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Abstract. The r-round (iterated) Even-Mansour cipher (also known
as key-alternating cipher) defines a block cipher from r fixed public n-
bit permutations P1, . . . , Pr as follows: given a sequence of n-bit round
keys k0, . . . , kr, an n-bit plaintext x is encrypted by xoring round key k0,
applying permutation P1, xoring round key k1, etc. The (strong) pseudo-
randomness of this construction in the random permutation model (i.e.,
when the permutations P1, . . . , Pr are public random permutation oracles
that the adversary can query in a black-box way) was studied in a num-
ber of recent papers, culminating with the work of Chen and Steinberger
(EUROCRYPT 2014), who proved that the r-round Even-Mansour ci-
pher is indistinguishable from a truly random permutation up toO(2

rn
r+1 )

queries of any adaptive adversary (which is an optimal security bound
since it matches a simple distinguishing attack). All results in this en-
tire line of work share the common restriction that they only hold un-
der the assumption that the round keys k0, . . . , kr and the permutations
P1, . . . , Pr are independent. In particular, for two rounds, the current
state of knowledge is that the block cipher E(x) = k2⊕P2(k1⊕P1(k0⊕x))
is provably secure up to O(22n/3) queries of the adversary, when k0, k1,
and k2 are three independent n-bit keys, and P1 and P2 are two indepen-
dent random n-bit permutations. In this paper, we ask whether one can
obtain a similar bound for the two-round Even-Mansour cipher from just
one n-bit key and one n-bit permutation. Our answer is positive: when
the three n-bit round keys k0, k1, and k2 are adequately derived from an
n-bit master key k, and the same permutation P is used in place of P1
and P2, we prove a qualitatively similar Õ(22n/3) security bound (in the
random permutation model). To the best of our knowledge, this is the
first “beyond the birthday bound” security result for AES-like ciphers
that does not assume independent round keys.
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1 Introduction

Background. An elementary way to construct a block cipher with message
space {0, 1}n from r fixed and public n-bit permutations P1, . . . Pr is to encrypt
a plaintext x by computing

y = kr ⊕ Pr(kr−1 ⊕ Pr−1(· · ·P2(k1 ⊕ P1(k0 ⊕ x)) · · · )),

where (k0, . . . , kr) is a sequence of n-bit round keys which are usually derived
from some master key K. This construction, which captures the high-level struc-
ture of (most) block cipher designs known as Substitution-Permutation Networks
(SPNs), such as AES [12], PRESENT [7], or LED [20] to name a few, was coined
a key-alternating cipher by Daemen and Rijmen [13].

In the random permutation model (i.e., when permutations P1, . . . , Pr are
modeled as public random permutation oracles), provable security results for
this construction were first obtained for r = 1 round by Even and Mansour [16],
who showed that the block cipher encrypting x into k1⊕P1(k0⊕x), where k0 and
k1 are independent n-bit keys, and P1 is a random permutation oracle, is secure
up to O(2n/2) queries of the adversary.1 For this reason, this construction is often
referred to as the Even-Mansour cipher. Curiously, the general construction with
r > 1 remained unstudied for a long while until a paper by Bogdanov et al. [8],
who showed that for r ≥ 2, security is guaranteed up to O(22n/3) queries of the
adversary. They also conjectured that the security should be O(2

rn
r+1 ) for general

r, which matches a simple distinguishing attack. Progress towards solving this
conjecture was rather quick: Steinberger [32] proved security up to O(23n/4)
queries for r ≥ 3, Lampe et al. [26] proved security up to O(2

rn
r+2 ) queries for any

even r, and finally Chen and Steinberger [9] resolved the conjecture and proved
the O(2

rn
r+1 )-security bound for any r. We stress that all these results only hold

assuming that the r + 1 round keys and the r permutations are independent.2

Our Problem. Let us quickly recapitulate existing provable security results on
the Even-Mansour cipher for a low number of rounds. For r = 1, we know that
the single-key Even-Mansour cipher x 7→ k ⊕ P (k ⊕ x) ensures security up to
O(2n/2) queries of the adversary. As pointed out by Dunkelman et al. [15], this
construction is “minimal” in the sense that if one removes any component (either
the addition of one of the keys, or the permutation P ), the construction becomes
trivially breakable. For the two-round Even-Mansour cipher, the best provable
security result we have so far requires two independent n-bit permutations P1
and P2, and two independent n-bit keys (k, k′) to construct three pairwise in-
dependent round keys, for example (k, k′ ⊕ k, k′). Concretely, the block cipher
1 Actually it is not very hard to prove that a similar result holds when using k0 = k1.
2 Actually, this is not perfectly accurate: one only needs the r + 1 round keys

(k0, . . . , kr) to be r-wise independent [9], which can be obtained from only an
rn-bit long master key, the most simple example being round keys of the form
(k′1, k′1 ⊕ k′2, k′2 ⊕ k′3, . . . , k′r−1 ⊕ k′r, k′r), in which case the resulting iterated Even-
Mansour cipher is exactly the cascade of r single-key one-round Even-Mansour ci-
phers x 7→ k′i ⊕ Pi(k′i ⊕ x).
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Fig. 1. Two constructions of “minimal” two-round Even-Mansour ciphers provably
secure up to Õ(2 2n

3 ) queries of any (adaptive) adversary. Left: π is a (fixed) linear
orthomorphism of Fn

2 , and P is a public random permutation oracle. Right: P1 and P2
are two independent public random permutation oracles.

x 7→ k′⊕P2((k′⊕ k)⊕P1(k⊕ x)) ensures security up to O(22n/3) queries of the
adversary. In this paper, we tackle the following question:

Can we obtain a O(22n/3)-security bound similar to the one proven for
the two-round Even-Mansour cipher with (pairwise) independent round
keys and independent permutations, from just one n-bit key k and one
n-bit random permutation P?

