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Abstract. We present a quantum polynomial time attack against the
GMMSSZ branching program obfuscator of Garg et al. (TCC’16), when
instantiated with the GGH13 multilinear map of Garg et al. (EURO-
CRYPT’13). This candidate obfuscator was proved secure in the weak
multilinear map model introduced by Miles et al. (CRYPTO’16).
Our attack uses the short principal ideal solver of Cramer et al. (EURO-
CRYPT’16), to recover a secret element of the GGH13 multilinear map
in quantum polynomial time. We then use this secret element to mount
a (classical) polynomial time mixed-input attack against the GMMSSZ
obfuscator. The main result of this article can hence be seen as a classi-
cal reduction from the security of the GMMSSZ obfuscator to the short
principal ideal problem (the quantum setting is then only used to solve
this problem in polynomial time).
As an additional contribution, we explain how the same ideas can be
adapted to mount a quantum polynomial time attack against the DG-
GMM obfuscator of Döttling et al. (ePrint 2016), which was also proved
secure in the weak multilinear map model.

1 Introduction

An obfuscator is a cryptographic primitive that should enable a user to com-
pute a function, without revealing anything about it, except its input-output
behaviour. Unfortunately, such a security notion for obfuscators, called Virtual
Black Box (or VBB) security, has been shown to be impossible to achieve for
all circuits [7]. To circumvent this impossibility result, two directions have been
explored. The first direction is to build a VBB obfuscator for a restricted class of
functions. Recently, the authors of [36] and [25] managed to prove VBB security
of their obfuscator, for the restricted class of compute-and-compare functions,1

under the LWE assumption. The second direction is to consider weaker security
notions, and try to build obfuscators for all circuits under these weaker security
notions. In addition to their impossibility result, the authors of [7] proposed such
a weaker security notion, called indistinguishablility obfuscation (or iO).

1 A compute-and-compare function CC[f ,α] on input x outputs 1 if f(x) = α and 0
otherwise.
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Indistinguishability obfuscation requires that it should be hard to distinguish
between the obfuscation of two equivalent circuits, i.e., circuits that compute the
same function. Even if iO security is weaker than VBB security, achieving iO for
all circuits would have a lot of applications (see, e.g., [22, 34]). The first candi-
date obfuscator for iO security was proposed in 2013 by Garg, Gentry, Halevi,
Raykova, Sahai and Waters [22], based on the GGH13 approximate multilinear
map [21]. They showed that iO for the class of polynomial-size branching pro-
grams2 could be bootstrapped to iO for all polynomial-size circuits,3 and they
then described a candidate iO obfuscator for polynomial-size branching pro-
grams (without a security proof). Since 2013, numerous candidate obfuscators
for polynomial-size branching programs have been proposed, all relying on one
of the three candidate cryptographic multilinear map constructions [17,21,24].4

However, none of these candidate obfuscators could be proven secure under clas-
sical hardness assumptions.

The main security weakness of these candidate obfuscators stems from the
underlying candidate multilinear maps. Indeed, all candidate multilinear maps
have been shown to suffer from so-called zeroizing attacks [15, 26], and these
zeroizing attacks and their generalizations have made it difficult to design po-
tentially secure iO obfuscators. In the following, we will instantiate all the obfus-
cators with the GGH13 [21] multilinear map,5 as our attack exploits a weakness
of this specific multilinear map.

In order to improve security confidence, recent obfuscator constructions care-
fully instantiate the underlying multilinear map (to try to avoid zeroizing at-
tacks) and prove VBB security of their obfuscator in some idealised model.
First, the authors of [2, 6, 12] proved VBB security of their obfuscators in the
so-called ideal graded encoding model, introduced in [11]. But zeroizing attacks
against multilinear maps and the resulting annihilation attacks against obfus-
cators [3, 14, 31] showed that this model was not adapted to capture potential
attacks against obfuscators. Another model was then proposed in [31]: the weak
multilinear map model. This model captures all the attacks mentioned above,
and two candidate obfuscators were proved secure in this model [19,23].

Previous work. The annihilation attack of Miles, Sahai and Zhandry [31] already
impacted many obfuscators: [2,5,6,12,30,32]. One limitation of this attack is that
it is captured by the weak multilinear map model and so cannot apply against
the recent obfuscators of [19, 23]. A formalisation and generalisation of this at-
tack was then proposed by [3]. This attack enables to distinguish a larger class
of circuits than the one of [31], but applies to the same candidate obfuscators.

2 See Section 2.3 for the definition of a matrix branching program.
3 The proof relies on Barrington’s theorem [8], and on a bootstrapping procedure

enabled by fully homomorphic encryption.
4 The GGH15 multilinear map is a restricted multilinear map that cannot be used for

all obfuscator constructions.
5 Some obfuscators, like [19] are specifically designed to work with the GGH13 multi-

linear map. Some others can be instantiated with either GGH13 or CLT13 multilinear
map. For those, we only consider the GGH13 instantiation.
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Moreover, it only works for single-input branching programs. In a parallel work,
Chen, Gentry and Halevi [14], proposed an attack against the original obfuscator
of [22], and a quantum attack against the GGH15 construction [24], that were
both unbroken so far. These attacks rely on specific branching programs, namely
input partitionable branching programs. Since then, Fernando, Rasmussen and
Sahai [20] proposed a technique to transform any branching program into an
equivalent branching program which is not input partitionable. This transfor-
mation can be used either with the GGH13 map or with the CLT map. Hence,
using the [22] obfuscator combined with the technique of [20] prevents the attack
of [14].

Our contribution. In this work, we propose quantum polynomial time attacks
against the branching program obfuscators of [19,23], when instantiated with the
GGH13 multilinear map. These candidate obfuscators were not broken yet, and
were proven secure in the weak multilinear map model (the current strongest
ideal model for obfuscators). As a secondary contribution, our attack also ap-
plies to the obfuscators of [2, 5, 6, 30, 32], which were already broken in classical
polynomial time by [31]. Our attack is still interesting for these obfuscators,
as it uses different techniques than those of [31], and in particular, techniques
that are not captured by the weak multilinear map model. Note that our attack
does not work against the obfuscator of [12], while [31] does. Finally, as a last
contribution, our attack also applies to the circuit obfuscators of [4, 37], when
instantiated with the GGH13 multilinear map.6 Overall, we prove the following
theorem (informally stated for the moment).

Theorem 1 (Informal, heuristic). Let O be any of the branching program
obfuscators in [2,5,6,23,30,32], on single or dual input branching programs (re-
spectively, let O be any of the circuit obfuscators in [4,19,37]), instantiated with
the GGH13 multilinear map [21]. There exist two explicit equivalent branching
programs (respectively, two equivalent circuits) A and A′ such that O(A) and
O(A′) can be distinguished in quantum polynomial time, under some conjecture
and heuristic (see Theorem 3 for a formal statement).

We note that the only part of our attack which is quantum is the principal
ideal solver of Biasse and Song [10]. All the other steps of our attack are clas-
sical. Hence, our attack can also be viewed as a (classical) reduction from the
iO security of the candidate obfuscators mentioned in Theorem 1 to the prin-
cipal ideal problem. One might then want to use the classical sub-exponential
principal ideal solver of Biasse, Espitau, Fouque, Gélin and Kirchner [9] to ob-
tain a classical sub-exponential attack against the above obfuscators. However,
the dimension of the cyclotomic ring used in current instantiations on the GGH
multilinear map is chosen to be at least λ2 where λ is the security parameter.
This is done to thwart the attacks of [1,16,27] over the GGH13 multilinear map,

6 These obfuscators need composite-order multilinear maps, and hence were originally
instantiated with the CLT multilinear map. However, as observed in [19], the GGH13
multilinear map can also be used with composite-order.
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but it also means that the classical variant of the attack described in this article
is exponential in the security parameter, even when using the sub-exponential
principal ideal solver of [9]. It is still interesting to note that any future improve-
ment for solving the principal ideal problem will directly imply an improvement
for the attack described in this article.

Technical overview. Recent branching program obfuscators, starting with the
one of [6], use the underlying multilinear map to prevent mixed-input attacks,
using so-called straddling set systems. A mixed-input attack is an attack in which
the attacker does not evaluate honestly the obfuscated circuit, but changes the
value of one bit along the computation: for example, if the same bit of the entry
is used twice during the computation, the attacker puts it to 1 the first time
and to 0 the second time. By choosing good levels for the encodings of the
multilinear map, the authors of [6] proved that one could prevent such dishonest
computations: an attacker that tries to mix the bits of the input will obtain a
final encoding which does not have the good level to be zero-tested and provide
a useful output. Following this idea, the obfuscators of [2, 5, 23, 30, 32] also used
straddling set systems to prevent mixed-input attacks.

However, straddling set systems only ensures that an attacker cannot mixed
the inputs of the obfuscated program to obtain a dishonest top level encoding
of zero. But it does not prevent an attacker to create a dishonest encoding of
zero at a level higher than the top level. In the case where the multilinear map
is ideal, this is not a security threat, because the attacker should not be able
to test at a level higher than the top level whether it has created an encoding
of zero or not. However, this is not the case of the GGH13 multilinear map.
Indeed, using recent improvements on the short Principal Ideal Problem [10,
13, 18] (abbreviated as sPIP), it has been shown that it is possible to recover
in quantum polynomial time some secret zero-testing element h of the GGH13
map (see Section 2.2 for more details on the GGH13 map). Recovering this secret
element will then allow us to zero-test at a higher level than the one initially
authorised.7 This is the starting point of our mixed-input attack against the iO
security of [2, 5, 6, 23,30,32].

