for the entire l-th call of the
subroutine (by playing an old re′ and σ) the subroutine is essentially treated as a
message in the calling protocol. In particular all signatures (including the first σ
of the subroutine) are of messages prefixed by l, the number of the call and re, the
session identifier of the calling protocol. For each message in e′ M additionally
proves in ZK that this extra prefix corresponds to the session identifier of e and
the current call number. If M can substitute any previous sub-protocol for Pi

then M can be used for existential forgery attacks against the signature scheme
since either re or l will be different (with overwhelming probability in k).

For most of the rest of this paper we will not explicitly discuss the authentica-
tion mechanism as this will needlessly complicate exposition. The only exception
to this is when we discuss how ideal world simulators internally emulate honest
players when running their experiments as this will require them to be able to
create signed messages.

Collusion-Free Protocols in the Mediated Model 13

3 Collusion Free Commitments

The first primitive we consider is a commitment scheme. That is we consider
the functionality FCom which works in two rounds. In the first round it takes
a message m as input from the (ideal world) sender S and produces output
committed for the (ideal world) receiver R. In the second round it takes input
decommit from S and gives the output m to R. All other inputs and outputs
are the special message ⊥.

The Difficulty Before continuing, let us discuss why this is a non-trivial task.
Players can not be allowed to directly exchange messages as this would enable
steganography. So the mediator is used to rerandomize communication. However
there is a more subtle attack. Consider the last round of the real world protocol
to be played by a particular player. Suppose they can tell the value of even
just two (non-constant) bits in another parties view (or even a function there
of). Then by choosing whether or not to abort depending on the value of those
bits in the current execution the player can signal information via the real world
protocol (beyond the mere abort message modeled in the ideal world). Therefore
having the mediator ensure messages are randomized correctly is not enough. In
fact there can not be any (computable) correlation—be it chosen in advance or
random but fixed—between players’ views. I.e. it is not enough to ensure one
player can not fix a function of some bits in another’s view, but it must even
be impossible for one player to subsequently guess any function of some bits of
another’s view after they have been fixed.

Yet at the same time we do not want to require the mediator to be honest for
the security of the protocol (i.e., hiding and binding for a commitment scheme).
In the following protocol we resolve these conflicting requirements.

The Protocol In figure 1 we give a protocol which makes use of a statistically
binding commitment scheme (Com, Dec) and a zero knowledge proof of knowledge
ZKPoK. We then prove it to be a collusion free protocol for the FCom functionality.
In particular we prove that corrupt R̃ and S̃ can be simulated by a pair R̃ and S̃
in the ideal world. Further we prove the protocol to be hiding if S is honest and
statistically binding if R is honest6. We note that one-way permutations suffice
to construct all three primitives.

Theorem 1. Assuming the existence of one way-functions the protocol in fig-
ure 1 is a statistically binding commitment scheme. Further it is a collusion free
protocol for the functionality FCom.

Proof. (High-level proof idea) The idea behind the following proof can be sum-
marized as follows. The hiding property of the protocol is reduced to the hiding
of (Com, Dec) and the zero knowledge property of ZKPoK in steps C.1 and C.2. The

6 We note that if a statistically hiding commitment scheme (Com′, Dec′) is used instead
of (Com, Dec) and the zero-knowledge argument ZK is statistical zero knowledge then
the resulting protocol is statistically hiding. The proof remains largely the same.

14 Joël Alwen, abhi shelat, and Ivan Visconti

Common Input: Signature verification key svkS.
Committer Input: Signature key sskS and message m

Commitment Phase

C.1 S selects random coins r, and sends c = Com(m, r) to M.
C.2 S runs ZKPoK with M proving knowledge of m and r such that c = Com(m, r).
C.3 M selects random coins r′ and sends c′ = Com(c, r′) to R.

Decommitment Phase

D.1 S sends (m, r) = Dec(c, r) to M.
D.2 M sends m to R.
D.3 M runs ZKPoK with R proving that there exist coins r and r′ such that

c′ = Com(Com(m, r), r′).

Fig. 1. Collusion-Free Perfectly-Binding Commitments

binding property of the protocol in figure 1 is reduced to the binding property
of (Com, Dec) and the soundness of the ZKPoK in step D.3. Both of these proofs
appear in the full version.

