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Abstract. The round complexity of commitment schemes secure against
man-in-the-middle attacks has been the focus of extensive research for
about 25 years. The recent breakthrough of Goyal, Pandey and Richelson
[STOC 2016] showed that 3 rounds are sufficient for (one-left, one-right)
non-malleable commitments. This result matches a lower bound of [41].
The state of affairs leaves still open the intriguing problem of construct-
ing 3-round concurrent non-malleable commitment schemes.
In this paper we solve the above open problem by showing how to
transform any 3-round (one-left one-right) non-malleable commitment
scheme (with some extractability property) in a 3-round concurrent non-
malleable commitment scheme. Our transform makes use of complexity
leveraging and when instantiated with the construction of [22] gives a 3-
round concurrent non-malleable commitment scheme from one-way per-
mutations secure w.r.t. subexponential-time adversaries.
We also show a 3-round arguments of knowledge and a 3-round identifi-
cation scheme secure against concurrent man-in-the-middle attacks.

Keywords: non-malleability commitments, identification schemes.

1 Introduction

Commitment schemes are fundamental in Cryptography. They require a sender
to fix a message that can not be changed anymore, but that will remain hidden
to a receiver until the sender decides to reveal it.

In order to model modern real-world adversaries, commitment schemes have
been proposed with additional security properties. Here we consider the intrigu-
ing question of constructing a scheme that remains secure against man-in-the-
middle (MiM) attacks: a non-malleable (NM) commitment scheme [15].

Pass proved that NM commitments1 require at least 3 rounds [41] when
security is proved through a black-box reduction to a falsifiable (polynomial
or subexponential time) hardness assumption. Instead by weakening the secu-
rity definition admitting an inefficient challenger we know constructions of non-
interactive NM commitments [38].

1 We consider the notion of NM commitment w.r.t. commitment.
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The round complexity of NM commitment schemes in the standard model
has puzzled researchers for long time. Starting from the construction of [15]
that required a logarithmic number of rounds, various constant-round schemes
were proposed [1,43,42,44,46,28,19,20,29] reducing the round complexity to 4
rounds [23,5,11] with respect to concurrent MiM attacks, a setting that corre-
sponds to what can actually happen when sender and receiver are connected
through a communication network like the Internet. In such a much more in-
teresting setting a MiM adversary receives multiple commitments from senders
and sends his commitments to multiple receivers.

1.1 Towards 3-Round (Concurrent) NM Commitments

The existence of 3-round NM commitment schemes is an important question
first because 3 is the best possible constant (in light of the lower bound of [41]),
and second because 3 is the smallest number of rounds for a primitive that often
makes use of commitment schemes: proofs of knowledge.

The importance of obtaining 3-round (and not just any constant-round) NM
commitments motivated the very recent and innovative work of [22] that, by just
relying on any non-interactive commitment scheme and exploiting the power of
non-malleable codes in the split-state model, shows a 3-round NM commitment
scheme. Interestingly, such construction is not claimed to be secure against con-
current man-in-the-middle attacks. Therefore the following natural and impor-
tant question remains open.
Main Open Question: Can we construct a 3-round concurrent non-malleable
commitment scheme matching the lower bound of [41]?

Other 3-round challenges. We list here 3 other interesting settings where no
3-round construction is known against concurrent MiM adversaries.

– Proofs2 of knowledge are very useful in Cryptography. Despite their impor-
tance, there is no construction for 3-round proofs of knowledge (PoK) that
is sufficiently secure under concurrent MiM attacks. This is due to the fact
that such attacks are in general extremely difficult to deal with. Even though
there exist constructions with a constant number of rounds, the case of just
3 rounds so far has remained unsolved.

– In [27]3 Lapidot and Shamir proposed a 3-round public-coin witness indis-
tinguishable PoK for NP (the LS protocol) where the input (except its size)
is needed only when playing the 3rd round. This special completeness prop-
erty named “delayed input” in [12,13] has been used in many applications
(e.g., [26,14,24,49,48] in particular recently [18,24,33,11]), and in [12,13] it
was considered for the OR composition of Σ-protocols instead of relying on
LS. When a PoK is used as sub-protocol the delayed-input feature is in-
strumental to give a better round complexity to the external protocol. An

2 For simplicity in the informal part of the paper we will not make a strict distinction
between proofs and arguments. In the formal part we will use appropriate terms.

3 See [37] for a detailed description of [27].
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additional features of delayed-input protocols is that they allow to shift large
part of the computation to an off-line phase. Unfortunately the LS protocol
and the PoKs of [12,12] are not secure against concurrent MiM attacks and
this penalizes those applications where both round complexity and security
against concurrent MiM attacks are important.

– We notice that identification schemes have been often proposed (e.g., [17])
through the paradigm of proving “knowledge” of a secret4. Under this formu-
lation there are constant-round constructions that are proven secure against
concurrent MiM attacks [2]. However no 3-round scheme known in literature
is proven secure in presence of a concurrent MiM adversary.

1.2 Results of This Work

In this work we study 3-round commitment scheme in presence of concurrent
MiM attacks and solve in the positive the above open problems.

3-Round concurrent NM commitment schemes. In the main result of this submis-
sion, we show a transform that on input any 3-round NM commitment scheme5

gives a 3-round concurrent NM commitment scheme. The construction of [22]
can be used to instantiate our transform, therefore obtaining a 3-round concur-
rent NM commitment scheme based on any one-way permutation secure against
subexponential-time adversaries. Moreover our scheme (still when instantiated
with the one of [22] and using a proper one-way permutation) is public coin and
(if desired6) has the delayed-input property.

Our transform extends the security of the underlying commitment scheme
to multiple receivers. It is known that this implies security also with multiple
senders [30]. The crucial idea of our transform is to combine the underlying NM
commitment scheme along with a one-time pad, to produce a commitment of
a message that by itself, in case of a malleability attack, will have sufficient
structure to be recognized by a distinguisher in the session in which it appears.
Therefore a successful concurrent MiM even playing multiple commitments with
multiple receivers will have to maul the underlying commitment scheme in at
least one session. Since the message has sufficient structure with respect to that
single session, we are able to translate the concurrent MiM attack into a non-
concurrent MiM that violates the security of the underlying (non-concurrent)
NM commitment scheme. We will implement the idea of committing to a message

4 Other notions based on signature or decryption capabilities are considered weaker
since in some applications the verifier wants to make sure that the prover is the
actual entity matching the announced identity. Indeed without a PoK a prover could
give some partial information about his secret to others that can still succeed in
convincing the verifier, even though they do not know the full secret.

5 We also require the scheme to be extractable. Extractability often comes for free
since it is commonly used in the non-malleability proof.

6 Our transform can be instantiated in two ways. In the former the message to commit
is required already when playing the first round, while in the latter the message to
commit is required when playing the third round only.
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with structure by forcing a successful concurrent MiM to commit to the solution
of a puzzle in at least one session. We will use complexity leveraging to show
that the attack of the concurrent MiM is indistinguishable from the attack of a
polynomial-time simulator that plays with receivers only.

Just for completeness, we also show an explicit concurrent MiM adversary
A for the scheme of [21]. The crucial point here, following a technique of [16] is
that the scheme of [21] allows A to spread the message committed by the honest
sender over several commitments that the adversary sends to multiple receivers.
The scheme presented in [22] is slightly different and became available after our
work was already submitted, therefore when describing A we stick with [21].

3-round arguments of knowledge and ID schemes against concurrent MiM at-
tacks. Our 3-round concurrent NM commitment scheme is a commit-and-prove
argument of knowledge (AoK). This means that one can see our scheme as a
commitment followed by an AoK about the committed value. By applying a
simple change to the statement of the underlying AoK we obtain a 3-round con-
current NM witness-indistinguishable AoK (concurrent NMWIAoK) a notion
introduced in [34] and later on extended in [31]. We stress that the delayed-
input and public-coin properties of our commitment scheme are preserved by
our concurrent NMWIAoK.

In [34] it is shown how to get concurrent NM zero knowledge (NMZK)
in the bare public-key (BPK) model [6] with just two executions of a con-
current NMWIAoK. Therefore we directly obtain a round-efficient concurrent
NMZKAoK in the BPK model. By making use of delayed-input completeness
the simulator can extend a main thread avoiding issues due to aborting adver-
saries as discussed in [47,36].

Finally, we notice that one can get an identification scheme secure in the
PoK sense in the concurrent7 setting of [2] as well as under the stronger defini-
tion based on matching conversations of [3,25] naturally extended to concurrent
sessions. Following [34,9], the key idea consists in using an identity that has two
possible secrets such that knowledge of one witness does not allow to compute
the other one in polynomial time. By using our implementation of a concurrent
NMWIAoK for proving knowledge of a secret associated to such identity we
obtain a 3-round identification scheme secure against concurrent MiM attacks.

