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Abstract. The pseudorandom-function oracle-Diffie-Hellman (PRF-
ODH) assumption has been introduced recently to analyze a variety of
DH-based key exchange protocols, including TLS 1.2 and the TLS 1.3
candidates, as well as the extended access control (EAC) protocol. Re-
markably, the assumption comes in different flavors in these settings and
none of them has been scrutinized comprehensively yet. In this paper
here we therefore present a systematic study of the different PRF-ODH
variants in the literature. In particular, we analyze their strengths rel-
ative to each other, carving out that the variants form a hierarchy. We
further investigate the boundaries between instantiating the assumptions
in the standard model and the random oracle model. While we show that
even the strongest variant is achievable in the random oracle model un-
der the strong Diffie-Hellman assumption, we provide a negative result
showing that it is implausible to instantiate even the weaker variants
in the standard model via algebraic black-box reductions to common
cryptographic problems.

1 Introduction

Proposing new cryptographic assumptions is a valid strategy to analyze or de-
sign protocols which escape a formal treatment so far. Yet, the analysis of the
protocol, usually carried out via a reduction to the new assumption, is only the
first step. Only the evaluation of the new assumption completes the analysis and
yields a meaningful security claim.

1.1 The PRF-ODH Assumption

In the context of key exchange protocols, a new assumption, called the pseudo-
random-function oracle-Diffie-Hellman (PRF-ODH) assumption has recently been
put forward by Jager et al. [23] for the analysis of TLS 1.2. It is a variant of the
oracle-Diffie-Hellman assumption introduced by Abdalla et al. [1] in the context
of the encryption scheme DHIES. The PRF-ODH assumption basically says that
the function value PRF(g“¥,z*) for a DH key ¢g"¥ looks random, even if given
g" and g¥ and if seeing related values PRF(S™, x) and/or PRF(T", ) for chosen
values S,T, and .
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Fig.1: Origin of the PRF-ODH assumption: Man-in-the-middle attack on DH-
based key exchange protocol.

The PRF-ODH appears to be a natural assumption for any DH-based key
exchange protocol, aiming at security against man-in-the-middle attacks (see
Figure 1). In DH-based protocols both parties, the client and the server, ex-
change values g%, ¢” and locally compute the session key by applying a key
derivation (or pseudorandom) function to the key ¢“¥ and usually some parts
of the transcript. The man-in-the-middle adversary can now try to attack the
server’s session key PRF(g"“’,...) by submitting a modified value S instead of
g to the client, yielding a related key PRF(S¥,...) on the client’s side. The
PRF-ODH assumption guarantees now that the server’s key is still fresh.

Note that simple authentication of transmissions does not provide a remedy
against the above problem. The adversary could act under a different, corrupt
server identity towards the client, and only re-use the Diffie—Hellman data, au-
thenticated under the corrupt server’s key. Then the Diffie-Hellman keys in the
executions would still be non-trivially related. This happens especially if keys
are used in multiple sessions. Another problem is that some protocols may derive
keys early, before applying signatures, e.g., such as for handshake encryption as
well as in the post-handshake authentication mechanism in TLS 1.3 [36].

It therefore comes as no surprise that the PRF-ODH assumption has been
used in different protocols for the security analysis, including the analysis of the
TLS 1.2 [13] ephemeral and static Diffie-Hellman handshake modes [23,29,8], the
TLS 1.3 [36] Diffie-Hellman-based and resumption handshake candidates [14,15,16]
as well as 0-RTT handshake candidates [18], and a 0-RTT extension of the ex-
tended access control (EAC) protocol [10], for the original EAC protocol listed,
for example, in Document 9303 of the International Civil Aviation Organiza-
tion [22]. Notably, these scientific works use different versions of the PRF-ODH
assumption, due to the different usages of the key shares g%, g”. These key
shares can be ephemeral (for a single session), semi-static (for a small number



of sessions), or static (for multiple sessions). Therefore, the man-in-the middle
adversary may ask to see no related key for either key share, a single related
key, or multiple related keys. For instance, while Jager et al. [23] required only
security against a single query for one of the two key shares, Krawczyk et al. [29]
modify the original PRF-ODH assumption because they require security against
multiple oracle queries against this key share. In [18] an extra query to the other
key share has been added, and [10] require multiple queries to both key shares.

1.2 Evaluating the PRF-ODH Assumptions

Consequently, and to capture all of the above assumptions simultaneously, we
generally speak of the IFPRF-ODH assumption, allowing the adversary no (I,r =
n), a single (I,r = s), or multiple (I,r = m) related key queries, for the “left”
key g* or the “right” key g”. Such queries are handled by oracles ODH, and
ODH,, returning the corresponding pseudorandom function value. This results
in nine variants, for each combination I, r € {n,s, m}. We also discuss some more
fine-grained distinctions, e.g., if the adversary learns both keys g“, ¢g¥ before
choosing the input z* for the challenge value PRF(¢g“?, z*), or if 2* can only
depend on g*.

To evaluate the strengths of the different types of IrPRF-ODH assumptions
one can ask how the variants relate to each other. Another important aspect
is the question whether, and if so, to which (well investigated) Diffie-Hellman
problem it possibly relates to, e.g., the computational Diffie-Hellman (CDH), the
decisional Diffie-Hellman (DDH), the strong Diffie-Hellman (StDH), or the even
more general Gap-Diffie-Hellman (GapDH) problem. While the answer to this
question may rely on the random oracle model, the final issue would be to check
if (any version of) the assumption can be instantiated in the standard model.

Especially the question whether the PRF-ODH assumption (or which variant)
can be instantiated in the standard model is of utmost interest. Some of the
aforementioned works refer to the(ir) PRF-ODH assumption as a standard-model
assumption, since there is no immediate reference to a random oracle. This
would not only apply to the schemes analyzed with respect to the PRF-ODH
assumption, but potentially also to other works where the Gap-DH or related
assumptions in the random oracle have been used for the analysis, yet where
the PRF-ODH assumption is a promising alternative for carrying out a proof.
Examples include the QUIC protocol [17,32] and OPTLS [30] which forms the
base for TLS 1.3.

1.3 Owur Results

Figure 2 gives an overview over our results. We explain the details next.

Instantiations. Our first contribution is to discuss instantiation possibilities of
the PRF-ODH variants. We stress that some of these results mainly confirm the
expectation: the nnPRF-ODH assumption where no oracle queries are allowed can
be based upon the decisional Diffie-Hellman assumption DDH, and the one-sided
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Fig. 2: Relations between the different PRF-ODH variants (in solid-line rounded
rectangles) from Definition 1 and other assumptions (in dotted-line rounded
rectangles). Solid arrows indicate the trivial implications between PRF-ODH
variants, dashed arrows indicate implications we establish. Struck-out, densely
dotted arrows indicate separations in the standard model via the indicated func-
tion F,, € F (cf. Definition 5). Struck-out, sparsely dotted arrows indicated
separations in the random-oracle model. The dashed horizontal line demarcates
the boundary below which our impossibility result for standard-model algebraic
black-box reductions from Section 5 holds. Numbers in parentheses indicate the
respective propositions and theorems.

assumptions mnPRF-ODH and nmPRF-ODH where the adversary has (multiple)
access to either oracle ODH,, or ODH,, can be based on the strong Diffie-Hellman
assumption in the random oracle model. The strong DH assumption (StDH)
demands that the adversary solves the computational problem of computing g“*
from g",g”, but having access to a decisional oracle DDH(g“,-,-) checking for
DH tuples. Such checks are necessary to provide consistency when simulating
the random oracle through lazy sampling, i.e., in the case that random values
are only sampled on their first explicit usage. The proofs for mnPRF-ODH and
nmPRF-ODH appear already implicitly in previous work about key exchange,
e.g., [26,37,12,17,32,30,31], but where the reduction to the StDH problem in the
random oracle model has been carried out by dragging along all the steps of the
key exchange protocols.



Our final instantiation result for the strongest notion mmPRF-ODH holds in
the random oracle model under the strong DH (StDH) assumption. Surprisingly,
the proof is less straightforward than one would expect, since the availability of
both oracles ODH,, and ODH, imposes the need for further consistency checks
between cross-over calls for the two oracles in the simulation. We show that
such consistency checks can indeed be implemented assuming StDH, but causing
a square-root loss in the security reduction to StDH. This loss is due to the fact
that in an intermediate step we go through the square-DH problem SqDH (given
g,g" compute g“2) to which CDH reduces by making two calls to the square-DH
problem adversary (see, e.g., [24]), effectively squaring the success probability.

The instantiations are shown through the boxes with dotted surrounding
lines in Figure 2. We also discuss briefly the relationship to related-key security
for pseudorandom functions, where the adversary can ask to see values for trans-
formed keys ¢(K). While similar in spirit at first glance, it seems to us that the
notions differ in technical details which makes it hard to relate them.