This question is natural since in most (if not all) SPN block ciphers, round keys
are derived from an n-bit master key (or more generally an `-bit master key,
where ` ∈ [n, 2n] is small compared with the total length of the round keys),
and the same permutation, or very similar ones, are used at each round. It is
therefore fundamental to determine whether security can actually benefit from
the iterative structure and increase beyond the birthday bound, even though one
does not use more key material nor more permutations than in the single-key
one-round Even-Mansour cipher.

Our Results. We answer positively to the question above. Our main theorem
states sufficient conditions on the way to derive three n-bit round keys (k0, k1, k2)
from one n-bit master key k so that the two-round Even-Mansour cipher defined
from a single permutation x 7→ k2 ⊕ P (k1 ⊕ P (k0 ⊕ x)) is secure up to Õ(22n/3)
queries of the adversary, where the Õ(·) notation hides logarithmic (in N =
2n) factors. In particular, such a good key-schedule k 7→ (k0, k1, k2) can be
constructed from any (fixed) linear orthomorphism of Fn2 . A permutation π of
{0, 1}n is called an orthomorphism if x 7→ x ⊕ π(x) is also a permutation. The
good cryptographic properties of orthomorphisms have already been noticed in a
number of papers [29, 19], and are in particular used in Lai-Massey schemes [25,
34] such as the block ciphers IDEA [25] and FOX [22]. Our main theorem is as
follows.

Theorem (Informal). Let π be any (fixed) linear orthomorphism of Fn2 , and
let P be a public random n-bit permutation oracle. Then the block cipher with
message space and key space {0, 1}n defined as (see Figure 1, left)

EMP
k (x) = k ⊕ P (π(k)⊕ P (k ⊕ x)) (?)
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is secure against any adversary making up to Õ(2 2n
3 ) queries to EMP

k and P .
(Queries can be adaptive and are allowed in both directions for EMP

k and P ).

We remark that if one omits π in construction (?), i.e., if one adds the same
round key k each time, security drops back to O(2n/2) queries. More generally,
if round keys are all equal and the same permutation P is used at each round
of the iterated Even-Mansour cipher, security caps at O(2n/2) queries of the
adversary, independently of the number r of rounds. This seems to be known as
a folklore result about slide attacks [5, 6], but since we could not find a detailed
exposition in the literature, we precisely describe and analyze this attack (as
well as a simple extension for two rounds when the key-schedule simply consists
in xoring constants to the master key) in this paper. Hence, construction (?) can
be regarded as a “minimal” two-round Even-Mansour cipher delivering security
beyond the birthday bound, since removing any component causes security to
drop back to O(2n/2) queries at best (for π this follows from the slide attack
just mentioned, while removing any instance of permutation P brings us back to
a one-round Even-Mansour cipher). Additionally, we show that when using two
independent public random permutations P1 and P2, the trivial key-schedule is
sufficient: adding the same round key k at each round (see Figure 1, right) also
yields a Õ(22n/3)-security bound.

To the best of our knowledge, these are the first results proving “beyond the
birthday bound” security for key-alternating ciphers such as AES that do not
rely on the assumption that round keys are independent. This sheds some light
on which exact properties are required from the key-schedule in order to lift the
round keys independence assumption in provable security results. In particular,
this seems to point out that a pseudorandom key-schedule is not needed (we
remind the reader that our results come with the usual caveat that they are
only proved in the very strong Random Permutation Model, and hence can only
be taken as a heuristic security insurance once the inner permutation(s) are
instantiated).

Overview of Our Techniques. In order to prove our results, we use the
indistinguishability framework, namely we consider a distinguisher which must
tell apart two worlds: the “real” world where it interacts with (EMP

k , P ), where
EMP

k is the Even-Mansour cipher instantiated with permutation P and a ran-
dom key k, and the “ideal” world where it interacts with (E,P ) where E is a
random permutation independent from P . The distinguisher can make at most
qe queries to EMP

k /E and at most qp queries to P (all queries are adaptive and
can be forward or backward, and we work in the information-theoretic setting,
i.e., the adversary is computationally unbounded). In order to upper bound the
distinguishing advantage of this attacker, we use, as already done in [9], the
H-coefficient method of Patarin [31]. In a nutshell, this technique consists in
partitioning the set of all possible transcripts of the interaction between the dis-
tinguisher and the tuple of permutations into a set T1 of “good” transcripts and
a set T2 of “bad” transcripts. Good transcripts τ ∈ T1 have the property that
the ratio of the probabilities to obtain τ in the real and in the ideal world is
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greater that 1 − ε1 for some small ε1 > 0, while the probability to obtain any
bad transcript τ ∈ T2 (in the ideal world) is less than some small ε2 > 0. Then
the advantage of the distinguisher can be upper bounded by ε1 + ε2.