As said above, all these candidate obfuscators use straddling set systems,
meaning that performing a dishonest evaluation of the branching program out-
puts an encoding at a forbidden level. However, if we perform two well-chosen
dishonest evaluations and take the product of the resulting encodings, we can
obtain an encoding whose level is twice the maximal level of the multilinear map.
The idea to construct well-chosen dishonest evaluations is to take complementary
ones. For instance, assume the first bit of the input is used three times during
the evaluation of the branching program. A first illegal computation could be to
take this first bit to be equal to 0 the first time it is used, and then to 1 for the
other two times. The complementary illegal computation will then be to take

7 To be correct, we cannot really test whether we have an encoding of 0, but rather
whether we have an encoding which is a product of two encodings of 0. More details
can be found in Section 4.
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the first bit to be equal to 1 the first time, and to 0 the other two times. These
two illegal computation will result in encodings that are not at the top level,
but there levels will be complementary in the sense that taking the product of
them gives an encoding whose level is twice the top-level. We can then use the
new zero-test parameter obtained above to determine whether this product of
illegal encodings is an encoding of zero or not. It then remains to find a pair of
equivalent branching programs such that the illegal encoding obtained above is
an encoding of zero for one of the two branching programs only. We exhibit such
a pair of branching programs in Section 4.3. While we just exhibit one pair, it
should be possible to find many other pairs that can also be distinguished. We
do not pursue this, as finding one such pair suffices to violate the iO property.

All the branching program obfuscators described above have a similar struc-
ture. In order to simplify the description of the attack, and to highlight which
characteristics of these obfuscators are needed for the attack, we describe in Sec-
tion 3 an abstract obfuscator, that captures the obfuscators of [2, 5, 23, 30, 32].
This abstract obfuscator is elementary, and it suffices to describe our attack
against it, in order to attack all the obfuscators of [2,5,23,30,32]. The obfuscator
of [6] does not completely fit in this abstract obfuscator and is discussed later.

We finally handle the case of the [19] obfuscator. This obfuscator is different
from the ones presented above, as it encodes a circuit rather than a branching
program. However, it also uses straddling set system to prevent mixed-input at-
tacks. The same ideas as above can then be adapted to mount a mixed-input
attack against the obfuscator of [19], in quantum polynomial time. Here, a new
difficulty arises, as a dishonest evaluation of the circuit may not always be pos-
sible (for example it can lead to impossible additions, between encodings which
are not at the same level). We handle this difficulty by choosing a specific uni-
versal circuit, for which we know that some dishonest evaluations are possible.
As in the case of the branching program obfuscators, we then give an explicit ex-
ample of two circuits whose obfuscated versions can be efficiently distinguished
by a quantum attacker. Also, as for the the branching program obfuscators,
we describe our attack against a simple circuit obfuscator, which captures the
circuit obfuscator of [19]. This simple circuit also captures the circuits obfusca-
tors of [4, 37], hence the attack also applies to these obfuscators, when they are
instantiated with the GGH13 multilinear map.

Impact and open problems. To our knowledge, the only GGH13-based branching
program or circuit obfuscator still standing against quantum attackers is the [22]
branching program obfuscator, when combined with the technique of [20] to
prevent input partitioning. We summarize in Table 1 the current state of the art
attacks against branching program or circuit obfuscators based on the GGH13
multilinear map. The obfuscators relying on the CLT multilinear map are already
known to be insecure against quantum attackers, as the CLT multilinear map is
known to be broken if we can factor some public modulus, and we have a quantum
polynomial time algorithm for factoring integers [35]. Finally, the obfuscator
of [24], based on the GGH15 multilinear map, has been proven insecure against
quantum attackers in [14]. In light of this, an interesting question could be
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to assess the post-quantum security of the obfuscator of [22] when combined
with [20].

Obfuscator Quantum attack Classical attack
(instantiated with the GGH13 map)

[22] without [20] [14] [14]

[22] combined with [20] none none

[2, 6, 32] [3, 31] [3, 31]
[5, 30] and this work

[12] [3, 31] [3, 31]

[4, 19,23,37] this work none

Fig. 1. Attacks against GGH13-based branching program and circuit obfuscators

Also, we show that solving the short Principal Ideal Problem enables us to
mount a classical attack against the candidate obfuscators of [19, 23]. We could
wonder whether the opposite is true: can we base the security of these candidate
obfuscators or variants thereof on the short Principal Ideal Problem?

Finally, it is interesting to note that the mixed-input attack described in this
article crucially relies on the use of straddling set systems. This may seem para-
doxical, as straddling set systems were introduced to build obfuscators secure in
idealized models, hence supposedly more secure than the first candidates. The
first candidate obfuscators [12,22] tried to prevent mixed-input attacks by using
so-called bundling scalars, but it was heuristic and came with no proof. On the
contrary, the use of straddling set systems allows us to prove that the schemes
are resistant to mixed-input attacks if the underlying multilinear map is some-
how ideal, hence giving us a security proof in some idealized model. However,
this comes at the cost of relying more on the security of the underlying multilin-
ear map. So when the obfuscators are instantiated with the GGH13 multilinear
map, which is known to have some weaknesses, this gives more possibilities to an
attacker to transform these weaknesses of the multilinear map into weaknesses
of the obfuscators. This is what we do is this article, by transforming a weakness
of the GGH13 map into a concrete attack against obfuscators using straddling
set systems. It also explains why our attack does not apply to the obfuscators
of [12,22], which did not use straddling set systems.

Roadmap. In Section 2, we recall the GGH13 multilinear map, and the notion
of matrix branching programs. In Section 3, we define an abstract obfuscator,
which captures all the obfuscators of [2, 5, 23, 30, 32], with both single input
and dual input variants. We will then use this abstract obfuscator to present
our attack in Section 4. This will prove Theorem 1, except for the obfuscators
of [6,19]. We then discuss in Section 4.4 how to adapt the attack to the obfuscator
of [6]. Finally, we describe in Section 5 the obfuscator of [19] and explain how
to adapt the mixed-input attack to this obfuscator, hence completing the proof
of Theorem 1.
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2 Preliminaries

In this section, we first recall some mathematical background and define some
notations. We then recall the settings of the GGH13 multilinear map and the
definition of matrix branching programs. Finally, we recall recent results for the
Principal Ideal Problem, that we will use in our attack.

2.1 Mathematical Background

Rings. Let R be the ring Z[X]/(Xn + 1) for n a power of two, and K =
Q[X]/(Xn + 1) be its fraction field. We let R× denote the set of invertible
elements of R. For an element x ∈ K, we let xi denote its coefficients when
seen as a polynomial of degree less than n, that is x =

∑n−1
i=0 xiX

i. An ideal
of R is a subset I ⊆ R which is stable by addition and by multiplication by an
element of R. If I = gR = {gr|r ∈ R} for some element g ∈ R, we say that I is
a principal ideal generated by g, and we denote it by gR or 〈g〉. We denote by
{σj}j∈[n] the complex embeddings of K in C. We can write these embeddings as
σ1, · · · , σn/2, σ1, · · · , σn/2, where · denotes the complex conjugation. The (alge-
braic) norm of an element x ∈ K is N (x) =

∏
j∈[n] σj(x) ∈ R. The norm of an

ideal I ⊆ R is N (I) = |R/I|. If I = gR is a principal ideal, then N (I) = N (g).
The product of two ideals I, J ⊆ R, denoted by I · J , is the smallest ideal con-
taining {ab | a ∈ I, b ∈ J}. We say that an ideal I ⊆ R is prime if I 6= R and
if for all ideals J1, J2 ⊆ R such that I = J1 · J2, then we have either J1 = R or
J2 = R.

Lattices. We view the ring R as an n-dimensional lattice, where the elements
of R are mapped to the vectors of their coefficients, when seen as polynomials of
degree n− 1. For x, y ∈ K, the inner product of x and y is 〈x, y〉 =

∑
i xiyi. We

also define the `2 norm (or Euclidean norm) of x ∈ K by ‖x‖ =
√∑

i x
2
i and

the infinite norm of x by ‖x‖∞ = maxi(xi). Recall the following properties, for
any x, y ∈ K

‖x · y‖ ≤
√
n · ‖x‖ · ‖y‖ (1)

‖x‖∞ ≤ ‖x‖ ≤
√
n · ‖x‖∞. (2)

For x ∈ K, the Minkowski embeddings of x is σ(x) := (Re(σ1(x)), Im(σ1(x)), · · · ,
Re(σn/2(x)), Im(σn/2(x))) ∈ Rn. We define the inner product of the Minkowski
embeddings of two elements x, y ∈ K by the usual inner product over Rn of σ(x)
and σ(y). As we are in a cyclotomic ring of order a power of two, the geometry
induced by the coefficient embeddings is the same, up to scaling, as the one
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induced by the Minkowski embeddings. This means that for any x, y ∈ K, we
have

〈σ(x), σ(y)〉 = n/2 · 〈x, y〉.

