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Abstract. Substitution-Permutation Networks (SPNs) refer to a family
of constructions which build a wn-bit block cipher from n-bit public
permutations (often called S-boxes), which alternate keyless and “local”
substitution steps utilizing such S-boxes, with keyed and “global” permu-
tation steps which are non-cryptographic. Many widely deployed block
ciphers are constructed based on the SPNs, but there are essentially no
provable-security results about SPNs.
In this work, we initiate a comprehensive study of the provable security

of SPNs as (possibly tweakable) wn-bit block ciphers, when the underlying
n-bit permutation is modeled as a public random permutation. When the
permutation step is linear (which is the case for most existing designs),
we show that 3 SPN rounds are necessary and sufficient for security. On
the other hand, even 1-round SPNs can be secure when non-linearity
is allowed. Moreover, 2-round non-linear SPNs can achieve “beyond-
birthday” (up to 22n/3 adversarial queries) security, and, as the number
of non-linear rounds increases, our bounds are meaningful for the number
of queries approaching 2n. Finally, our non-linear SPNs can be made
tweakable by incorporating the tweak into the permutation layer, and
provide good multi-user security.
As an application, our construction can turn two public n-bit permuta-

tions (or fixed-key block ciphers) into a tweakable block cipher working
on wn-bit inputs, 6n-bit key and an n-bit tweak (for any w ≥ 2); the
tweakable block cipher provides security up to 22n/3 adversarial queries
in the random permutation model, while only requiring w calls to each
permutation, and 3w field multiplications for each wn-bit input.

Keywords: substitution-permutation networks, tweakable block ciphers, domain
extension of block ciphers, beyond-birthday-bound security

1 Introduction

Substitution-Permutation Networks. Modern block ciphers are gener-
ally constructed using two main paradigms [KL15]: Feistel networks [Fei73] or



substitution-permutation networks (SPNs) [Sha49, Fei73]. Examples of block
ciphers based on Feistel networks include DES, FEAL, MISTY and KASUMI;
block ciphers based on SPNs include AES, Serpent, and PRESENT. These two
approaches share the same goal: namely, to extend a “pseudorandom object” on
a small domain to a (keyed) pseudorandom permutation on a larger domain
by repeating a few, relatively simple operations several times across multiple
rounds. Simplifying somewhat, Feistel networks begin with a keyed pseudoran-
dom function on n-bit inputs and extend this to give a keyed pseudorandom
permutation on 2n-bit inputs. On the other hand, SPNs start with one or more
public “random permutations” on n-bit inputs (called S-boxes) and extend them
to give a keyed pseudorandom permutation on wn-bit inputs for some w, by
iterating the following steps:

1. Substitution step: break down the wn-bit state into w disjoint n-bit blocks,
and compute an S-box on each n-bit block;

2. Permutation step: apply a non-cryptographic, keyed permutation to the whole
wn-bit state (which is also applied to the plaintext before the first round).

Proving the security of a concrete block cipher unconditionally is currently
beyond our capabilities. Thus, the usual approach is to prove that the high-
level structure is sound in a relevant security model. For Feistel networks, a
substantial line of work, starting with Luby and Rackoff’s seminal work [LR88],
and culminating with Patarin’s results [Pat03, Pat04], proves optimal security
with a sufficient number of rounds. Numerous other articles [Pat10, HR10, HKT11,
Tes14, CHK+16] study the security of (variants of) Feistel networks in various
security models. In contrast, it is somewhat surprising that there are almost no
results about provable security of SPNs (see below.) Here, we address this gap
and explore conditions under which SPNs can be proven secure.

Domain Extension of Block Ciphers. Block ciphers following the SPNs
typically rely on very small S-boxes (e.g. AES uses an 8-bit S-box). However, it
is also possible to use a larger domain block cipher with a fixed key (which has
non-trivial efficiency gains and avoid related key attacks) as “S-box” in order to
extend the domain of the underlying block cipher, or to use a larger dedicated
permutation (e.g., Keccak permutation [BDPA09] or with Gimli [BKL+17]), in
order to directly obtain a “wide” block cipher. From this point of view, the
substitution-permutation networks can also be viewed as enciphering modes of
operation (of a fixed input length), in which the length n of the S-box is not
necessarily small. Such enciphering modes of operations have applications to disk
encryption that protects the confidentiality of data stored on a sector-addressable
device, such as a hard disk. In this scenario, the disk is divided into several sectors,
and each sector, viewed as a wide block, should be encrypted and decrypted
independently of each other. Non-linear 1-round SPNs with secret S-boxes have
already been used to provide domain extension for block ciphers [CS06, Hal07].
These constructions provide the birthday bound security, while this level of
security might not be desirable for an environment where stronger security is
required. One of our results will address this limitation.
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1.1 Our Contribution

We analyze SPNs in the standard sense as a strong pseudorandom permuta-
tion [LR88] (i.e., against adaptive chosen-plaintext and chosen-ciphertext attacks).

Linear SPNs. We first characterize the security of linear SPNs, where the
permutation layer is a linear function (over GF (2n), where n is the size of the
S-box) of the current wn-bit round key and the current wn-bit state. Indeed,
most current SPN-based block ciphers (e.g., AES, Serpent, PRESENT, etc.)
use linear permutation step, which involves a simple key-mixing step followed
by an invertible linear transformation. For this widely used setting we give a
general against any 2-round linear SPNs with w ≥ 2.8 Complementing this attack,
we show that a 3-round linear SPNs are secure, for any w, if the keyed linear
permutations satisfy some very mild technical requirements. This result critically
uses the H-coefficients technique [Pat08, CS14].

Non-Linear SPNs. In an effort to reduce the number of rounds (and get other
benefits we explain below), we then turn our attention to non-linear SPNs, where
the permutation step does not have to be linear (although must remain efficient
and “non-cryptographic”). Here we show that even a 1-round SPN can be secure,
if appropriate keyed permutations are used. We identify a combinatorial property
on the permutations — which we term blockwise universality — that suffices for
security in this case, and then study the efficiency of constructing permutations
satisfying this property. Specifically, we show a construction of a satisfactory
permutation with n-bit keys (but having high degree), and another construction
with longer keys but having degree 3.

We then show that, by using such blockwise independent permutations, the
security of resulting SPNs increases when we increase the number of rounds:
while 1 round already achieves “birthday security”, as our main technical result
we show that 2-round non-linear SPNs (with independent S-boxes and keys in
different rounds) achieves “beyond-birthday” security (for up to 22n/3 queries).
This result uses the refinement of the H-coefficient technique due to [HT16]. We
also give an asymptotic analysis of non-linear SPNs built from blockwise universal
permutations using the coupling technique of [MRS09, HR10]. In particular, for
r = 2s we prove that r-round SPNs are secure as long as the number of adversarial
queries is well below 2sn/(s+1). Thus, as r grows, our bounds tend towards optimal
2n security.

As an additional benefit of this setting, we show that the blockwise universal
permutations can be efficiently tweaked, meaning that our non-linear SPN con-
structions yield tweakable block ciphers [LRW11], which is important for some
settings. Finally, we analyze our non-linear SPNs in the multi-user setting using
the point-wise proximity technique of [HT16].

8 Even a 1-round linear SPN can be secure if w = 1, since this corresponds to the
famous Even-Mansour cipher [EM97].
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Application to Wide Tweakable Block Ciphers. Besides providing
theoretical insights on SPN-based block ciphers, our results also have a practical
interest in the context of domain extension for block ciphers and permutation-
based cryptography. For example, if our construction is instantiated with two
n-bit permutations and a tweakable permutation TBPE in the permutation
layer (as defined in Section 2.2), then we can build a wide tweakable block cipher
with key space {0, 1}6n, tweak space {0, 1}n and message space {0, 1}wn for any
integer w ≥ 2. This tweakable block cipher requires w calls to each permutation
and 3w field multiplications for each encryption/decryption call. The multi-user
advantage of any adversary is shown to be small as long as the number of its
queries is well below 22n/3. This means that a 192 bit (resp. 384 bit) permutation
or block cipher is sufficient to get a provably secure mode of operation as long
as the number of adversarial queries is small in front of 2128 (resp. 2256). As
far as we know, this is the first construction for domain extension of a block
cipher/permutation that enjoys beyond birthday-bound security.

Of course, to instantiate this construction we would need a good public
permutation with large domain size n. As mentioned earlier, we could either use a
larger domain block cipher with a fixed key, or use a larger dedicated permutation
on larger domain, such as Keccak permutation [BDPA09] or Gimli [BKL+17].

Open Problems. We conjecture that r-round non-linear SPNs should actually
be enough to prove security up to O(2rn/(r+1)) adversarial queries. Proving it
using combinatorial techniques seems very challenging and we leave it as an
interesting open problem. It is also interesting if we can prove beyond-birthday
security bounds for linear SPNs (with 3 or more rounds), as these SPNs appear
to be the ones used in practice. More generally, it would be great to prove tight
security bounds and matching attacks for r-round linear and non-linear SPNs.