In order to get intuition about what hides behind good and bad transcripts,
it helps to first look at an example of how an adversary might “get lucky”
during an attack. Specifically, we focus on the following attack scenario (we
assume that qe = qp = q for simplicity). The distinguisher (adversary) D starts
by making q arbitrary queries to EMP

k /E, resulting in a set of q pairs QE =
{(x1, y1), . . . , (xq, yq)}; then D determines the pair of sets (U, V ) with |U | =
|V | = q and U, V ⊆ {0, 1}n, that maximizes the size of the set

K(QE , U, V ) def= {k′ ∈ {0, 1}n : ∃(xi, yi) ∈ QE s.t. xi⊕ k′ ∈ U, yi⊕ k′ ∈ V }, (1)

and D queries P (u), P−1(v) for all u ∈ U , v ∈ V . (This makes 2q queries to
P instead of q, but this small constant factor is unimportant for the sake of
intuition.) Note that if D is in the real world and if the real key k is in the
set K(QE , U, V ) defined in (1), then D can see that one of its EMP

k /E-queries is
compatible with two of its P -queries with respect to k (in more detail, there exists
a value i and queries (u, v), (u′, v′) to P such that xi⊕k = u, v⊕π(k) = u′, and
v′⊕k = yi). Elementary probabilistic considerations show that such a “complete
cycle” will occur for at most a handful of keys in K(QE , U, V ), so that “false
alerts” can be quickly weeded out and the correct key k validated in a few
extra queries, all assuming k ∈ K(QE , U, V ). Moreover, heuristic considerations
indicate that k will be in K(QE , U, V ) with probability |K(QE , U, V )|/2n. In
particular, thus, it becomes necessary to show that |K(QE , U, V )| is significantly
smaller than 2n with high probability over QE , i.e., that

max
U,V⊆{0,1}n

|U |=|V |=q

|{k′ ∈ {0, 1}n : ∃(xi, yi) ∈ QE s.t. xi ⊕ k′ ∈ U, yi ⊕ k′ ∈ V }| (2)

is significantly smaller than 2n with high probability over QE , in order to show
that D has small advantage at q queries. One of the criteria that can make a
transcript “bad” in our proof happens to be, precisely, if the set of queries QE to
EMP

k /E contained within the transcript is such that (2) is larger than desirable.
(Jumping ahead, K(QE , U, V ) will be re-baptized BadK1 in Definition 1 of a bad
transcript.)

To elaborate a little more on this, note that

|K(QE , U, V )| ≤ |{(k′, u, v) ∈ {0, 1}n × U × V :
k′ ⊕ u = xi, k

′ ⊕ v = yi for some 1 ≤ i ≤ q}|
= |{(i, u, v) ∈ {1, . . . , q} × U × V : xi ⊕ yi = u⊕ v}|.

Also note that the set of values {xi ⊕ yi : (xi, yi) ∈ QE} is essentially a random
set since if the i-th query to EMP

k /E is forward then yi comes at random from
a large set, whereas otherwise xi comes at random from a large set. Moreover,
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as a matter of fact, the problem of upper bounding

µ(A) def= max
U,V⊆{0,1}n

|U |=|V |=q

|{(a, u, v) ∈ A× U × V : a = u⊕ v}

for a truly random set A ⊆ {0, 1}n of size q has already been studied before [3, 21,
1, 24, 33], being dubbed3 the sum-capture problem in [33]. One of the main known
results [3, 33] on the sum-capture problem is that µ(A) is upper bounded by
roughly q3/2 for q ≤ 22n/3. Surprisingly enough, this bound is exactly sufficient
for our application, since q3/2 � 2n for q � 22n/3. (Implying, thus, that (2) is
far from 2n as long as q remains beneath 22n/3, as desired.) Our own setting is,
of course, slightly different, since the set {xi⊕ yi : (xi, yi) ∈ QE} isn’t, unlike A,
a purely random set of size q. Other complications also arise: in the general case
where the three round keys (k0, k1, k2) are derived from the n-bit master key k
using non-trivial (bijective) key derivation functions γi : k 7→ ki, K(QE , U, V )
takes the more complicated form

{k′ ∈ {0, 1}n : ∃(xi, yi) ∈ QE s.t. xi ⊕ γ0(k′) ∈ U, yi ⊕ γ2(k′) ∈ V },

so that we have to upper bound

|{(i, u, v) ∈ {1, . . . , q} × U × V : xi ⊕ u = γ0 ◦ γ−1
2 (yi ⊕ v)}|.

All this means that we have to carefully adapt (and to some degree significantly
extend) the Fourier-analytic techniques used in [3, 33].

Once the probability to obtain a bad transcript has been upper bounded, the
second part of the proof is to show that the ratio between the probabilities to
obtain any good transcript in the real and the ideal world is close to 1. This part
is in essence a permutation counting argument. When the two permutations are
independent (Figure 1, right), the counting argument is not overly complicated.
While we could, in principle, re-use the general results of [9], we expose it in the
full version of this paper [10] since it constitutes a good warm-up for the reader
before the more complicated counting in the subsequent section. For the single-
permutation case, things become much more involved: first, we need to consider
more conditions defining bad transcripts; and second, the permutation counting
itself becomes much more intricate. Interestingly, this part is related to the
following simple to state (yet to the best of our knowledge unexplored) problem:
how many queries are needed to distinguish a random squared permutation P ◦P
(where P is uniformly random) from a uniformly random permutation E?