Challenges for future work. The existence of OWPs is a standard falsifiable
hardness assumption. Our scheme relies on a strengthening of this standard as-
sumption w.r.t. subexponential-time adversaries. Notice that the lower bound
of [41] still applies in case of subexponential-time hardness, therefore our 3-
round concurrent non-malleable scheme is round optimal. Various natural and
fascinating questions on commitments and proofs of knowledge remain open af-
ter our work and as such we think our results will motivate further research.

7 In [2] the notion CR2 is proposed to deal with concurrent MiM attacks and reset
attacks. Reset attack were also considered in the notion CR+ of [4]. Since reset
attacks are out of the scope of this work, we focus on concurrent MiM attacks only.
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Examples of open questions about concurrent NM commitments are the follow-
ing: 1) the existence of 3-round schemes based on standard falsifiable hardness
assumptions w.r.t. polynomial-time adversaries only; 2) the existence of 3-round
schemes with black-box use of primitives; 3) the existence of practical schemes.

2 Notation, Definitions and Tools

We denote the security parameter by λ and use “|” as concatenation operator
(i.e., if a and b are two strings then by a|b we denote the concatenation of a
and b). For a finite set Q, x ← Q denotes the algorithm that chooses x from Q
with uniform distribution. Usually we use the abbreviation ppt that stays for
probabilistic polynomial-time. We use poly(·) to indicate a generic polynomial
function of the input.

A polynomial-time relation Rel (or polynomial relation, in short) is a subset
of {0, 1}∗ × {0, 1}∗ such that membership of (x,w) in Rel can be decided in
time polynomial in |x|. For (x,w) ∈ Rel, we call x the instance and w a witness
for x. For a polynomial-time relation Rel, we define the NP-language LRel as
LRel = {x|∃w : (x,w) ∈ Rel}. Analogously, unless otherwise specified, for an
NP-language L we denote by RelL the corresponding polynomial-time relation
(that is, RelL is such that L = LRelL).

Let A and B be two interactive probabilistic algorithms A and B. We denote
by 〈A(α), B(β)〉(γ) the distribution of B’s output after running on private input
β with A using private input α, both running on common input γ. Typically,
one of the two algorithms receives 1λ as input. A transcript of 〈A(α), B(β)〉(γ)
consists of the messages exchanged during an execution where A receives a pri-
vate input α, B receives a private input β and both A and B receive a common
input γ. Moreover, we will refer to the view of A as the messages it received dur-
ing the execution of 〈A(α), B(β)〉(γ), along with its randomness and its input.
We denote by Ar an algorithm A that receives as randomness r. We say that a
protocol (A,B) is public coin if B sends to A random bits only.

A function ν(·) from non-negative integers to reals is called negligible, if for
every constant c > 0 and all sufficiently large λ ∈ N we have ν(λ) < λ−c. Stan-
dard definitions of one-way permutations (OWPs), proof/argument systems, wit-
ness indistinguishability (WI) and proofs of knowledge along with their strength-
ened versions secure again subexponential-time adversaries and adaptive-input
selection can be found in the full version of this work [10].

2.1 Commitment Schemes

Definition 1 (Commitment Scheme). Given a security parameter 1λ, a com-
mitment scheme (Sen,Rec) is a two-phase protocol between two ppt interactive
algorithms, a sender Sen and a receiver Rec. In the commitment phase Sen on
input a message m interacts with Rec to produce a commitment com. In the de-
commitment phase, Sen sends to Rec a decommitment information d such that
Rec accepts m as the commitment of com.
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Formally, we say that CS = (Sen,Rec) is a perfectly binding commitment
scheme if the following properties hold:

Correctness:

• Commitment phase. Let com be the commitment of the message m (i.e.,
com is the transcript of an execution of CS = (Sen,Rec) where Sen runs
on input a message m). Let d be the private output of Sen in this phase.

• Decommitment phase8. Rec on input m and d accepts m as decommit-
ment of com.

Hiding([32]): for a ppt adversary A and a randomly chosen bit b ∈ {0, 1},
consider the following hiding experiment ExpHidingbA,CS

(λ):

• Upon input 1λ, the adversary A outputs a pair of messages m0,m1 that
are of the same length.

• Sen on input the message mb interacts with A to produce a commitment
of mb.

• A outputs a bit b′ and this is the output of the experiment.

For any ppt adversary A, there exist a negligible function ν, such that:

∣

∣

∣
Prob

[

ExpHiding0A,CS
(λ) = 1

]

− Prob
[

ExpHiding1A,CS
(λ) = 1

] ∣

∣

∣
< ν(λ).

Binding: for every commitment com generated during the commitment phase
by a possibly malicious unbounded sender Sen⋆ interacting with an honest
receiver Rec, there exists at most one message m that Rec accepts as decom-
mitment of com.

We also consider the definition of a commitment scheme where the hiding
property still holds against an adversary A running in time bounded by T = 2λ

α

for some positive constant α < 1. In this case we will say that a commitment
scheme is T -hiding. We will also say that a commitment scheme is T̃ -breakable

to specify that an algorithm running in time T̃ = 2λ
β

, for some positive constant
β < 1, recovers the (if any) only message that can be successfully decommitment.

In the rest of the paper we also use a non-interactive commitment schemes,
with secure parameter λ. In this case we consider a commitment scheme as a
pair of ppt algorithms (NISen,NIRec) where:

- NISen takes as input (m;σ), where m ∈ {0, 1}poly(λ) is the message to be
committed and σ ← {0, 1}λ is randomness, and outputs the commitment
com and the decommitment dec;

- NIRec takes as input (dec, com, m) and outputs 1 if it accepts m as a de-
commitment of com and 0 otherwise.

8 In this paper we consider a non-interactive decommitment phase only.
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3-Round extractable commitment schemes. Informally, a 3-round commitment
scheme is extractable if there exists an efficient extractor that having black-box
access to any efficient malicious sender ExCom⋆ that successfully performs the
commitment phase, outputs the only committed string that can be successfully
decommitted.

Definition 2 (3-Round Extractable Commitment Scheme [45]). A 3-
round perfectly binding commitment scheme ExCS = (ExCom,ExRec) is an ex-
tractable commitment scheme if given oracle access to any malicious sender
ExCom⋆, there exists an expected ppt extractor Ext that outputs a pair (τ, σ⋆)
such that the following properties hold:

- Simulatability: the simulated view τ is identically distributed to the view of
ExCom⋆ (when interacting with an honest ExRec) in the commitment phase.

- Extractability: there exists no decommitment of τ to σ, where σ 6= σ⋆.

2.2 Non-Malleable Commitment Schemes

Here we follow [30]9. Let Π = (Sen,Rec) be a statistically binding commitment
scheme. Consider MiM adversaries that are participating in left and right ses-
sions in which poly(λ) commitments take place. We compare between a MiM and
a simulated execution. In the MiM execution the adversary A, with auxiliary in-
formation z, is simultaneously participating in poly(λ) left and right sessions. In
the left sessions the MiM adversary A interacts with Sen receiving commitments
to values m1, . . . ,mpoly(λ) using identities id1, . . . , idpoly(λ) of its choice. In the
right session A interacts with Rec attempting to commit to a sequence of related
values m̃1, . . . , m̃poly(λ) again using identities of its choice ĩd1, . . . , ĩdpoly(λ). If
any of the right commitments is invalid, or undefined, its value is set to ⊥. For
any i such that ĩdi = idj for some j, set m̃i =⊥ (i.e., any commitment where
the adversary uses the same identity of one of the honest senders is consid-

ered invalid). Let mim
A,m1,...,mpoly(λ)

Π (z) denote a random variable that describes
the values m̃1, . . . , m̃poly(λ) and the view of A, in the above experiment. In the
simulated execution, an efficient simulator S directly interacts with Rec. Let
simS

Π(1
λ, z) denote the random variable describing the values m̃1, . . . , m̃poly(λ)

committed by S, and the output view of S; whenever the view contains in the
i-th right session the same identity of any of the identities of the left session,
then m̃i is set to ⊥.

We denote by δ̃ a value associated with the right session (where the adversary
A plays with a receiver MMRec) where δ is the corresponding value in the left
session. For example, the sender commits to v in the left session while A commits
to ṽ in the right session.

Definition 3 (Concurrent NM commitment scheme [30]). A commitment
scheme is concurrent NM with respect to commitment (or a many-many NM

9 In this paper we will consider only NM commitments w.r.t. commitments. Difficulties
on achieving also the notion of NM w.r.t. decommitments were discussed in [35,7].
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commitment scheme) if, for every ppt concurrent MiM adversary A, there exists
a ppt simulator S such that for all mi ∈ {0, 1}poly(λ) for i = {1, . . . , poly(λ)}
the following ensembles are computationally indistinguishable:

{mim
A,m1,...,mpoly(λ)

Π (z)}z∈{0,1}⋆ ≈ {simS
Π(1

λ, z)}z∈{0,1}⋆ .