Relations. The instantiation results give a sort of general method to achieve any
PRF-ODH notion, leaving open the possibility that one notion may be actually
easier to achieve. This is even more relevant in light of the fact that previous
works used different notions. In order to support a better comparison between
the various notions we relate them in terms of strength of the assumption. Some
of these relationships, especially implications, are easy to establish. For exam-
ple, since the adversary in the mmPRF-ODH game can always forgo using its
ODH, oracle, this immediately implies mnPRF-ODH security. All implications
are marked by solid arrows in Figure 2.

As for separations we are able to rule out a number of implications uncon-
ditionally. By this we mean that we only make the minimal assumption that a
secure instantiation exists, and then build one still satisfying this notion but not
the stronger one. These separations are displayed in Figure 2 through dotted
arrows.

We are also able to separate further notions conditionally, using random
oracles and a plausible number-theoretic assumption. Namely, under these as-
sumptions, the notion of snPRF-ODH (with a single call to ODH,,) is strictly
stronger than the nmPRF-ODH notion where the adversary can ask the ODH,
oracle multiple times but does not get access to the ODH,, oracle. With a similar
strategy we can also separate mnPRF-ODH with multiple ODH,, queries from
smPRF-ODH, where the adversary can now make one extra call to ODH,, on top
of the ODH,, queries.

The conditional separations are not symmetric in the sense that they apply
to the other oracle as well. The reason is that these results exploit that the
adversary receives g* before g, such that the converse does not simply follow.
Besides these opposite cases there are also some other cases where we could not
provide a separation, e.g., from mmPRF-ODH to msPRF-ODH. We give more
insights within.



Impossibility result. The third important contribution is our impossibility result.
We show that proving security of even the mild snPRF-ODH or nsPRF-ODH
notions based on general cryptographic problems is hard. Besides the common
assumption that the reduction uses the adversary only as a black box, we also
assume that the reduction is algebraic. This means that whenever the reduction
passes a group element A to the outside, it knows a representation (a7, as,...)
such that A = [[g;" for the reduction’s input values g1, g2, .... This notion
of algebraic reductions has been used in other separation works before, e.g.,
[9,35,20]. Unlike generic reductions, algebraic reductions can take advantage of
the representation of group elements.

In detail, we then show via a meta-reduction technique [21,9,35], that one
cannot prove security of the snPRF-ODH or nsPRF-ODH assumption via algebraic
black-box reductions to a class of cryptographic problems. The problems we rule
out are quite general, saying that the adversary receives some input, can interact
multiple times with a challenger in an arbitrary way, and should then provide
a solution. We remark that we also need to augment this problem by a Diffie-
Hellman problem in order to give a reference point for the algebraicity of the
reduction. Our result also requires that the decisional square-DH problem is
hard, i.e., that g, g”,g”2 is indistinguishable from g, ¢, ¢* for random v, 2.1

In a sense, our negative result, displayed by the dashed horizontal line on
top in Figure 2, is optimal in terms of the relation of PRF-ODH assumptions,
as it rules out exactly the notions “one above” the nnPRF-ODH notion with a
standard model instantiation. We still note that the restrictions on the reduction,
and the additional assumption, may allow to bypass our result. This also means
that our implications and separations between the different notions, established
earlier, are not moot.

Implications for practical key derivation functions. Since the PRF-ODH assump-
tions have been used in connection with applied protocols like TLS, we finally
address the question which security guarantees we get for practical key deriva-
tion functions used in such protocols. We are especially interested in HMAC [25]
on which the key derivation function HKDF [27,28] is based upon. Our instan-
tiation results in the random oracle so far treat the key derivation function as
a monolithic random oracle, whereas key derivation functions like HMAC have
an iterative structure. At the same time, our impossibility result tells us that
giving a standard-model proof for HMAC, based on say collision-resistance of the
compression function, may be elusive. We thus make the assumption that the
compression function is a random oracle.

We show that HMAC provides the strong notion of mmPRF-ODH security,
assuming StDH and that the compression function is a random oracle. We note
that Coron et al. [11] show that a variant of HMAC is indifferentiable from a
random oracle, and Krawczyk [27] briefly remarks that the result would carry
over to the actual HMAC construction. However, in HKDF the HMAC function is

! 'While the computational version of the square-DH problem is known to be equivalent
to the CDH problem, it is unclear if the decisional version follows from DDH.



applied in a special mode in which the key part is hashed first, and it is therefore
unclear if our result for the monolithic random oracle immediately applies. But
based on the techniques used in the instantiation part we can give a direct proof
of the security of (the general mode of) HMAC.

2 PRF-ODH Definition

Different variants of the new PRF oracle-Diffie-Hellman (PRF-ODH) assumption
have been introduced and used in the literature in the context of key exchange
protocols. In this section we first provide a generic PRF-ODH assumption defi-
nition capturing all different flavors and discuss its relation to previous occur-
rences [23,29,15,16,10,18].

Definition 1 (Generic PRF-ODH assumption). Let G be a cyclic group of
order q with generator g. Let PRF: G x {0,1}* — {0,1}* be a pseudorandom
function that takes a key K € G and a label x € {0,1}* as input and outputs a
value y € {0,1}*, i.e., y + PRF(K,x).

We define a generic security notion I[rPRF-ODH which is parameterized by
l,r € {n,s,m} indicating how often the adversary is allowed to query a certain
“left” resp. “right” oracle (ODH,, resp. ODH, ) where n indicates that no query
is allowed, s that a single query is allowed, and m that multiple (polynomially
many) queries are allowed to the respective side. Consider the following security
game GameEE'EbODH between a challenger C and a probabilistic polynomial-time
(PPT) adversary A.

1. The challenger C samples u <~ Z, and provides G, g, and g* to the adver-
sary A.

2. Ifl = m, A can issue arbitrarily many queries to the following oracle ODH,,.
ODH,, oracle. On a query of the form (S, x), the challenger first checks if

S ¢ G and returns L if this is the case. Otherwise, it computes y
PRF(S",x) and returns y.

3. Eventually, A issues a challenge query x*. On this query, C samples v <
Zq and a bit b <= {0,1} uniformly at random. It then computes y§ =
PRF (g, z*) and samples yi < {0,1}* uniformly random. The challenger
returns (g%, y;) to A.

4. Next, A may issue (arbitrarily interleaved) queries to the following ora-
cles ODH,, and ODH,, (depending on | and r).

ODH,, oracle. The adversary A may ask no (I = n), a single (1 = s),
or arbitrarily many (I = m) queries to this oracle. On a query of the
form (S, x), the challenger first checks if S ¢ G or (S,z) = (¢*,2*) and
returns L if this is the case. Otherwise, it computes y < PRF(S", x) and
returns y.

ODH, oracle. The adversary A may ask no (r = n), a single (r = s),
or arbitrarily many (r = m) queries to this oracle. On a query of the
form (T, x), the challenger first checks if T ¢ G or (T,z) = (¢*,x*) and
returns L if this is the case. Otherwise, it computes y < PRF(T?, x) and
returns y.



5. At some point, A stops and outputs a guess b’ € {0,1}.

We say that the adversary wins the rfPRF-ODH game if ' = b and define the
advantage function

1
AdviRe PP () =2 <Pr[b’ =b] - 2)

and, assuming a sequence of groups in dependency of the security parameter, we
say that a pseudorandom function PRF with keys from (Gy)x provides IrPRF-ODH
security (for |,r € {n,s,m}) if for any A the advantage AdngE,FAODH()\) is negli-

gible in the security parameter \.

In the following, if clear from the context, we will omit the group G and
sometimes its generator g as explicit inputs to the adversary.

Relations to previous PRF-ODH assumptions. The above generic and parame-
terized IrPRF-ODH definition captures different variants of the PRF-ODH as-
sumption present in the literature. The PRF-ODH formulation put forward by
Jager et al. [23] is captured by ours in case the parameters are set to | = s and
r = n meaning that only the “left” oracle (querying the DH share g*) can be
queried once. Note that Step 2 is only required if | = m, capturing that Jager et
al. first request their challenge before issuing an oracle query. The same variant,
snPRF-ODH, was also used by Dowling et al. [16]. Krawczyk et al. [29] modi-
fied the PRF-ODH formulation of Jager et al. since they require security against
multiple (“left”) oracle queries against the DH key share. Thus, their variant
is captured by ours through setting the parameters to | = m and r = n, and
thus making use of Step 2. Recent works further introduced an additional query
to the other DH key share, due to the fact that the keys are static or semi-
static, respectively. In more detail, Fischlin and Giinther [18] require an extra
single (“right”) oracle query while still requesting polynomial many queries to
the “left” oracle. This is captured by our definition through setting the param-
eters to | = m and r = s. Lastly, Brendel and Fischlin [10] require to query both
key shares multiple times, which our definition captures as well by choosing the
parameters as | = m and r = m.