Related Work. Two recent papers analyzed a stronger security property of
the iterated Even-Mansour cipher than mere pseudorandomness, namely indif-
ferentiability from an ideal cipher [2, 27]. Aside with provable security results
already mentioned, a number of papers explored attacks on the (iterated) Even-
Mansour cipher for one round [11, 6, 15], two rounds [30], three rounds [14], and
four rounds [4].
3 The terminology is attributed to Mario Szegedy.
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Gazi and Tessaro [18] considered a construction they named 2XOR, which
is a variant of the DESX [23] and “Xor-Cascade” [17, 28] key-length extension
methods. Given a block cipher E with message space {0, 1}n and key space
{0, 1}κ, the 2XOR construction defines a new block cipher with message space
{0, 1}n and key space {0, 1}κ+n as

2XOREz,k(x) = Ez2(k ⊕ Ez1(k ⊕ x)),

where (z1, z2) are pairwise distinct sub-keys derived from z ∈ {0, 1}κ. They
showed that, when the underlying block cipher E is modeled as an ideal cipher,
this construction is secure up to O(2κ+n/2) queries to E, even when the ad-
versary can make all possible 2n queries to the permutation oracle (which, in
the indistinguishability experiment, is either 2XOREz,k or an independent random
permutation). Considering a block cipher E with key-length κ = 1, one obtains a
construction which is similar to the two-round Even-Mansour cipher of Figure 1,
right, where the last key addition would be omitted.4 Hence, the Gazi-Tessaro
result says that this construction is secure for qe = 2n and qp = O(2n/2).5 Our
own results are incomparable with the one of [18]. First, the third key addition
is omitted in the 2XOR construction. Second, our bounds are more general: they
hold for any value of qe and qp as long as qe < 22n/3 and qp < 22n/3. Though
our bounds become meaningless for qe = 2n, they show that when qe < 22n/3

(an interesting case in practice since an attacker will not always have access to
the entire codebook), security is ensured up to Õ(22n/3) queries to the internal
permutations (something that cannot be derived from the result of [18]).

Open Questions. Currently, our results only apply when the key derivation
functions mapping the master key to the round keys are linear bijective functions
of Fn2 . This is due to the fact that the proof of our sum-capture theorem in
Section 3 requires linear mappings. It is an open question whether this theorem
can be extended to nonlinear (bijective) mappings as well. A second tantalizing
yet challenging open problem is of course to generalize our results to larger
numbers of rounds. Namely, for r > 2, can we find sufficient conditions on
the key-schedule such that the r-round single-permutation Even-Mansour cipher
ensures security up to Õ(2

rn
r+1 ) queries of the adversary? We stress that even the

4 There is a slight subtlety here: in the 2XOR construction used with a block cipher
with key-length κ = 1, i.e., a pair of permutations (P1, P2), there is an additional key
bit z (hidden to the distinguisher) which tells in which order the two permutations
are called.

5 This is in fact very closely related to the security result for the single-key one-round
Even-Mansour cipher up to O(2n/2) queries to the inner and outer permutations [15].
In the Gazi-Tessaro case with κ = 1, the adversary is given an arbitrary permutation
E, and must distinguish, given access to (P1, P2), whether P1 and P2 are independent,
or whether P2(k⊕P1(k⊕ x)) = E(x) for some random key k. In the single-key one-
round Even-Mansour case, the adversary must distinguish, given access to (P1, P2),
whether P1 and P2 are independent, or whether k⊕P1(k⊕x) = P2(x), i.e., P−1

2 (k⊕
P1(k ⊕ x)) = x. These are very similar problems, the latter being (up to changing
P2 into P−1

2 ) a special case of the former with E the identity.
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simpler case where permutations are independent and round keys are identical
seems hard to tackle for r > 2: we currently have no idea of how to extend our
sum-capture result in order to upper bound the probability of bad transcripts
even in the case r = 3.

It would also be interesting to reduce the time complexity of attacks against
the two-round Even-Mansour cipher (potentially down to O(22n/3)). Currently,
the best known attack (for the case of independent permutations and identical
round keys) has time complexity O(2n−log2 n) [15]. Since our focus in this paper
is on query complexity, we have not investigated whether this attack applies to
the single-permutation variant (?) as well.

Organization. We start in Section 2 by setting the notation, giving the neces-
sary background on the H-coefficient technique, and proving some helpful lem-
mas. In Section 3, which is self-contained, we prove our new sum-capture result,
which might be of independent interest. Section 4 contains our main provable
security result for the “minimized” variant of the single-permutation two-round
Even-Mansour cipher (Figure 1, left). The case where the two permutations are
independent and the three round keys are identical (Figure 1, right) is treated
in the full version of the paper [10]. The permutation counting argument in
that case serves as a good exercise before reading the corresponding one for the
single-permutation case (Lemma 3). In the full version of the paper [10], we also
detail slide attacks against the iterated Even-Mansour cipher.

2 Preliminaries
Notation. In all the following, we fix an integer n ≥ 1, and we write N = 2n.
The set of all permutations on {0, 1}n will be denoted Pn. For integers 1 ≤ s ≤ t,
we will write (t)s = t(t − 1) · · · (t − s + 1) and (t)0 = 1 by convention. Given
Q = ((x1, y1), . . . , (xq, yq)), where the xi’s are pairwise distinct n-bit strings and
the yi’s are pairwise distinct n-bit strings, and a permutation P ∈ Pn, we say
that P extendsQ, denoted P ` Q, if P (xi) = yi for i = 1, . . . , q. When two sets A
and B are disjoint, we denote AtB their (disjoint) union. We denote F2 ' {0, 1}
the field with two elements, and Fn2 the vector space of dimension n over F2. The
general linear group of degree n over F2, i.e., the set of all automorphisms (linear
bijective mappings) of Fn2 , will be denoted GL(n).