In particular, for all x ∈ K, we have

‖σ(x)‖2 =
√
n/2 · ‖x‖, (3)

where ‖σ(x)‖2 =
√
〈σ(x), σ(x)〉.

An ideal I can be seen as a sub-lattice of R, and hence described by a Z-basis.
The Principal Ideal Problem (PIP) is, given a basis of a principal ideal I, to
recover a generator of I, that is an element g ∈ R such that I = 〈g〉.
For any lattice L, real σ > 0 and point c ∈ L, we define the Gaussian weight
function over L by

ρL,σ,c(x) = exp

(
−‖x− c‖2

2σ2

)
.

We define the discrete (spherical) Gaussian distribution over L of parameter σ
and centered in c by

∀x ∈ L, DL,σ,c(x) =
ρL,σ,c(x)

ρL,σ,c(L)
,

where ρL,σ,c(L) =
∑
x∈L ρL,σ,c(x). We simplify ρL,σ,0 and DL,σ,0 into ρL,σ and

DL,σ, and say in that case that the distribution is centered.

2.2 The GGH13 multilinear map

We recall in this section the GGH13 multilinear map (or shortly GGH map)
of [21], in its asymmetric setting. The GGH multilinear map allows to encode
elements of ring. We can then homomorphically perform additions and multipli-
cations on these elements, under some constraints. It also allows to publicly test
if an encoding encodes zero. Let q be a large integer (usually taken exponential
in n) and define Rq = R/qR. Let g be some small element of R× chosen such
that the ideal 〈g〉 is prime and has a prime norm. The plaintext space will be
R/gR and the encoding space will be Rq.

Encodings. Let κ be some positive integer and z1, · · · , zκ be chosen randomly
in R×q .8 These zi’s are chosen during the initialisation phase of the GGH map.
Let S be a subset of [κ] and a + gR be an element of R/gR. An encoding of
a+ gR at level S is an element of the form

u = c ·
∏
i∈S

z−1
i mod q,

8 The distribution of the zi’s does not matter here.
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where c is a small representative of a+ gR in R. We sometimes abuse notation
by saying that u is an encoding of a ∈ R instead of a + gR ∈ R/gR. We use
the notation [a]S to denote an encoding of a+ gR at level S. When there is no
ambiguity on the level of the encoding, we just write it [a], with no subscript.
We say that c is the numerator of the encoding u and

∏
i∈S zi is its denominator.

Operations on encodings. Let u1 and u2 be the encodings of two elements a1

and a2 at the same level S. Then u1 + u2 is an encoding of a1 + a2 at level S.
Let u1 and u2 be the encodings of two elements u1 and u2 at level S1 and S2

respectively, with S1∩S2 = ∅. Then u1·u2 is an encoding of a1·a2 at level S1∪S2.9

Zero-testing. Let Szt denote the set [κ] and z∗ =
∏
i∈Szt zi. Let h be some

element in R of `2-norm approximately
√
q. We define pzt = hz∗g−1 mod q and

call it the zero-testing parameter. To test if an encoding u at level Szt is an
encoding of zero or not (i.e., to test if the numerator of u is a multiple of g
or not), compute w = u · pzt mod q. If this is smaller than q3/4,10 then u is an
encoding of zero, otherwise it is not. Indeed, if u = bg(z∗)−1 mod q (i.e., u is
an encoding of zero), then w = bh mod q and the parameters are set such that
||bh|| ≤ q3/4 for a correct level-Szt encoding. On the other hand, if u is not an
encoding of zero, then the g−1 in the zero-testing parameter does not cancel out,
and g−1 mod q is very unlikely to be small compared to q. We can prove that in
this case, w will never be smaller than q3/4 (see [21] for more details).

The elements (n, q, κ, pzt) of the multilinear map are public, while the pa-
rameters (h, g, {zi}i∈[κ]) are secret. In our case, the obfuscator generates the
multilinear maps and retains these secret elements. Note that to encode an el-
ement, we need to know the secret parameters g and {zi}i. This means that
only the obfuscator will be able to create encodings from scratch. An encoding
generated by the obfuscator, using the secret parameters, is called a fresh en-
coding, by opposition to the encodings obtained by adding or multiplying other
encodings.

Size of the parameters. The size of the parameters of the GGH multilinear map
may vary depending on the obfuscator. We present here the size recommended
in the original article [21], with a small change for the size of q, due to the fact
that we use the multilinear map in a different way for obfuscators than what
was described in [21].

• The dimension n of R should be taken such that n = Ω(κλ2), where λ
is the security parameter of the scheme. Taking a lower bound in λ2 was
the original choice of [21] to avoid some lattice attacks. It was reduced to
n = Ω(κλ log(λ)) in [28]. However, with the recent sub-exponential algo-
rithm of [9] to solve PIP, it should be increased back to Ω(κλ2). Looking

9 Even if S1 ∩S2 6= ∅, we can still see u1 · u2 as an encoding of a1 · a2 at level S1 ∪S2,
where S1 ∪ S2 is a multiset, that is we keep multiple copies of elements that appear
both in S1 and S2.

10 This bound is the one chosen in [21], but it is flexible.
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ahead, the attack we describe in Section 4 has a classical variant which
is sub-exponential in the dimension n of the lattice (it has a complexity
O(2

√
n+o(1))). However, as n ≥ Ω(λ2), this remains exponential in the secu-

rity parameter λ.

• The secret element g is sampled using a Gaussian distribution, with rejection,
such that ‖g‖ = O(n) and ‖1/g‖ = O(n2).

• The modulus q is chosen such that q ≥ nO(κ). In the original GGH scheme,
the modulus q was chosen greater than 28κλ · nO(κ). This extra factor 28κλ

came from the re-randomisation procedure used originally to publicly gen-
erate level-1 encodings. In the case of obfuscators, as the one that generates
encodings knows the secret parameters, it can generates the fresh encodings
with a numerator of size O(poly(n)) instead of O(2λpoly(n)), and hence get
ride of this factor 28κλ. In all the obfuscators described here, except [19], the
modulus q is exponential in λ. In [19], the obfuscator is built such that q
remains polynomial in λ (even if κ is polynomial in λ, the authors managed
to obtain a polynomial modulus q).

• The secret element h is sampled using a centered Gaussian distribution of
parameter

√
q, so that ‖h‖ = Θ(

√
n · √q). In [21, Section 6.4], the authors

suggest to sample h according to a non spherical Gaussian distribution in-
stead of a spherical one. In the following we will always assume that h is
sampled according to a spherical Gaussian distribution. We discuss the case
of non spherical distributions in the full version [33].

2.3 Matrix Branching Programs

We recall in this section the definition of matrix branching programs, and we
introduce some notation that will be used throughout the article. A branching
program is defined over a ring R.

Definition 1 (d-ary Matrix Branching Program [3]). A d-ary matrix branch-
ing program A of length ` and width w over m-bit inputs is given by a sequence
of square matrices

{Ai,b}i∈[`],b∈{0,1}d ∈ Rw×w,

two bookend vectors

A0 ∈ R1×w and A`+1 ∈ Rw×1,

and an input function inp : [`]→ [m]d.

Let x ∈ {0, 1}m and let xi denote the i-th bit of x, for i in [m]. We will use
the notation x[inp(i)] = (xinp(i)1 , xinp(i)2 , · · · , xinp(i)d) ∈ {0, 1}d, where inp(i) =

(inp(i)1, · · · , inp(i)d) ∈ [m]d.

The output of the matrix branching program on input x ∈ {0, 1}m is given by

A(x) =

{
0 if A0 ·

(∏
i∈[`]Ai,x[inp(i)]

)
·A`+1 = 0

1 otherwise.
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Remark. A branching program with d = 1 (respectively with d = 2) is also called
a single input (respectively dual input) branching program. In the following, we
will not distinguish between the single input and dual input cases, as our attack
works in the same way in both cases (and even for higher arity d).

We say that two branching programs are equivalent if they compute the same
function. We also introduce a notion of strong equivalence between branching
programs, which will be useful later for the description of the abstract obfuscator
and our attack.

Definition 2 (Strongly equivalent branching programs). We say that
two d-ary matrix branching programs A = (A0, {Ai,b}i∈[`],b∈{0,1}d , A`+1) and

A′ = (A′0, {A′i,b}i∈[`],b∈{0,1}d , A
′
`+1), with the same length ` and the same in-

put function inp (but not necessarily defined over the same rings) are strongly
equivalent if, for all {bi}i∈[`] ∈ ({0, 1}d)`, we have

A0 ·
∏
i∈[`]

Ai,bi ·A`+1 = 0⇐⇒ A′0 ·
∏
i∈[`]

A′i,bi ·A
′
`+1 = 0. (4)

Remark. This notion is stronger than simple equivalence between branching pro-
grams, because we ask that (4) holds for all possible choices of {bi}i∈[`], and not
only for the ones of the form {x[inp(i)]}i∈[`] for some input x (corresponding
to an honest evaluation of the branching program on x). The pair of branch-
ing programs described in Section 4.3 gives an example of equivalent branching
programs that are not strongly equivalent.

2.4 The short Principal Ideal Problem

We define the short Principal Ideal Problem in the following way.