Implications for small block size. While our results are directly meaningful
when the length n of public S-boxes in at least security parameter (e.g., for building
wide tweakable block ciphers), our bounds are too weak for regular SPN-based
ciphers, such as AES, which use very low values of n for their S-boxes. This “2n
provable barrier” is inherent using our current modeling, where the S-box of
size 2n is providing the only source of cryptographic hardness. More generally,
establishing a sound theory of building block ciphers from small S-boxes is one of
the biggest and most important open problems in symmetric-key cryptography.
We hope that our structural results for reduced-round SPN ciphers will be useful
in establishing such theory, despite not crossing the fundamental “2n barrier”
mentioned above.

1.2 Related Work

There are only a few prior papers looking at provable security of SPNs. The vast
majority of such work analyzes the case of secret, key-dependent S-boxes (rather
than public S-boxes as we consider here), and so we survey that work first.
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SPNs with secret S-boxes. Naor and Reingold [NR99] prove security for
what can be viewed as a non-linear, 1-round SPN. Their ideas were further
developed, in the context of domain extension for block ciphers (see further
discussion below), by Chakraborty and Sarkar [CS06] and Halevi [Hal07].

Iwata and Kurosawa [IK00] analyze SPNs in which the linear permutation
step is based on the specific permutations used in the block cipher Serpent. They
show an attack against 2-round SPNs of this form, and prove security for 3-round
SPNs against non-adaptive adversaries. In addition to the fact that we consider
public S-boxes, our linear SPN model considers generic linear permutations and
we prove security against adaptive attackers.

Miles and Viola [MV15] study SPNs from a complexity-theoretic viewpoint.
Two of their results are relevant here. First, they analyze the security of linear
SPNs using S-boxes that are not necessarily injective (so the resulting keyed
functions are not, in general, invertible). They show that r-round SPNs of this
type (for r ≥ 2) are secure against chosen-plaintext attacks. (In contrast, our
results show that 2-round, linear SPNs are not secure against a combination of
chosen-plaintext and chosen-ciphertext attacks when w ≥ 2.) They also analyze
SPNs based on a concrete set of S-boxes, but in this case they only show security
against linear/differential attacks (a form of chosen-plaintext attack), rather than
all possible attacks, and only when the number of rounds is r = Θ(logn).

SPNs with public S-boxes. A difference between our work and all the work
discussed above is that we treat the S-boxes as public. We are aware of only
one prior work analyzing the provable security of SPNs in this setting. Dodis
et al. [DSSL16] recently studied the indifferentiability [MRH04] of confusion-
diffusion networks, which can be viewed as unkeyed SPNs. One could translate
their results to the keyed setting, but that would require using multiple, key-
dependent S-boxes (rather than a fixed, public S-box) and so would not imply
our results. We remark further that they show positive results only for 5 rounds
and above.

As observed earlier, the Even-Mansour construction [EM97] of a (keyed)
pseudorandom permutation from a public random permutation can be viewed
as a 1-round, linear SPN in the degenerate case where w = 1 (i.e., no domain
extension) and all round permutations are instantiated using simple key mixing.
Security of the 1-round Even-Mansour construction against adaptive chosen-
plaintext/ciphertext attacks, using independent keys for the initial and final
key mixing, was shown in the original paper [EM97]. Our positive results imply
security of the 1-round Even-Mansour construction (with similar concrete security
bounds) as a special case. The r-round generalization of the Even-Mansour cipher
has seen a lot of interest over the years, culminating with [CS14, HT16] where it
was proved that the r-round Even-Mansour construction is secure up to roughly
2rn/(r+1) adversarial queries, when the public S-boxes are uniformly random
and independent permutations and the round keys are independent. Chen et
al. [CLL+14] also proved that several minimized variants of the 2-round Even-
Mansour construction are also secure up to roughly 22n/3 adversarial queries.
None of these results extend to the setting w > 1 considered in this work.
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Cryptanalysis of SPNs. Researchers have also explored cryptanalytic attacks
on generic SPNs [BS10, BBK14, DDKL, BK]. These works generally consider
a model of SPNs in which round permutations are secret, random (invertible)
linear transformations, and S-boxes may be secret as well; this makes the attacks
stronger but positive results weaker. In many cases the complexities of the attacks
are exponential in n (though still faster than a brute-force search for the key), and
hence do not rule out asymptotic security results. On the positive side, Biryukov
et al. [BBK14] show that 2-round SPNs (of the stronger form just mentioned) are
secure against some specific types of attacks, but other attacks on such schemes
have recently been identified [DDKL].

Attacks. Attacks due to Joux [Jou03] and to Halevi and Rogaway [HR04],
originally developed in the afore-mentioned context of block cipher domain exten-
sion (or more exactly, in the construction of tweakable block ciphers with large
domains from standard block ciphers with “small” domains) can be translated to
the context of linear SPNs as well. Specifically, these attacks imply that linear
2-round SPNs of width w ≥ 2 are insecure, as long as the underlying field has
characteristic 2.9

Domain extension of block ciphers. Non-linear, 1-round SPNs with secret
S-boxes have been used for domain extension of block ciphers before [CS06, Hal07].
Other approaches for domain extension, not relying on (pure) SPNs, have also
been considered [BD99, HR03, HR04, MF07, CDMS10]. To the best of our
knowledge, none of these results achieve beyond-birthday security.

Random Permutation Based Tweakable Block Ciphers. Our tweak-
able SPNs can be viewed as tweakable block ciphers based on public random
permutations. It is easy to see that T : (h, t, x) 7→ x ⊕ h(t) is (δ, δ′)-blockwise
universal (as defined in Section 2) if h is chosen from a δ′-almost uniform and
δ-almost XOR-universal hash family. So with this permutation layer (and with
w = 1), we obtain the security bound for the Tweakable Even-Mansour con-
structions [CLS15] in the multi-user setting. In this line of research, a number of
efficient constructions have been proposed [GJMN16, Men16].

2 Preliminaries

Throughout this work, we fix positive integers w and n; an element x in {0, 1}wn
can be viewed as a concatenation of w blocks, each of which is of length n. The
i-th block of this representation will be denoted xi for i = 1, . . . , w, so we have

x = x1||x2|| · · · ||xw,

sometimes written as x = (x1, . . . , xw).
9 Indeed, a technical difference with the attack presented here is that our attack does
not require a finite field of characteristic 2. Because of this difference, our attack ends
up having little (if anything) in common with the attacks of Joux and Halevi-Rogaway.
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For a set R and an integer s ≥ 1, R∗s denotes the set of all sequences that
consists of s pairwise distinct elements of R. For any integer r such that r ≥ s,
we will write (r)s = r!/(r− s)!. If |R| = r, then (r)s becomes the size of R∗s. The
sets of non-negative integers and non-negative real numbers are denoted N and
R≥0, respectively. The following inequality will be used in our security proof.

Lemma 1. Let m be an integer and let x be a real number such that m ≥ 2 and
−1 ≤ x < 1

m−1 . Then one has

(1 + x)m ≤ 1 + mx

1− (m− 1)x.

2.1 Tweakable Substitution-Permutation Networks

All the notions below are defined for the general tweak set T ; however, the
standard “non-tweakable” setting is a special case of the definitions below when
|T | = 1.
Tweakable Permutations. For an integer m ≥ 1, the set of all permutations
on {0, 1}m will be denoted Perm(m). A tweakable permutation with tweak space
T and message space X is a mapping P̃ : T × X → X such that, for any tweak
t ∈ T ,

x 7→ P̃ (t, x)

is a permutation of X . The set of all tweakable permutations with tweak space
T and message space {0, 1}m will be denoted P̃erm(T ,m).

A keyed tweakable permutation with key space K, tweak space T and message
space X is a mapping T : K × T × X → X such that, for any key k ∈ K,

(t, x) 7→ T (k, t, x)

is a tweakable permutation with tweak space T and message space X . We
will sometimes write T (k, t, x) as Tk(t, x) or Tk,t(x). For an integer s ≥ 1,
let t = (t1, . . . , ts) ∈ T s, and let x = (x1, . . . , xs) ∈ (X )∗s. We will write
(T (k, ti, xi))1≤i≤s as Tk(t,x) or Tk,t(x).
Tweakable SPNs. For fixed parameters w and n, let

T : K × T × {0, 1}wn −→ {0, 1}wn

be a keyed tweakable permutation with key space K, tweak space T and message
space {0, 1}wn.

For a fixed number of rounds r, an r-round substitution-permutation net-
work (SPN) based on T , denoted SPT , takes as input a set of n-bit permutations
S = (S1, . . . , Sr), and defines a keyed tweakable permutation SPT [S] operating on
wn-bit blocks with key space Kr+1 and tweak space T : on input x ∈ {0, 1}wn, key
k = (k0, k1, . . . , kr) ∈ Kr+1 and tweak t ∈ T , the output of SPT [S] is computed
as follows (see also Fig. 1).
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Fig. 1. A 2-round tweakable SPN with w = 4. The input and output blocks of the SPN
are represented as x = x1||x2||x3||x4 and y = y1||y2||y3||y4, respectively.

y ← x
for i← 1 to r do

y ← Tki−1,t(y)
Break y = y1|| · · · ||yw into n-bit blocks
y ← Si(y1)|| · · · ||Si(yw)

y ← Tkr,t(y)
return y

Remark 1. Both of the permutation layer T and the entire construction SPT can
be viewed as keyed tweakable permutations. However, T will typically be built
upon non-cryptographic operations such as filed multiplications, while SPT are
based on S-boxes which are modeled as public random permutations.