The Generalized Even-Mansour Cipher. Fix integers n, r,m, ` ≥ 1. Let
φ : {1, . . . , r} → {1, . . . ,m} be an arbitrary function, and γ = (γ0, . . . , γr)
be a (r + 1)-tuple of functions from {0, 1}` to {0, 1}n. The r-round General-
ized Even-Mansour construction EM[n, r,m, `, φ,γ] specifies, from any m-tuple
P = (P1, . . . , Pm) of permutations on {0, 1}n, a block cipher with message space
{0, 1}n and key space {0, 1}`, simply denoted EMP in the following (parameters
[n, r,m, `, φ,γ] are implicit and will always be clear from the context), which
maps a plaintext x ∈ {0, 1}n and a key K ∈ {0, 1}` to the ciphertext defined by
(see Figure 2):

EMP (K,x) = γr(K)⊕ Pφ(r)(γr−1(K)⊕ Pφ(r−1)(· · ·Pφ(1)(γ0(K)⊕ x) · · · )).
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We denote EMP
K : x 7→ EMP (K,x) the Even-Mansour cipher instantiated with

key K (hence, syntactically, EMP
K is a permutation on {0, 1}n).

x

K

Pφ(1)

γ0

Pφ(2)

γ1

Pφ(r) y

γr

Fig. 2. The r-round Generalized Even-Mansour cipher.

All previous work about the indistinguishability of the Even-Mansour ci-
pher [8, 26, 32, 9] considered the case where all permutations and all round keys
are independent, namely m = r, φ is the identity function, ` = (r + 1)n, and γi
simply selects the i-th n-bit string of K = (k0, . . . , kr).

In the following, we will focus in particular on two special cases:

– the case where permutations are independent and the same n-bit key k
is used at each round, namely m = r, φ is the identity function, ` = n,
and all γi’s are the identity function, in which case we will simply denote
EMIP[n, r] the resulting construction. Hence, for an r-tuple of permutations
P = (P1, . . . , Pr), the block cipher EMIPP maps a plaintext x ∈ {0, 1}n and
a key k ∈ {0, 1}n to the ciphertext defined by:

EMIPP (k, x) = k ⊕ Pr(k ⊕ Pr−1(· · ·P2(k ⊕ P1(k ⊕ x)) · · · )).

– the case where a single permutation P is used at each round, namely m = 1
and φ(i) = 1 for i = 1, . . . , r, in which case the resulting construction will
simply be denoted EMSP[n, r, `,γ] . Hence, for a permutation P , the block
cipher EMSPP maps a plaintext x ∈ {0, 1}n and a key K ∈ {0, 1}` to the
ciphertext defined by:

EMSPP (K,x) = γr(K)⊕P (γr−1(K)⊕P (· · ·P (γ1(K)⊕P (γ0(K)⊕x)) · · · )).

When additionally ` = n (namely the master key length is equal to the
block length), we overload the notation and simply denote EMSP[n, r,γ] the
resulting construction.

Security Definition. To study the indistinguishability of the Generalized
Even-Mansour cipher (in the Random Permutation Model), we consider a dis-
tinguisher D which interacts with a set of m + 1 permutation oracles on n bits
that we denote generically (P0, P1 . . . , Pm) = (P0,P ). The goal of D is to dis-
tinguish whether it is interacting with (EMP

K ,P ), where P = (P1, . . . , Pm) are
random and independent permutations and K is randomly chosen from {0, 1}`
(we will informally refer to this case as the “real” world), or with (E,P ), where
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E is a random n-bit permutation independent from P (the “ideal” world). Note
that in the latter case the distinguisher is simply interacting with m+1 indepen-
dent random permutations. We sometimes refer to the first permutation P0 as
the outer permutation, and to permutations P1, . . . , Pm as the inner permuta-
tions. The distinguisher is adaptive, and can make both forward and backward
queries to each permutation oracle, which corresponds to the notion of adaptive
chosen-plaintext and ciphertext security (CCA). We consider computationally
unbounded distinguishers, and we assume wlog that the distinguisher is deter-
ministic and never makes useless queries (which means that it never repeats a
query, nor makes a query P−1

i (y) if it received y as the answer to a previous
query Pi(x), or vice-versa).

The distinguishing advantage of D is defined as

Adv(D) =
∣∣∣Pr
[
DEMP

K ,P = 1
]
− Pr

[
DE,P = 1

]∣∣∣ ,
where the first probability is taken over the random choice of K and P , and the
second probability is taken over the random choice of E and P . We recall that,
even though this is not apparent from the notation, the distinguisher can make
both forward and backward queries to each permutation oracle.

For qe, qp non-negative integers, we define the insecurity of the ideal6 Gener-
alized Even-Mansour cipher with parameters (n, r,m, `, φ,γ) as:

Advcca
EM[n,r,m,`,φ,γ](qe, qp) = max

D
Adv(D),

where the maximum is taken over all distinguishers D making exactly qe queries
to the outer permutation and exactly qp queries to each inner permutation. The
notation is adapted naturally for the two special cases EMIP and EMSP defined
above.