To prove collusion freeness we construct two simulators, one for a corrupt
sender and one for a corrupt receiver. The simulator for the Sender extracts
the values m, r and forwards appropriate messages to the ideal functionality.
The simulator for the Receiver sends a commitment to 0 during the commit
protocol, sends the committed message (received from the ideal functionality)
during the decomit protocol and uses the simulator for the ZKPoK to equivocate
the commitment. The hiding property of the commitment scheme is necessary
to prove that these simulators meet the definition.

Lemma 1. Assuming the existence of one-to-one one-way functions, the proto-
col in figure 1 is a collusion-free protocol for FCom.

Proof. Omitted for space.

Achieving Secure Collusion-Free Commitments For lack of space we only men-
tion here how to achieve secure collusion-free commitments. First of all, the
setup phase requires that each player knows the public key of each other player,
where the public key consists of a pair of public keys, one for signature, and one
for rerandomizable CPA encryption (e.g. El Gamal).

In the protocol, M receives a commitment ofm from S, sends to R the commit-
ment of the commitment and proves to R in zero knowledge that the committed
message has been sent by S. This ends the commitment phase.

The opening phase is instead more complex and is played as follows. M and
S play a simulatable coin-tossing protocol such that only M obtains the output.

Collusion-Free Protocols in the Mediated Model 15

M receives from S an encryption of m under R’s public-key. The ciphertext is
rerandomized by M and sent to R, using as randomness the output of the coin-
tossing protocol. M also proves to R that the ciphertext is a rerandomization of a
ciphertext sent by S, using as randomness the one established by the coin-tossing
protocol. So far, m has been read by R and not by M, however a consistency check
with the commitment phase has still to be played. The opening phase continues
with S that proves in zero-knowledge to M, using a specific implementation
of Blum’s protocol that the encrypted message corresponds to the committed
one. The specific implementation goes as follows. Consider a triple of messages
(a, e, z) of Blum’s protocol. After receiving a, M computes a commitment c of a
and sends it to R. Then M plays again with R a simulatable coin-tossing protocol,
so that only it obtains the output e, and this is played in the second round of
Blum’s protocol. Then M receives z from S and proves to R in zero-knowledge
that it knows an accepting third message z for Blum’s protocol, where the first
message is committed in c and the second round is the output of the coin-tossing
protocol.

4 Secure Collusion-Free ZKPoK

The second primitive we construct is a secure collusion free zero knowledge proof
of knowledge for any language in NP . We consider the protocol 〈P,V,M〉FZKPoK

I
where the functionality FZKPoK works in one round. As public input it receives
a graph G and from P it takes private input a 3-coloring w. If w is a valid
3-coloring of G it produces public output true and otherwise the public output
is (false, λ). All other inputs and outputs not specified above are the special
message ⊥. Intuitively λ models the specific round at which the proof failed. As
with aborts this is important since we need to capture every bit of communication
in the real world between prover and verifier and failing a proof in the i-th round
can be used to signal log(i) bits.

The Protocol In figure 2 we give a protocol which is based on the zero knowledge
proof of knowledge for graph 3-colorability (G3C) in [12]. To do this we make use
of a statistically binding commitment scheme (Com, Dec) and a zero knowledge
proof of knowledge ZKPoK. We then prove this protocol be a secure collusion free
protocol for FZKPoK. Note that apart from collusion freeness this also implies all
the usual properties of a zero knowledge proof of knowledge. In particular the
protocol is complete; if V is honest then it is a proof of knowledge with respect
to any (P̃, M̃); and if P is honest then it is zero knowledge with respect to any
(M̃, Ṽ). We also note that one way permutations are sufficient for constructing
all primitives used by this protocol.

We prove secure collusion freeness by showing that for any non-empty sub-
set in {P̃, M̃, Ṽ} of corrupt parties we can construct a set of simulators such
that their joint output together with that of the honest ideal parties is (jointly)
indistinguishable from that of all real world players (corrupt and honest).

16 Joël Alwen, abhi shelat, and Ivan Visconti

Common Input: Verification keys svkP and svkV (from file F), graph
G = (V,E).
Prover P Input: Signature key sskP, 3-coloring w of G.
Verifier V Input: Signature key sskV.