Design options. The above generic definition can be refined further, e.g., by
enabling the challenger to provide the value g¥ to the adversary at the outset
in Step 1. This variant was used in the analysis of earlier TLS 1.3 draft hand-
shakes by Dowling et al. [15]. Such change would be accompanied by giving the
adversary in Step 2 also access to the ODH,, oracle in case r = m. Another rea-
sonable change could encompass enabling the adversary in multi-query variants
(i.e., | = m or r = m) to also issue multiple challenge queries in Step 3, for the
same value gV or even freshly chosen values g'¢ in each call. However, one can
show via a standard hybrid argument that both notions (i.e., single challenge
query and multiple challenge query) are polynomially equivalent.



In this work, we focus on the common structure of previously studied PRF-ODH
notions [23,29,16,10,18] which are captured by our generic definition above. Ad-
ditionally, in Section 4 we briefly discuss the impact of such changes regarding
the analysis of the relations between the different variants of the assumption.

3 Instantiating the PRF-ODH Assumption

We next turn to the question how to instantiate the PRF-ODH assumption. Con-
cretely, we provide instantiations of the two notions that mark both ends of the
strength spectrum of the PRF-ODH variants. First, we show that the weakest
PRF-ODH variant, nnPRF-ODH, can be instantiated in the standard model un-
der well-established assumptions, namely the Decisional Diffie-Hellman (DDH)
assumption and (ordinary) PRF security in a group G. Second, we establish
that, in the (programmable) random oracle model, both the strongest one-sided
PRF-ODH variants, mnPRF-ODH and nmPRF-ODH, as well as the most general
mmPRF-ODH assumption can be instantiated from the strong Diffie-Hellman
assumption (StDH). We define all these number-theoretic assumptions when dis-
cussing the security notions. Furthermore, we discuss the relation of the PRF-
ODH notion to that of PRF security under related-key attacks.

3.1 Standard-Model Instantiation of nnPRF-ODH

We begin with instantiating the nnPRF-ODH assumption in the standard model.
For this we speak of a function F: G x {0,1}* — {0,1}* to be PRFg-secure if
no efficient adversary which, upon querying x, gets to see either the function
value F(K,z) for a then chosen random key K < G, or a random value, can
distinguish the two cases. As in the other games before, the choice of answering
genuinely or randomly is made at random, and we let Adv?ifG denote the ad-
vantage of algorithm A. Here, we normalize again the advanfage by subtracting
the guessing probability of % and multiplying the result by a factor of 2. Note
that the difference to the nnPRF-ODH assumption is that the adversary does not
get to see a pair g, g from which the key is generated.

The underlying DDH assumption says that one cannot efficiently distinguish
tuples (g, g%, g%, g*¥) from tuples (g, g%, g, g*) for random u, v, z € Z,. More for-
mally, for an adversary B we define Advg%H to be the probability of B predicting
a random bit b, when given g, g%, g",g*" for b = 0 and g, g%, g",g* for b = 1,
with the usual normalization as above. Alternatively, one may define Adv(gl?gH to

be the advantage in the nnPRF-ODH game for the function F(K,z) = K.

Theorem 2 (DDH + PRFg = nnPRF-ODH). If a function F: G x {0,1}* —
{0,1}* is PRFg-secure and the DDH assumption holds in G, then F is also
nnPRF-ODH-secure. More precisely, for any efficient adversary A against the
nnPRF-ODH security of F, there exist efficient algorithms By and By such that

Adv RO < 2. Advelf! + 2 AdviTEe.



We note that the factor 2 is the common loss due to the game-hopping tech-
nique, when switching from indistinguishability for two fixed games to choosing
one of the games at random. The proof appears in the full version of this paper.

3.2 Random-Oracle Instantiation of mnPRF-ODH and nmPRF-ODH

Abdalla et al. [1] proved that the oracle DH assumption ODH is implied by the
strong Diffie-Hellman assumption in the random oracle model. Here, we show
that our strongest one-sided PRF-ODH variants, mnPRF-ODH and nmPRF-ODH,
can be instantiated under the strong Diffie-Hellman assumption StDH . The as-
sumption says that, given g,g",g" and access to a decisional DH oracle for
fixed value g, i.e., DDH(g",-, ), it is infeasible to compute g*. Observe that
this assumption is implied by the GapDH assumption, where the adversary can

choose the first group element freely, too. Let Adv((S;tV%H denote the probability of

algorithm BPPH":) (g, g% ¢¥) outputting g“.

Theorem 3. In the random oracle model, StDH implies mmPRF-ODH security
and nmPRF-ODH security of F(K,z) = RO(K,x) for random oracle RO. More
precisely, for any efficient adversary A against the mnPRF-ODH or nmPRF-ODH
security of F, there exists an efficient algorithms B such that

AdvEITRFOPH < A and  AdvET R OPH < AdveR

The proof appears in the full version. It follows previous proofs in the context
of key exchange protocols. The crucial aspect here is that one programs the ran-
dom oracle for ODH,, queries (5, z) by returning random values. This implicitly
defines the random oracle value for (unknown) key S* and z, but such that one
later needs to check for consistency if the adversary makes a random oracle query
about key K = S* and x and one simulates the answer. This verification can
be performed via the oracle DDH(g“,-,-) by checking if DDH(g", S, K) = 1 for
any previous ODH,, query (S, ). Vice versa, one also needs to check for ODH,,
queries (5, z) if the random oracle value for (S*,z) has already been set. This
can be done again via the DDH(g", -,-) oracle.

If a consistent simulation is enforced then the only possibility for the adver-
sary to distinguish a real or random challenge y* is to ask the random oracle
about the DH key K = ¢g"¥ at some point. This is again easy to detect by check-
ing if DDH(g*, g¥, K) = 1 for any such query K, in which case we solve the StDH
problem.

3.3 Random-Oracle Instantiation of mmPRF-ODH

We next look at the case that the adversary can make queries to both oracles,
ODH,, and ODH,,. Interestingly, this does not follow straightforwardly from the
StDH assumption as above. The reason is that, there, we have used the DDH-
oracle with fixed element ¢g* to check for consistency of ODH, queries with
random oracle queries. In the most general mmPRF-ODH case, however, we would
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also need to check consistency across ODH,, and ODH,, queries. In particular, a
simulator would need to be able to check for queries (S, z) to ODH,, and (T, x)
to ODH, if they result in the same key S* = K =T, but the simulator is given
only S, T, g,g", and g*. Such a test cannot be immediately performed with the
DDH(g",-,-) oracle as in the StDH case, and not even with the more liberal
DDH(,,-) oracle as in the GapDH case.

Suppose that we take the StDH problem and augment it by another oracle
which allows to check for “claws” S, T with S* = T. Call this the claw-verifying
oracle Claw and the problem the ClawStDH problem. For pairing-friendly groups
G we get this oracle for free via the bilinear map e as Claw(S,T) = [e(¢%, S) =
e(g¥,T)?]. Next, we show that for general groups the claw-verifying oracle can be
implemented in the StDH game, too, but at the cost of a loose security reduction
to StDH.

The idea of representing the oracle Claw is as follows. Suppose that, in ad-
dition to g, ¢" and ¢” we would also receive the value g*/* (where we assume
here and in the following that v # 0, since the case v = 0 is trivial to deal with).
Then we can run the check for claws via the stronger DDH oracle by calling
DDH(¢g%/?,S,T), checking that S*/* = T and therefore S* = T". The ques-
tion remains if the computational problem of computing ¢“* given ¢*/* (in the
presence of a DDH oracle) becomes significantly easier, and if we can relax the
requirement to a DDH(g", -, ) oracle. Switching to the square DH problem in an
intermediate step, we show that this is not the case, although the intermediate
step causes a loose security relationship.

Assume that we have an algorithm A which (given oracle access to DDH(g¥,
-,+), DDH(g¢", -, ), and the claw-verifying oracle Claw) on input (g, g%, ¢*) is able
to compute ¢g“Y. Then we show that we can use this algorithm to build an al-
gorithm B for the square-DH problem (given g,g" compute g”z) relative to a
DDH(g", -, -) oracle. For this, algorithm B for input g, g picks r <* Z, and sets
g* = (¢*)". With this choice, g*/? = g" can be easily computed with the knowl-
edge of r, allowing to implement the claw-verifying oracle for free. Similarly, we
have DDH(g¢%,-,-) = DDH(g¢",(:)",-), giving us the “mirrored” oracle for free.
Algorithm B now runs A on input (g, g%, g”) and answers all oracle requests of
A during the computation with the help of its DDH(g", -, -) oracle. Suppose that
the adversary A eventually outputs K. Then, B returns K'/" which equals g”2
for a correct answer K = g%’ = o of A.

Next, we show that from a solver for the square-DH problem (with DDH(g",
-,-) oracle) we can build a solver for the StDH problem. Going from the square-
DH problem to the CDH problem is already known. Interestingly, though, the
common strategies in the literature [33,2,19] require three calls to the square-
DH solver, basically to compute the square g(u+?)* = gv’+2uv+v® and then to
divide out 9“2 and g“Q. Fortunately, two calls are sufficient, see for example [24],
yielding a tighter security bound.