The H-Coefficient Technique. We give here all the necessary background
on the H-coefficient technique [31, 9] that we will use throughout this paper.
All the information gathered by the distinguisher when interacting with the
system of m+ 1 permutations can be summarized in what we call the transcript
of the interaction, which is the ordered list of queries and answers received
from the system (i, b, z, z′), where i ∈ {0, . . . ,m} names the permutation being
queried, b is a bit indicating whether this is a forward or backward query, z ∈
{0, 1}n is the actual value queried and z′ the answer. We say that a transcript
is attainable (with respect to some fixed distinguisher D) if there exists a tuple
of permutations (P0, . . . , Pm) ∈ (Pn)m+1 such that the interaction of D with
(P0, . . . , Pm) yields this transcript (said otherwise, the probability to obtain this
transcript in the “ideal” world is non-zero). In fact, an attainable transcript can
be represented in a more convenient way that we will use in all the following.
Namely, from the transcript we can build m + 1 lists of directionless queries
6 By ideal, we mean that this insecurity measure is defined in the Random Permutation
Model for P1, . . . , Pm.
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QE = ((x1, y1), . . . , (xqe
, yqe

)), QP1 = ((u1,1, v1,1), . . . , (u1,qp
, v1,qp

)), . . . ,QPm
=

((um,1, vm,1), . . . , (um,qp , vm,qp)) as follows. For j = 1, . . . , qe, let (0, b, z, z′) be
the j-th query to P0 in the transcript: if this was a forward query then we
set xj = z and yj = z′, otherwise we set xj = z′ and yj = z. Similarly, for
each i = 1, . . . ,m, and j = 1, . . . , qp, let (i, b, z, z′) be the j-th query to Pi in
the transcript: if this was a forward query then we set ui,j = z and vi,j = z′,
otherwise we set ui,j = z′ and vi,j = z. A moment of thinking should make it
clear that for attainable transcripts there is a one-to-one mapping between these
two representations. (Essentially this follows from the fact that the distinguisher
is deterministic). Moreover, though we defined QE ,QP1 , . . . ,QPm

as ordered
lists, the order is unimportant (our formalization keeps the natural order induced
by the distinguisher).

For convenience, and following [9], we will be generous with the distinguisher
by providing it, at the end of its interaction, with the actual key K when it
is interacting with (EMP

K ,P ), or with a dummy key K selected uniformly at
random when it is interacting with (E,P ). This is without loss of generality since
the distinguisher is free to ignore this additional information. Hence, all in all a
transcript τ is a tuple (QE ,QP1 , . . . ,QPm

,K). We refer to (QE ,QP1 , . . . ,QPm
)

(without the key) as the permutation transcript, and we say that a transcript
τ is attainable if the corresponding permutation transcript is attainable. We
denote T the set of attainable transcripts. (Thus T depends on D, as the notion
of attainability depends on D.) In all the following, we denote Tre, resp. Tid,
the probability distribution of the transcript τ induced by the real world, resp.
the ideal world (note that these two probability distributions depend on the
distinguisher). By extension, we use the same notation to denote a random
variable distributed according to each distribution.

In order to upper bound the advantage of the distinguisher, we will repeatedly
use the following strategy: we will partition the set of attainable transcripts T
into a set of “good” transcripts T1 such that the probabilities to obtain some
transcript τ ∈ T1 are close in the real and in the ideal world, and a set T2 of
“bad” transcripts such that the probability to obtain any τ ∈ T2 is small in the
ideal world. More precisely, we will use the following result, which is proved in
the full version of the paper [10].
Lemma 1. Fix a distinguisher D. Let T = T1 t T2 be a partition of the set of
attainable transcripts. Assume that there exists ε1 such that for any τ ∈ T1, one
has7

Pr[Tre = τ ]
Pr[Tid = τ ] ≥ 1− ε1,

and that there exists ε2 such that Pr[Tid ∈ T2] ≤ ε2. Then Adv(D) ≤ ε1 + ε2.

3 A Sum-Capture Theorem

In this section, we prove a variant of previous “sum-capture” results [3, 24, 33].
Informally, such results typically state that when choosing a random subset A
7 Recall that for an attainable transcript, one has Pr[Tid = τ ] > 0.
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of Zn2 (or more generally any abelian group) of size q, the value

µ(A) = max
U,V⊆Zn

2
|U |=|V |=q

|{(a, u, v) ∈ A× U × V : a = u⊕ v}|

is close to its expected value q3/N (if A,U, V were chosen at random), except
with negligible probability. Here, we prove a result of this type for the setting
where A arises from the interaction of an adversary with a random permutation
P , namely A = {x⊕ y : (x, y) ∈ Q}, where Q is the transcript of the interaction
between the adversary and P . In fact our result is even more general, the special
case just mentioned corresponding to Γ being the identity in the theorem below.

Theorem 1. Fix an automorphism Γ ∈ GL(n). Let P be a uniformly random
permutation of {0, 1}n, and let A be some probabilistic algorithm making exactly
q (two-sided) adaptive queries to P . Let Q = ((x1, y1), . . . , (xq, yq)) denote the
transcript of the interaction of A with P . For any two subsets U and V of {0, 1}n,
let

µ(Q, U, V ) = |{((x, y), u, v) ∈ Q× U × V : x⊕ u = Γ (y ⊕ v)}|.

Then, assuming 9n ≤ q ≤ N/2, one has

Pr
P,ω

[
∃U, V ⊆ {0, 1}n : µ(Q, U, V ) ≥ q|U ||V |

N
+

2q2
√
|U ||V |
N

+ 3
√
nq|U ||V |

]

≤ 2
N
,

where the probability is taken over the random choice of P and the random coins
ω of A.