Definition 3 (Short Principal Ideal Problem). Let h ∈ R be sampled ac-
cording to some distribution D. The short Principal Ideal Problem is, given any
basis of the ideal 〈h〉 (when seen as a sub-lattice of R), to recover ±Xi · h for
some i ∈ [n].

For cyclotomic fields of order a power of two, when D is a discrete Gaussian
distribution, this problem can be solved in quantum polynomial time, using the
results of [10, 13, 18]. In [10], the authors show that given any basis of 〈h〉, an

attacker can recover a generator h̃ of the ideal 〈h〉 in quantum polynomial time.11

Then, the authors of [18], based on an observation of [13], proved that from any

generator h̃ of 〈h〉, if h has been sampled using a discrete Gaussian distribution,
then an attacker can recover ±Xi · h, for some i ∈ [n], in (classical) polynomial

time. This second part (recovering ±Xi · h from h̃) relies on the conjecture that
the set of cyclotomic units of R is equal to R× for power-of-two cyclotomic fields.
We summarise this in the following theorem.

11 Note that there also exists a classical sub-exponential time algorithm to recover
h̃, due to [9]. However, their algorithm runs in time O(2

√
n+o(1)), but we chose

n ≥ Ω(λ2), so this algorithm is exponential in the security parameter λ.
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Theorem 2 (adapted from [10, 18]). Let h ∈ R be sampled according to
a discrete spherical Gaussian distribution of parameter larger than 200 · n1.5.
Then, under Conjecture 1, there is a quantum polynomial time algorithm such
that, given any basis of the ideal 〈h〉, it recovers ±Xi · h for some i ∈ [n], with
constant probability close to 1 over the choice of h.

Conjecture 1. The set of cyclotomic units of R is equal to R× (see [18] for a
definition of cyclotomic units and a discussion of this conjecture).

3 An Abstract obfuscator

Following an idea of Miles, Sahai and Zhandry in [31], we define here an abstract
obfuscation scheme. This abstract obfuscator is inspired by the one of [31] but is
a bit simpler and more general. In particular, it captures all the obfuscators of
Theorem 1, except the ones of [6] and [19]. We will then show in Section 4 how
to apply our quantum attack to this abstract obfuscator, resulting in an attack
against the obfuscators of [2, 5, 23, 30, 32] and we will explain how to adapt
the attack to the branching program obfuscator of [6] (which is just slightly
different from the abstract obfuscator defined in this section). The case of the [19]
obfuscator is postponed in Section 5 as it is not a branching program obfuscator,
and so the formalism of the abstract branching program obfuscator does not
apply to it.

The abstract obfuscator takes as input a polynomial size d-ary matrix branch-
ing program A (for some integer d > 0), over the ring of integers Z,12 with a
fixed input function inp and with coefficients in {0, 1}. Usually, the obfusca-
tors pad the branching program with identity matrices, to ensure that the input
function has the desired structure. Here, to simplify the obfuscator, we will as-
sume that the obfuscator only accepts branching programs with the desired inp

function (the user has to pad the branching program himself before giving it to
the obfuscator). For the attack to work, we ask that there exist two different
integers j1 and j2 such that inp(j1) ∩ inp(j2) 6= ∅ (meaning that there is a
bit of the input which is inspected at least twice during the evaluation of the
branching program). This can be assumed for all the obfuscators of Theorem 1.13

Let w be the width of A, ` be its length, A0, A`+1 be its bookend vectors and
{Ai,b}i∈[`],b∈{0,1}d ∈ {0, 1}w×w be its square matrices. Recall that the function
computed by the branching program A is defined by

A(x) =

{
0 if A0 ·

(∏
i∈[`]Ai,x[inp(i)]

)
·A`+1 = 0

1 otherwise.

The abstract obfuscator then proceeds as follows.

12 Most of the time, the matrices of the branching program will be permutation ma-
trices, and the underlying ring will have no importance.

13 This is even mandatory for the dual input version of the obfuscators, as it is usually
required that all pairs (s, t) (or (t, s)) appear in the inp function, for any s, t ∈ [m]
with s 6= t.
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• It instantiates the GGH multilinear map and retains its secret parameters
(g, h, {zi}i∈[κ]) and its public parameters (n, q, κ, pzt). The choice of the pa-
rameters of the GGH map depends on the the parameters `, w and d of the
branching program A.

• It transforms the matrices of branching program A to obtain a new branching
program Â, with the same parameters w, d, `, the same input function inp,
and which is strongly equivalent to A. We denote by {Âi,b}i∈[`],b∈{0,1}d ∈
(R/gR)w×w and Â0 ∈ (R/gR)1×w, Â`+1 ∈ (R/gR)w×1 the matrices and

bookend vectors of Â. Note that this new matrix branching programs has its
coefficients in the ring R/gR and not in {0, 1}. Recall that strong equivalence
means that

A0 ·
∏
i∈[`]

Ai,bi ·A`+1 = 0⇐⇒ Â0 ·
∏
i∈[`]

Âi,bi · Â`+1 = 0 (in R/gR) (5)

for all choices of bi ∈ {0, 1}d, with i ∈ [`]. This condition is required for our
attack to work, and is satisfied by all the obfuscators of [2, 5, 23, 30, 32].
To transform the initial branching program A into this new branching pro-
gram Â, the obfuscators of [2,5,23,30,32] first embed the matrices of A into
the ring R/gR (this is possible since the coefficients of the matrices are 0
and 1). Then, they use various tools, taken among the following.14

1. Transform the matrices Ai,b into block-diagonal matrices

(
Ai,b

Bi,b

)
,

were Bi,b are square w′ ×w′ matrices in R/gR, chosen arbitrarily (they
can be fixed, or chosen at random, this will have no importance for us),
with w′ polynomial in the security parameter λ. In order to cancel the
extra diagonal block, the vector A0 is transformed into

(
A0 0

)
, with a

block of zeros of size 1×w′. The vector A`+1 is transformed into

(
A`+1

B`+1

)
,

with B`+1 an arbitrary w′ × 1 vector.

2. Use Killian randomisation, that is, choose ` + 1 non singular matrices
{Ri}i∈[`+1] ∈ (R/gR)w×w and transform Ai,b into Ri ·Ai,b ·Radj

i+1, where

Radj
i+1 is the adjugate matrix of Ri+1, i.e., Ri+1 · Radj

i+1 = det(Ri+1) · In.

Transform also A0 into A0 ·Radj
1 and A`+1 into R`+1 ·A`+1.

3. Multiply by random scalars, i.e., multiply each matrix Ai,b by some
random scalar αi,b ∈ (R/gR)×. Also multiply A0 and A`+1 by α0 and
α`+1 respectively.

We can check that all the transformations described above output a branch-
ing program which is strongly equivalent to the one given in input, so the
final branching program Â is also strongly equivalent to A (as in (5)). In
the following, we will only be interested in (5), not in the details of the
transformation.

14 The obfuscators of [23,32] use the three tools while the ones of [2, 5,30] use Tools 2
and 3 only.
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• Finally, the obfuscator encodes the matrices {Âi,b}i,b, Â0 and Â`+1 at some
level {Si,b}i,b, S0 and S`+1 respectively, using the GGH multilinear map.
The choice of these levels (called a straddling set system) depends on the
obfuscators, but will have no importance in the following. The only property
that we need, and that is fulfilled by the above obfuscators, is that for any
entry x, the sets S0, S`+1 and Si,x[inp(i)] for i ∈ [l] are disjoint and we have

S0 ∪
(
∪i∈[l]Si,x[inp(i)]

)
∪ S`+1 = Szt. (6)

This means that every honest evaluation of the encoded branching program
outputs an element at level Szt, that can be zero-tested. This condition
is necessary for the above obfuscators to be correct (otherwise we cannot
evaluate the obfuscated branching program).

• The obfuscator then outputs the elements [Â0]S0 , {[Âi,b]Si,b}i∈[l],b∈{0,1}d ,

[Â`+1]S`+1
and the public parameters of the GGH map (n, q, κ, pzt).

To evaluate the obfuscated branching program on input x, compute

ux = [Â0]S0
×
∏
i∈[`]

[Âi,x[inp(i)]]Si,x[inp(i)] × [Â`+1]S`+1
.

By Property (5), this is an encoding of zero if and only if the output of the
original branching program was zero. And by Property (6), this encoding is
at level Szt. So using pzt, we can perform a zero-test and output 0 if this is
an encoding of 0 and 1 otherwise. In the following, we will sometimes simplify
notations and forget about the subscripts Si,b, as the levels of the encodings are
entirely determined by the encoded matrices Ai,b.

For our attack to work, we will need to assume that if we evaluate the obfus-
cated branching program on enough inputs for which the output is zero, then we
can recover a basis of the ideal 〈h〉 (where h is a secret element of the GGH13
map, as described in Section 2.2). More formally, we make the following heuristic
assumption.

Heuristic 1. Let X0 be the set of inputs on which the branching program
evaluates to 0 and let x ∈ X0. If we evaluate the obfuscated branching program
on x and zero-test the final encoding, we obtain a ring element of the form
rx · h ∈ R. We assume that the set of all rx · h for x ∈ X0 spans the ideal 〈h〉
(and not a smaller ideal contained in 〈h〉). We also assume that if x is chosen
uniformly in X0, then we can obtain a basis of 〈h〉 with a polynomial number of
samples.