So suppose we have a square-DH algorithm (with oracle DDH(g", -,-)) then
we call this algorithm once on g, ¢"*t¥ and once on g¢,¢" =) for randomizer
r <& Z,. Since both inputs are random and independent, we get two valid answers
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g H2utv? gnd gt (W —2utv®) with the product of the square-DH algorithm’s
success probability. Note that these two executions at most double the number of
oracle queries to the DDH oracle. Dividing out the exponent 72 from the second
term by raising it to the power 1/72, and then dividing the two group elements
we obtain ¢%“V from which we can easily compute g“*.

Overall, we can show that solving the problem in presence of the decisional
oracles for g* and ¢”, and an additional claw-verifying oracle, is implied by the
StDH assumption, albeit with a security loss. More precisely, for any efficient
adversary A against ClawStDH we get an efficient adversary B (making at most
twice as many calls to its StDH oracle as A) such that

Advg2>PM <\ JAdve R
We can now give our security proof for mmPRF-ODH, implying also security of
msPRF-ODH and smPRF-ODH, of course:

Theorem 4. In the random oracle model, ClawStDH (resp. StDH) implies
mmPRF-ODH security of F(K,z) = RO(K, z) for random oracle RO. More pre-
cisely, for any efficient adversary A against the mmPRF-ODH security of F, there
exist efficient algorithms By, By such that

mmPRF-ODH ClawStDH / StDH
AdVF,A S AdVG,Bl S AdVG,BQ

The proof is almost identical to the one for mnPRF-ODH, only that we here
simulate the other oracle ODH, as the oracle ODH,, and for each query to
either of the oracles also check via the help of Claw consistency between ODH,,
and ODH,, evaluations. This provides a sound simulation of the random oracle.
It follows as before that the adversary A can only distinguish genuine y* from
random ones if it queries the random oracle about ¢*? (in the sound simulation),
in which case B; finds this value in the list of queries.

3.4 On the Relation Between PRF-ODH and Security Against
Related-key Attacks

The PRF-ODH assumption demands the output of a PRF to be indistinguishable
from random even when given access to PRF evaluations under a related (group-
element) key, sharing (at least) one exponent of the challenge key. On a high
level, this setting resembles the concept of related-key attack (RKA) security
for pseudorandom functions as introduced by Bellare and Kohno [4]. This raises
the question if the PRF-ODH assumption can be instantiated from RKA-secure
PRFs (or vice versa).

Related-key attack security of a PRF f: I x D — R with respect to a set @
of related-key-deriving (RKD) functions is defined as the indistinguishability of
two oracles F{. k)(-) and G(. k)(-) for a randomly chosen key K <* K. The dis-
tinguishing adversary A may query the oracles on inputs (¢, z) € ¢ x D on which
the oracles respond as Fy i) () := f(¢(K),z) and G4 k)(z) := g(¢(K),x) for
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a function g drawn uniformly at random from the set FF(KC, D, R) of all func-
tions K x D — R. Formally, the advantage of A against the RKA-PRF security
of f with respect to set @ is defined as

AVESEPRED = pr [ A0 0 = 1| K & K
—Pr [AG«M(') —1|K &K, g8 ]-']-'(IC,D,R)} .

Intuitively, one should now be able to relate RKA-PRF security to PRF-ODH se-
curity by considering two correlated sets of RKD functions corresponding to the
PRF-ODH oracles ODH,, and ODH,, with respect to a group G with generator g
and two exponents u,v € Zg:

PopH,, = {¢opH,,s | S € G\ {g"}} where ¢op, s(K) := (K1/?)108s(5),
Popn, = {¢opn, v | T € G\ {g"}} where ¢opn, 7 (K) = (K1/*)eq (1),

Insurmountable hurdles however seem to remain when trying to relate PRF-
ODH notions and RKA-PRF security (for according sets @) via implications. In
the one direction, the adversary in the PRF-ODH setting is provided with the DH
shares g* and ¢¥ forming the (challenge) PRF key while such side information
on the key is not given in the RKA-PRF setting. Hence, in a reduction of PRF-
ODH security to some RKA-PRF notion, even for an appropriate RKD function
set a simulation always lacks means to provide the PRF-ODH adversary with
these shares. In the other direction, the RKA-PRF challenge can be issued on
any related key ¢(K) for an admissible RKD function ¢ while the PRF-ODH
challenge is, for the case of the real PRF response, always computed on the
key ¢"V. A reduction would hence need to map the RKA-PRF challenge for an
arbitrary, related key onto the fixed PRF-ODH challenge key.

Though on a high level capturing a relatively similar idea, the relation be-
tween PRF-ODH and RKA-PRF security hence remains an open question.

4 PRF-ODH Relations

In this section we study the relations of different PRF-ODH variants spanned by
our generic Definition 1. The relationships are also illustrated in Figure 2.

Let us start with observing the trivial implications (indicated by solid arrows
in Figure 2) which are induced by restricting the adversary’s capabilities in our
definition. That is, by restricting the access to one of the oracles ODH, and
ODH, (from multiple queries to a single query or from a single query to no
query) for a notion from Definition 1, we obtain a trivially weaker variant. The
more interesting question is which of these implications are strict, i.e., for which
of two PRF-ODH variant pairs one notion is strictly stronger than the other.
For a majority of these cases we can give separations which only require the
assumption that the underlying primitive exists at all, for some separations we
rely on the random oracle model (and a plausible number-theoretic assumption).
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4.1 Separations in the Standard Model

For our standard model separations we introduce the following family of func-
tions F.

Definition 5 (Separating function family F). Let G: Gx {0,1}* — {0,1}*.
We define the family of functions F = {F, }nen with Fp: G x {0,1}* — {0,1}*
as follows:

Fo (K. x) {G(KJ) @...0G(K,n) ifx —(?
G(K, z) otherwise.

As a warm-up, let us first consider the (in)security of functions F,, € F in
the standard PRF setting. It is easy to see that no function F,, € F can satisfy
the (regular) security notion for pseudorandom functions: for any function F,,
querying the PRF oracle on 9 =0, ..., x,, = n yields responses yq, ..., y, for
which the combined XOR value y = yo@. .. Dy, in case the oracle computes the
real function F,,, is always 0 whereas otherwise it is 0 only with probability 2.
However, in a restricted setting where the PRF adversary A is allowed to query
the oracle only a limited number of times (at most n queries for function F,,), we
can indeed establish the following, restricted PRF security for functions F,, € F.

Proposition 6 (F is restricted-PRF-secure). If G is an (ordinary) secure
pseudorandom function, then each F,, € F from Definition 5 is an n-restricted
secure pseudorandom function in the sense that it provides PRF security against
any adversary that is allowed to query the PRF oracle at most n times.

Proof (informal). Fix a function F,, € F. First, we replace G in the definition
of F,, by a truly random function G’. The introduced advantage difference for
adversary A by this step can be bounded by the advantage of an adversary B
against the PRF security of G, simulating the (restricted) PRF game for A using
its own PRF oracle for G.

After this change, the output values of F,, on inputs = > 1 are independent
random values and the output on x = 0 is the XOR of the outputs on x = 1,
...,n. In contrast, for a truly random function, the outputs on all inputs (incl.
x = 0) are independent and random. However, any adversary A that is allowed
to query the PRF oracle on at most n inputs cannot distinguish these two cases,
bounding its success probability at this point by 0. O

Let us now turn to the more involved PRF-ODH setting. Equipped with the
function family F, we can establish separations between various PRF-ODH vari-
ants, as illustrated in Figure 2. The key insight for these separations is similar
to the one in the standard PRF setting: an adversary with a limited number of
n queries (including the challenge query in the PRF-ODH setting) cannot dis-
tinguish (a challenge under) F,, from (a challenge under) a truly random func-
tion. As subsequent propositions establish, this allows us to separate the notion
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nnPRF-ODH (with only one challenge query) from snPRF-ODH and nsPRF-ODH
(with two queries, the challenge and one to an ODH oracle) via function Fj.
Furthermore, the notions snPRF-ODH and nsPRF-ODH (with two queries) are
separated from mnPRF-ODH, ssPRF-ODH, and nmPRF-ODH (with three or poly-
nomially many queries) via Fs. Finally, we establish that the notion ssPRF-ODH
(three queries) can be separated from mnPRF-ODH and nmPRF-ODH (multiple
queries) using function F3. Note that functions F,, € F cannot provide a sep-
aration between two notions that both allow polynomially many queries (e.g.,
mnPRF-ODH and msPRF-ODH). To keep the propositions compact, the given
separations constitute the minimal spanning set; recall that if a notion A im-
plies another notion B, separating a notion C from B also separates C from A.

We begin with separating nnPRF-ODH from snPRF-ODH and nsPRF-ODH
security.