Blockwise Universal Tweakable Permutations. A keyed tweakable per-
mutation

T : K × T × {0, 1}wn −→ {0, 1}wn

is called (δ, δ′)-blockwise universal if the following hold.

1. For all distinct (t, x, i), (t′, x′, i′) ∈ T × {0, 1}wn × {1, . . . , w}, we have

Pr
[
k

$← K : Tk,t(x)i = Tk,t′(x′)i′
]
≤ δ.

2. For all (t, x, i, c) ∈ T × {0, 1}wn × {1, . . . , w} × {0, 1}n, we have

Pr
[
k

$← K : Tk,t(x)i = c
]
≤ δ′.

Since each pair of key k ∈ K and tweak t ∈ T defines a permutation Tk,t on
{0, 1}wn, one can define a keyed tweakable permutation

T−1 : K × T × {0, 1}wn −→ {0, 1}wn
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such that T−1(k, t, x) = (Tk,t)−1(x). If T and T−1 are both (δ, δ′)-blockwise
universal, then T is called (δ, δ′)-super blockwise universal.

2.2 An Efficient Super Blockwise Tweakable Universal Permutation
In this section, we show that an efficient xor-blockwise universal construction,
dubbed BPE, proposed by Halevi [Hal07] can be made tweakable with a slight
modification. Other constructions of (tweakable) blockwise universal permutations
can be found in [DKS+17] some of which support tweaks. We present BPE below
and will present the remaining constructions in the full version.

Assuming 2n ≥ w + 3, let F denote a finite field with 2n elements. For each
k ∈ F, define a w × w matrix over F, Mk =def Ak + I, where I is the identity
matrix and

Ak =


k k2 kw

k k2 kw

. . .

k k2 kw

 .
Precisely, (Ak)i,j = kj for 1 ≤ i, j ≤ w. Let z be a primitive element of F, and let

K =
{
k ∈ F :

w∑
i=0

ki 6= 0
}
× F.

Then BPE is defined as follows.

BPE : K × {0, 1}wn −→ {0, 1}wn

((k, k′), x) 7−→Mkx⊕ ak′ ,

where we identify x ∈ {0, 1}wn with a w-dimensional column vector over F, and

ak′ =


k′

zk′

...
zw−1k′

 .
It is easy to check that Mk is invertible if

∑w
i=0 k

i 6= 0; precisely,

M−1
k = I ⊕ Ak

k∗
,

where k∗ =def ∑w
i=0 k

i. For any (k, k′) ∈ K, BPEk,k′ is also invertible with

BPE−1
k,k′(x) = M−1

k (x⊕ ak′)

for any x ∈ {0, 1}wn. Halevi [Hal07] also proved that for any pair of distinct
(x, i), (x′, i′) ∈ {0, 1}wn × {1, . . . , w} and ∆ ∈ {0, 1}n,

Pr
[
(k, k′) $← K : BPEk,k′(x)i ⊕ BPEk,k′(x′)i′ = ∆

]
≤ w

2n − w,

Pr
[
(k, k′) $← K : BPE−1

k,k′(x)i ⊕ BPE−1
k,k′(x

′)i′ = ∆
]
≤ w

2n − w. (1)
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For a fixed (x, i, c) ∈ {0, 1}wn × {1, . . . , w} × {0, 1}n, BPEk,k′(x)i = c implies
that

w∑
j=1

xjk
j ⊕ xi ⊕ zi−1k′ = c,

which holds with probability 1
2n over a random choice of (k, k′) ∈ K. On the

other hand, BPE−1
k,k′(x)i = c implies thatzi−1 ⊕ 1

k∗

w∑
j=1

zj−1kj

 k′ ⊕

c⊕ xi ⊕ 1
k∗

w∑
j=1

xjk
j

 = 0.

This equation holds with probability at most w
2n−w + 1

2n . To summarize, we have

Pr
[
(k, k′) $← K : BPEk,k′(x)i = c

]
≤ 1

2n ,

Pr
[
(k, k′) $← K : BPE−1

k,k′(x)i = c
]
≤ w + 1

2n − w. (2)

Now we define a tweakable variant of BPE, dubbed TBPE (for Tweakable
Blockwise Polynomial-Evaluation), with tweak space T = {0, 1}n as follows.

TBPE : K × T × {0, 1}wn −→ {0, 1}wn

((k, k′), t, x) 7−→Mk(x⊕ bt)⊕ ak′ ⊕ bt,

where bt is the column vector whose entries are all t, namely,

bt =


t
t
...
t

 .
Since each pair of key (k, k′) ∈ K and tweak t ∈ T defines a permutation
TBPEk,k′,t on {0, 1}wn, one can define a keyed tweakable permutation

TBPE−1 : K × T × {0, 1}wn −→ {0, 1}wn.

Then we can prove the following lemma.

Lemma 2. Let TBPE be the keyed tweakable permutation as defined above, and
let TBPE−1 be its inverse.

1. For all distinct (t, x, i), (t′, x′, i′) ∈ T × {0, 1}wn × {1, . . . , w}, we have

Pr
[
(k, k′) $← K : TBPEk,k′,t(x)i = TBPEk,k′,t′(x′)i′

]
≤ w

2n − w.

2. For all (t, x, i, c) ∈ T × {0, 1}wn × {1, . . . , w} × {0, 1}n, we have

Pr
[
(k, k′) $← K : TBPEk,k′,t(x)i = c

]
≤ 1

2n .
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3. For all distinct (t, x, i), (t′, x′, i′) ∈ T × {0, 1}wn × {1, . . . , w}, we have

Pr
[
(k, k′) $← K : TBPE−1

k,k′,t(x)i = TBPE−1
k,k′,t′(x

′)i′
]
≤ w

2n − w.

4. For all (t, x, i, c) ∈ T × {0, 1}wn × {1, . . . , w} × {0, 1}n, we have

Pr
[
(k, k′) $← K : TBPE−1

k,k′,t(x)i = c
]
≤ w + 1

2n − w.

Proof. For distinct (t, x, i) and (t′, x′, i′), we have

TBPEk,k′,t(x)i⊕TBPEk,k′,t′(x′)i′ = BPEk,k′(x⊕ bt)i⊕BPEk,k′(x′⊕ bt′)i′ ⊕ t⊕ t′.

If (x⊕ bt, i) 6= (x′⊕ bt′ , i′), then BPEk,k′(x⊕ bt)i⊕BPEk,k′(x′⊕ bt′)i′ ⊕ t⊕ t′ = 0
with probability at most w

2n−w by (1). If (x⊕ bt, i) = (x′ ⊕ bt′ , i′), then it implies
t 6= t′, and hence BPEk,k′(x⊕ bt)i ⊕ BPEk,k′(x′ ⊕ bt′)i′ ⊕ t⊕ t′ = t⊕ t′ 6= 0.

For a fixed (t, x, i, c), TBPEk,k′,t(x)i = c if and only if BPEk,k′(x⊕bt)i = c⊕ t,
and this equation holds with probability at most 1

2n . The remaining properties
are proved similarly. ut

From Lemma 2, it follows that TBPE is
(

w
2n−w ,

w+1
2n−w

)
-super blockwise univer-

sal. Except constant multiplications zik′, i = 1, . . . , w − 1, (which also can be
precomputed), each evaluation of TBPEk,k′,t(x) requires w field multiplications.

2.3 Indistinguishability in the Multi-user Setting

Let SPT [S] be an r-round SPN based on a set of S-boxes S = (S1, . . . , Sr) and a
keyed tweakable permutation T with key space K and tweak space T . So SPT [S]
becomes a keyed tweakable permutation on {0, 1}wn with key space Kr+1 and
tweak space T .

In the multi-user setting, let ` denote the number of users. In the real
world, ` secret keys k1, . . .k` ∈ Kr+1 are chosen independently at random.
A set of independent S-boxes S = (S1, . . . , Sr) is also randomly chosen from
Perm(n)r. A distinguisher D is given oracle access to (SPTk1

[S], . . . ,SPTk` [S]) as
well as S = (S1, . . . , Sr). In the ideal world, D is given a set of independent
random tweakable permutations P̃ = (P̃1, . . . , P̃`) ∈ P̃erm(T , wn)` instead of
(SPTk1

[S], . . . ,SPTk` [S]). However, oracle access to S = (S1, . . . , Sr) is still allowed
in this world.

The adversarial goal is to tell apart the two worlds (SPTk1
[S], . . . ,SPTk` [S],S)

and (P̃1, . . . , P̃`,S) by adaptively making forward and backward queries to each
of the constructions and the S-boxes. Formally, D’s distinguishing advantage is
defined by

Advmu
SPT (D) = Pr

[
P̃1, . . . , P̃`

$← P̃erm(T , wn),S $← Perm(n)r : 1← DS,P̃1,...,P̃`
]

− Pr
[
k1, . . . ,k`

$← Kr+1,S $← Perm(n)r : 1← DS,SPTk1
[S],...,SPTk` [S]

]
.
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For p, q > 0, we define

AdvSPT (p, q) = max
D

AdvSPT (D)

where the maximum is taken over all adversaries D making at most p queries to
each of the S-boxes and at most q queries to the outer tweakable permutations.
In the single-user setting with ` = 1, Advmu

SPT (D) and Advmu
SPT (p, q) will also be

written as Advsu
SPT (D) and Advsu

SPT (p, q), respectively.
H-coefficient Technique. Suppose that a distinguisher D makes p queries to
each of the S-boxes, and total q queries to the construction oracles. The queries
made to the j-th construction oracle, denoted Cj , are recorded in a query history

QCj = (j, tj,i, xj,i, yj,i)1≤i≤qj

for j = 1, . . . , `, where qj is the number of queries made to Cj and (j, tj,i, xj,i, yj,i)
represents the evaluation obtained by the i-th query to Cj .10 So according to the
instantiation, it implies either SPTkj [S](tj,i, xj,i) = yj,i or P̃j(tj,i, xj,i) = yj,i. Let

QC = QC1 ∪ · · · ∪ QC` .