As in [30] we also consider relaxed notions of concurrent non-malleability:
one-many and one-one NM commitment schemes. In a one-many NM commit-
ment scheme, A participates in one left and polynomially many right sessions.
In a one-one (i.e., a stand-alone secure) NM commitment scheme, we consider
only adversaries A that participate in one left and one right session. We will
make use of the following proposition of [30].

Proposition 1. Let (Sen,Rec) be a one-many NM commitment scheme. Then,
(Sen,Rec) is also a concurrent (i.e., many-many) NM commitment scheme.

We also consider the definition of a NM commitment scheme secure against a
MIM A running in time bounded by T = 2λ

α

for some positive constant α < 1.
In this case we will say that a commitment scheme is T -non-malleable.

When the identity is selected by the sender then the above id-based defini-
tions guarantee non-malleability without ids as long as the MiM does not behave
like a proxy (an unavoidable attack). Indeed the sender can pick as id the public
key of a strong signature scheme signing the transcript. The MiM will have to
use a different id or to break the signature scheme.

2.3 3-Round One-One NM Commitment Scheme

As main tool we need a 3-round one-one NM commitment scheme (NMCS) that
enjoys the extractability property. In the rest of the paper we will refer to such
a commitment scheme as ΠNM = (SenNM,RecNM).

In [22] the authors provide the first 3-round one-one NM commitment scheme.
Their scheme enjoys also the extractability property10 and public coin.

By ΠNM = ((Sen1NM, Sen
2
NM),RecNM) we denote a 3-round one-one NM com-

mitment scheme such that:

– the algorithm Sen1NM takes as input (id,m; ρ), where id ∈ {0, 1}λ is the
identity, m is the message to be committed and ρ← {0, 1}λ is a randomness,
and outputs a that is the first round of the commitment scheme to be sent
to the receiver;

– the algorithm Sen2NM takes as input (id, c,m; ρ), where c is the second round
received by Rec, m is the message to be committed, id is the same identity
received as input by Sen1NM, ρ is the randomness, and outputs (z, dec) where
z is the last round of the commitment, and dec is the decommitment value.

The reveal phase consists in sending dec and m to the receiver. The receiver
RecNM, on input the randomness it used during the commitment phase, the
transcript com = (a, c, z, id), m and dec outputs 1 if dec is valid w.r.t. com and
m and outputs 0 otherwise.

10 Extractability is informally stated in Claim 12 of [21].
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2.4 The LS Proof of Knowledge and NMWI Argument Systems

In this paper we use the 3-round public-coin WI adaptive proof of knowledge
proposed by Lapidot and Shamir [27], that we denote by LS. LS is delayed-input
since the inputs for the prover and the verifier are needed only to play the last
round, while only the size of the common input is needed earlier. For this reason
we will refer to a prover P as a pair (P1,P2). More formally, LS for a relation Rel

is a pair Π = (P = (P1,P2),V), with security parameter λ, where P executes
the algorithms P1 and P2 defined as follows. The algorithm P1, takes as input
(ℓ;α), ℓ is the instance length and α ← {0, 1}λ is the randomness, and outputs
the 1st round of the LS protocol. The algorithm P2 takes as input (x,w, c;α),
where x, w are such that (x,w) ∈ Rel, c is the challenge sent by V and α is the
randomness11 and outputs the 3rd round of the LS protocol.

In this paper we also consider a definition where the WI property of LS still
holds against a distinguisher with running time bounded by T = 2λ

α

for some
constant positive constant α < 1. In this case we say that the instantiation of
LS is T -witness indistinguishable (T -WI).

Witness indistinguishability and MiM attacks. The definition of non-malleable
witness indistinguishability (NMWI) given in [34] requires that the witness en-
coded in the proof given by the MiM A be independent of the witness used by
the honest prover in his proof. For details see [10].

3 3-Round Concurrent Non-Malleable Commitments

In this section we show our transform that takes as input a 3-round extractable
one-one NM commitment scheme ΠNM, a OWP f , a non-interactive perfectly
binding commitment scheme NI, the 3-round delayed-input adaptive WI/PoK
LS and outputs a 3-round fully concurrent (i.e., many-many) NM commitment
scheme ΠMMCom = (MMSen,MMRec).

Let m be the message that MMSen wants to commit. The high-level idea of
our transform is depicted in Fig. 1. The sender MMSen, on input the session-id
id and the message m, computes the 1st round of the protocol by running LS

and sending the 1st round of NM to commit to a random message s0 using id as
session-id. In the 2nd round the receiver MMRec sends the challenges of NM and
LS, also sends a random value Y in the range of the OWP f12. In the last round
MMSen commits to message m using NI, therefore obtaining com, then computes
the last round of NM, completes the transcript of LS, and finally sends a random
string s1. The protocol LS is used by MMSen to prove to MMRec that either
she knows message m and the randomness used to compute com, or she knows
the values (s0, dec), such that f(s0 ⊕ s1) = Y and dec is a valid decommitment
to s0 w.r.t. the commitment computed using ΠNM. We observe that MMSen

11 The same α is passed to P1 and P2 so that P2 can reconstruct the state of P1.
12 When sampling from the range of f corresponds to picking a random string, we have

that our commitment scheme is public coin.
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needs m only when computing the 3rd round, therefore our construction enjoys
delayed-input correctness.

aNM(s0), aLS

cNM(s0), cLS, Y

s1, zNM(s0), zLS, com(m)

MMSen(m) MMRec

– Y is an element taken from the range of the OWP f .
– com(m) is the perfectly binding commitment of m computed using NI.
– (aNM(s0), cNM(s0), zNM(s0)) = τ is the transcript of the execution of the NM

commitment scheme ΠNM when the sender commits to s0.
– (aLS, cLS, zLS) = π is the transcript of LS proving knowledge of either m and the

randomness used to compute com, or of (s0, dec), s.t. f(s0 ⊕ s1) = Y and dec

is a valid decommitment of s0 w.r.t. τ .

Fig. 1: Informal description of our 3-round concurrent NM commitment scheme.

Our transform needs the following tools:

1. a OWP f that is secure against ppt adversaries and T̃f -breakable;
2. a non interactive perfectly binding commitment scheme NI = (NISen,NIRec)

that is TNI-hiding and T̃NI-breakable;
3. a 3-round extractable one-one NM commitment scheme ΠNM = (SenNM =

(Sen1NM, Sen
2
NM),RecNM) that is TNM-hiding/non-malleable, and T̃NM-breakable;

4. the LS proof system LS = (P = (P1,P2),V) for the language

L =
{(

(a, c, z), Y, s1, com, id
)

: ∃ (m,σ) s.t. com = NISen(m;σ) OR
(

∃(ρ, s0)
s.t. a = Sen1NM(id, s0; ρ) AND z = Sen2NM(id, c, s0; ρ) AND Y = f(s0 ⊕ s1)

)}

that is TLS-WI for the corresponding relation RelL.

Let λ be the security parameter of our scheme. We will use wlog λ also
as security parameter for the hardness to invert f with respect to polynomial
time adversaries. Then we consider the following hierarchy of security levels
for the above tools: Tf << TNI <<

√
TNM << TNM <<

√
TLS << TLS where

by “T << T ′” we mean that “T · poly(λ) < T ′”. We also require that: 1) NI

is TNI-hiding, but is also T̃NI =
√
TNM-breakable; 2) ΠNM is TNM hiding/non-

malleable, but the hiding is also T̃NM =
√
TLS-breakable. Now we need to define

different security parameters, one for each tool involved in the security proof to
be consistent with the hierarchy of security levels defined above (a similar use
of security parameters has been proposed in [46]). Given the security parameter



Concurrent Non-Malleable Commitments (and More) in 3 Rounds 11

Common input: Security parameters: λ, (λNI, λNM, λLS, ℓ) = Params(λ).
MMSen’s identity: id ∈ {0, 1}λ.
Input to MMSen: m ∈ {0, 1}poly{λ}.

Commitment Phase:

1. MMSen→ MMRec

1.1. Pick s0 ∈ {0, 1}
λ.

1.2. Pick a randomness ρ ∈ {0, 1}λNM and compute aNM = Sen1
NM(id, s0; ρ).

1.3. Pick a randomness α ∈ {0, 1}λLS and compute aLS = P1(ℓ;α).
1.4. Send (aNM, aLS) to MMRec.

2. MMRec→ MMSen

2.1. Pick a randomness γ and run RecNM on input (id, aNM; γ) to obtain cNM.
2.2. Pick a randomness β and run V to obtain cLS.
2.3. Pick a random y ∈ {0, 1}λ and compute Y = f(y).
2.4. Send (cNM, cLS, Y ) to MMSen.