ZK.1 M sends φ = Com(π, r) to V where π is a random permutation over [|E|].
ZK.2 P selects a random permutations of {red, green, blue} and applies it to w

resulting in the 3-coloring w′. It colors G according to w′ resulting in set
E′ = w′(E) of the colors for the end points of each edge in G. P computes
ν = {νe = Com((c1, c2)e, re)}e∈E′ where c1, c2 ∈ {red, green, blue}. P sends
the set of commitments of the 3-coloring ν to M.

ZK.3 M sends ν′ = {ν′e = Com(νe, r
′
e)}e∈E′ to V.

ZK.4 V sends η ∈ E, a challenge edge of G to M.
ZK.5 M sends η′ = π(η) to P.
ZK.6 P sends ((c1, c2)η′ , rη′) = Dec(vη′), decommitment to the coloring of edge η′

to M.
ZK.7 If c1 = c2 or either one is not in {red, green, blue} then M sends failed to V.

Then it uses witness (rη′ , r′η′ , π) to run ZKPoK with V proving that ν′π(η) is a
commitment of a commitment of an edge with different (valid) colored ends
and moreover the edge is the one selected by V according to the permutation
π committed in φ. If V is not convinced by the proof it rejects.

ZK.8 Repeat steps ZK.1-ZK.7 |E|2 times with new random tapes. V accepts G is
3-colorable if and only if it accepts all proofs in steps ZK.7.

Fig. 2. Collusion-Free Zero Knowledge

Theorem 2. Assuming the existence of one-way permutations the protocol in
figure 2 is a secure collusion free protocol for the functionality FZKPoK.

If all parties are corrupt then there is no security proof to give. Thus now
concentrate on the remaining 6 cases.

The rest of the proof is structured as follows (with some intuition behind
each step in the bullets):

1. We construct 3 simulators, one for each corrupt party. The simulator for
a corrupt verifier is based on the zero knowledge simulator for underlying
ZKPoK for G3C. The simulator for a corrupt prover is based on the knowledge
extractor for the underlying ZKPoK. The simulator for the mediator is a
combination of the previous two.

2. We describe how to handle aborts and failed proofs. Essentially these are
coordinated via messages to and from FZKPoK and the value λ which indicates
at which round aborts and failure have occurred.

3. We prove a lemma stating that assuming the existence of one-way permu-
tations if the mediator and either verifier or prover is corrupt then the pair
of simulators and honest party have the desired output. The proof resem-

Collusion-Free Protocols in the Mediated Model 17

bles the proofs of correctness of the underlying simulator and knowledge
extractors for the ZKPoK of G3C.

4. We prove a lemma stating that assuming the existence of one-way permu-
tations, if one party is corrupt then the simulator and honest parties have
the correct output distribution. These cases are special cases of the lemma
proven in the previous step.

5. We prove a lemma stating that assuming the existence of one-way permu-
tations the protocol is collusion free. This lemma covers the final case when
verifier and prover are corrupt playing through an honest mediator. The
proof works because an honest mediator “re-randomizes” messages which
causes the view of any one corrupt party to be relatively unchanged by
modifications to any other (non-aborting) parties algorithm. Thus, the sim-
ulator for the sender can use the honest receiver algorithm in its internal
emulation.

6. We draw on all three lemmas to conclude the proof of theorem 2. We point
out that all cases of possible sets of corrupt parties have been dealt with and
so the theorem holds.

The detailed proof can be found in the full version.

5 Acknowledgments

We wish to thank Giuseppe Persiano for his invaluable contributions which
helped kick start this paper. In particular the idea of a mediated communi-
cation model is due to him. Also we would like to thank Yevgeniy Dodis and
Daniel Wichs for there many thoughtful discussions on the topic. Finally we
are grateful for Jesper Nielsen’s comments concerning the intricacies of applying
MPC to game theoretic situations.

We thank the anonymous reviewers for their suggestions. The work of the
authors has been supported in part by the European Commission through the
IST program under Contract IST-2002-507932 ECRYPT and the one of the last
author through the FP6 program under contract FP6-1596 AEOLUS.