For j = 1, . . . , r, the queries made to Sj are recorded in a query history

QSj = (j, uj,i, vj,i)1≤i≤p,

where (j, uj,i, vj,i) represents the evaluation Sj(uj,i) = vj,i obtained by the i-th
query to Sj . Let

QS = QS1 ∪ · · · ∪ QSr .
Then the pair of query histories

τ = (QC ,QS)

will be called the transcript of the attack: it contains all the information that
D has obtained at the end of the attack. In this work, we will only consider
information theoretic distinguishers. Therefore we can assume that a distinguisher
is deterministic without making any redundant query, and hence the output of
D can be regarded as a function of τ , denoted D(τ) or D(QC ,QS).

Fix a transcript τ = (QC ,QS), a key k ∈ Kr+1, a tweakable permutation
P̃ ∈ P̃erm(T , wn), a set of S-boxes S = (S1, . . . , Sr) ∈ Perm(n)r and j ∈
{1, . . . , `}: if Sj(uj,i) = vj,i for every i = 1, . . . , p, then we will write Sj `
QSj . We will write S ` QS if Sj ` QSj for every j = 1, . . . , r. Similarly, if
SPTk [S](tj,i, xj,i) = yj,i (resp. P̃ (tj,i, xj,i) = yj,i) for every i = 1, . . . , qj , then we
will write SPTk [S] ` QCj (resp. P̃ ` QCj ).

Let k1, . . . ,k` ∈ Kr+1 and P̃ = (P̃1, . . . P̃`) ∈ P̃erm(T , wn)`. If SPTkj [S] `
QCj (resp. P̃j ` QCj ) for every j = 1, . . . , `, then we will write (SPTkj [S])j=1,...,` `
QC (resp. P̃ ` QC).
10 The index j in a construction query can be dropped out in the single-user setting.
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If there exist P̃ ∈ P̃erm(T , wn)` and S ∈ Perm(n)w that outputs τ at the
end of the interaction with D, then we will call the transcript τ attainable. So
for any attainable transcript τ = (QC ,QS), there exist P̃ ∈ P̃erm(T , wn)` and
S ∈ Perm(n)w such that P̃ ` QC and S ` QS . For an attainable transcript
τ = (QC ,QS), let

p1(QC |QS) = Pr
[
P̃ $← P̃erm(T , wn)`,S $← Perm(n)r : P̃ ` QC |S ` QS

]
,

p2(QC |QS) = Pr
[
k1, . . . ,k`

$← Kr+1,S $← Perm(n)r : (SPTkj [S])j ` QC |S ` QS
]
.

With these definitions, the following lemma, the core of the H-coefficients tech-
nique (without defining “bad” transcripts), will be also used in our security
proof.

Lemma 3. Let ε > 0. Suppose that for any attainable transcript τ = (QC ,QS),

p2(QC |QS) ≥ (1− ε)p1(QC |QS). (3)

Then one has
Advmu

SPT (D) ≤ ε.

The lower bound (3) is called ε-point-wise proximity of the transcript τ =
(QC ,QS). The point-wise proximity of a transcript in the multi-user setting is
guaranteed by the point-wise proximity of (QCj ,QS) for each j = 1, . . . , ` in the
single-user setting. The following lemma is a restatement of Lemma 3 in [HT16].

Lemma 4. Let ε : N× N→ R≥0 be a function such that

1. ε(x, y) + ε(x, z) ≤ ε(x, y + z) for every x, y, z ∈ N,
2. ε(·, z) and ε(z, ·) are non-decreasing functions on N for every z ∈ N.

Suppose that for any distinguisher D in the single-user setting that makes p
primitive queries to each of the underlying S-boxes and makes q construction
queries, and for any attainable transcript τ = (QC ,QS) obtained by D, one has

p2(QC |QS) ≥ (1− ε(p, q))p1(QC |QS).

Then for any distinguisher D in the multi-user setting that makes p primitive
queries to each of the underlying S-boxes and makes total q construction queries,
and for any attainable transcript τ = (QC ,QS) obtained by D, one has

p2(QC |QS) ≥ (1− ε(p+ wq, q))p1(QC |QS).
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2.4 Coupling Technique

Given a finite event space Ω and two probability distributions µ and ν defined on
Ω, the total variation distance between µ and ν, denoted ‖µ− ν‖, is defined as

‖µ− ν‖ = 1
2
∑
x∈Ω
|µ(x)− ν(x)|.

The following definitions are also all equivalent.

‖µ− ν‖ = max
Z⊂Ω
{µ(Z)− ν(Z)} = max

Z⊂Ω
{ν(Z)− µ(Z)} = max

Z⊂Ω
{|µ(Z)− ν(Z)|}.

A coupling of µ and ν is a distribution τ on Ω × Ω such that for all x ∈ Ω,∑
y∈Ω τ(x, y) = µ(x) and for all y ∈ Ω,

∑
x∈Ω τ(x, y) = ν(x). In other words, τ

is a joint distribution whose marginal distributions are respectively µ and ν. We
will use the following two lemmas in our security proof.
Lemma 5. Let µ and ν be probability distributions on a finite event space Ω,
let τ be a coupling of µ and ν, and let (X,Y ) be a random variable sampled
according to distribution τ . Then ‖µ− ν‖ ≤ Pr[X 6= Y ].

Lemma 6. Let Ω be some finite event space and ν be the uniform probability
distribution on Ω. Let µ be a probability distribution on Ω such that ‖µ− ν‖ ≤ ε.
Then there is a set Z ⊂ Ω such that
1. |Z| ≥ (1−

√
ε)|Ω|,

2. µ(x) ≥ (1−
√
ε)ν(x) for every x ∈ Z.

We refer to [LPS12] for the proof of the above two lemmas.

3 Security of Linear SPNs

All the results in this section are for the “non-tweakable” setting (|T | = 1) Hence,
we do not explicitly refer to the tweak in the notation. Further, the results
in this section hold even when a single n-bit permutation S is used, i.e., even
when S1 = . . . = Sr = S and are presented as such. We start by defining linear
(non-tweakable) SPNs.

Definition 1. Keyed permutation T : K × {0, 1}wn −→ {0, 1}wn is linear if

T (k, x) = (Tk · k) + (Tx · x) +∆,

where Tk, Tx ∈ K × {0, 1}wn are linear transformations, Tx is invertible, and
∆ ∈ {0, 1}wn. An SPN is linear if all its round permutations {Tki}ri=0 are linear.

We present an attack showing that 2-round, linear SPNs cannot be secure for
w ≥ 2. The attack is based on one shown by Halevi and Rogaway [HR04] in a
different context (and is a simple application of the boomerang technique [Wag99]);
our contribution here is to observe that the attack is applicable to any 2-round,
linear SPN. The attack relies on the fact that the field F = GF(2n) is of
characteristic 2. This attack and an attack that works for fields of arbitrary
characteristic can be found in [DKS+17].
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3.1 Security of 3-Round, Linear (non-tweakable) SPNs

We now explore conditions under which 3-round, linear SPNs are secure. Recall
that a 3-round SPN has four round permutations {Ti}3

i=0, and without loss of
generality we may assume

Ti(ki, x) =
{
x⊕ ki i ∈ {0, 3}
T ′i · (x⊕ ki) i ∈ {1, 2}

, (4)

where T ′1, T ′2 ∈ Fw×w are invertible linear transformations. We prove that a
3-round, linear SPN is secure so long as (i) T ′1 and T ′−1

2 contain no zero entries
(Miles and Viola [MV15] show that matrices with maximal branch number [Dae95]
satisfy this property), and (ii) round keys k0 and k3 are (individually) uniform.
The proof of this theorem can be found in [DKS+17].

Theorem 1. Assume w > 1. Let SPT be a 3-round, linear (non-tweakable) SPN
with round permutations as in (4) and with distribution K over keys k0, k1, k2, k3.
If k0 and k3 are uniformly distributed and the matrices T ′1, T ′

−1
2 contain no zero

entries, then

Advsu
SPT (p, q) ≤ 5w2q2 + 4wpq

2n − p− 2w + q2

2wn .

A minimal secure (linear) SPN. We proved that a 3-round, linear SPN is
secure if the keys k0 and k3 are individually uniform and T ′1, T ′

−1
2 contain no

0-entries. No assumptions were made about independence of k0, k3, nor were
any assumptions made about the distributions of k1, k2. So the theorem implies
security for the following “minimal” 3-round, linear SPN: Let k0 = k3 = k, where
k is uniform, set k1 = k2 = 0wn, and let T ′1 = T ′2

−1 = T be invertible with no
0-entries. Define keyed permutations

πi(k, x) =


x⊕ k i ∈ {0, 3}
T ′x i = 1
T ′
−1
x i = 2.