Discussion about Heuristic 1. We make the heuristic assumption above to sim-
plify the description of our attack. This heuristic assumption is coherent with
the numerical experiments we made (see the full version [33] for a description of
the experimental results). Moreover, we also observe that, even if we recover an
ideal J ⊆ 〈h〉 instead of the ideal 〈h〉, we can still handle it if 〈h〉 has a constant
number of prime factors (see the full version for more details).
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This completes the definition of our abstract obfuscator, which captures the
obfuscators of [2, 5, 23, 30, 32]. In the next section, we describe a mixed-input
attack against this abstract obfuscator, where all we use is that it satisfies Prop-
erties (5) and (6).

4 The main Attack

We will now prove our main theorem.

Theorem 3. Let O be any of the obfuscators in [2, 5, 6, 23, 30, 32], on sin-
gle or dual input branching programs, instantiated with the GGH13 multilinear
map [21] (respectively, let O be any of the circuit obfuscators in [4,19,37]). As-
sume the secret parameter h of the GGH13 multilinear map is sampled using a
spherical Gaussian distribution (as in Section 2.2). Then, there exist two explicit
equivalent branching programs (respectively, two equivalent circuits) A and A′

such that O(A) and O(A′) can be distinguished in quantum polynomial time,
under Conjecture 1 and Heuristic 1.

The limitation to the case where h is sampled according to a spherical Gaus-
sian distribution is discussed in the full version. We show that if q is large enough,
or if h is a product of a small number of spherical Gaussian distributions, then
our result still holds. We leave as an open problem to show that the attack goes
through for every efficient way of sampling h, or to find a way that allows to
thwart the attack (although we lean towards the former rather than the latter).
The necessity for h being sampled according to a spherical Gaussian distribution
appears in Theorem 2, to solve the short Principal Ideal Problem and recover
the secret element h. It is not used anywhere else in the attack, in particular, it
is not used in the mixed-input part of the attack (see Section 4.2).

To prove Theorem 3, we present a quantum polynomial time attack against
the abstract obfuscator described in Section 3. This results into an attack against
the iO security of the branching program obfuscators of [2,5,23,30,32]. We then
explain how to slightly modify this attack to use it against the obfuscator of [6],
whose structure is very close to the one of the abstract obfuscator. Finally,
adapting the attack to the circuit obfuscator of [19] will require more work,
because its structure is further away from the abstract obfuscator.

The attack works in two steps. We first recover the secret element h of the
GGH multilinear map. Using the results of [10, 13, 18], recalled in Section 2.4,
this can be done in quantum polynomial time. Knowing this secret element h,
we are able to construct a zero-testing parameter p′zt at a higher level than Szt.
We can then use this new parameter p′zt to mount a (classical) polynomial time
mixed-input attack against the abstract obfuscator.

4.1 Creating a new zero-testing parameter in quantum polynomial
time

We first explain in this section how we can recover the secret parameter h of the
multilinear map in quantum polynomial time. We then describe how to construct
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a new zero-testing parameter at a level higher than Szt, using h. Note that the
following is folklore, we recall it for the sake of completeness.

The first step is to recover sufficiently many multiples of h, to obtain a basis of
the ideal 〈h〉 (when seen as a sub-lattice of R). This part of the attack was already
described in the original article [21], and can be done in classical polynomial time,
under Heuristic 1. Observe that for each top-level encoding that pass the zero-
test, we obtain a multiple of h. We make the heuristic assumption 1 to ensure
that we indeed recover a basis of the ideal 〈h〉, by zero-testing sufficiently many
top-level encodings of zero. For this step to work, we need that the branching
program evaluates sufficiently often to 0, to obtain sufficiently many encodings
of 0. In the following, we will choose branching programs that compute the
always zero function, hence the condition on the number of encodings that pass
the zero-test will be satisfied.

We then recover ±Xih from the basis of the ideal 〈h〉, using Theorem 2. This
can be done in quantum polynomial time, under Conjecture 1, as h is sampled
according to a Gaussian distribution of parameter larger than 200 ·n1.5. The fact
that we recover ±Xjh instead of h will have no importance for our attack,15 so in
the following we will assume that we recovered h exactly. In [21, Section 6.4], the
authors propose another distribution for the secret parameter h (the element h
is sampled according to a non spherical Gaussian distribution). Theorem 2 does
not apply as it in this case, but we show in the full version that our attack can
be extended to some other distributions of h.

We now explain how to use h to create a new zero-testing parameter p′zt
at a higher level than Szt. A close variant of this step was already mentioned
in [21, Section 6.3.3]. The authors explained how to use a small multiple of 1/h
and a low level encoding of zero to create a new zero-testing parameter that
enabled to test at a higher level whether the numerator of an encoding was a
multiple of g or not (i.e., if the encoding was an encoding of zero or not). In
our case, the situation is a little different, as we do not know any low level
encoding of zero. Hence, we only manage to create a new zero-testing parameter
that enables us to determine whether the numerator of an encoding is a multiple
of g2 or not. In the following, we will say that an encoding is an encoding at level
2Szt if its denominator is (z∗)2. For instance, such an encoding can be obtained
by multiplying two level Szt encodings. We see the level 2Szt as a multiset
containing all the elements of Szt twice. We use the secret h to compute a new
zero-testing parameter p′zt at level 2Szt. Recall that pzt = hz∗g−1 mod q. We
then define

p′zt = p2
zth
−2 mod q = (z∗)2 · g−2 mod q.

Again, note that even if we call it a new zero-testing parameter, p′zt only enables
us to test whether the numerator of a level 2Szt encoding is a multiple of g2,
and not g, as our original zero-test parameter pzt did. But still, being able to
test at a level higher than Szt if the numerator is a multiple of g2 will enable us
to mount a mixed-input attack against the abstract obfuscator of Section 3. We
describe this mixed-input attack in the next subsection.

15 This is because both Xj and its inverse −Xn−j have euclidean norm 1.
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4.2 The mixed-input attack

We now assume that we have built a new pseudo-zero-test parameter p′zt, as in
Subsection 4.1 (in quantum polynomial time), and that we are given an obfus-
cated branching program ([Â0]S0

, {[Âi,b]Si,b}i∈[l],b∈{0,1}d , [Â`+1]S`+1
), obtained

by using our abstract obfuscator defined in Section 3.
Let x and y be two different inputs of the branching program. A mixed-

input attack consists in changing the value of some bits of the input during the
evaluation of the obfuscated branching program. For instance, the way we will do
it is by taking some matrix [Âi,y[inp(i)]]Si,y[inp(i)] , instead of [Âi,x[inp(i)]]Si,x[inp(i)] ,
while evaluating the program on x. Such mixed-input attack can leak information
on the program being obfuscated (see the specific choice of branching programs
described in the next subsection). In order to prevent mixed-input attack, the
abstract obfuscator uses a straddling set system. The intuition is that if the
attacker tries to mix the matrices [Âi,x[inp(i)]]Si,x[inp(i)] and [Âi,y[inp(i)]]Si,y[inp(i)] , it
will not get an encoding at level Szt at the end of the computation and hence it
cannot zero-test it. However, we can use our new zero-testing parameter p′zt to
handle this difficulty.

Let j ∈ [`] and compute

ũx,j = [Â0] ·
∏
i<j

[Âi,x[inp(i)]] · [Âj,y[inp(j)]] ·
∏
j<i≤`

[Âi,x[inp(i)]] · [Â`+1]

ũy,j = [Â0] ·
∏
i<j

[Âi,y[inp(i)]] · [Âj,x[inp(j)]] ·
∏
j<i≤`

[Âi,y[inp(i)]] · [Â`+1],

that is, we exchange [Âj,x[inp(j)]]Sj,x[inp(j)] and [Âj,y[inp(j)]]Sj,y[inp(j)] in the honest
evaluations of the obfuscated branching program on x and y.

The encodings ũx,j and ũy,j will have illegal levels Sx and Sy that are different
from Szt. But as we only exchange two matrices between correct evaluations, we
know that ũx,j · ũy,j will be encoded at the same level as ux ·uy where ux and uy
are the correct evaluations of the obfuscated branching program on x and y.
As ux and uy are correct evaluations, using Property (6), we know that they
are encoded at level Szt. Hence ũx,j · ũy,j is encoded at level 2Szt, and we can
zero-test ũx,j · ũy,j using p′zt.

Remember that an encoding will pass this zero-test only if its numerator is
a multiple of g2 and not only g. A simple way to ensure that ũx,j · ũy,j has a
numerator which is a multiple of g2 is to choose x and y such that ũx,j and ũy,j
are both encodings of 0 (i.e., their numerator are both multiples of g, and hence
their product has a numerator which is a multiple of g2). Using Property (5) of
our abstract obfuscator, we know that ũx,j is an encoding of 0 if and only if

A0 ·
∏
i<j

Ai,x[inp(i)] ·Aj,y[inp(j)] ·
∏
j<i≤`

Ai,x[inp(i)] ·A`+1 = 0.