References

[1] M. Alparone and G. Persiano. Staganography-free implementation of yao’s pro-
tocol. Technical report, Unpublished, 2006.

[2] R. J. Aumann. Subjectivity and Correlation in Randomized Strategies. Journal
of Mathematical Economics, 1(1):67–96, March 1974.

[3] B. Barak, R. Canetti, Y. Lindell, R. Pass, and T. Rabin. Secure computation
without authentication. In Advances in Cryptology - Crypto ’06, Lecture Notes
in Computer Science, pages 361–377. Springer-Verlag, 2005.

[4] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In STOC ’88: Proceed-
ings of the twentieth annual ACM symposium on Theory of computing, pages 1–10,
New York, NY, USA, 1988. ACM.

18 Joël Alwen, abhi shelat, and Ivan Visconti

[5] D. Boneh and P. Golle. Almost Entirely Correct Mixing with Applications to
Voting. In CCS’02, pages 68–77, 2002.

[6] R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proc. 42nd FOCS, pages 136–145, 2001.

[7] D. Chaum, P. Ryan, and S. Schneider. A Practical Voter-Verifiable Election
Scheme. In ESORICS’05, pages 118–139, 2005.

[8] R. Cramer, R. Gennaro, and B Schoenmakers. A Secure and Optimally Efficient
Multi-Authority Election Scheme. In EUROCRYPT’06, pages 103–118, 2006.

[9] P. Cramton and J. Schwartz. Collusive bidding in the fcc spectrum auctions. Tech-
nical Report 02collude, University of Maryland, Department of Economics, De-
cember 2002. available at http://ideas.repec.org/p/pcc/pccumd/02collude.html.

[10] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th ACM
Symposium on Theory of Computing (STOC ’98), pages 409–418. ACM, 1998.

[11] O. Goldreich, S. Micali, and A. Wigderson. How to Play Any Mental Game. In
STOC ’87: Proceedings of the nineteenth annual ACM conference on Theory of
computing, pages 218–229, New York, NY, USA, 1987. ACM Press.

[12] O. Goldreich, S. Micali, and A. Wigderson. Proofs that Yield Nothing but their
Validity or all Languages in NP have Zero-Knowledge Proof Systems. J. ACM,
38(3):690–728, 1991.

[13] S. Izmalkov, M. Lepinski, and S. Micali. Verifiably secure devices. In R. Canetti,
editor, TCC, volume 4948 of Lecture Notes in Computer Science, pages 273–301.
Springer, 2008.

[14] S. Izmalkov, S. Micali, and M. Lepinski. Rational Secure Computation and Ideal
Mechanism Design. In FOCS ’05: Proceedings of the 46th Annual IEEE Sym-
posium on Foundations of Computer Science, pages 585–595, Washington, DC,
USA, 2005. IEEE Computer Society.

[15] M. Lepinksi, S. Micali, and a. shelat. Collusion-Free Protocols. In STOC ’05:
Proceedings of the thirty-seventh annual ACM symposium on Theory of computing,
pages 543–552, New York, NY, USA, 2005. ACM.

[16] M. Lepinski, S. Micali, C. Peikert, and a. shelat. Completely Fair SFE and
Coalition-Safe Cheap Talk. In PODC ’04: Proceedings of the twenty-third an-
nual ACM symposium on Principles of distributed computing, pages 1–10, New
York, NY, USA, 2004. ACM Press.

[17] Daniele Micciancio and Erez Petrank. Simulatable Commitments and Efficient
Concurrent Zero-Knowledge. In Eli Biham, editor, EUROCRYPT’03, volume 2656
of Lecture Notes in Computer Science, pages 140–159, Warsaw, Poland, May 2003.
IACR, Springer-Verlag.

[18] C. Neff. A Verifiable Secret Shuffle and its Application to e-Voting. In CCS’01,
pages 116–125, 2001.

[19] M. Prabhakaran, A. Rosen, and A. Sahai. Concurrent Zero-Knowledge with Log-
arithmic Round Complexity. In 43th IEEE Symposium on Foundations of Com-
puter Science (FOCS ’02), pages 366–375, 2002.

[20] G. J. Simmons. The prisoners’ problem and the subliminal channel. In
CRYPTO’83, page 5167, 1983.