Proof. Deferred to the full version [10] for reasons of space. ut

4 Security Proof for the Single Permutation Case

x

K

P

γ0

k0

P

γ1

k1

y

γ2

k2

Fig. 3. The two-round Even-Mansour cipher with a single permutation and an arbitrary
key-schedule.
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In this section, we study the security of the two-round Even-Mansour con-
struction where a single permutation P is used instead of two independent per-
mutations, namely EMSP[n, r, `,γ] (depicted on Figure 3). Because of the slide
attack described in the full version of the paper [10], we know that we cannot
simply use the same n-bit key k at each round if we aim at proving security be-
yond the birthday bound, so that some non-trivial key-schedule γ = (γ0, γ1, γ2),
with γi : {0, 1}` → {0, 1}n, is needed (we remain as general as possible in a first
phase, and will only specify the key-schedule later on). Given a key K ∈ {0, 1}`,
we denote k0 = γ0(K), k1 = γ1(K), and k2 = γ2(K), so that:

EMSPPK(x) = P (P (x⊕ k0)⊕ k1)⊕ k2.

Let τ = (QE ,QP ,K), with |QE | = qe, |QP | = qp, and K ∈ {0, 1}` be an at-
tainable transcript. As previously, we start by defining the set of bad transcripts.
In all the following, we let

M = qe

N
1
3
.

Definition 1 (Bad transcript, single-permutation case). We say that a
transcript τ = (QE ,QP ,K) ∈ T is bad if

K ∈ BadK =
⋃

1≤i≤10
BadKi

where

K ∈ BadK1 ⇔ ∃(x, y) ∈ QE ,∃(u, v), (u′, v′) ∈ QP : k0 = x⊕ u and k2 = v′ ⊕ y
K ∈ BadK2 ⇔ ∃(x, y) ∈ QE ,∃(u, v), (u′, v′) ∈ QP : k0 = x⊕ u and k1 = v ⊕ u′

K ∈ BadK3 ⇔ ∃(x, y) ∈ QE ,∃(u, v), (u′, v′) ∈ QP : k1 = v ⊕ u′ and k2 = v′ ⊕ y
K ∈ BadK4 ⇔ ∃(x, y), (x′, y′) ∈ QE ,∃(u, v) ∈ QP :

k0 = x⊕ u and k0 ⊕ k1 = v ⊕ x′

K ∈ BadK5 ⇔ ∃(x, y), (x′, y′) ∈ QE ,∃(u, v) ∈ QP :
k1 ⊕ k2 = y′ ⊕ u and k2 = v ⊕ y

K ∈ BadK6 ⇔ |{((x, y), (u, v)) ∈ QE ×QP : x⊕ u = k0}| >
M

3

K ∈ BadK7 ⇔ |{((x, y), (u, v)) ∈ QE ×QP : v ⊕ y = k2}| >
M

3

K ∈ BadK8 ⇔ |{((x, y), (u, v)) ∈ QE ×QP : x⊕ v = k0 ⊕ k1}| >
M

3

K ∈ BadK9 ⇔ |{((x, y), (u, v)) ∈ QE ×QP : u⊕ y = k1 ⊕ k2}| >
M

3
K ∈ BadK10 ⇔ |{((x, y), (x′, y′)) ∈ QE ×QE : x⊕ y′ = k0 ⊕ k1 ⊕ k2}| > M.

Otherwise τ is said good. We denote T2 the set of bad transcripts, and T1 = T \T2
the set of good transcripts.
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In this section, we focus on the case where ` = n, namely the master key
length is equal to the block length (and hence to the round keys length). We
treat the (simpler) cases where the three round keys are independent, or derived
from two independent n-bit keys, in the full version of the paper [10]. First, we
specify conditions on the key-schedule that will allow us to upper bound the
probability to obtain a bad transcript (in the ideal world).

Definition 2 (Good key-schedule). We say that a key-schedule γ = (γ0, γ1,
γ2), where γi : {0, 1}n → {0, 1}n, is good if it satisfies the following conditions:

(i) γ0, γ1, γ2 ∈ GL(n) (i.e., each γi is a linear bijective map of Fn2 );
(ii) γ0 ⊕ γ1 ∈ GL(n) and γ1 ⊕ γ2 ∈ GL(n);
(iii) γ0⊕γ1⊕γ2 is a permutation over {0, 1}n (non-necessarily linear over Fn2 ).

A simple way to build a good key-schedule is to take for γ0 and γ2 the identity,
and γ1 = π, where π is a linear orthomorphism of Fn2 (recall that a permutation
π of {0, 1}n is an orthomorphism if x 7→ x⊕π(x) is also a permutation), so that
the sequence of round keys is (k, π(k), k). We give two simple examples of linear
orthomorphisms which are attractive from an implementation point of view:

– When n is even, and k = (kL, kR) where kL and kR are respectively the left
and right halves of k, then

π : (kL, kR) 7→ (kR, kL ⊕ kR)

is a linear orthomorphism.
– Fix an irreducible polynomial p of degree n over F2 and identify Fn2 and

the extension field F2n defined by p in the canonical way. Then, for any
c ∈ F2n\{0, 1}, k 7→ c�k (where� denotes the extension field multiplication)
is a linear orthomorphism.

Lemma 2. Let γ = (γ0, γ1, γ2) be a good key-schedule. Assume that 9n ≤
qe, qp ≤ N/2. Then

Pr[Tid ∈ T2] ≤ 10
N

+
4q2
eqp + 7qeq2

p + 4q2
p
√
qeqp

N2

+
9qp
√
nqe + 6qe

√
nqp

N
+ qe + 12qp

N
2
3

.