3. MMSen→ MMRec

3.1. Pick a randomness σ ∈ {0, 1}λNI and compute (com, dec) = NISen(m;σ).
3.2. Pick s1 ← {0, 1}

λ.
3.3. Compute (zNM, decNM) = Sen2

NM(id, cNM, s0; ρ).
3.4. Set x =

(

(aNM, cNM, zNM), Y, s1, com, id
)

and w = (m,σ,⊥,⊥) with (|x| = ℓ).
Run zLS = P2(x,w, cLS;α) where x is the theorem to be proven and w is the
witness.

3.5. Send (zNM, com, zLS, s1) to MMRec.
4. MMRec: Set x =

(

(aNM, cNM, zNM), Y, s1, com, id
)

and abort iff (aLS, cLS, zLS) is
not accepting for V with respect to x.

Decommitment Phase:

1. MMSen→ MMRec: Send (dec,m, decNM, s0) to MMRec.
2. MMRec: Accept m as the committed message iff

2.1. NIRec(dec, com,m) = 1 and
2.2. RecNM on input γ, (aNM, cNM, zNM, id), s0 and decNM outputs 1.

Fig. 2: Our 3-round concurrent NM commitment scheme.

λ of our scheme, we will make use of the following security parameters (all
polynomially related to λ and such that the above hierarchy of security levels
holds): λ for f , λNI for NI, λNM for ΠNM, λLS for LS.

We denote by Params the function that on input λ outputs (λNI, λNM, λLS, ℓ)
where ℓ is the size of the theorem to be proved using LS13. Our concurrent NM
commitment scheme ΠMMCom = (MMSen,MMRec) is fully described in Fig. 2.

Theorem 1. Suppose there exist OWPs secure against subexponential-time ad-
versaries, then ΠMMCom is a perfectly binding delayed-input commitment scheme.

13 To compute 1st and 2nd round of LS only the length ℓ of the instance is required.
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Proof. The delayed-input correctness of ΠMMCom follows by inspection from the
delayed-input completeness of LS, and the correctness of ΠNM and NI.

Observe that the message given in output in the decommitment phase of
ΠMMCom is the message committed using NI. Moreover the decommitment phase
of ΠMMCom coincides with the decommitment of NI and ΠNM. Since NI and ΠNM

is perfectly binding we have that ΠMMCom is perfectly binding too.
The hiding property follows from the non-malleability property proved in

Theorem 2. Indeed the proof of Theorem 2 does not rely on the hiding of ΠMMCom.

Theorem 2. Suppose there exist OWPs secure against subexponential-time ad-
versaries, then ΠMMCom is concurrent (i.e., many-many) non-malleable.

Proof. Since we can use Proposition 1, we only need to prove that our commit-
ment enjoys one-many non-malleability. More formally with respect to a one-
many adversary A, we need to show that for all m ∈ {0, 1}poly(λ) it holds that:

{mim
A,m
ΠMMCom

(z)}z∈{0,1}⋆ ≈ {simS
ΠMMCom

(1λ, z)}z∈{0,1}⋆ where S is the simulator de-
picted in Fig. 3. This means that the real execution in which the sender runs
MMSen to commit to a message m must be indistinguishable with respect to an
execution in which a simulator S runs internally the MiM adversarial A sending
a commitment of 0λ, and then forwards the messages that A sends in the right
sessions to receivers MMRec1, . . . ,MMRecpoly(λ).

In the security proof we denote by δ̃i a value associated with the i-th right ses-
sion (where the adversaryA plays with a receiverMMReci with i ∈ {1, . . . , poly(λ)})
where δ is the corresponding value in the left session. For example, the sender
commits to v in the left session while A commits to ṽi in the i-th right session.

To prove the indistinguishability of the above two experiments we show 3
hybrid experiments14 Hm

i (z) with i = 1, 2, 3, where m is the message committed
in the left session. Following [28] we denote by {mimA

Hm
i
(z)}z∈{0,1}⋆ the random

variable describing the view of the MiM A combined with the value it commits in
the right interaction in hybrid Hm

i (z) (as usual, the committed value is replaced
by ⊥ if the right interaction does not correspond to a commitment that can be
successfully opened or if A has copied the identity of the left interaction).

The 1st hybrid is the experiment Hm
1 (z) in which in the left session MMSen

commits to m, while in the right session we run MMRec1, . . . ,MMRecpoly(λ) for
the rights sessions played by A.
H

m

1
(z).

Left session:
1. First round.
1.1. Pick s0 ← {0, 1}λ.
1.2. Compute aNM = Sen1NM(id, s0; ρ).
1.3. Compute aLS = P1(1λLS , ℓ;α).
1.4. Send (aNM, aLS) to A.

2. Third round, upon receiving (cNM, cLS, Y ) from A.
14 We will describe the hybrid experiments in a succinct way focusing on the key steps

(e.g., omitting sampling of randomness, generation of parameters λNI, λNM, λLS, ℓ).
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2.1. Compute (com, dec) = NISen(m;σ).
2.2. Pick s1 ← {0, 1}λ.
2.3. Compute (zNM, decNM) = Sen2NM(id, cNM, s0; ρ).
2.4. Set x =

(

(aNM, cNM, zNM), Y, s1, com, id
)

and w = (m,σ,⊥,⊥) with
(|x| = ℓ). Run zLS = P2(x,w, cLS;α).

2.5. Send (zNM, com, zLS, s1) to A.
Right sessions: act as a proxy between A and MMRec1, . . . ,MMRecpoly(λ).

We have that for all m ∈ {0, 1}poly(λ) {mimA
Hm

1
(z)}z∈{0,1}⋆ corresponds to

{mim
A,m
ΠMMCom

(z)}z∈{0,1}⋆ . We now prove that, for all i ∈ {1, . . . , poly(λ)} A does

not manage to invert any values Ỹi in the right sessions by sending a value s̃1i
such that f(s̃0i⊕ s̃1i) = Ỹi where s̃0i is the message committed in the i-th right
session through NM.

Lemma 1. Let pi be the probability that in the i-th right session, for
i ∈ {1, . . . , poly(λ)}, A sends s̃1i such that f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the
value committed using NM. Then pi < ν(λ) for some negligible function ν.

Proof. Suppose by contradiction that for a right session i the claim does not
hold. We can construct an adversary Af that inverts the OWP f in polynomial
time. We consider a challenger Cf of f that chooses a random Y in the range of
f and sends it to Af . Af wins if it gives as output y such that Y = f(y). Before
describing the adversary we need to consider the augmented machine Sn→1 that
will be used by Af . Sn→1 internally executes A, and interacts with an external
receiver Recext of the protocol ΠNM acting as the sender.

Sn→1(Y, ϕ, z)

1. Act in the left session with A (that runs using randomness ϕ) as in Hm
1 (z).

2. For all j 6= i ∈ {1, . . . poly(λ)} runMMRecj as inHm
1 (z). Instead runMMReci

as described in steps 3, 4 and 5.
3. Upon receiving the 1st round of the i-th right session (ãNMi

, ãLSi
) from A,

send ãNMi
to Recext.

4. Upon receiving c̃NMi
from Recext, run as follows:

4.1. Run V to obtain c̃LSi
.

4.2. Set Ỹi = Y .
4.3. Send (c̃NMi

, c̃LSi
, Ỹi) to A.

5. Upon receiving the 3rd round of the i-th right session (z̃NMi
, ˜comi, z̃LSi

, s̃1i),
set x̃ =

(

(ãNMi
, c̃NMi

, z̃NMi
), Ỹ , s̃1i, ˜comi, ĩd

)

and abort iff (ãLSi
, c̃LSi

, z̃LSi
) is

not accepting for V with respect to x̃.
6. Send z̃NMi

to Recext.

Notice that the above execution of Sn→1 is distributed identically to Hm
1 (z)

when Recext plays identically as honest receiver. Now we can conclude the proof
of this lemma by describing how Af works. Af runs the extractor of ΠNM us-
ing Sn→1 as sender (recall that an extractor of ΠNM plays only having access
to a sender of ΠNM). We have that the extractor with non-negligible probabil-
ity outputs the committed message of an execution that inverts f . By using the
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randomness ϕ, Af can reconstruct the view of A and retrive the value s̃1i. There-
fore A running in polynomial time15 outputs with non-negligible probability the
value y = s̃0i ⊕ s̃1i such that f(y) = Y .

We now consider the 2nd hybrid experimentHm
2 (z) where in the left session, after

receiving Y from A, the sender in time Tf finds a value y such that Y = f(y).
Then the sender sets and sends s1 = y ⊕ s0, where s0 is the value committed
using ΠNM. The only difference between this hybrid experiment and Hm

1 (z) is
that Hm

2 (z) runs in time sub-exponential in λ, and the value s1 is equal to y⊕s0
where Y = f(y).

H
m

2
(z).