Proposition 7 (nnPRF-ODH =% snPRF-ODH, nsPRF-ODH). If G from Defi-
nition 5 is nnPRF-ODH-secure, then F1 € F is nnPRF-ODH-secure, but neither
snPRF-ODH- nor snPRF-ODH-secure. More precisely, for any efficient adver-
sary A against the nnPRF-ODH security of Fyi, there exists an efficient algo-
rithm B such that

nnPRF-ODH nnPRF-ODH
AdVFl,A S AdVG,B s

but there exist algorithms A1, As with non-negligible advantage AdeF"fiE'ODH =

AdvpEPREOPH = 1 — oA,

Proof. First, observe the following snPRF-ODH-adversary A; and nsPRF-ODH-
adversary Aj are successful (except with negligible probability). Both first chal-
lenge F; on z* = 0 (obtaining as y* either y5 = G(g“%,1) or yf <& {0,1}),
then query (g¥,1) resp. (¢%,1) to their ODH,, resp. ODH, oracle, obtaining a
value y = G(g"¥,1). They distinguish the challenge by outputting 0 if y* = y
and 1 otherwise and win except if coincidentally yi = y, which happens with
probability 272,

To see that F; is nnPRF-ODH-secure if G is, consider an algorithm B that
simply relays its obtained value g“ to 4 and the challenge query of A to its
challenger unmodified if x* # 0, but for £* = 0 asks its challenge query on 1.
Forwarding the response and outputting the same bit b’ as A outputs, B provides
a correct simulation for A4 and, moreover, wins if A does. O

We continue with three further separations:

— snPRF-ODH from mnPRF-ODH, ssPRF-ODH, and nmPRF-ODH;
— nsPRF-ODH from mnPRF-ODH, ssPRF-ODH, and nmPRF-ODH; and
— ssPRF-ODH from mnPRF-ODH and nmPRF-ODH.

Due to space restrictions, we only state the respective propositions and defer the
proofs to the full version. Note that the proofs follow the same underlying idea
as the one of Proposition 7, namely that an adversary being allowed to query
a PRF oracle only n times cannot distinguish F,, from a truly random function
(given the internal function G satisfies pseudorandomness properties we specify).
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Proposition 8 (snPRF-ODH =4 mnPRF-ODH, ssPRF-ODH, nmPRF-ODH). If
G from Definition 5 is mnPRF-ODH-secure, then Fy € F is snPRF-ODH-secure,
but neither mnPRF-ODH-, nor ssPRF-ODH-, nor nmPRF-ODH-secure. More pre-
cisely, for any efficient adversary A against the snPRF-ODH security of Fo, there

exist efficient algorithms By, ..., By such that
AdV'S:r;ITJIZF—ODH < Ad mnPRF ODH +4 . AdVE’HBZRF—ODH
4. AdvmnPRF ODH _’_Advg’rg‘LRF-ODH,
but there exist algorithms Ay, ..., As with non-negligible advantage Adv'F“;fﬁF‘ODH

_ Ad SSPRF ODH Ad nmPRF ODH 1 _ 2—A‘

Proposition 9 (nsPRF-ODH =% mnPRF-ODH, ssPRF-ODH, nmPRF-ODH). If
G from Definition 5 is nmPRF-ODH-secure, then Fo € F is nsPRF-ODH-secure,
but neither mmPRF-ODH-, nor ssPRF-ODH-, nor nmPRF-ODH-secure. More pre-
cisely, for any efficient adversary A against the nsPRF-ODH security of Fo, there

exist efficient algorithms By, ..., By such that
AdVES;?EF—ODH S AdvnmPRF—ODH +4 . Advgr,nBlzRF—oDH
4 AV nmPRF ODH +Advgr7ng4RF—ODH’
but there exist algorithms A, . .., Az with non-negligible advantage Ader“;fL\FiF_ODH
— Ad ssPRF-ODH Ad nmPRF- ODH 1 _ 27,\

VF,, Ay VF,, A3

Proposition 10 (ssPRF-ODH =~ mnPRF-ODH, nmPRF-ODH). If G from Def-
inition 5 is msPRF-ODH-secure, then F3 € F is ssPRF-ODH-secure, but neither
mnPRF-ODH- nor nmPRF-ODH-secure. More precisely, for any efficient adver-
sary A against the ssPRF-ODH security of F3, there exist efficient algorithms By,
, Bs such that
AdvE ssPRF ODH Advg\sglRF-ODH 13. AdvangRF-ODH 13, Advasng-ODH
+3. Ad msPRF ODH +Advgsll;5RF—ODH7

but there exist algorithms Ay, Ag with non-negligible advantage Adv?an'jff OPH _

AdVTPRF-0DH _ 1 _ 93

4.2 Separations in the Random Oracle Model

In the following we use the following problem of computing non-trivial v-th roots
in G for implicitly given v. That is, consider an algorithm A which outputs some
group element x € G with & # 1 (and some state information), then receives g*
for random v < Zq, and finally outputs y given ¢g* and the state information,
such that y¥ = x. Denote by Adv"DH the probability that A succeeds in this
interactive inversion DH problem.

Note that the problem would be trivial if x = 1 was allowed (in which case
y = 1 would provide a solution), or if z can be chosen after having seen ¢’
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(in which case x = ¢g¥ and y = ¢g would trivially work). Excluding these trivial
cases, in terms of generic or algebraic hardness the problem is equivalent to the
CDH problem. Namely, assume A4 “knows” o € Z, such that z = g®. Since
x is chosen before seeing g¥ the adversary can only compute it as a power of
g and, in addition, = # 1 implies o # 0. Therefore, for any valid solution y
the value y/® would be a v-th root of g, because (y'/ ) = zl/* = g. This
problem of computing ¢'/* from g, g, however, is known as the inversion-DH
(iDH) problem; it is equivalent to the CDH problem with a loose reduction [2].

For our separation result we still need a slightly stronger version here where,
in the second phase, the adversary also gets access to a decision oracle which,
on input two group elements A, B € G outputs 1 if and only if AY = B. We call
this the strong interactive-inversion DH problem and denote it by siiDH. Note
that for example for a pairing-based group such an oracle is given for free, while
computing a v-th root of g (or, equivalently, solving the DH problem may still
be hard).

Proposition 11 (nmPRF-ODH =& snPRF-ODH). In the random oracle model,
and assuming StDH and siiDH, there exists a function FRO which is nmPRF-ODH-
secure but not snPRF-ODH-secure. More precisely, for any efficient adversary ARO
against the nmPRF-ODH security of FRO, there exist efficient algorithms By, B,
such that

y h
AdviRg SEOPH < AdvE R + - AdvERT + r 27,

for the at most h queries to the random oracle, but there exists an algorithm AR

with non-negligible advantage Adv?’%‘gﬁ'ODH >1 -2,

The idea is to use the following function:

RO Jy if RO(Kz™!, (2,0") =y and z # 1
PO @y) = {RO(K, (z,y)) else

For this function it is easy for an adversary to check for the challenge value
x* = (g%, 0*) if the reply y* is real or random, by making an ODH,, query about
(g"*1, (g%, y*)). With high probability this will trigger the exceptional case of
FRO for RO(g“**tDg=% g% 0*) = y* if and only if y* is the correct function
value. On the other hand, any adversary with oracle access to ODH,, only, will
not be able to take advantage of this special evaluation mode for the key ¢“¥ and
challenge value z* = (z,y), since this would mean that such a query (7, z) to
the ODH, oracle implies that x = (T'g~™)", i.e., that the adversary can compute
a v-th root of x, which is chosen before learning the value ¢g¥. This, however,
would contradict the siiDH assumption. Moreover, the adversary will not ask the
random oracle about the key ¢g“¥ either, or else we get a contradiction to the
StDH assumption (with a loose reduction). But then the challenge value still
looks perfectly random to the adversary. The complete proof following this idea
appears in the full version.
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The idea can now be transferred to the case that we still allow one oracle
query to ODH,,, basically by “secret sharing” the reply in the exceptional case
among two queries:

Proposition 12 (smPRF-ODH =& mnPRF-ODH). In the random oracle model,
and assuming StDH and siiDH, there exists a function FRO which is smPRF-ODH-
secure but not mnPRF-ODH-secure. More precisely, for any efficient adversary ARO
against the smPRF-ODH security of FRC, there exist efficient algorithms By, B,
such that

y h
AIVEETEO < [0 BB+ AR+ L o

for the at most h queries to the random oracle, but there exists an algorithm ARC
nPRE-ODH & | _ 9—A+1

with non-negligible advantage AvaRo,ARo

In fact, in the negative result for mmPRF-ODH the adversary only needs to
ask two queries to the ODH,, oracle after receiving the challenge query. Since
the function is still secure for a single ODH,, query, this is optimal in this regard.
The proof appears in the full version.

4.3 Discussion
Let us close this section with some remarks about the separations.

Remark 13. Our separating function family (cf. Definition 5) establishes quite a
number of separations, but cannot be used in order to separate the remaining
variants. This is due to the fact that our function family cannot separate between
notions that both allow polynomial many queries as for example nmPRF-ODH
and smPRF-ODH. Thus, we have turned to the random oracle model to estab-
lish further separations. Using this model is alleviated by the result about the
implausibility of instantiating the PRF-ODH assumption in the standard model.