We denote by ãx,j the left hand side of this equation. In the same way, we define

ãy,j = A0 ·
∏
i<j

Ai,y[inp(i)] ·Aj,x[inp(j)] ·
∏
j<i≤`

Ai,y[inp(i)] ·A`+1,
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and we have that ũy,j is an encoding of 0 if and only if ãy,j = 0.
To conclude, if we manage to find two equivalent branching programs A

and A′, two inputs x and y and an integer j ∈ [`] such that ãx,j = ãy,j = 0
for A but ã′x,j 6= 0 and ã′y,j 6= 0 for A′, then we can distinguish between the

obfuscation of A and the one of A′. Indeed, the numerator of ũx,j · ũy,j will be
a multiple of g2 in the case of A but the numerator of ũ′x,j · ũ′y,j will not be a

multiple of g in the case of A′ (and therefore not a multiple of g2 either). Hence,
using p′zt, we can determine which of the branching program A or A′ has been
obfuscated.

In the next subsection, we present two possible branching programs A and A′

and inputs x and y that satisfy the condition above. We note that this condition
is easily satisfied and it should be possible to find a lot of other branching
programs satisfying it. We just propose here a simple example of such branching
programs, in order to complete the proof of Theorem 1.

4.3 A concrete example of branching programs

In this section, we present an example of two branching programs A and A′

that are equivalent, but such that their obfuscated versions, obtained using the
abstract obfuscator, can be distinguished using the framework described above,
hence attacking the iO security of the obfuscator.

Remember that for the first step of our attack (recovering h and creating p′zt,
see Section 4.1), we need to have a sufficient number of inputs x that evaluate to
zero. Here, we choose branching programs that compute the always zero function.
We now show how to satisfy the conditions for the second part of the attack
(Section 4.2).

Let I = Iw ∈ {0, 1}w×w be the identity matrix and J ∈ {0, 1}w×w be a
matrix of order two (i.e., J 6= I and J2 = I). One could for example take

J =

0 1
1 0

Iw−2

 . Our first branching program will consist in identity matrices

only. We will build our second branching program such that when evaluating it
on input x, we have a product of ` matrices I (when we forget about the bookend
vectors), but on input y we have a product of `−2 matrices I and 2 matrices J .16

We will then exchange one of these J matrices with an I matrix in the evaluation
on x. The resulting products will then be equal to matrix J instead of matrix I
(as it is the case for the first branching program). We describe the two branching
programs more precisely below.

Input selection function. Recall that the input selection function inp is fixed
and is such that there are at least two distinct integers j1 and j2 such that
inp(j1) ∩ inp(j2) 6= ∅. Let s be such that s ∈ inp(j1)∩inp(j2). This means that
when evaluating the branching program on some input, the j1-th and the j2-th
matrices of the product both depend on the s-th bit of the input. Without loss of

16 As J has order 2, the resulting product will still be the identity matrix.
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generality, we assume that inp(j1) = (s, s2, · · · , sd) and inp(j2) = (s, t2, · · · , td)
for some integers si and ti in [m].

Matrices. Our first branching program A consists in identity matrices only, i.e.,
Ai,b = I for all i ∈ [`] and b ∈ {0, 1}d. For our second branching program A′,
we take

A′i,b =

{
I if i 6∈ {j1, j2} or b1 = 0
J if i ∈ {j1, j2} and b1 = 1,

where b = (b1, · · · , bd). This means that when evaluating the branching pro-
gram A′ on some input x, if xs = 0, then all the matrices of the product are
identity matrices. And if xs = 1, then the j1-th and j2-th matrices of the product
are J matrices and the others are I matrices. As J has order two, the product
will always be the identity.

Bookend vectors. We take A0 and A`+1 to be two vectors such that A0IA`+1 = 0

but A0JA`+1 6= 0. For instance, with the choice of J =

0 1
1 0

Iw−2

, we can take

A0 =
(
1 0 . . . 0

)
and A`+1 =

(
0 1 0 . . . 0

)T
, where AT denotes the transpose

of A for any matrix A. These bookend vectors are the same for both branching
programs, i.e., A′0 = A0 and A′`+1 = A`+1.

These two branching programs A and A′ are equivalent as they both compute
the always zero function. Now, take x = 0 . . . 0 and y = 0 . . . 010 . . . 0 where the 1
is at the s-th position, and let j = j1. Let us compute ãx,j , ãy,j for branching
program A and ã′x,j , ã

′
y,j for branching program A′.

Branching program A. As all matrices are identity matrices in A, exchanging
two matrices does not change the product and we still have

ãx,j = A0 ·
∏
i<j

Ai,x[inp(i)] ·Aj,y[inp(j)] ·
∏
j<i≤`

Ai,x[inp(i)] ·A`+1 = A0 · I ·A`+1 = 0,

ãy,j = A0 ·
∏
i<j

Ai,y[inp(i)] ·Aj,x[inp(j)] ·
∏
j<i≤`

Ai,y[inp(i)] ·A`+1 = A0 · I ·A`+1 = 0.

Branching program A′. Here, we chose our parameters so that an honest
evaluation of A′ on x leads to a product of only I matrices and an honest
evaluation of A′ on y leads to a product of ` − 2 matrices I and 2 matrices J .
We also chose j so that we exchange a J matrix with a I matrix. Hence, we have

ã′x,j = A′0 ·
∏
i<j

A′i,x[inp(i)] ·A
′
j,y[inp(j)] ·

∏
j<i≤`

A′i,x[inp(i)] ·A
′
`+1 = A0 · J ·A`+1 6= 0,

ã′y,j = A′0 ·
∏
i<j

A′i,y[inp(i)] ·A
′
j,x[inp(j)] ·

∏
j<i≤`

A′i,y[inp(i)] ·A
′
`+1 = A0 · J ·A`+1 6= 0.
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To conclude, this gives us the desired condition of Section 4.2. Indeed, for
the branching program A, the numerator of ũx,j · ũy,j is a multiple of g2, hence
zero-testing it with the parameter p′zt gives a positive result. Oppositely, for
the branching program A′, the numerator of ũx,j · ũy,j is not a multiple of g,17

hence zero-testing it with the parameter p′zt gives a negative result. We can then
distinguish between the obfuscations of A and A′. This completes the proof of
Theorem 1 for the obfuscators of [2, 5, 23,30,32].

4.4 Other branching program obfuscators

We now discuss the possible extension of this attack to other branching program
obfuscators that are not captured by the abstract obfuscator of Section 3.

Obfuscator of [6]. This obfuscator is close to the one described in the abstract
model, except that it obfuscates a slightly different definition of branching pro-
grams. In [6], a branching program A comes with an additional value qacc, and
we have A(x) = 0 if and only if A0 ·

∏
i∈[l]Ai,x[inp(i)] ·A`+1 = qacc. The only dif-

ference with the definition of branching programs given in Section 2.3 is that qacc
may be non-zero. Hence, when multiplying by the scalars αi,b in the obfuscator
(see Tool 3), we may change the output of the function. To enable correct eval-
uation of the obfuscated branching program, the obfuscator of [6] also publishes
encodings of the scalars αi,b at level Si,b.

More formally, the obfuscator of [6] uses Tools 2 and 3 of Section 3. In Tool 2,

the authors use R−1
i+1 instead of Radj

i+1, in order to keep the same product (other-
wise the product would be multiplied by the determinants of the Ri matrices).
Let Âi,b = αi,bRiAi,bR

−1
i+1 be the matrices obtained after re-randomization (us-

ing Tools 2 and 3). Let Â0 = A0R
−1
1 and Â`+1 = R`+1A`+1. The obfuscator pro-

vides encodings of the matrices Â0, {Âi,b}i,b and Â`+1 at levels S0, {Si,b}i,b and
S`+1, respectively. It also provides encodings of the {αi,b}i,b at levels {Si,b}i,b
and an encoding of qacc at level S0 ∪ S`+1. Then, to evaluate the obfuscated
branching program on input x, one computes

[Â0]S0 ·
∏
i∈[`]

[Âi,x[inp(i)]]Si,x[inp(i)] ·[Â`+1]S`+1
−[qacc]S0∪S`+1

·
∏
i∈[`]

[αi,x[inp(i)]]Si,x[inp(i)] ,

and tests whether this is an encoding of 0 or not. By construction, this will be
an encoding of 0 at level Szt if and only if A(x) = 0.

The first part of our attack (recovering h and p′zt) still goes through. We
slightly modify the mixed-input part. Instead of exchanging only the j-th matrix
between the evaluations of x and y, we will also exchange the corresponding αj,b
in the second product. Doing so, we ensure that the product of the αi,b’s remains
the same in both sides of the difference. This also ensures that the level of both
sides will be the same after the exchange, and hence we can still subtract them.

17 The ideal 〈g〉 is chosen prime in GGH so the product of two elements that are not
divisible by g is also not divisible by g.
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The same example as in Section 4.3 will then work also for this obfuscator.
This gives us a way to distinguish in quantum polynomial time between the
obfuscated versions of two equivalent branching programs, hence attacking the
iO security of the obfuscator of [6].

Obfuscators of [12,22]. Our attack does not seem to extend to the obfuscators
of [12, 22]. The obstacle is that the security of these obfuscators against mixed-
input attacks does not rely on the GGH map but on the scalars αi,b, which
are chosen with a specific structure to ensure that the branching program is
correctly evaluated.