Left session:
1. First round.
1.1. Pick s0 ← {0, 1}λ.
1.2. Compute aNM = Sen1NM(id, s0; ρ).
1.3. Compute aLS = P1(1λLS , ℓ;α).
1.4. Send (aNM, aLS) to A.

2. Third round. Upon receiving (cNM, cLS, Y ) from A.
2.1. Compute (com, dec) = NISen(m;σ).
2.2. Run in time Tf to compute y such that Y = f(y).
2.3. Set s1 = y ⊕ s0.

2.4. Compute (zNM, decNM) = Sen2NM(id, cNM, s0; ρ).
2.5. Set x =

(

(aNM, cNM, zNM), Y, s1, com, id
)

and w = (m,σ,⊥,⊥) with
(|x| = ℓ). Run zLS = P2(x,w, cLS;α).

2.6. Send (zNM, com, zLS, s1) to MMRec.
Right sessions: Act as a proxy between A and MMRec1, . . . ,MMRecpoly(λ).

When switching from Hm
1 (z) to Hm

2 (z) we will make sure that the following
two properties hold.

1. For all message m ∈ {0, 1}poly(λ) it holds that mimA
Hm

1
(z) ≈ mimA

Hm
2
(z).16

2. Let pi be the probability that in the i-th right session of H2, for i ∈
{1, . . . , poly(λ)}, A sends s̃1i such that f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the
value committed using NM. Then pi < ν(λ) for some negligible function ν.

We now prove that the above two properties hold.

Lemma 2. For all message m ∈ {0, 1}poly(λ) it holds that mimA
Hm

1
(z) ≈ mimA

Hm
2
(z).

15 The extractor is an expected polynomial-time algorithm while Af must be a strict
polynomial-time algorithm. Therefore Af will run the extractor up to a given up-
perbounded number of steps that is higher than the expected running time of the
extractor. Obviously with non-negligible probability the truncated extraction proce-
dure will be completed successfully and this is sufficient for Af to invert f . The same
standard argument about truncating the execution of an expected polynomial-time
algorithm will be needed later but for simplicity we will not repeat this discussion.

16 To simplify the notation here, and in the rest of the proof, we will omit that the
indistinguishability between two distributions must hold for every auxiliary input z.
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Proof. Suppose by contradiction that the distribution of mimA
Hm

1
(z) is distin-

guishable from mimA
Hm

2
(z); this means that there exists a distinguisher D that

can tell apart such two distributions. We now use D and A to construct an
adversary AHiding that breaks the hiding of ΠNM in time poly(λ) · TNI therefore
reaching a contradiction17. Let CHiding be the challenger of the hiding game, we
consider two randomly chosen challenge messages (m0,m1) sent to CHiding. We
now provide a formal description of the adversary AHiding.

AHiding(m0,m1, z)

1. Upon receiving the 1st round aNM from CHiding, run as follows:
1.1. Compute aLS = P1(1λLS , ℓ;α).
1.2. Send (aNM, aLS) to A.

2. Upon receiving (cNM, cLS, Y ) from A, send cNM to CNM.
3. Upon receiving the 3rd round zNM from CHiding, run as follows:
3.1. Compute y such that Y = f(y), set s1 = m0 ⊕ y.
3.2. Compute (com, dec) = NISen(m;σ).
3.3. Set x =

(

(aNM, cNM, zNM), Y, s1, com, id
)

and w = (m,σ,⊥,⊥) with (|x| =
ℓ). Run zLS = P2(x,w, cLS;α).

3.4. Send (zNM, com, zLS, s1) to A.
4. Simulate MMRec1, . . . ,MMRecpoly(λ) with A when A plays as a sender.
5. Let M be an empty tuple. For all i ∈ {1, . . . , poly(λ)}, consider ˜comi, the non-

interactive commitment received by MMReci, run in time TNI to compute m̃i

such that ∃ ˜dec : 1 = NIRec( ˜comi, ˜dec, m̃i) and add m̃i to M .
6. GiveM and the view ofA to the distinguisher D and output what D outputs.

The proof ends with the observation that if CHiding has committed to m0 then
the xor of the committed value with s1 is equal to y such that f(y) = Y , like
in Hm

2 (z). If instead CHiding has committed to m1 then the xor of the committed
value and s1 is equal to a random value, like in Hm

1 (z).

Lemma 3. Let pi be the probability that in the i-th right session of H2, for
i ∈ {1, . . . , poly(λ)}, A sends s̃1i such that f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the
value committed using NM. Then pi < ν(λ) for some negligible function ν.

Proof. Suppose by contradiction that for a right session i the claim does not
hold. We can construct a distinguisher DNM and an adversary ANM that break
the non-malleability of ΠNM. Let CNM be the challenger of the NM commitment
and let (m0,m1) be two randomly chosen challenge messages given to CNM.
ANM(m0,m1, z)

Left session:
1. Act as AHiding acts in the left session.
Right sessions:
1. For all j 6= i ∈ {1, . . . , poly(λ)} run MMRecj as in Hm

2 (z). Instead run
MMReci as described in steps 1.1, 1.2 and 1.3.

17 Recall that ΠNM is secure against adversaries running in time poly(λ) · TNI < TNM.
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1.1. Forward ãNMi
to RecNM.

1.2. Upon receiving c̃NM from RecNM, pick a random c̃LSi
, pick a random

Ỹi and send (c̃NMi
, c̃LSi

, Ỹi) to A.
1.3. Upon receiving z̃NMi

from A, send it to RecNM.

Let mimANM(z) be the view of mimANM(z) and the tuple of committed mes-
sages in the right session. The distinguisher DNM takes as input mimANM(z) and
acts as follows.

DNM(mimANM(z)) : Let s̃0i be the committed message sent in the i-right session
by ANM to MMRec. Reconstruct the output messages of A (using the same
randomness of mimANM(z)) to pick s̃1i. If f(s̃1i ⊕ s̃0i) = Ỹi output 1 and output
0 otherwise. The proof ends with the observation that if CNM has committed to
m0 then the xor of the committed value with s1i is equal to y such that f(y) = Y
like in Hm

2 . If instead CHiding has committed to m1 then the xor of the committed
value with s1i is equal to a random string as in Hm

1 .

The 3rd hybrid experiment that we consider is equal toHm
2 (z) with the difference

that the LS proof system is executed using s0 and the randomness of the non-
malleable commitment of s0. Recall that f(s0 ⊕ s1) = Y . We observe that in
the left session of Hm

2 (z) it already holds that f(s0 ⊕ s1) = Y , therefore we can
switch the witness used in LS and complete the execution of the proof system.

H
m

3
(z).

Left sessions:
1. First round.
1.1. Pick s0 ← {0, 1}λ.
1.2. Compute aNM = Sen1NM(id, s0; ρ).
1.3. Compute aLS = P1(1λLS , ℓ;α).
1.4. Send (aNM, aLS) to A.

2. Third round. Upon receiving (cNM, cLS, Y ) from A.
2.1. Compute (com, dec) = NISen(m;σ).
2.2. Run in time Tf to compute y such that Y = f(y).
2.3. Set s1 = s0 ⊕ y.
2.4. Compute (zNM, decNM) = Sen2NM(id, cNM, s0; ρ).
2.5. Compute (com, dec) = NISen(1λNI ,m;σ).
2.6. Set x =

(

(aNM, cNM, zNM), Y, s1, com, id
)

and w = (⊥,⊥, s0, ρ) with

(|x| = ℓ). Run zLS = P2(x,w, cLS;α).
2.7. Send (zNM, com, zLS, s1) to A.

Right sessions: Act as a proxy between A and MMRec1, . . . ,MMRecpoly(λ).

Even in this case we need to prove the following two properties.

1. For all message m ∈ {0, 1}poly(λ) it holds that mimA
Hm

2
(z) ≈ mimA

Hm
3
(z).

2. Let pi be the probability that in the i-th right session of H3, for any i ∈
{1, . . . , poly(λ)}, A sends s̃1i such that f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the
value committed using NM. Then pi < ν(λ) for some negligible function ν.
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Lemma 4. For any message m ∈ {0, 1}poly(λ) it holds that mimA
Hm

2
(z) ≈ mimA

Hm
3
(z).

Proof. Suppose by contradiction that there exist a adversary A and a distin-
guisher D that can tell apart such two distributions. We can use this adver-
sary and the associated distinguisher to construct an adversary ALS for the
TLS-witness-indistinguishable property of the LS protocol. Let CLS be the WI
challenger, the adversary works as follows. ALS(z)

1. Pick s0 ← {0, 1}λ.
2. Compute aNM = Sen1NM(id, s0; ρ).
3. Upon receiving aLS from CLS, send (aNM, aLS) to A.
4. Upon receiving (cNM, cLS, Y ) from A run as follows:
4.1. Run in time Tf to compute y such that Y = f(y).
4.2. Set s1 = s0 ⊕ y.
4.3. Compute (zNM, decNM) = Sen2NM(id, cNM, s0; ρ).
4.4. Compute (com, dec) = NISen(1λNI ,m;σ).
4.5. Set x =

(

(aNM, cNM, zNM), Y, s1, com, id
)

, w0 = (⊥,⊥, s0, ρ),
w1 = (m,σ,⊥,⊥) and send (x, cLS, w0, w1) to CLS.