In the random oracle model we have shown that it is crucial if the adversary
has access to the ODH,, oracle or not (or how many times). This uses some
asymmetry in the two oracles, namely, that g* is given before the challenge query,
and ¢g¥ only after. Our separations take advantage of this difference, visualized
via the interactive-inversion DH problem which is only hard if =* is chosen before
receiving g*.

It is currently open if the other notions are separable. Beyond the asymmetry
that g is already available before the challenge, it is unclear how to “encode”
other distinctive information into the input to the “memoryless” PRF which one
oracle can exploit but the other one cannot.

Remark 14. In case our generic PRF-ODH assumption (cf. Definition 1) would
provide the adversary additionally with the share ¢g¥ in the initialization phase
(cf. step 1) then Figure 2 would symmetrically “collapse” along the vertical
axis in the middle. In other words, this would result in equivalences of the no-
tions snPRF-ODH and nsPRF-ODH, mnPRF-ODH and nmPRF-ODH, as well as
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msPRF-ODH and smPRF-ODH. Note that this is not a contradiction to our sep-
aration results among those notions, as they only work if (and exploit that) g¥
is not given in advance.

5 On the Impossibility of Instantiating PRF-ODH in the
Standard Model

In this section we show that there is no algebraic black-box reduction R which
reduces the snPRF-ODH assumption (and analogously the nsPRF-ODH assump-
tion) to a class of hard cryptographic problems, called DDH-augmented abstract
problems. With these problems one captures reductions to the DDH problem or
to some general, abstract problem like collision resistance of hash functions.

5.1 Overview

The idea is to use the meta-reduction technique. Assume that we have an alge-
braic reduction R from the snPRF-ODH assumption which turns any black-box
adversary into a solver for a DDH-augmented problem. Then we in particular
consider an inefficient adversary A, which successfully breaks the snPRF-ODH
assumption with constant probability. The reduction, with black-box access to
Ao, must then solve the DDH-augmented problem. For this it can then ei-
ther not take any advantage of the infinite power of A.,—in which case we can
already break the DDH-augmented problem—or it tries to elicit some useful
information from A... In the latter case we build our meta-reduction by simu-
lating A efficiently. This is accomplished by exploiting the algebraic property
of the reduction and “peeking” at the internals of the reduction’s group element
choices. Our meta-reduction will then solve the decisional square-DH problem,
saying that (g, g%, g“2) is indistinguishable from (g, g, g*) from random a, b.

Our impossibility result works for pseudorandom functions PRF, which take
as input arbitrary bit strings and maps them to A bits. We stick with this
convention here, but remark that our negative result also holds if the input
length is 1 only, and the output length is super-logarithmic in A. Similarly, we
assume that PRF is a nnPRF-ODH, although it suffices for our negative result
that the function PRF for a random group element (and some fixed input, say
1) is pseudorandom, i.e., that PRF(X, 1) is indistinguishable from random for
a uniformly chosen group element X ¢ G (without giving any “Diffie-Hellman
decomposition” of X).

Theorem 15. Assume that there is an efficient algebraic black-box reduction R
from the snPRF-ODH (or nsPRF-ODH ) assumption to a DDH-augmented prob-
lem. Then either the DDH-augmented problem is not hard, or the decisional
square-DH problem is not hard.

If one assumes vice versa that both the underlying augmented-DDH problem
and decisional square-DH problem are hard, then this means that there cannot be
a reduction as in the theorem to show security of the nsPRF-ODH or snPRF-ODH
assumption.
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5.2 DDH-augmented Cryptographic Problems

DDH-augmented problems are cryptographic problems in which the adversary
either solves a DDH problem or some abstract (and independent) problem in
which it receives some instance inst, can make oracle queries about this instance,
and then generates a potential solution sol. The adversary can decide on the fly
which of the two problems to solve. In terms of our setting here we build a
reduction against such DDH-augmented problems, capturing for example the
case that one aims to show security of the PRF-ODH assumption by assembling
a scheme out of several primitives, including the DDH assumption, and giving
reductions to each of them.

We next define cryptographic problems in a general way, where it is conve-
nient to use the threshold of % for decisional games to measure the adversary’s
advantage. We note that we can “lift” common computational games where the
threshold is the constant 0 by outputting 1 if the adversary succeeds or if an
independent coin flip lands on 1. Formally, a cryptographic problem consists
of three probabilistic polynomial-time algorithms P = (P.Gen, P.Ch, P.Vf) such
that for any probabilistic polynomial-time algorithm 4 we have

H $ A 1
Advp{"(A) = 2-<Pmb[P.Vf(secret, sol) — 1 ; (instsecret) & P.Gen(1%), ] >

sol <iAP'Ch(Secret")(lA,inSt) - 5

is negligible.

A DDH-augmented cryptographic problem PPPH for some group G (or, more
precisely, for some sequence of groups) based on a problem P, consists of the
following algorithms:

— P.GenPPH(1%) runs (inst, secret) <= P.Gen(1*), picks z,y,z < Z, and b <
{0, 1% and outputs instPPH = (g%, g¥, g*¥+* inst) and secretPPH = (b, secret).

— P.ChPPH(secretPPH ) runs P.Ch(secret, -).

— P.VFPPH (secretPPH solPPH) checks if sol®P" = (“DDH”, ) and, if so, out-
puts 1 if and only if b = b’ for bit b in secret®®H . If solPP" = ("P” sol) then
the algorithm here outputs P.Vf(secret, sol). In any other case it returns 0.

5.3 Algebraic Reductions for the snPRF-ODH Assumption

Algebraic reductions have been considered in [9] and abstractly defined in [35].
The idea is that the reduction can only perform group operations in the pre-
defined way, e.g., by multiplying given elements. As a consequence, whenever the
reduction on input group elements g1, gs,... generates a group element A € G
one can output a representation (ai, as,...) such that A =[] g;*. In [35] this is
formalized by assuming the existence of an algorithm which, when receiving the
reduction’s input and random tape, can output the representation in addition
to A.

In order to simplify the presentation here, we simply assume that the reduc-
tion, when forwarding some group element to the adversary, outputs the rep-
resentation itself. The base elements g1, go,... for the representation are those
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which the reduction has received so far, as part of the DDH-part of the input or
from the interaction with the adversary. The representation is hidden from the
adversary in the simulation, of course, but our meta-reduction may exploit this
information.

We consider (algebraic) reductions R which use the adversary A in a black-
box way. The reduction may invoke multiple copies of the adversary, possibly
rewinding copies. We use the common technique of derandomizing our (un-
bounded) adversary in question by assuming that it internally calls a truly
random function on the communication so far, when it needs to generate some
randomness. Note that the truly random function is an integral part of the adver-
sary, and that we view the adversary being picked randomly from all adversaries
with such an embedded function. Since the reduction is supposed to work for all
successful adversaries, it must also work for such randomly chosen adversaries.

It is now convenient to enumerate the adversary’s instances which the reduc-
tion invokes as A; fori = 1,2, . ... Since our adversary in question is deterministic
we can assume that the reduction “abandons” a copy A; forever, if it starts the
next copy A;y1. This is without loss of generality because the reduction can
re-run a fresh copy to the state where it has left the previous instance. This also
means that the reduction can effectively re-set executions with the adversary.

The reduction receives as input a triple (g%, g¥, g*) and some instance inst
and should decide if ¢g* = ¢*¥ or ¢* is random, or provide a solution sol to
inst with the help of oracle P.Ch. We stress that the reduction is algebraic with
respect the DDH-part of the DDH-augmented problem. In particular, encasing
a PRF-ODH-like assumption into the general P problem and providing a trivial
reduction to the problem itself is not admissible. The group elements (and their
representations) handed to the adversary in the reduction are determined by the
DDH-part of the input. Finally, we note that we only need that, if R interacts
with an adversary against snPRF-ODH with advantage 1 — 27*, then R solves
the DDH-augmented problem with a non-negligible advantage.

5.4 OQutline of Steps
Our negative result proceeds in three main steps:

1. We first define an all-powerful adversary A., which breaks the snPRF-ODH
assumption by using its infinite power. This adversary will, besides receiving
the challenge at point * = 0, ask the ODH,, oracle to get the value at (S, 1)
for random S = ¢°, where the random value s is generated via the integral
random function. It then uses its power to compute the Diffie-Hellman key
g’ verifies the answer of oracle ODH,, with the help of s, and only if this
one is valid, gives the correct answer concerning the challenge query. In any
other case, the adversary aborts.

2. We then show that the algebraic reduction R, potentially spawning many
black-box copies of our adversary Ao, must answer correctly to the ODH,,
query in one copy and use the input values g%, ¢g¥, g* non-trivially, or else we
can already break the underlying DDH-augmented problem efficiently.
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3. Next we show that, if the reduction answers correctly and non-trivially in one
of the copies, then we can —using the algebraic nature of the reduction—
replace the adversary A, by an efficient algorithm, the meta-reduction M,
and either break the decisional square-DH assumption or refute the pseudo-
randomness of PRF for a fresh random group element.