(5)

We have:

Corollary 1. Assume w > 1. Let SPT be a 3-round, linear SPN with round
permutations as in (5) and K choosing uniform k0 = k3 and k1 = k2 = 0wn. Then

Advsu
SPT (p, q) ≤ 5w2q2 + 4wpq

2n − p− 2w + q2

2wn .

Reducing key-length. It is in fact sufficient for the wn-bit key k (= k0 = k3) in
Corollary 1 to satisfy the following conditions: informally, for any n-bit constant c
and distinct indices i, i′, (a) k[i] equals c with negligible probability, and (b) the
sum of k[i] and k[i′] equals c with negligible probability. This can be achieved by
choosing a uniform n-bit key k′ and letting k[i] = ai · k′ where ai are distinct
non-zero elements of F. Thus, one can make do with a “master key” of only n
bits, while preserving the same security as in Corollary 1.
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4 Security of Non-Linear SPNs

In this section, we first show that keyed tweakable blockwise universal permu-
tations help construct (non-linear) tweakable SPNs. As a preliminary step, we
show that 1 round is sufficient to obtain this result. However, the security of the
SPN is only up to the birthday attack in this case. Towards obtaining a better
security bound, we show that 2 rounds suffice to go beyond the birthday bound
and in addition, also present multi-user security beyond the birthday bound for
the 2-round tweakable SPN. Finally, we we show that if T is a super blockwise
tweakable universal permutation, then the security of SPT converges to 2n as
the number of rounds r increases.

4.1 Birthday Security of 1-Round SPNs

We show that a tweakable blockwise-universal permutation is useful in construct-
ing non-linear tweakable SPNs. The proof of the theorem is a straightforward
extension of the non-tweakable version found in [DKS+17]. Consider the 1-round
SPN SPT with Tk1 := T−1

k0
where T is a keyed blockwise universal tweakable

permutation.

Theorem 2. Let T be a (δ, δ′)-blockwise universal tweakable permutation. Then
for any integers p and q, one has Advsu

SPT (p, q) ≤ q2w2δ + pqwδ′.

4.2 Beyond-Birthday Security of 2-Round SPNs

In this section, we will prove the following theorem.

Theorem 3. Let δ, δ′ > 0, and let n and w be positive integers such that w ≥ 2.
Let T be a (δ, δ′)-super blockwise universal tweakable permutation. Then for any
integers p and q such that wp+ 3w2q < 2n/2, one has

Advsu
SPT (p, q) ≤ w2q(δ′p+ δwq)(3δ′p+ 3δwq + 2δ′wq) + q2

2wn + q(2wp+ 6w2q)2

22n ,

Advmu
SPT (p, q) ≤ w2q(δ′p+ (δ + δ′)wq)(3δ′p+ 3δwq + 5δ′wq)

+ q2

2wn + q(2wp+ 8w2q)2

22n .

Remark 2. For the sake of simplicity, we assume that the three keyed layers
are actually the same, which is why we require T to be (δ, δ′)-super blockwise
tweakable universal. However, if one looks closely at the proof, only the middle
layer has to be super-blockwise-universal. The first and the last layer only need
to be (δ, δ′)-blockwise universal.

Remark 3. When the S-boxes are modeled as block ciphers using secret keys, the
security bound (in the standard model) is obtained by setting p = 0.

The proof of Theorem 3 relies on the following lemma (with the lower bound
simplified) and on Lemma 3 and Lemma 4.
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Lemma 7. Let p and q be positive integers such that wp + 3w2q < 2n/2, and
let D be a distinguisher in the single-user setting that makes p primitive queries
to each of S1 and S2 and makes q construction queries. Then for any attainable
transcript τ = (QC ,QS), one has

p2(QC |QS)
p1(QC |QS) ≥ 1−w2q(δ′p+δwq)(3δ′p+3δwq+2δ′wq)− q2

2wn −
q(2wp+ 6w2q)2

22n .

Outline of Proof of Lemma 7. Throughout the proof, we will write a
2-round SP construction as

SPT [S]k(t, x) = Tk2,t

(
S
||
2

(
Tk1,t

(
S
||
1 (Tk0,t(x))

)))
,

where S = (S1, S2) is a pair of two public random permutations of {0, 1}n,
k = (k0, k1, k2) ∈ K3 is the key, x ∈ {0, 1}wn is the plaintext, and, for i = 1, 2,

S
||
i : {0, 1}wn → {0, 1}wn

x = x1||x2|| . . . ||xw 7−→ Si(x1)||Si(x2)|| . . . ||Si(xw).

We also fix a distinguisher D as described in the statement and fix an attainable
transcript τ = (QC ,QS) obtained by D. Let

Q(0)
S1

= {(u, v) ∈ {0, 1}n × {0, 1}n : (1, u, v) ∈ QS},

Q(0)
S2

= {(u, v) ∈ {0, 1}n × {0, 1}n : (2, u, v) ∈ QS}

and let

U
(0)
1 = {u1 ∈ {0, 1}n : (u1, v1) ∈ Q(0)

S1
}, V

(0)
1 = {v1 ∈ {0, 1}n : (u1, v1) ∈ Q(0)

S1
},

U
(0)
2 = {u2 ∈ {0, 1}n : (u2, v2) ∈ Q(0)

S2
}, V

(0)
2 = {v2 ∈ {0, 1}n : (u2, v2) ∈ Q(0)

S2
}

denote the domains and ranges of Q(0)
S1

and Q(0)
S2

, respectively.
This type of lemma is usually proved by defining a large enough set of “good”

keys, and then, for each choice of a good key, lower bounding the probability
of observing this transcript, again by lower bounding the number of possible
“intermediate” values. A key is usually said to be good if the adversary cannot use
the transcript to follow the path of computation of the encryption/decryption of
a query up to a contradiction. However, since the S-boxes are used several times
in each round, there will not be enough information in the transcript to allow
such a naive definition. Therefore, instead of summing over the choice of the
key, we will define an extension of the transcript, that will provide the necessary
information, and then sum over every possible good extension.

We will first define what we mean by an extension of the transcript τ . Then we
will define bad extensions and explain the link between good extended transcripts
and the ratio p2(QC |QS)

p1(QC |QS) . Finally, we will show that the number of bad extended
transcripts is small enough in Lemma 8, and then show that the probability to
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obtain any good extension in the real world is sufficiently close to the probability
to obtain τ the ideal world in Lemma 9. We stress that extended transcripts
are completely virtual and are not disclosed to the adversary. They are just an
artificial intermediate step to lower bound the probability to observe transcript
τ in the real world.

Extension of a transcript. We will extend the transcript τ of the attack via
a certain randomized process. We begin with choosing a pair of keys (k0, k2) ∈ K2

uniformly at random. Once these keys have been chosen, some construction
queries will become involved in collisions. A colliding query is defined as a
construction query (t, x, y) ∈ QC such that one of the following conditions holds:

1. there exist an S-box query (1, u, v) ∈ QS and an integer i ∈ {1, . . . , w} such
that Tk0,t(x)i = u;

2. there exist an S-box query (2, u, v) ∈ QS and an integer i ∈ {1, . . . , w} such
that T−1

k2,t
(y)i = v;

3. there exist a construction query (t′, x′, y′) ∈ QC and integers i, j ∈ {1, . . . , w}
such that (t, x, y, i) 6= (t′, x′, y′, j) and Tk0,t(x)i = Tk0,t′(x′)j ;

4. there exist a construction query (t′, x′, y′) ∈ QC and integers i, j ∈ {1, . . . , w}
such that (t, x, y, i) 6= (t′, x′, y′, j) and T−1

k2,t
(y)i = T−1

k2,t′
(y′)j .

We are now going to build a new set Q′S of S-box evaluations that will play
the role of an extension of QS . For each colliding query (t, x, y) ∈ QC , we
will add tuples (1, Tk0(t, x)i, v′)1≤i≤w (if (t, x, y) collides at the input of S1) or
(2, u′, T−1

k2,t
(y)i)1≤i≤w (if (t, x, y) collides at the output of S2) by lazy sampling

v′ = S1(Tk0,t(x)i) or u′ = S−1
2 (T−1

k2,t
(y)i), as long as it has not been determined

by any existing query in QS . We finally choose a key k1 uniformly at random. An
extended transcript of τ will be defined as a tuple τ ′ = (QC ,QS ,Q′S ,k) where
k = (k0, k1, k2). For each collision between a construction query and a primitive
query, or between two construction queries, the extended transcript will contain
enough information to compute a complete round of the evaluation of the SPN.
This will be useful to lower bound the probability to get the transcript τ in the
real world.

Definition of Bad Transcript Extensions. Let

Q(1)
S1

= {(u, v) ∈ {0, 1}n × {0, 1}n : (1, u, v) ∈ QS ∪Q′S}

Q(1)
S2

= {(u, v) ∈ {0, 1}n × {0, 1}n : (2, u, v) ∈ QS ∪Q′S}.