5. Upon receiving zLS from CLS, send (zNM, com, zLS) to A.
6. Simulate MMRec1, . . . ,MMRecpoly(λ) with A, when A plays as a sender.
7. Let M be an empty tuple. For all i ∈ {1, . . . , poly(λ)}, consider ˜comi, the

non-interactive commitment received by MMReci, and run in time T̃NI to
compute m̃i such that ∃ ˜dec : 1 = NIRec( ˜comi, ˜dec, m̃i) and add m̃i to M .

8. Give M and the view of A to the distinguisher D.
9. Output what D outputs.

The proof ends with the observation that if CLS has has used as witness the
randomness of the non-malleable commitment of the value s0 such that f(s0 ⊕
s1) = Y then we are in the hybrid experiment Hm

3 (z). If instead CLS has used as
a witness the randomness used to compute the non-interactive commitment NI
then we are in the hybrid experiment Hm

2 (z).

Lemma 5. Let pi be the probability that in the i-th right session of Hm
3 , for

i ∈ {1, . . . , poly(λ)}, A sends s̃1i such that f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the
value committed using NM. Then pi < ν(λ) for some negligible function ν.

Proof. Suppose by contradiction that for a right session i the claim does not hold,
then we can construct an adversary A′

LS for the TLS witness-indistinguishable
property of the LS protocol. Let CLS be the WI challenger, the adversary works
as follows.

A
′
LS(z)

1. Pick s0 ← {0, 1}λ.
2. Compute aNM = Sen1NM(id, s0; ρ).
3. Upon receiving aLS from CLS, send (aNM, aLS) to A.
4. Upon receiving (cNM, cLS, Y ) from A, run as follow:
4.1. Run in time Tf to compute y such that Y = f(y).
4.2. Set s1 = s0 ⊕ y.
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4.3. Compute (zNM, decNM) = Sen2NM(id, cNM, s0; ρ).
4.4. Compute (com, dec) = NISen(1λNI ,m;σ).
4.5. Set x =

(

(aNM, cNM, zNM), Y, s1, com, id
)

, w0 = (⊥,⊥, s0, ρ),
w1 = (m,σ,⊥,⊥) and send (x, cLS, w0, w1) to CLS.

5. Upon receiving zLS from CLS, send (zNM, com, zLS) to A.
6. Simulate MMRec1, . . . ,MMRecpoly(λ) with A, when A plays as a sender.

7. Run in time T̃NM to extract the value s̃0i from the non-malleable commitment
sent by A in the i-th session. Output 1 if f(s̃0i ⊕ s̃1i) = Ỹi and output 0
otherwise.

The proof ends with the observation that if CLS has used w0 = (⊥,⊥, s0, ρ)
as a witness then A acts as in Hm

3 (z), sending with non-negligible probability
two shares such that the xor of them gives a puzzle solution. If CLS has used
w1 = (m,σ,⊥,⊥) then the xor of the two shares is with overwhelming probability
different from a puzzle solution as in Hm

2 (z).

The next hybrid experiment that we consider is H0
3(z). The only differences

between this hybrid experiment and Hm
3 (z) is that the sender, using NI, commits

to a message 0λ instead of m.

H
0

3
(z).

Left session:
1. First round.
1.1. Pick s0 ← {0, 1}λ.
1.2. Compute aNM = Sen1NM(id, s0; ρ).
1.3. Compute aLS = P1(ℓ;α).
1.4. Send (aNM, aLS) to A.

2. Third round. Upon receiving (cNM, cLS, Y ) from A, run as follows:
2.1. Run in time Tf to compute y such that Y = f(y).
2.2. Set s1 = s0 ⊕ y.
2.3. Compute (zNM, decNM) = Sen2NM(id, cNM, s0; ρ).
2.4. Compute (com, dec) = NISen(0λ;σ).

2.5. Set x =
(

(aNM, cNM, zNM), Y, s1, com, id
)

and w = (⊥,⊥, s0, ρ) with
(|x| = ℓ). Run zLS = P2(x,w, cLS;α).

2.6. Send (zNM, com, zLS, s1) to A.
Right sessions: Act as a proxy between A and MMRec1, . . . ,MMRecpoly(λ).

We now prove the following properties.

1. Let pi be the probability that in the i-th right session of H0
3, for any i ∈

{1, . . . , poly(λ)}, A sends s̃1i such that f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the
value committed using NM. Then pi < ν(λ) for some negligible function ν.

2. For any message m ∈ {0, 1}poly(λ) it holds that mimA
Hm

3
(z) ≈ mimA

H0
3
(z).

Lemma 6. Let pi be the probability that in the i-th right session of H0
3, for

i ∈ {1, . . . , poly(λ)}, A sends s̃1i such that f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the
value committed using NM. Then pi < ν(λ) for some negligible function ν.
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Proof. Suppose by contradiction that there exists a right session i ∈ {1, . . . , poly(λ)}
in which A commit to a string s̃0 such that f(s̃0i⊕ s̃1i) = Ỹi using ΠNM. Then we
can construct an adversary ANI that breaks the hiding property of the non inter-
active commitment scheme NI. Let CNI be the challenger that on input m0 = 0λ

and m1 = m, picks a random bit b, computes (com, dec) = NISen(1λNI ,mb;σ)
and sends com to ANI.

Before describing ANI we need to consider, as in the proof of Lemma 1, a
machine Sn→1 that internally executes A, and interacts with a receiver Recext of
the protocol ΠNM acting as the sender.

Sn→1(com, ϕ, z) Run A using randomness ϕ.

1. Pick s0 ← {0, 1}λ.
2. Compute aNM = Sen1NM(id, s0; ρ).
3. Compute aLS = P1(1λLS , ℓ;α).
4. Send (aNM, aLS) to A.
5. Upon receiving (cNM, cLS, Y ) from A, run as follows:
5.1. Run in time Tf to compute y such that Y = f(y).
5.2. Set s1 = s0 ⊕ y.
5.3. Compute (zNM, decNM) = Sen2NM(id, cNM, s0; ρ).
5.4. Set x =

(

(aNM, cNM, zNM), Y, s1, com, id
)

and w = (⊥,⊥, s0, ρ) with (|x| =
ℓ). Run zLS = P2(x,w, cLS;α).

5.5. Send (zNM, com, zLS, s1) to A.
6. Let i ∈ {1, . . . , poly(λ)} be the right session that contradicts the claim. For

all j 6= i ∈ {1, . . . poly(λ)} run MMRecj as in H4(m, z). Run MMReci as
follows.

6.1. Upon receiving the 1rd round of the i-th right session (ãNMi
, ãLSi

) from
A, send ãNMi

to the external receiver Recext.
6.2. Upon receiving c̃NMi

from Recext, run as follows:
i. Run V to obtain c̃LSi

.
ii. Pick a random Ỹi.
iii. Send (c̃NMi

, c̃LSi
, Ỹi) to A.

6.3. Upon receiving the 3rd round of the i-th right session (z̃NMi
, ˜comi, z̃LSi

, s̃1i),
set x̃ =

(

(ãNMi
, c̃NMi

, z̃NMi
), Ỹ , s̃1i, ˜comi, ĩd

)

and abort iff (ãLSi
, c̃LSi

, z̃LSi
)

is not accepted by V with respect to x̃.
6.4. Send z̃NMi

to Recext.

Now we can conclude the proof of this lemma by describing how ANI works.
ANI runs the extractor of the protocol ΠNM using Sn→1 as sender (recall that
an extractor of ΠNM plays only having access to a sender of ΠNM). Since the
extractor with non-negligible probability outputs the committed message we
have that ANI retrives s̃0i. Moreover ANI gets s̃1i by reconstructing the view of
A using the randomness ϕ. Since by contradiction A contradicts the claim of this
lemma, we have thatANI can break the hiding of NI because f(s̃0i⊕s̃1i) = Ỹ with
non-negligible probability in H0

3(z) where m0 = 0λ is committed in com, while
the same happens with negligible probability only in Hm

3 (z) where m1 = m.
Therefore if this happens, ANI outputs 0, otherwise ANI outputs a random bit.
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Lemma 7. For any message m ∈ {0, 1}poly(λ) it holds that mimA
Hm

3
(z) ≈ mimA

H0
3
(z).