The decisional square-DH assumption says that it is infeasible to distinguish
(g,9%, g“z) from (g, g%, ¢*) for random a, b. It implies the DDH assumption, but
is only known to be equivalent to classical DH problem in the computational case
[2]. More formally, we will use the following variation: (g, g%, g“Q, g“Qb, g%, g) is
indistinguishable from (g, g2, gaz, gazb , g%, g¢) for random a, b, c.

We briefly argue that the above decision problem follows from the decisional
square-DH assumption. The latter assumption implies that we can replace 9“2
and g“Qb in these tuples by group elements g%, g% for random d, using knowledge
of b to compute the other elements. Then, by the DDH assumption, we can
replace g% in such tuples by a random group element ¢¢, using knowledge of d
to compute the other group elements ¢, g@. In the last step we can re-substitute
g%, g™ again by ga2 and g% °, using knowledge of b and c to create the other group
elements.

5.5 Defining the All-powerful Adversary

Let us define our adversary Ay, (with an internal random function f : {0,1}* —
Z,) against snPRF-ODH formally:

1. Adversary A, receives g, g* as input.

2. It then asks the challenge oracle about z* = 0 to receive y* and g¥. We call
this the challenge step.

3. It computes s = f(¢%, ¢*,y*) and S = ¢° and asks the ODH,, oracle about
(S,1) to get some y;. We call this the test step.

4. Tt computes S* = (¢g*)® and, using its unbounded computational power, also
uv

guv.
5. If y; # PRF(S%, 1) then A, aborts.
6. Else, A outputs 0 if and only if y* = PRF(¢*¥,0), and 1 otherwise.

Note that the probability that 4., outputs the correct answer in an actual attack
is 1 — 27* and thus optimal; the small error of 27 is due to the case that the
random y* may accidentally hit the value of the PRF function.

5.6 Reductions Without Help

Ideally we would now first like to conclude that any reduction which does not
provide a correct answer for the test step in any of the copies, never exploits
the adversary’s unlimited power and would thus essentially need to immediately
succeed, without the help of A.,. We can indeed make this argument formal,
simulating A, efficiently by using lazy sampling techniques for the generation
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of s and always aborting in Step 5 if reaching this point. However, we need
something slightly stronger here.

Assume that the reduction provides some g“ in one of the copies for which
it knows the discrete logarithm w, i.e., it is not a non-trivial combination of
the input values g%, g¥, g* for unknown logarithms. Then the reduction can of
course answer the adversary’s test query (S,1) successfully by computing S
and PRF(S%,1). Yet, in such executions it can also compute the reply to the
challenge query itself, even if it does not know the discrete logarithm of g¥. In
this sense the reduction cannot gain any knowledge about its DDH input, and
we also dismiss such cases as useless.

Formally, we call the j-th run of one of the adversary’s copies useless if
either the instance aborts in (or before) Step 5, or if the representation of the
adversary’s input ¢g* in this copy in the given group elements g, g%, g¥, g* and
the challenge query values Si,S%,...,5;-1 so far, i.e.,

g“ = (g")*(g")’(¢°) 9" - 1] 57

i<j

satisfies xa + y8 + 2y = 0 mod g. Note that the reduction may form ¢g* with
respect to all externally provided group elements, including the S;’s, such that
we also need to account for those elements. We will, however, always set all of
them to S; = g% for some known s;, such that we are only interested in the
question if combination of the DDH input values g%, g¥, g* vanishes.

Let useless; be the event that the j-th instance is useless in the above sense.
For such a useless copy we can efficiently simulate adversary A.,, because it
either aborts early enough, or the algebraic reduction outputs some g“ with
its representation from which we can compute the discrete logarithm v = § +
EKj s;0; mod ¢ and thus execute the decision and test steps of A.. Let useless
be the event that all executions of A, of the reduction are useless. We next
argue that, if the event useless happens with overwhelming probability, then we
can solve the DDH-augmented problem immediately.

The claim holds as we can emulate the all-powerful adversary A, easily, if
the reduction essentially always forgoes to run the adversary till the very end or
uses only trivial values g*. Let (g%, g¥, g7, inst) be our input and pass this to the
reduction. We simply emulate all the copies of the adversary efficiently by:

— using lazy sampling to emulate the random function f,

— for each invocation check at the beginning that (¢%)*(g¥)?(¢g?)” = 1 for the
representation received with the input g* for that instance, in which case we
can use the discrete logarithm u = § + >, _. s;0; mod ¢ to run this copy of
A, and

— else always abort after having received y in Step 3.

1<j

Denote this way of simulating each copy by adversary Ay (even though, tech-
nically, the copies share state for the lazy sampling technique and should be thus
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considered as one big simulated adversary). Then

Prob {P.Vf(secret sol) =1 (inst, secret) ¢ P.Gen(1%), ]

sol & RP.Ch(secret,-),Aoo (1)\, inst)

(inst, secret) < P.Gen(1?),

< Prob {P.Vf(secret,sol) =1: ol <& RP-Ch(secret.) Apm (17, inst)

] + Prob [useless]

The latter probability for event useless is negligible by assumption. We therefore
get an efficient algorithm R-4r»t which breaks the DDH-augmented problem with
non-negligible advantage.

5.7 Our Meta-reduction

We may from now on thus assume that Prob [useless] % 0 is non-negligible. This
implies that the reduction answers at least in one copy of A, of the at most
polynomial number ¢()) in the test queries in Step 3 with the correct value y; for
some non-trivial input g*, with non-negligible probability. Our meta-reduction
will try to guess the first execution k where this happens and to “inject” its
input g%, g% , g“zb, g%, ¢¢ into that execution in a useful way. More precisely, it
will insert these values into g%, g¥,¢g* and Sy such that the expected key K
for evaluating PRF for the test query equals a function of g% if ¢¢ = ¢, but
is random if ¢g¢ is random. In the latter case predicting y is infeasible for the
reduction, though, because the PRF is evaluated on a fresh and random key.
This allows to distinguish the two cases.

The meta-reduction’s injection strategy captures two possible choices of the
reduction concerning the equation za + yf + zy # 0 mod ¢ in the (hopefully
correctly guessed) k-th execution. One is for the case that xa + y8 # 0 mod g,
the other one is for the case that xa + y5 = 0 mod g and thus zy # 0 mod ¢
according to the assumption za + y8 + 2z # 0 mod ¢. The meta-reduction will
try to predict (via a random bit e) which case will happen and inject the values
differently for the cases. This is necessary since the g®-value, if it is not random,
should contain the DH value of the other two elements.

Our meta-reduction M works as follows:

1. The meta-reduction receives g°, g“2 , g“gb, g%, ¢¢ as input and should decide if
g°¢ = g®. If a = 0 then we can decide easily, such that we assume that a # 0
from now on.

2. The meta-reduction picks an index k <= {1,2,...,¢(\)} for the polynomial
bound ¢(A) of adversarial copies the reduction R runs with A. It also picks
o'y 2 Ly, 81, sK—1 ¢ Lg, €,d < {0, 1}, and samples (inst, secret) <>
P.Gen(1?).

3. For the first injection strategy, e = 0, it sets

g° = (g“)“”/7 g¥ = (ga)y,, g° = (g’IZ)x/y/ for d = 0 resp. g° = (gaz)zl for d = 1.
For the other injection strategy, e = 1, it sets

9 =", g'=¢". ¢ =(¢")"" ford=0resp. g° = ¢"" ford=1.

24



4. Tt invokes the reduction R on input g%, g¥, g* as well as inst.

5. The meta-reduction simulates the interactions of ® with P.Ch and A, as
follows:

— Each oracle query to P.Ch is answered by running the original algorithm
P.Ch for secret.

— Use lazy sampling to emulate the random function f.

— For each of the first j < k invocations of A, check at the beginning that
(%)% (g¥)P (g*)" = 1 for the representation received with the input
g% for that instance, in which case M can use the discrete logarithm
uj = 0; + Zi<j s;0; mod ¢ to efficiently run this copy of A, using
S; = g% for the test query.

— Otherwise, if (g%)® (g¥)% (g*)"% # 1, for the j-th invocation of an adver-
sarial copy of Ay for j < k, up to Step 3, efficiently simulate A, using
S; = g% for the test query, and immediately abort after this step.