Proof. In the ideal world, sets BadKi only depend on the random permutations
E and P , and not on the key k, which is drawn uniformly at random at the end
of the interaction of the distinguisher with (E,P ). Moreover, the size of BadKi
for i = 6 to 10 can be upper bounded independently of E,P . Indeed, since γ0,
γ2, γ0 ⊕ γ1, γ1 ⊕ γ2, and γ0 ⊕ γ1 ⊕ γ2 are all permutations of {0, 1}n, one has,
for any permutation transcript (QE ,QP ),

|BadK6|, |BadK7|, |BadK8|, |BadK9| ≤
3qeqp
M

and |BadK10| ≤
q2
e

M
,
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so that

Pr
[
k ←$ {0, 1}n : k ∈

10⋃
i=6

BadKi

]
≤ 12qeqp

NM
+ q2

e

NM
≤ qe + 12qp

N
2
3

.

On the other hand, in order to upper bound |BadKi| for i = 1 to 5, we need to
appeal to the sum-capture theorem of Section 3. For a permutation transcript
(QE ,QP ), let

X = {x ∈ {0, 1}n : (x, y) ∈ QE}, Y = {y ∈ {0, 1}n : (x, y) ∈ QE},
U = {u ∈ {0, 1}n : (u, v) ∈ QP }, V = {v ∈ {0, 1}n : (u, v) ∈ QP }

denote the domains and the ranges of QE and QP , respectively. Then one has

|BadK1| ≤ µ(QE , U, V )
def= |{((x, y), u, v) ∈ QE × U × V : x⊕ u = γ0 ◦ γ−1

2 (y ⊕ v)}|
|BadK2| ≤ µ(QP , X, U)

def= |{((u, v), x, u′) ∈ QP ×X × U : x⊕ u = γ0 ◦ γ−1
1 (v ⊕ u′)}|

|BadK3| ≤ µ(QP , V, Y )
def= |{((u′, v′), v, y) ∈ QP × V × Y : v ⊕ u′ = γ1 ◦ γ−1

2 (v′ ⊕ y)}|
|BadK4| ≤ µ(QP , X,X)

def= |{((u, v), x, x′) ∈ QP ×X ×X : x⊕ u = γ0 ◦ (γ0 ⊕ γ1)−1(v ⊕ x′)}|
|BadK5| ≤ µ(QP , Y, Y )

def= |{((u, v), y, y′) ∈ QP × Y × Y : y′ ⊕ u = (γ1 ⊕ γ2) ◦ γ−1
2 (v ⊕ y)}|.

By our assumption that the key-schedule is good, we have that γ0◦γ−1
2 , γ0◦γ−1

1 ,
γ1 ◦ γ−1

2 , γ0 ◦ (γ0 ⊕ γ1)−1, and γ0 ◦ (γ0 ⊕ γ1)−1 are all automorphisms of Fn2 .
Hence, we can apply Theorem 1 (note that in order to apply this theorem to
upper bound, say, |BadK1|, we consider the combination of the distinguisher D
and permutation P as a probabilistic adversary A interacting with permutation
E, resulting in transcript QE). Thus, if we set

C1 =
qeq

2
p

N
+ 2q2

eqp
N

+ 3qp
√
nqe

C2 = C3 =
qeq

2
p

N
+

2q2
p
√
qeqp

N
+ 3qp

√
nqe

C4 = C5 = q2
eqp
N

+
2qeq2

p

N
+ 3qe

√
nqp,

one has Pr[E,P ←$ Pn : |BadKi| ≥ Ci] ≤ 2/N for each i = 1 to 5. Since

Pr[Tid ∈ T2] ≤
5∑
i=1

Pr[E,P ←$ Pn : |BadKi| ≥ Ci] +
∑5
i=1 Ci
N

+ qe + 12qp
N

2
3

,

we get the final result. ut
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In the second stage of the proof, it remains to show that for any good tran-
script τ , the ratio between the probabilities to obtain τ in the ideal world and
the real world is close to 1. We have the following lemma, proved in the full
version of the paper [10].

Lemma 3. Assume that N ≥ 73 and 4qe + 2qp ≤ N . Let τ = (QE ,QP ,K) ∈ T1
be a good transcript. Then

Pr[Tre = τ ]
Pr[Tid = τ ] ≥ 1− ε1,

where
ε1 = 4qe(qe + qp)2

N2 + 2q2
e

N
4
3

+ 20qe
N

2
3
.

Combining Lemmas 1, 2, and 3, we obtain the main theorem of this paper.

Theorem 2 (Single permutation and non-independent round keys).
Consider the single-permutation two-round Even-Mansour cipher EMSP[n, 2,γ]
with a good key-schedule γ (see Definition 2). Assume that N ≥ 73, 9n ≤ qe, qp ≤
N/2, and 4qe + 2qp ≤ N . Then

Advcca
EMSP[n,2,γ](qe, qp) ≤

10
N

+
4q3
e + 12q2

eqp + 11qeq2
p + 4q2

p
√
qeqp

N2 + 2q2
e

N
4
3

+
9qp
√
nqe + 6qe

√
nqp

N
+ 21qe + 12qp

N
2
3

.

Letting q = max(qe, qp), and assuming q ≤ N
2
3 , the upper bound of Theorem 2

simplifies into

10
N

+ 31q3

N2 + 2q2

N
4
3

+ 15
√
nq

3
2

N
+ 33q
N

2
3
≤ 10
N

+ 81
√
nq

N
2
3

= 10
2n + 81q

2 2n
3 −

1
2 log2 n

.

Hence, security is ensured up to O(2 2n
3 −

1
2 log2 n) = Õ(2 2n

3 ) queries of the adver-
sary.
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