In words, Q(1)
Si

summarizes each constraint that is forced on Si by QS and Q′S .
Let

U1 = {u1 ∈ {0, 1}n : (1, u1, v1) ∈ Q(1)
S1
}, V1 = {v1 ∈ {0, 1}n : (1, u1, v1) ∈ Q(1)

S1
},

U2 = {u2 ∈ {0, 1}n : (2, u2, v2) ∈ Q(1)
S2
}, V2 = {v2 ∈ {0, 1}n : (2, u2, v2) ∈ Q(1)

S2
}
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be the domains and ranges of Q(1)
S1

and Q(1)
S2

, respectively. We define two quantities
characterizing an extended transcript τ ′, namely

α1
def= |{(x, y) ∈ QC : Tk0(x)i ∈ U1 for some i ∈ {1, . . . , w}}| ,

α2
def=
∣∣{(x, y) ∈ QC : T−1

k2
(y)i ∈ V2 for some i ∈ {1, . . . , w}}

∣∣ .
In words, α1 (resp. α2) is the number of queries (t, x, y) ∈ QC which collide with
a query (u1, v1) ∈ Q(1)

S1
(resp. which collide with a query (u2, v2) ∈ Q(1)

S2
) in the

extended transcript. This corresponds to the number of queries (t, x, y) ∈ QC
which collide with either an original query (u1, v1) ∈ Q(0)

S1
(resp. (u2, v2) ∈ Q(0)

S2
)

or with a query (t′, x′, y′) ∈ QC at an input of S1 (resp. at the output of S2),
once the choice of (k0, k2) has been made. We will also denote

βi = |Q(1)
Si
| − |Q(0)

Si
| = |Q(1)

Si
| − p

for i = 1, 2, the number of additional queries included in the extended transcript.
We say an extended transcript τ ′ is bad if at least one of the following

conditions is fulfilled:

(C-1) there exist (t, x, y) ∈ QC , i, j ∈ {1, . . . , w}, u1 ∈ U1, and v2 ∈ V2 such that
Tk0,t(x)i = u1 and T−1

k2,t
(y)j = v2;

(C-2) there exist (t, x, y) ∈ QC , i, j ∈ {1, . . . , w}, u1 ∈ U1, and u2 ∈ U2 such
that Tk0,t(x)i = u1 and Tk1,t

(
S
||
1 (Tk0,t(x))

)
j

= u2
11;

(C-3) there exist (t, x, y) ∈ QC , i, j ∈ {1, . . . , w}, v1 ∈ V1, and v2 ∈ V2 such that
T−1
k2,t

(y)i = v2 and T−1
k1,t

((
S−1

2
)|| (

T−1
k2,t

(y)
))

j
= v1;

(C-4) there exist (t, x, y), (t′, x′, y′) ∈ QC , i, i′, j, j′ ∈ {1, . . . , w} with (t, x, j) 6=
(t′, x′, j′), u1, u

′
1 ∈ U1 such that Tk0,t(x)i = u1, Tk0,t′(x′)i′ = u′1 and

Tk1,t

(
S
||
1 (Tk0,t(x))

)
j

= Tk1,t′

(
S
||
1 (Tk0,t′(x′))

)
j′

;

(C-5) there exist (t, x, y), (t′, x′, y′) ∈ QC , i, i′, j, j′ ∈ {1, . . . , w} with (y, j) 6=
(y′, j′), v2, v

′
2 ∈ V2 such that T−1

k2,t
(y)i = v2, T−1

k2,t′
(y′)i′ = v′2 and

T−1
k1,t

((
S−1

2
)|| (

T−1
k2,t

(y)
))

j
= T−1

k1,t′

((
S−1

2
)|| (

T−1
k2,t′

(y′)
))

j′
.

Any extended transcript that is not bad will be called good. Given an original
transcript τ , we denote Θgood(τ) (resp. Θbad(τ)) the set of good (resp. bad)
extended transcripts of τ and Θ′(τ) the set of all extended transcripts of τ .

11 Note that the value S||1 (Tk0,t(x)) is well-defined thanks to the additional virtual
queries from Q′S .
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From Attainable Transcripts to Good Extended Transcripts. We
are now going to justify the usefulness of extended transcripts. For any extended
transcript τ ′ = (QC ,QS ,Q′S ,k), let us denote

pre(τ ′) =Pr
[
(k′,S) $← K3 × Perm(n)2 : (S ` QS ∪Q′S) ∧ (SPTk [S] ` QC) ∧ (k′ = k)

]
,

p(τ ′) =Pr
[
S $← Perm(n)2 : SPT [S]k ` QC

∣∣∣(S1 ` Q(1)
S1

) ∧ (S2 ` Q(1)
S2

)
]
.

Note that one has

Pr
[
(P̃ ,S) $← P̃erm(T , wn)× Perm(n)2 : (S ` QS) ∧ (P̃ ` QC)

]
≤ 1

(2wn)q(2n)p(2n)p
,

Pr
[
(k,S) $← K3 × Perm(n)2 : (S ` QS) ∧ (SPTk [S] ` QC)

]
≥

∑
τ ′∈Θgood(τ)

pre(τ ′) ≥
∑

τ ′∈Θgood(τ)

1
|K|3(2n)p+β1(2n)p+β2

p(τ ′),

which gives

p1(QC |QS) ≤ 1
(2wn)q

,

p2(QC |QS) ≥
∑

τ ′∈Θgood(τ)

1
|K|3(2n − p)β1(2n − p)β2

p(τ ′).

Thus one has
p2(QC |QS)
p1(QC |QS) ≥

∑
τ ′∈Θgood(τ)

(2wn)q
|K|3(2n − p)β1(2n − p)β2

p(τ ′)

≥ min
τ ′∈Θgood(τ)

((2wn)qp(τ ′))
∑

τ ′∈Θgood(τ)

1
|K|3(2n − p)β1(2n − p)β2

.

Note that the weighted sum
∑
τ ′∈Θgood(τ)

1
|K|3(2n−p)β1 (2n−p)β2

corresponds exactly
to the probability that a random extended transcript is good when it is sampled
as follows:

1. choose keys k0, k2 ∈ K uniformly and independently at random;
2. choose the partial extension of the S-box queries based on the new collisions
Q′S uniformly at random (meaning that each possible u or v is chosen
uniformly at random in the set of its authorized values);

3. finally choose k1 uniformly at random, independently from everything else.

Thus, the exact probability of observing the extended transcript τ ′ is

1
|K|3(2n − p)β1(2n − p)β2

,
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and we have ∑
τ ′∈Θgood(τ)

1
|K|3(2n − p)β1(2n − p)β2

= Pr [τ ′ ∈ Θgood(τ)] .

One finally gets

p2(QC |QS)
p1(QC |QS) ≥ Pr [τ ′ ∈ Θgood(τ)] · min

τ ′∈Θgood(τ)
((2wn)qp(τ ′)). (6)

Lemma 8 and Lemma 9 lower bound Pr [τ ′ ∈ Θgood(τ)] (by upper bounding
Pr [τ ′ ∈ Θbad(τ)]) and minτ ′∈Θgood(τ)((2wn)qp(τ ′)), respectively. Then combining
(6) with Lemma 8 and Lemma 9 will complete the proof of Lemma 7.

Lemma 8. One has

Pr [τ ′ ∈ Θbad(τ)] ≤ w2q(δ′p+ δwq)(3δ′p+ 3δwq + 2δ′wq).

Proof. We fix any attainable transcript, denoted (QC ,Q(0)
S1
,Q(0)

S2
). For any fixed

construction query (t, x, y) ∈ QC , define event

Coll1(t, x, y)⇔ there exist i ∈ {1, . . . , w} and u1 ∈ U1 such that Tk0,t(x)i = u1.

This event can be broken down into the following two subevents:

– there exist i ∈ {1, . . . , w}, j ∈ {1, . . . , p} such that Tk0,t(x)i = uj ,
– there exist (t′, x′, y′) ∈ QC , i, j ∈ {1, . . . , w} such that (t, x, y, i) 6= (t′, x′, y′, j)

and Tk0,t(x)i = Tk0,t′(x′)j .

Note that these events only involve queries from the original transcript, which
means that the choice of the key is actually independent from these values. By
the blockwise uniformity of T , one has

Pr [k0 ∈ K : Coll1(t, x, y)] ≤ δ′wp+ δw2q. (7)

Similarly, let

Coll2(t, x, y)⇔ there exist i ∈ {1, . . . , w} and v2 ∈ V2 such that T−1
k2,t

(y)i = v2.

Then one has
Pr [k2 ∈ K : Coll2(x, y)] ≤ δ′wp+ δw2q. (8)

Also note that one has |Q(1)
S1
|, |Q(1)

S2
| ≤ p+ wq, as additional tuples in Q′S come

from the completion of partial information about a construction query.
We now upper bound the probabilities of the five conditions in turn. The sets

of attainable transcripts fulfilling condition (C-1), (C-2), (C-3), (C-4), (C-5) will
be denoted Θ1, Θ2, Θ3, Θ4, Θ5, respectively.
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Condition (C-1). One has

Pr [τ ′ ∈ Θ1] ≤
∑

(t,x,y)∈QC

Pr [Coll1(t, x, y) ∧ Coll2(t, x, y)] .

Since the random choice of k0 and k2 are independent, and by (7) and (8), one
has

Pr [τ ′ ∈ Θ1] ≤ q(δ′wp+ δw2q)2.