6. For the k-th invocation simulate A, by using Sy = g°. If M receives a reply
yr from R, do the following. Let g“* be the input value of this adversary’s
copy. Since the reduction is algebraic it has also output values ay, Bk, Yk, Ok,
O1y...,05-1 € Zq such that

9" = (") (") (g7) g™ - TT 57
i<k

Note that all the base elements, up to this point, only depend on g, g* (and
g“2 in case of strategy e = 0) of M’s inputs ga7g“27ga2b, g%, g¢, because g"*
is output before seeing S, = ¢°.2
7. If strategy e = 0 is used and we have a(2’ay + ¢'Br) # 0 mod ¢ (which can
be checked for a # 0 by consulting the known values x’, ag,y’, Bx), then
the meta-reduction decides as follows. From the value g“2b it can compute

gv¥ e = (g“Zb)'”/y/W resp. (gazb)zl“f for both cases d € {0,1} and can then set
_ e ag+y’ bz b 5k+2, 80
Kf(g) k yﬁkg Wk(g) i<k )

It immediately outputs 0 if y, = PRF(K 1), else it continues.

8. If strategy e = 1 is used and we have ax’ay + 38 = 0 mod g (which can
be checked by verifying that (ga)zlakgy/ﬁ’“ = 1), then the meta-reduction
computes the key as

= (g©)="v' (gb)§k+zi<k "% for d =0 and
(gc)z"yk (gb)fskJrZi(k 5i0; for d =1
and immediately outputs 0 if y; = PRF(K, 1); else it continues.
9. In any other case, if the reduction aborts prematurely or if the insertion

strategy has been false, i.e., the choice of e does not match the condition on
2’y + v’ Br # 0 mod ¢, then output a random bit.

2 The same is true for g** generated in the challenge query before, such that the result
applies to the nsPRF-ODH assumption accordingly.
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5.8 Analysis

For the analysis assume for the moment that our meta-reduction has actually
chosen the index k of the first correct and non-trivial answer y,;, i.e., where
xag + yBr + 2k # 0 mod g. Additionally, assume that (xay + yS8x) # 0 mod g.
Then e = 0 with probability at least % This holds since the reduction remains
perfectly oblivious about the choice of e, because all values in the interaction
have the same distributions in both cases for e. Then the actual key for answering
the test query is

(guk)b _ (gab)a:/ak+y'ﬂk (gbz)'yk (gb)6k+27ﬁ<k 8103

This implies that the meta-reduction’s input ¢¢ yields the same key K if g¢ = g%°
and hence equality for the PRF value. Yet, it yields a random value if g€ is random
(since the exponent x’ay, + v’ does not vanish). In the latter case, since the
value ¢¢ is at no point used in the simulation before the reduction outputs y;,
the probability that y; predicts PRF(K, 1) for the fresh random key, is negligible.
This final step in the argument can be formalized straightforwardly.

Assume next that, besides the correct prediction of index k, we have e = 1
and az’ay + y'Br = 0mod q. Then, since ax’ay + v'Bx + 27, # 0 mod g, we
must have that z7y; # 0 mod ¢ and therefore also z'y’v; # 0 mod g for d = 0
resp. z'vx # 0mod ¢ for d = 1. The same argument as in the previous case
applies now. Namely, for ¢g¢ = ¢%® the meta-reduction computes the expected
key, whereas for random ¢¢ the contribution to the computed value K is for a non-
zero exponent, such that equality for the PRF value only holds with negligible
probability.

Putting the pieces together, for ¢¢ = ¢% our algorithm correctly outputs
0 if the reduction uses the adversary’s help (with non-negligible probability
Prob [useless|), if the prediction k is correct (with non-negligible probability

ﬁ), and if the insertion strategy is correct (with probability at least %) Let

1 JE—
€(A) > —— - Prob | useless
2q() : ]
denote the non-negligible probability that the meta-reduction outputs 0 early.
It also outputs 0 with probability % in any other case, such that the probability
of outputting 0 for g¢ = ¢ is at least

1 1 e

6()\)+2~(1 e(N)) > 5t 5
In case that ¢¢ is random, our meta-reduction only outputs 0 if the PRF value
matches y; for the random key K, or if the final randomly chosen bit equals 0.
The probability of this happening is only negligibly larger than % This conversely
means that the meta-reduction correctly outputs 1 in this case with probability
at least 2 — negl()) for some negligible function negl(\).

Overall, the probability of distinguishing the cases is at least

%. (;Jre(;)) +;.(;—negl()\)) > %+%— neg;m,
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which is non-negligibly larger than % for non-negligible €(\).

6 PRF-ODH Security of HMAC

In this section we briefly discuss the PRF-ODH security of HMAC [25], aug-
menting previous results on the PRF security of HMAC [11,27,5]. We show that
HMAC(K, X) as well as its dual-PRF [3] usage HMAC(X, K), as encountered in
TLS 1.3, are mmPRF-ODH secure, which is our strongest notion of PRF-ODH
security. For a complete treatment see the full version.

Recall that HMAC is usually based on a Merkle-Damgard hash function H,
using a compression function h : {0,1}¢ x {0,1}* — {0, 1}¢. The function HMAC
is then defined as

HMAC(K, X) := H(K & opad||H (K @ ipad|| X)),

for key K € {0,1}® and label X, HMAC, where opad and ipad are fixed (distinct)
constants in {0,1}°. In terms of the iterated compression function we have

HMAC(K, X) = h*(IV, K & opad||h*(IV, K @ ipad|| X ||padding)||padding).

Keys which are shorter than b bits are padded first, and longer keys K are first
hashed down to H(K) € {0,1}¢ and then padded.

In the full version we show the following security property of HMAC, inde-
pendently of whether the key K € G is longer or shorter than the block length b:

Theorem 16. Assume that the underlying compression function h : {0,1}¢ x
{0,1}* — {0,1}¢ of HMAC is a random oracle. Then HMAC is mmPRF-ODH-
secure under the StDH assumption. More precisely, for any efficient adversary A
against the mmPRF-ODH security of HMAC, there exists an efficient algorithm
B such that

Advpmae 0P < \/ AdVER! + (gro + (qopH, + goph, ) - fopr + 1) -27°

where q with the respective index denotes the maximal number of the accord-
ing oracle queries, and Lopn the maximal number of oracle calls to h in each
evaluation of any ODH oracle call.

As mentioned earlier, one specific use case of the PRF-ODH assumption arises
in the setting of TLS 1.3. Here, the HKDF scheme [27,28] is adapted for key
derivation. In particular, the function HKDF.Extract is used to derive an internal
key K’ as

K' < HKDF.Extract(X, K) := HMAC(X, K),

where an adversarially known value X is used as the HMAC key while the secret
randomness source in the form of a DH shared secret K = ¢g" is used as the
label. At a first glance, this swapping of inputs may seem odd. However, the
specified purpose of HKDF.Extract is to extract uniform randomness from its
second component.
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One way to prove that K’ is indeed a random key (as long as g“¥ is not re-

vealed to the adversary) is to model HKDF.Extract(X, -) as a random oracle. An
alternative approach is pursued in [15,16,18] where the authors prove the state-
ment under the assumption that HKDF.Extract(X TS, IKM) = HMAC(XTS, IKM)
is PRF-ODH secure when understood as a PRF keyed with IKM € G (i.e.,
when the key is the second input). In this light, it is beneficial to show that
HMAC(X, K) remains PRF-ODH secure for key K € G and X € {0,1}*.3 For-
tunately, our general treatment of HMAC(K, X) in Theorem 16 with arbitrar-
ily long keys allows us to conclude the analogous result for HMAC(X, K) with
swapped key and label. This is formally stated in the full version.

In recent developments initiated by the NIST hash function competition
it has been established that sponge-based constructions can be used to build
cryptographic hash functions. We are confident that the proof of Theorem 16 can
be adapted to achieve the same result for HMAC if the underlying cryptographic
hash function H is replaced by a sponge-based construction such as SHA-3 with
the random permutation 7 modeled as a random oracle.* This proof can also
be established along the lines of Bertoni et al. [7] who provide results showing
that the sponge construction is indifferentiable from a random oracle when being
used with a random transformation or a random permutation.

7 Conclusion

To the best of our knowledge, this is the first systematic study of the relations
between different variants of the PRF-ODH assumption which is prominently be-
ing used in the realm of analyzing major real-world key exchange protocols. We
provide a generic definition of the PRF-ODH assumption subsuming those differ-
ent variants and show separations between most of the variants. Our results give
strong indications that instantiating the PRF-ODH assumption without relying
on the random oracle methodology is a challenging task, even though it can be
formalized in the standard model. In particular, we show that it is implausi-
ble to instantiate the assumption in the standard model via algebraic black-box
reductions to DDH-augmented problems.

Despite our negative result, we emphasize that using the PRF-ODH assump-
tion still provides some advantage over the StDH assumption in the random
oracle model. Namely, it supports a modular approach to proving key exchange
protocols to be secure, shifting the heavy machinery of random-oracle reductions
to StDH in the context of complex key exchange protocols to a much simpler
assumption. As the PRF-ODH naturally appears in such protocols and enables
simpler proofs, it is still worthwhile to use the assumption directly.

3 Though formally defined for arbitrary length, recall that the minimal recommended
length is ¢ bits

4 SHA-3 is part of the Keccak sponge function family [6]. It has been standardized in
the FIPS Publication 202 [34], wherein it is explicitly approved for usage in HMAC.
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