More precisely, these obfuscators use (single input) branching programs with
a slightly different definition, where the product of matrices (with the bookend
vectors) is never 0. For instance, the branching programs are chosen such that
the product of the matrices (on honest evaluations) is either 1 or 2, in which cases
we say that the output of the branching program is respectively 0 or 1. Hence,
when evaluating the obfuscated branching program on input x, the user obtains
a top-level encoding of either

∏
i αi,xi or 2

∏
i αi,xi depending on the output of

the branching program. In order for the user to determine which one of the two
encodings it has obtained, the obfuscated branching program also provide him
(via a so-called dummy branching program) with a top-level encoding

∏
i αi,xi .

The user then only has to subtract the two top-level encodings and zero-test to
determine whether A(x) = 0 or 1. Now, if the user tries to mix the inputs, it
can obtain a top-level encoding of (αj,yj ·

∏
i6=j αi,xi) · ax,j for instance (where

ax,j = 1 or 2 is the product of the corresponding matrices). But, as it is not an
honest evaluation, it will not have a top-level encoding of αj,yj ·

∏
i 6=j αi,xi to

compare it with.

Following the same idea as for the mixed-input attack described above, the
attacker could compute two top-level encodings of (αj,yj ·

∏
i 6=j αi,xi) · ax,j and

(αj,xj ·
∏
i 6=j αi,yi)·ay,j and then multiply them to obtain an encoding of (

∏
i αi,xi ·∏

i αi,yi) · ax,j · ay,j at level 2Szt. Now, using the top-level encodings of
∏
i αi,xi

and
∏
i αi,yi that are provided by the obfuscated branching program, one can

also obtain an encoding of (
∏
i αi,xi ·

∏
i αi,yi) at level 2Szt. So if we could zero-

test at level 2Szt, then we could distinguish between a branching program where
ax,j · ay,j = 1 and one where ax,j · ay,j 6= 1. But we cannot zero-test at level
2Szt: our new zero-testing parameter p′zt only enables us to determine whether
the numerator of an encoding is a multiple of g2 or not. Here, we subtract two
level-2Szt encodings of the same value, so the numerator of the result will be a
multiple of g, but it is very unlikely to be a multiple of g2. Hence, we do not
learn anything by using p′zt. Because of the final subtraction, we did not manage
to obtain an encoding at level 2Szt whose numerator was a multiple of g2, and
so we did not manage to adapt the mixed-input attack described above to the
obfuscators of [12,22].
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5 Adapting the attack to the obfuscator of [19]

Unlike the abstract branching program described in Section 3, the obfuscator
of [19] does not obfuscate branching programs, but it obfuscates circuits directly.
The structure of this obfuscator is very different from the abstract obfuscator
described in Section 3 and so the attack described in Section 4 cannot be directly
applied to it. However, similarly to the other obfuscators described above, the
obfuscator of [19] also uses the levels of the GGH multilinear map to prevent
mixed-input attacks. This is the weakness we exploited to mount a mixed-input
attack against the abstract obfuscator, and here again, this will enable us to
attack the [19] obfuscator, by attacking the underlying GGH multilinear map.
In this section, we first describe in a simplified way the obfuscator of [19] (this
simplified version also captures the obfuscators of [4, 37]). We then show how
to adapt our attack to mount a quantum polynomial-time mixed-input attack
against this candidate obfuscator.

5.1 The obfuscator

The obfuscator of [19] uses the GGH multilinear map [21] in its asymmet-
ric version, but with a composite g. More concretely, sample three elements
g1, g2, g3 ∈ R as for the original g in the GGH map, that is ‖gi‖ = O(n),
‖1/gi‖ = O(n2) and such that N (gi) is a prime integer, for all i ∈ [3]. Then,
let g = g1g2g3. If we denote by Ri = R/giR the quotient rings for i ∈ [3], then
using the Chinese reminder theorem we know that the encoding space R/gR is
isomorphic to R1 × R2 × R3. In the following, it will be useful to choose this
point of view, as we will encode triplets of elements (a1, a2, a3) ∈ R1×R2×R3,
using the GGH map.

Let Σ be some subset of {0, 1}l with both l and |Σ| that are polynomial in
the security parameter λ. We will be interested into arithmetic circuits C : Σ →
{0, 1}. By arithmetic circuits, we mean that C performs addition, multiplication
and subtraction over the bits of the element of Σ (i.e., C is an arithmetic circuit
from {0, 1}l to {0, 1}, but we are only interested in its restriction to Σ ⊆ {0, 1}l).
The operations over the bits are performed over Z but we only consider circuits
whose output is in {0, 1}. Let C be a class of such circuits, whose size is bounded
by some polynomial (the properties of this class of circuit will not be interesting
for our attack) and let U be a universal circuit for the class C . The size of U is
also bounded by some polynomial in the security parameter. We abuse notation
by denoting by C both a circuit of C and its bit representation, that is we have
U(σ,C) = C(σ) for any σ ∈ Σ (the first C denotes the bit representation of the
circuit while the second one represent the function computed by the circuit).

To obfuscate a circuit C of the class C , the main idea of [19] is that the
obfuscator will produce GGH encodings of the bits of C and of the bits of all
the possible inputs σ ∈ Σ. Then, to evaluate the obfuscated circuit, it suffices to
homomorphically evaluate the universal circuit U on these encodings and to test
whether the result is 0 or not. In order to prove the security of their obfuscators,
the authors of [19] added other gadgets to their obfuscator. The first idea is
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to encode the useful information only in the second slot of the GGH map (in
the ring R2) and to use the two other slots to prevent some mixed-input attack
(where we mix the bits of two circuits). They also use straddling set systems,
like the abstract obfuscator defined in Section 3, to prevent other kind of mixed
input attacks (where we mix the bits of two inputs). We describe below in more
details how the obfuscator of [19] obfuscates a circuit C ∈ C . In order to help
understanding what is happening, we also describe in parallel how to evaluate
the obfuscated circuit.

1. First, we encode each bit of all the possible inputs σ ∈ Σ (recall that we chose
|Σ| to be polynomial in the security parameter, so it is possible to enumerate
all the elements of Σ). For each symbol σ ∈ Σ and each bit position i ∈ [l],

define W
(1)
i,σ = [r

(1)
σ · w(1)

i,σ ]
S

(1)
σ

and R
(1)
σ = [r

(1)
σ ]

S
(1)
σ

, where r
(1)
σ is sampled

uniformly in R/gR× (and only depends on σ) and

w
(1)
i,σ = (y

(1)
i , σi, ρ

(1)
i,σ) ∈ R1 ×R2 ×R3,

for σi the i-th bit of σ and y
(1)
i and ρ

(1)
i,σ sampled uniformly in R1 and R3

respectively. The level S
(1)
σ of the encoding will be chosen to prevent mixed-

input attacks. We will go into more details about the levels of the encodings

later. These encodings W
(1)
i,σ and R

(1)
σ are made public, for i ∈ [l] and σ ∈ Σ.

Note that y
(1)
i is the same for all symbols σ, this will be necessary for cor-

rectness.
2. Second, we encode the bits of the representation of the circuit C ∈ C . We

denote by |C| the size of the bit representation of C. For each 1 ≤ j ≤ |C|,
define W

(2)
j = [r(2) · w(2)

j ]S(2) and R(2) = [r(2)]S(2) , where r(2) is sampled

uniformly in R/gR× and

w
(2)
j = (y

(2)
j , Cj , ρ

(2)
j ) ∈ R1 ×R2 ×R3,

for Cj the j-th bit of the representation of C and y
(2)
j and ρ

(2)
j sampled

uniformly in R1 and R3 respectively. Again, the level S(2) of the encoding

will be described later. These encodings W
(2)
j and R(2) are made public, for

1 ≤ j ≤ |C|.

Once we have encodings for the bits of C and for all the possible input values
σ ∈ Σ, as the universal circuit U only performs additions, subtractions and
multiplications, we can homomorphically evaluate it on the encodings. We can
always perform multiplications of encodings, it will only increase the level of the
encodings. However, there is a subtlety for addition and subtraction, as we can
only add and subtract encodings at the same level. To circumvent this difficulty,

the authors of [19] use the encodings R(2) and R
(1)
σ . During the evaluation of the

universal circuit U on the encodings, we will perform computations so that for all
intermediate encodings we compute, we always have encodings of the form [r·w]S
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and [r]S , with the same level S. At the beginning, all the encodings described
above have the desired form [r·w]S and [r]S . If we want to multiply [r1 ·w1]S1

and
[r2 ·w2]S2 , we just compute the product of the encodings to get [r1r2 ·w1w2]S1∪S2

and we also compute the product of the r part to obtain [r1r2]S1∪S2 . Note that
here, the union of the two sets S1 ∪ S2 keeps multiple copies of the elements
that appear both in S1 and in S2 (i.e., S1 ∪ S2 is a multiset). If we want to add
[r1 · w1]S1

and [r2 · w2]S2
, then two cases appear. If r1 = r2 and S1 = S2, then

add both encodings to get [r1 · (w1 +w2)]S1
and keep [r1]S1

. Otherwise, compute
[r1]S1 · [r2 · w2]S2 + [r2]S2 · [r1 · w1]S1 = [r1r2 · (w1 + w2)]S1∪S2 and compute the
product [r1r2]S1∪S2 . We proceed similarly for subtraction.