Proof. Suppose by contradiction that there exists a distinguisher D and an ad-
versary A such that mimA

Hm
3
(z) is distinguishable from mimA

H0
3
(z) then we can

construct an adversaryANI that breaks the hiding property of the non-interactive
commitment scheme NI. Let CNI be the challenger that on input m0 = 0λ and
m1 = m, picks a random bit b, computes (com, dec) = NISen(1λNI ,mb;σ) and
sends com to ANI. Before describing ANI, we consider the following experiment
Emb

(ϕ, com, z).

Emb
(ϕ, com, z).

The randomness required from all next steps is take from ϕ.

Run A(z).
Left session:
1. First round.
1.1. Pick s0 ← {0, 1}λ.
1.2. Compute aNM = Sen1NM(id, s0; ρ).
1.3. Compute aLS = P1(ℓ;α).
1.4. Send (aNM, aLS) to A.

2. Third round. Upon receiving (cNM, cLS, Y ) from A, run as follows:
2.1. Run in time Tf to compute y such that Y = f(y).
2.2. Set s1 = s0 ⊕ y.
2.3. Compute (zNM, decNM) = Sen2NM(id, cNM, s0; ρ).
2.4. Set x =

(

(aNM, cNM, zNM), Y, s1, com, id
)

and w = (⊥,⊥, s0, ρ) with
(|x| = ℓ). Run zLS = P2(x,w, cLS;α).

2.5. Send (zNM, com, zLS, s1) to A.
Right sessions: Act as a proxy between A and MMRec1, . . . ,MMRecpoly(λ).

Now we are ready to describe the adversary ANI for the hiding of NI. ANI

executes the following steps.

1. Let M be an empty tuple. ANI runs Emb
(ϕ, com, z).

2. For all i ∈ {1, . . . , poly(λ)}, ANI runs the extractor of LS on the i-th right
session of the execution of Emb

(ϕ, com, z) obtaining m̃i and adds it to M .
3. Using the randomness ϕ, ANI reconstructs the view of A in the execution of

Emb
(ϕ, com, z). Use such view and M as input to D.

4. Output what D outputs.

The proof ends with the observation that if CNI has committed to 0λ then the
view of A and the distribution of the committed messages coincide with H0

3(z),
otherwise they coincide with Hm

3 (z).

The entire security proof now is almost over because we have proved that for
all m ∈ {0, 1}poly(λ) the following relation holds:

{mim
A,m

ΠMMCom
(z)}z∈{0,1}⋆ = {mim

A
Hm

1
(z)}z∈{0,1}⋆ ≈ {mim

A
Hm

2
(z)}z∈{0,1}⋆ ≈

{mim
A
Hm

3
(z)}z∈{0,1}⋆ ≈ {mim

A
H0

3
(z)}z∈{0,1}⋆ ≈ {mim

A
H0

2
(z)}z∈{0,1}⋆ ≈

{mim
A
H0

1
(z)}z∈{0,1}⋆ = {simS

ΠMMCom
(1λ, z)}z∈{0,1}⋆ .
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Common input: Security parameters: λ, (λNI, λNM, λLS, ℓ) = Params(λ). Identity:
id ∈ {0, 1}λ.
Internal simulation of the left session:

1. Pick s0 ← {0, 1}
λ.

2. Pick a randomness ρ, and compute (decNM, aNM) = Sen1
NM(id, s0; ρ).

3. Pick a randomness α and compute aLS = P1(ℓ;α).
4. Send (aNM, aLS) to A.
5. Upon receiving (cNM, cLS, Y ) from A.

5.1. Pick a randomness σ and compute (com, dec) = NISen(1λNI , 0λ;σ).
5.2. Pick s1 ← {0, 1}

λ.
5.3. Compute zNM = Sen2

NM(id, cNM, s0; ρ).
5.4. Set x =

(

(aNM, cNM, zNM), Y, s1, com, id
)

and w = (0λ, σ,⊥,⊥) with (|x| = ℓ).
Run zLS = P2(x,w, cLS;α) where x is the theorem to be proven and w is the
witness.

5.5. Send (zNM, com, zLS, s1) to A.

Stand-alone commitment:

1. S acts as a proxy between A and MMReci for i = 1, . . . , poly(λ).

Fig. 3: The simulator S.

We observe that in this proof we had to consider a delayed-input version of
our commitment scheme. Indeed, the sender can choose the message m to be
committed by sending the non-interactive commitment com of the message m in
the 3rd round. It is easy to see that the same security proof still works when
the non-interactive commitment is sent in the 1st round, but then clearly the
delayed-input property is lost.

4 More Protocols Against Concurrent MiM Attacks

In this section we show 3-round arguments of knowledge and identification
schemes that are secure against concurrent MiM attacks.

4.1 Non-Malleable WI Arguments of Knowledge

Our concurrent NM commitment scheme when instantiated without sessions ids,
can be used to obtain almost directly a commit-and-prove AoK. Recall that in
our scheme there is a non-interactive commitment com of m and then rest of
the protocol is an AoK. This AoK is used by the sender to claim that either he
knows the message committed in com, or he committed through ΠNM to a share
s0 that allows to compute the solution of the puzzle.

In order to be fully compliant with the notion of commit-and-prove AoK, we
just need to make a trivial change to the statement of the LS subprotocol. Given
an instance x ∈ L and a witness w the prover of our commit-and-prove AoK
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uses the non-interactive commitment to commit to w, and uses the rest to prove
that either he knows the committed message w that moreover is a witness for
x ∈ L or again, he committed through ΠNM to a share s0 that allows to compute
the solution of the puzzle.

More formally, we define a commit-and-prove AoK ΠCaP = (PCaP,VCaP) that
corresponds to our concurrent NM commitment scheme with some minimal
changes. First, PCaP and VCaP have as a common input an instance x ∈ L,
where L is an NP-language. Second, PCaP has as private input w such that
(x,w) ∈ RelL. Third, PCaP runs MMSen on w, while VCaP runs MMRec with the
exception of running LS for the statement:

LCaP =
{(

x, (a, c, z), Y, s1, com, id
)

: (∃ (w, σ) s.t. com = NISen(w;σ) AND (x,w) ∈ RelL)

OR
(

∃(ρ, s0) s.t. a = Sen1
NM(id, s0; ρ) AND z = Sen2

NM(id, c, s0; ρ) AND Y = f(s0 ⊕ s1)
)}

that is WI for the corresponding NP relation RelLCaP
.

Theorem 3. Suppose there exist OWPs w.r.t. subexponential-time adversaries,
then ΠCaP is a 3-round concurrent NMWI argument of knowledge.

Proof. The proof of this theorem is pretty straightforward given the previous
proof for the concurrent non-malleability of our commitment scheme, therefore
here we just point out the main intuition.

First of all, ΠCaP is clearly a commit-and-prove AoK. Indeed, there exists a
commitment of the witness and there is an AoK proving that the committed
message is a witness. In order to see this, notice that for any ppt malicious
prover succeeding with non-negligible probability in proving a statement x ∈ L,
the extractor of LS (of course this needs to be run against an augmented machine)
would return (in expected polynomial time and with overwhelming probability)
the committed witness since otherwise it would return a share s0 that combined
with s1 allows to invert the OWP in polynomial time.

We can now focus on the concurrent NMWI property, and we can assume
(by contradiction) that the adversary succeeds in encoding in the right sessions
witnesses that are related to the witnesses encoded in the left sessions. Notice
that the proof is almost identical to the one of Theorem 2. We can indeed prove
the case of one prover and multiple verifiers (i.e., one-many), and then we can
apply the fact that any one-many NMWIAoK is also a concurrent NMWIAoK.
Indeed this was used in [34] and follows similar arguments given in [42,30]. For
the one-many case we can therefore follow the proof of Theorem 2 with the
following trivial change. Instead of running hybrid experiments starting with a
message m and ending with a message 0, in the proof of one-many concurrent
NMWI we start with a witness w0 and end with a witness w1. Everything else
remains untouched and all the reductions work directly.

ΠCaP can be instantiated to be public-coin and delayed-input, precisely as our
concurrent NM commitment scheme. While what we discussed above applies to
arguments only, techniques to obtain proofs can be found in [8].
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Instances with just one witness and non-transferability. Recall that the definition
of NMWI considers two experiments that differ only on the witness used by the
prover. Therefore it is unclear which security is given by a NMWIAoK when the
instance has only one witness. In order to understand the security guaranteed by
ΠCaP in such a case, consider the proof of concurrent NMWI, and thus, in turn,
consider the proof of concurrent non-malleability of our commitment scheme.
Notice that while the sequence of hybrids goes from an experiment where the
committed message is m to an experiment where the committed message is 0,
there is an experiment H3(·, z) in which the committed message is irrelevant.
Indeed, the entire execution is based on inverting the OWP, in encrypting it
through the shares s0 and s1 and in using this witness in the execution of LS. This
experiment can be seen as the execution of a quasi-polynomial time simulator
that breaks the puzzle18 following the approach of [39]19. Therefore following
the same observations of [39,40] on the security offered by quasi-polynomial
time simulation, our concurrent NMWIAoK even for instances with just one
witness would not help the adversary in proving a statement whose witness is
much harder to compute than breaking the puzzle.