Condition (C-2) and (C-3). Fix any query (t, x, y) ∈ QC . Since the random
choice of k1 is independent from the queries transcript and from the choice of
k0, the probability, over the random choice of k1, that there exist i ∈ {1, . . . , w}
and u2 ∈ U2 such that Tk1,t

(
S
||
1 (Tk0,t(x))

)
i

= u2, conditioned on Coll1(t, x, y),
is upper bounded by δ′w(p + wq). Thus, by summing over every construction
query and using (7), one has

Pr [τ ′ ∈ Θ2] ≤ δ′wq(p+ wq)(δ′wp+ δw2q).

Similarly, one has

Pr [τ ′ ∈ Θ3] ≤ δ′wq(p+ wq)(δ′wp+ δw2q).

Conditions (C-4), and (C-5). Given two distinct pairs (i, (t, x, y)), (i′, (t′, x′, y′)) ∈
{1, . . . , w} × QC such that (t, x, y) and (t′, x′, y′) are both colliding queries, let
us define event

Coll(t, x, y, t′, x′, y′)i,i′ ⇔ Tk1,t

(
S
||
1 (Tk0,t(x))

)
i

= Tk1,t′

(
S
||
1 (Tk0,t′(x′))

)
i′
.

Then for any distinct pairs (i, (t, x, y)), (i′, (t′, x′, y′)) ∈ {1, . . . , w}×QC , one has

Pr [Coll1(t, x, y) ∧ Coll1(t′, x′, y′) ∧ Coll(t, x, y, t′, x′, y′)i,i′ ]
= Pr [Coll(t, x, y, t′, x′, y′)i,i′ |Coll1(t, x, y) ∧ Coll1(t′, x′, y′)]

× Pr [Coll1(t′, x′, y′) |Coll1(t, x, y)]
× Pr [Coll1(t, x, y)] ≤ δ · 1 · (δ′wp+ δw2q),

where, for the last inequality, we used the (δ, δ′)-blockwise uniformity of T and
the fact that the event Coll1(t, x, y) ∧ Coll1(t′, x′, y′) only depends on the choice
of k0 whereas Coll(t, x, y, t′, x′, y′)i,i′ involves the choice of k1. Thus, by summing
over every such pair, one obtains

Pr [τ ′ ∈ Θ4] ≤ δw2q2(δ′wp+ δw2q).

Similarly, one has

Pr [τ ′ ∈ Θ5] ≤ δw2q2(δ′wp+ δw2q).

The lemma follows by taking a union bound over all the conditions. ut
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Our next step is to study good extended transcripts.

Lemma 9. For any good extended transcript τ ′, one has

(2wn)qp(τ ′) ≥ 1− q2

2wn −
q(2wp+ 6w2q)2

22n .

Proof. Fix any good extended transcript τ ′ = (QC ,QS ,Q′S , (k0, k1, k2)). Let us
denote p1 = |Q(1)

S1
| and p2 = |Q(1)

S2
|.

Our goal is then to prove that p(τ ′) is close enough to 1/(2wn)q. In order to
do so, we are going to group the construction queries according to the type of
collision they are involved in:

QU1 = {(t, x, y) ∈ QC : Tk0,t(x)i ∈ U1 for i = 1, . . . , w}
QV2 = {(t, x, y) ∈ QC : T−1

k2,t
(y)i ∈ V2 for i = 1, . . . , w}

Q0 = QC \ (QU1 ∪QV2) .

Note that, thanks to the additional queries from Q′S , there is an equivalence
between the events “Tk0,t(x)i ∈ U1 for each i = 1, . . . , w” and “there exists
i ∈ {1, . . . , w} such that Tk0,t(x)i ∈ U1”. Thus, one has by definition |QU1 | = α1.
Similarly, one has |QV2 | = α2. Also note that these sets form a partition of QC :

– Q0 ∩QU1 = ∅ by definition;
– Q0 ∩QV2 = ∅ by definition;
– QU1 ∩QV2 = ∅ since otherwise τ ′ would satisfy (C-1).

If we denote respectively EU1 ,EV2 and E0 the event SPT [S]k ` QU1 ,QV2 ,Q0, the
event SPT [S]k ` QC is equivalent to EU1 ∧ EV2 ∧ E0. Note that, by definition
of QU1 , each (t, x, y) ∈ QU1 is such that Tk0,t(x)i ∈ U1 for each i = 1, . . . , w;
this means that the output of S1 is already fixed by Q(1)

S1
and EU1 actually only

involves S2. A similar reasoning can be made for EV2 . Thus we have

p(τ ′) = Pr
[
EU1 ∧ EV2 ∧ E0

∣∣∣ S1 ` Q(1)
S1
∧ S2 ` Q(1)

S2

]
= Pr

[
EU1 ∧ EV2

∣∣∣ S1 ` Q(1)
S1
∧ S2 ` Q(1)

S2

]
× Pr

[
E0

∣∣∣ EU1 ∧ EV2 ∧ S1 ` Q(1)
S1
∧ S2 ` Q(1)

S2

]
= Pr

[
EU1

∣∣∣ S2 ` Q(1)
S2

]
· Pr

[
EV2

∣∣∣ S1 ` Q(1)
S1

]
× Pr

[
E0

∣∣∣ EU1 ∧ EV2 ∧ S1 ` Q(1)
S1
∧ S2 ` Q(1)

S2

]
, (9)

where Pr
[
EU1

∣∣∣S2 ` Q(1)
S2

]
(resp. Pr

[
EV2

∣∣∣S1 ` Q(1)
S1

]
) is the probability, over the

random choice of permutation S2 (resp. permutation S1), that S2 (resp. S1)
is compatible with the additional equations implied by QU1 (resp. by QV2),
conditioned on the event S2 ` Q(1)

S2
(resp. S1 ` Q(1)

S1
).
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In order to evaluate Pr
[
EU1

∣∣∣S2 ` Q(1)
S2

]
and Pr

[
EV2

∣∣∣S1 ` Q(1)
S1

]
, we first note

that, since we condition on the event S2 ` Q(1)
S2

, S2 is already fixed on p2 values.
Second, remark that this event is actually equivalent to the following equations:

S2

(
Tk1,t

(
S
||
1 (Tk0,t(x))

)
i

)
= T−1

k2,t
(y)i

for every (t, x, y) ∈ QU1 and i ∈ {1, . . . , w}. All the values Tk1,t

(
S
||
1 (Tk0,t(x))

)
i

are actually pairwise distinct and outside U2 since otherwise (C-2) or (C-4) would
be satisfied. Similarly, the values T−1

k2,t
(y)i are pairwise distinct and outside V2

since otherwise (C-1) would be satisfied. Indeed, if a collision between two values
T−1
k2,t

(y)i had occured, then these values would also appear in V2. Hence the event
EU1 is actually equivalent to wα1 new and distinct equations on S2, so that

Pr
[
EU1

∣∣∣S2 ` Q(1)
S2

]
= 1

(2n − p2)wα1

. (10)

By a similar reasoning, one has

Pr
[
EV2

∣∣∣S1 ` Q(1)
S1

]
= 1

(2n − p1)wα2

. (11)

The next step is to lower bound Pr
[
E0

∣∣∣EU1 ∧ EV2 ∧ S1 ` Q(1)
S1
∧ S2 ` Q(1)

S2

]
.

Conditioned on EU1 ∧ EV2 ∧ S1 ` Q(1)
S1
∧ S2 ` Q(1)

S2
, S1 and S2 are fixed on

respectively p1 + wα2 and p2 + wα1 values. Let U ′1 (resp. U ′2) be the set of
values on which S1 (resp. S2) is already fixed and V ′1 = {S1(u) : u ∈ U ′1} (resp.
V ′2 = {S2(u) : u ∈ U ′2}). Let also q0 = |Q0|. For clarity, we denote

Q0 = {(t1, x1, y1), . . . , (tq0 , xq0 , yq0)},

using an arbitrary ordering of the queries.
Our goal is now to compute a lower bound on the number of possible

“intermediate values” such that the event E0 is equivalent to new and dis-
tinct equations on S1 and S2. First note that the values Tk0,t(x)i for each
(t, x, y) ∈ Q0, i ∈ {1, . . . , w} are pairwise distinct and outside U ′1. Indeed, if this
were not the case, then at least one query in Q0 would be a colliding query. By
definition of our security experiment, this means that this query would either be
in EU1 or EV2 , depending on the type of collision it is involved in. Similarly, the
values T−1

k2,t
(y)i for each (t, x, y) ∈ Q0, i ∈ {1, . . . , w} are pairwise distinct and

outside V ′2 .
Let N0 be the number of tuples of distinct values (v1,i,j)1≤i≤q0,1≤j≤w in

{0, 1}n\V ′1 such that the values (Tk1,ti (||wk=1v1,i,k)j)1≤i≤q0,1≤j≤w are also pairwise
distinct and outside U ′2. Let i ∈ {1, . . . , q0}. There are exactly (2n − |V ′1 | −w(i−
1))w possible tuples of distinct values (v1,i,j)1≤j≤w in {0, 1}n \V ′1 that will also be
different from the previous values v1,i,j for i < q0 and j ∈ {1, . . . , w}. Similarly,
there are exactly (2n − |U ′2| − w(i − 1))w possible tuples of distinct values for
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(Tk1,ti(||wk=1v1,i,k))1≤j≤w in {0, 1}n\U ′2 that will also be different from the previous
values Tk1,ti(||wk=1v1,i,k) for i < q0 and j ∈ {1, . . . , w}. This removes at most
2wn− (2n− |U ′2| −w(i− 1))w tuples of values for (Tk1,ti(||wk=1v1,i,k))1≤j≤w. Since
Tk1,ti is a permutation, we have to remove at most 2wn− (2n− |U ′2| −w(i− 1))w
possible tuples of values for (v1,i,j)1≤j≤w. Thus