The above discussion explains also the non-transferability flavor of ΠCaP.
Indeed, at first sight, a MiM attack of an adversary A to an AoK should be an
attempt of A to transfer the proof that it gets from the prover to a verifier. As
such, an AoK that is secure against concurrent MiM attacks should provide some
non-transferability guarantee. Since the success of A during a MiM attack can be
replicated without a MiM attack by a quasi-polynomial time simulator, we have
that ΠCaP guarantees non-transferability whenever computing the witnesses for
the considered instances is assumed to be harder than breaking the puzzle.

NMWI for NMZK in the Bare Public-Key (BPK) model. In [34] it is shown that
a concurrent NMWIAoK Π gives directly a concurrent NMZKAoK in the BPK
model. The construction is straightforward as it just consists of running Π twice,
first from the verifier to the prover (proving knowledge of one out of two secrets)
and then from the prover to the verifier (proving knowledge of either a witness
for x ∈ L or of one out of the two secrets of the verifier). Our construction
from Theorem 3 when combined with the construction of [34] gives a candidate
round-efficient concurrent NMZKAoK in the BPK model.

4.2 Identification Schemes

We show here a 3-round identification scheme secure against concurrent MiM
attacks following the concept of proving knowledge of a secret.

Identification schemes based on proving knowledge of a secret. The importance
of this setting was for instance discussed in [9] mentioning the following example.

18 The puzzle can be implemented through a OWP that can be inverted in quasi-
polynomial time.

19 The work of Pass did not take into account MiM attacks.
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Consider a verifier V that provides a service to restricted group of provers P. A
malicious prover P⋆ could give to another party B that is not part of the group,
some partial information about his secret that is sufficient for B to obtain the
service from V, while still B does not know P⋆’s secret. The paradigm of prov-
ing knowledge of a secret in an identification scheme allows to prevent attacks
like the one just described. When the identification scheme consists in proving
knowledge of a secret the sole fact that B convinces V is sufficient to claim that
one can extract the whole secret from B. This implies that B obtained P⋆’s
secret corresponding to his identity, and thus B is actually P⋆20.

We give a security definition that considers concurrent MiM attacks similarly
to the definition CR2 (concurrent-reset on-line) of [2]. The definition of [2] also
includes possible reset attacks in addition to allowing A to invoke multiple con-
current executions of the prover in the left sessions while A is interacting with
the verifier. In the remaining part of this section we will ignore reset attacks since
they are out of the purpose of our work. As described in [25] in most network-
based settings reset attacks are not an issue. Following the notation of [25] we
now give a formal security definitions for an identification scheme.

Definition 4. Let Π = (K,P,V) be a tuple of ppt algorithms. We say Π is an
identification scheme secure against MiM attacks if the following two properties
hold. 1) Correctness. For all (pk, sk) ← K(1λ), Prob [ 〈P(sk),V〉(pk) = 1 ] = 1.
2) Security. For all ppt adversaries A there exists a negligible function ν such
that Prob

[

(pk, sk)← K(1λ) : 〈AP(sk),V〉(pk) = 1 AND τ /∈ T
]

< ν(λ), where
A has oracle access to a stateful (i.e., non-resettable) P(sk), T is defined as the
transcripts set of the interactions between P(sk) and A, and τ is defined as the
transcript of one of the interactions between A and V. All interactions can be
arbitrarily interleaved and A controls the scheduling of the messages.

Identification scheme from NMWI. Our construction ΠID = (KID,PID,VID)
follows the approach of [34,9]. Let f : {0, 1}λ → {0, 1}λ be a OWP, let λ be
the security parameter. The public key of PID is the pair (pk0, pk1), the secret
key is skb for a randomly chosen bit b, such that pkb = f(skb). Therefore the
algorithm KID takes as input the security parameter and outputs ((pk0, pk1), skb)
as described above. The protocol simply consists in PID running our 3-round
concurrent NMWIAoK ΠCaP with VID to prove that it knows the pre-image of
either pk0 or pk1. Formally, let Lid be the following language Lid = {(y0, y1) :
∃ x ∈ {0, 1}λ such that y0 = f(x) ∨ y1 = f(x)}, then the identification scheme
consists of PID proving the statement (pk0, pk1) ∈ Lid using ΠCaP.

Theorem 4. Assuming the existence of OWPs w.r.t. subexponential-time adver-
saries, there is an identification scheme secure against concurrent MiM attacks.

The proof is again straight-forward. If a PPT A succeeds then concurrent
NMWI of ΠCaP guarantees that the witness that he encoded in the proof is
independent of the one encoded in the proofs given by P. Therefore by using the
AoK property of ΠCaP we can invert f with non-negligible probability.

20 This is instead not likely to happen in scenarios where the same secret key is used
for other critical tasks such as signatures of any type of document.
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5 Concurrent Malleability of [21]

Here we briefly explain the intuition behind the fact that the 3-round NM com-
mitment scheme ΠNM = (SenNM,RecNM) of [21] is malleable with respect to a
concurrent MiM attack. We use ideas from [16]. We describe a succeeding con-
current MiM adversary A along with a distinguisher D. We will refer to a NM
commitment of the message m using the scheme ΠNM as nmcom(m). We stress
that nmcom(m) is the result of a 3-round interaction between the sender SenNM
and the receiver RecNM. We start by describing the high-level idea of the proto-
col ΠNM. In the 1st round a left-state L is computed using a special split-state
non-malleable code. Let n = |L|. Then a non-interactive commitment comL of L is
sent in the 1st round, while in the 3rd round the sender computes the right-state
R corresponding to the message m and sends it in the clear. In parallel there
is also a PoK of the message L committed in comL. This PoK can be seen as a
PoK of each bit of L. Therefore there are n PoKs where the j-th proof is used
to prove knowledge of the bit Lj of L.

The actual scheme of [21] is more sophisticated than what we have just
described, there are various other components but however they have no impact
on the work done by our A, so we will omit them from this short description.
Essentially, we will show here that a simplified version of the scheme of [21] is
concurrently malleable. However all our arguments apply to their full scheme.

The proposed adversary A interacts with one sender SenNM in the left ses-
sion and with many receiver RecNM1, . . . ,RecNMpoly(λ) in the right sessions. The
behavior of A in the left and right session can be summarized as following.

Left session. SenNM computes the 1st round of ΠNM as follows. First, he
computes L, then he computes a perfectly binding commitment comL of L and
computes n PoKs one for each bit of the message committed in comL. In the
last round of ΠNM SenNM completes the n PoKs and sends R to A such that the
pair (L,R) is a valid encoding of m according to the special non-malleable code.
Hence in the left session A receives comL, R and n PoKs one for each bit of the
string committed in comL, therefore a PoK for each bit Lj of L.

Right sessions. In the right sessionsA interacts with RecNM1, . . . ,RecNMpoly(λ)

mauling the commitments received on the left. More specifically, it starts 2n
right sessions where n of them should correspond to nmcom(L1), . . . , nmcom(Ln)
such that L = L1 . . . Ln, and the other n sessions should correspond to invalid
commitments (we refer to such commitments as nmcom(⊥)).

More precisely, our adversary computes, for each bit Lj of L, two NM com-
mitments nmcom(1λ), nmcom(0λ) such that if Lj = 1 then nmcom(0λ) is invalid,
otherwise nmcom(1λ) is invalid. In order to poison one out of nmcom(0λ) and
nmcom(1λ), A will rely on the PoK of Lj received on the left. The PoK of Lj
will be plugged in the PoKs of nmcom(0λ) and in the PoKs of nmcom(1λ). More
precisely one of the n PoKs of nmcom(0λ) that correspond to a PoK of the bit
0 will be replaced with the PoK of Lj . The same approach is applied when A
computes nmcom(1λ) with the only difference that the PoK that A will replace
corresponds to a PoK of a bit 1. In this way only one out of nmcom(0λ) and
nmcom(1λ) still remain a valid commitment. In particular nmcom(Lj) will re-
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Lt =⊥ ∧1 < i1 < · · · < in < poly(n)

Fig. 4: The one-many MiM A.

main a valid commitment while nmcom(1− Lj) will be poisoned and thus will
correspond to an invalid commitment.

There is however a subtlety. Since the PoK played on the right is for one
component copied from the PoK played on the left, it can be completed success-
fully with constant probability and the adversary has to abort the session if it
can not complete the PoK. Therefore each of the above 2n right sessions could
be repeated multiple times, but however the total amount of right sessions will
still be polynomial in the security parameter. Finally our distinguisher D given
as input the committed bits L1, . . . , Ln and R contained in the view of A, can
easily recover the message m committed in the left interaction.
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