N0 ≥
q0∏
i=1

((2n − |V ′1 | − w(i− 1))w + (2n − |U ′2| − w(i− 1))w − 2wn) . (12)

For any tuple of values (v1,i,j) fulfilling the previous conditions, then, conditioned
on S1 satisfying S1(Tk0,ti(xi))j = v1,i,j , the event E0 is equivalent to wq0 distinct
and new equations on S2. Hence, it follows that

Pr
[
E0

∣∣∣ EU1 ∧ EV2 ∧ S1 ` Q(1)
S1
∧ S2 ` Q(1)

S2

]
≥ N0

(2n − p1 − wα2)wq0(2n − p2 − wα1)wq0

. (13)

Combining (9), (10), (11), (12) (13), we obtain

(2wn)qp(τ ′) ≥
(2wn)q

q0−1∏
i=0

(
(2n − p1 − w(α2 + i))w

+(2n − p2 − w(α1 + i))w − 2wn
)

(2n − p1)wq0+wα2(2n − p2)wq0+wα1

= (2wn)q
2q0wn(2n − p1)wα2(2n − p2)wα1

×
q0−1∏
i=0

2wn
(

(2n − p1 − w(α2 + i))w
+(2n − p2 − w(α1 + i))w − 2wn

)
(2n − p1 − wα2 − wi)w(2n − p2 − wα1 − wi)w

≥ (2wn)q
2q0wn(2n − p1)wα2(2n − p2)wα1

·
q0−1∏
i=0

∆i

where

∆i = 1−
(

2wn

(2n − p2 − wα1 − wi)w
− 1
)(

2wn

(2n − p1 − wα2 − wi)w
− 1
)

for i = 0, . . . , q0 − 1. We also have α1 ≤ q and p2 ≤ p+ wq, which gives

2wn

(2n − p2 − wα1 − wi)w
≤
(

2n

2n − p− 3wq

)w
≤
(

1 + p+ 3wq
2n − p− 3wq

)w
.

Then, since wp+ 3w2q < 2n/2, we can apply Lemma 1 and we get

2wn

(2n − p2 − wα1 − wi)w
≤ 1 + wp+ 3w2q

2n − wp− 3w2q
≤ 1 + 2wp+ 6w2q

2n .
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Similarly, one has

2wn

(2n − p1 − wα2 − wi)w
≤ 1 + 2wp+ 6w2q

2n .

Thus one has

∆i ≥ 1−
(

2wp+ 6w2q

2n

)2

.

Moreover, one has

(2wn)q
2q0wn(2n − p1)wα2(2n − p2)wα1

≥ (2wn − q)q

2qwn ≥
(

1− q

2wn
)q
≥ 1− q2

2wn .

Finally, we get

(2wn)qp(τ ′) ≥
(

1− q2

2wn

)(
1−

(
2wp+ 6w2q

2n

)2)q0

≥
(

1− q2

2wn

)(
1− q(2wp+ 6w2q)2

22n

)
≥ 1− q2

2wn −
q(2wp+ 6w2q)2

22n . ut

4.3 Asymptotically Optimal Security of SPNs

In this section, we will prove that if T is a super blockwise tweakable universal
permutation, then the security of SPT converges to 2n (in terms of the threshold
number of queries) as the number of rounds r increases.

Theorem 4. For an even integer r, let SPT be an r-round substitution-permutation
network based on a (δ, δ′)-super blockwise tweakable universal permutation T .
Then one has

Advmu
SPT (p, q) ≤ 4√q

(
2wpδ′ + 2w2q(δ′ + δ) + w2δ

) r
4 .

Hence, assuming δ, δ′ ' 2−n and p = q, an r-round SPT is secure up to 2
rn
r+2

queries.
Proof of Theorem 4. We assume that r = 2s for a positive integer s. Let
SPT [S] denote a variant of SPT [S] without the last permutation layer. Then one
has

SPT [S] =
(

SPT
−1

[S(2)]
)−1

◦ T ◦ SPT [S(1)]

for S(1) = (S1, . . . , Ss) and S(2) = (S−1
2s , . . . , S

−1
s+1). Our proof strategy is to first

prove NCPA-security of SP in the multi-user setting and lift it to CCA-security
by doubling the number of rounds.
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Suppose that a distinguisher D makes p primitive queries to each of the
underlying S-boxes and makes q construction queries in the multi-user setting,
obtaining an attainable transcript τ = (QC ,QS). We can partition QC and QS
as follows.

QC = QC1 ∪ · · · ∪ QC` ,
QS = QS1 ∪ · · · ∪ QSs ∪QSs+1 ∪ · · · ∪ QS2s ,

where we will write

Q(1)
S = QS1 ∪ · · · ∪ QSs ,

Q(2)
S = QSs+1 ∪ · · · ∪ QS2s .

Throughout the proof, we will write QCj = (tj,i, xj,i, yj,i)1≤i≤qj for j = 1, . . . , `.
So qj denotes the number of queries made to the j-th construction oracle Cj ,
and (tj,i, xj,i, yj,i) represents the evaluation obtained by the i-th query to Cj .
We will also write t = (tj)1≤j≤`, x = (xj)1≤j≤`, y = (yj)1≤j≤`, where

tj = (tj,1, . . . , tj,qj ), xj = (xj,1, . . . , xj,qj ), yj = (yj,1, . . . , yj,qj ),

for j = 1, . . . , `. Without loss of generality, we can assume that the indices (j, i)
have been grouped by their tweaks tj,i; suppose that tj consists of d different
tweaks, t∗1, . . . , t∗d ∈ T . Then by dropping j for simplicity (when it will be clear
from the context), we can write

xj = (x∗1, . . . ,x∗d),

so that x∗i = (x∗i,1, . . . , x∗i,q′
i
) corresponds to t∗i for i = 1, . . . , d, where q′i is the

multiplicity of t∗i in tj (satisfying q′1 + . . .+ q′d = qβ). Let

Ωtj =
{

(u1, . . . , uqj ) ∈ ({0, 1}n)qj : ∀i 6= i′, (tj,i, ui) 6= (tj,i′ , ui′)
}
,

Ωt = Ωt1 × . . .×Ωt` .

With these notations, we define probability distributions µ1 and µ2 on Ωt; for
each z = (z1, . . . , z`) ∈ Ωt,

µ1(z) def= Pr
[

k1, . . . ,k`
$← Ks,S $← Perm(n)s : ∀j, SPTkj [S] ` (tj,i, xj,i, zj,i)1≤i≤qj |S ` Q(1)

S

]
,

µ2(z) def= Pr
[

k1, . . . ,k`
$← Ks,S $← Perm(n)s : ∀j, SPTkj [S] ` (tj,i, yj,i, zj,i)1≤i≤qj |S ` Q(2)

S

]
,

where we write zj = (zj,i)1≤i≤qj for j = 1, . . . , `. Using the coupling technique, we
can upper bound the statistical distance between µc and the uniform probability
distribution for c = 1, 2. The proof of the following lemma can be found in [CL18].

Lemma 10. For c = 1, 2, let µc be the probability distribution defined as above,
and let ν be the uniform probability distribution on Ωt. Then for c = 1, 2, one
has ‖µc − ν‖ ≤ ε, where

ε = ε(p, q) def= q
(
2wpδ′ + 2w2q(δ′ + δ) + w2δ

)s
.
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By Lemma 6 and Lemma 10, we have a subset Z1 ⊂ Ωt such that |Z1| ≥
(1−

√
ε)|Ωt| and

µ1(z) ≥ (1−
√
ε)ν(z) = 1−

√
ε

|Ωt|
for every z ∈ Z1. Similarly, we also have a subset Z2 ⊂ Ωt such that |Z2| ≥
(1−

√
ε)|Ωt| and

µ2(z) ≥ (1−
√
ε)ν(z) = 1−

√
ε

|Ωt|
for every z ∈ Z2. For a fixed key (k1, . . . , k`) ∈ K`, let

Z ′2 = {(T−1
k1,t1

(z1), . . . , T−1
,k`,t`(z`)) : (z1, . . . , z`) ∈ Z2},

and let Z = Z1 ∩ Z ′2. Then it follows that

p2(QC |QS) = Pr
[
∀j,SPTkj [S] ` QCj |S ` QS

]
≥ 1
|K|`

∑
k1,...,k`∈K
z1,...,z`∈Z

Pr
[
∀j,SPTkj [S] ` (tj ,xj , zj) |S ` Q(1)

S

]

× Pr
[
∀j,SPT

−1

kj [S] ` (tj ,yj , Tkj ,tj (zj)) |S ` Q(2)
S

]
≥ (1− 2

√
ε)|Ωt| ·

(
1−
√
ε

|Ωt|

)2

≥ (1− 4
√
ε)p1(QC |QS)

since |Z| ≥ (1− 2
√
ε)|Ωt|. By Lemma 3, we complete the proof of Theorem 4.
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