With this technique, we can evaluate the circuit U on the encodings provided
by the obfuscator, independently of the levels used to encode them. Assume we
evaluate it honestly on the encodings of C and of some input σ ∈ Σ, we then
obtain encodings Wσ = [rσ · wσ]Sσ and Rσ = [rσ]Sσ at some level Sσ, for some
rσ ∈ R/gR, where

wσ = (y∗, C(σ), ρσ) ∈ R1 ×R2 ×R3,

for some y∗ ∈ R1 and ρσ ∈ R3. Note that, as the y
(1)
i ’s do not depend on the

input σ, the value y∗ is the same for all σ’s. We then want to annihilate the
values in the extra slots (that is y∗ and ρσ) to recover the value of C(σ) by
zero-testing. To do that, the obfuscator provides two more encodings.

3. To annihilate the value in the third slot, the obfuscator output encodings
Ŵσ = [r̂σ · ŵ]

Ŝσ
and R̂σ = [r̂σ]

Ŝσ
, for all σ ∈ Σ, where r̂σ is sampled

uniformly in R/gR× and
ŵ = (ŷ, α̂, 0),

for ŷ and α̂ uniformly chosen in R1 and R×2 , respectively.

Multiplying the encoding of wσ = (y∗, C(σ), ρσ) obtained above, by this
encoding of ŵ = (ŷ, α̂, 0) enables us to cancel the last slot and to obtain an
encoding of ŵσ := (ŷ · y∗, α̂ ·C(σ), 0). We also multiply the r parts, as described
above. Note that to cancel this third slot, the obfuscator outputs one pair of
encodings for each symbol σ ∈ Σ. While this may seem useless because each
encoding encodes the same ŵ, this is in fact required to standardise the levels
of the encodings. Indeed, after evaluating the universal circuit on the encodings
of C and σ, we obtain an encoding whose level depends on σ. By multiplying
with an encoding at a complementary level at this step, we can then ensure that
the level of the product is independent of σ. This property will be important,
because to zero-test the final encoding, we need it to be at the maximal level Szt,
independently of the input σ.

4. Finally, to cancel the first slot, the obfuscator provides two encodings W̄ =
[r̄ · w̄]S̄ and R̄ = [r̄]S̄ , where r̄ is sampled uniformly in R/gR× and

w̄ = (ŷ · y∗, 0, 0).
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Note that ŵσ−w̄ = 0 if and only if C(σ) = 0. Hence, it suffices to subtract the
corresponding encodings (using the r part, because the levels of the encodings
will not match) and to zero-test the obtained encoding to determine whether
C(σ) = 0 or 1.

This completes the description of the obfuscator, together with the correct-
ness proof of the evaluation of the obfuscated program. Before describing the
mixed-input attack, we would like to insist on some properties of the obfuscator
described above.

• The levels of the encodings output by the obfuscator are chosen such that all
honest evaluations of the obfuscated circuit on some input σ ∈ Σ produce
encodings with the same level. This level is then chosen to be the maximal
level of the GGH map, and will be denoted by Szt. The obfuscator also
provides a zero-test parameter pzt to enable zero-test at level Szt. In the
following, the only thing that will be interesting for our attack is that a
honest evaluation of the obfuscated circuit on any input σ ∈ Σ outputs an
encoding at level Szt, so we do not go into more details about the levels of
the encodings.

• As we already noted, the value y∗ obtained in the first slot after evaluating
the universal circuit on the encodings of C and σ does not depend on σ.
This is needed for the last step, where we subtract ŷ · y∗. As we want this
to output 0 for any input (to cancel out the first slot), the value y∗ has to
be independent of σ. This first slot prevents us from mixing the bits of the
circuit C, but does not prevent us from mixing the bits of the input σ (i.e.,
changing the value of some bit during the evaluation). Mixing the bits of
the input is only prevented by the GGH map and the straddling set system
(recall that the levels of the encodings depend on the input σ). This is the
kind on mixed-input attack we will be able to perform after recovering the
secret element h of the GGH map.

Differences between the DGGMM obfuscator and our simplification above. The
obfuscator of [19] obfuscates circuits from Σc to {0, 1} for some constant c,
instead of circuits from Σ to {0, 1} as described above. However, for our attack,
we can take the constant c to be equal to 1, so we simplified a bit the description
of the obfuscator and forgot about this constant c. If needed, the attack can be
easily adapted to the case where c is a constant different from 1.

Also, the obfuscator of [19] uses an extra slot where it computes a PRF,
and which is cancelled out before zero-testing by multiplying by an encoding
of 0 in this slot (the principle is the same as for cancelling the third slot of the
obfuscator described here). This extra slot is used only in the proof of security
and does not interfere with our mixed-input attack, so we removed it from the
description above.18

18 This extra slot can be captured by the simplification above by taking g3 to be a
product of two prime elements and changing the distribution of the elements ρ in
the third slot of the encodings. This has no impact on our attack.
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Finally, in the obfuscator of [19], we have w̄ = (ŷ · y∗, α̂, 0) instead of
w̄ = (ŷ · y∗, 0, 0). So when subtracting, we obtain at the end an encoding of
(0, α̂(1−C(σ)), 0), which is 0 if and only if C(σ) = 1, instead of 0 if and only if
C(σ) = 1 as in our simplification. However, both versions are equivalent, as we
can always negate the output of the circuit. In order to be consistent with the
other obfuscators described in this article, we decided to stick with the fact that
obtaining an encoding of 0 means that the circuit outputs 0.

The DGGMM obfuscator was designed to obtain a candidate iO obfuscator
from low noise multilinear maps. To do so, the class of circuit C targeted by
the obfuscator described above is a very restrictive one (among other things,
it requires that the circuits have a constant depth and a polynomial number of
inputs). The authors then use a theorem from [29] to bootstrap their construction
for this restricted class of circuit C to an obfuscator for all circuits in P/poly.

Remark. The DGGMM obfuscator is very similar to the previous circuit obfus-
cators of [4,37], and the simple circuit obfuscator described above also captures
these obfuscators. Hence, the attack described below also applies to the ob-
fuscators of [4, 37], when instantiated with the GGH13 multilinear map (these
obfuscators were originally instantiated with the CLT multilinear map, as they
require composite-order multilinear maps, but they can also be instantiated with
a modified version of the GGH13 map, as observed in [19]).

5.2 The mixed-input attack

As mentioned above, the attack will consist in modifying a bit of the input σ
during the computation. The idea is the same as for the attack of Section 4. We
start by recovering the secret element h of the GGH map in quantum polynomial
time, using the works of [10,13,18]. As above, we can obtain top level encodings
of 0 each time the circuit evaluates to 0, so by choosing a circuit that evaluates
to 0 sufficiently often, we can recover a basis of the ideal 〈h〉 (under Heuristic 1)
and then recover h exactly (under Conjecture 1). We then construct a new zero-
testing parameter p′zt at level 2Szt (testing whether the numerator of an encoding
is a multiple of g2, and not only g). This first step of the attack works exactly
as described in Section 4.1 and we do not re-explain it here.

The second part of the attack (using p′zt to mount a mixed input attack)
will differ from the one for the abstract branching program obfuscator. The
first difference is that in the abstract branching program obfuscator, we only
computed products of matrices. So by changing a matrix, we just changed the
final level of the encodings but all the operations remained possible (products of
encodings are always possible, whatever their levels are). Here, as we evaluate
a circuit with additions and multiplications, we must be careful. Indeed, if we
change the level of one encoding of a sum but not the other one, we will not be
able to perform the sum anymore. To circumvent this difficulty, we will use a
specific universal circuit, which ends up by a multiplication. Let U be a universal
circuit for the class of circuit C . We define a new circuit Ũ , which takes as input
a concatenation of the description of two circuits in C and an input σ ∈ Σ and
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computes the product of the evaluations of the two circuits on input σ. More
formally, we define

Ũ(σ,C1 · C2) = U(σ,C1) · U(σ,C2).

The circuit Ũ is a universal circuit for the class C · C . Note that when eval-
uating the circuit Ũ , we finish the evaluation with a multiplication. To perform
our mixed input attack, we will evaluate U(·, C1) and U(·, C2) honestly on dif-
ferent inputs σ1 and σ2. As each partial evaluation is honest, we can perform
all the required operations on the encodings. The dishonest computation will be
the last multiplication only.

Let σ1 and σ2 be two distinct elements of Σ. Let C00 be a circuit that
evaluates always to 0 on Σ. We also let C10 be a circuit that evaluates to 1
on σ1 and to 0 otherwise and C01 be a circuit that evaluates to 1 on σ2 and to 0
otherwise. The functions computed by C00 ·C00 and by C01 ·C10 are the same, so
these circuits are equivalent. We will now show how to distinguish the obfuscated
versions of C00 · C00 and C01 · C10, when using the universal circuit Ũ . As both
circuits are equivalent, this will result into an attack against the iO security of
the obfuscator.

Objective: The obfuscator obfuscates the circuit C1 ·C2 ∈ {C00 ·C00, C01 ·C10},
and we want to distinguish whether C1 · C2 = C00 · C00 or C1 · C2 = C01 · C10.

1. The obfuscator encodes the bits of C1 and C2 under the GGH map, as well
as the bits of all possible inputs σ ∈ Σ. In particular, we have encodings for
σ1 and σ2. We homomorphically evaluate U on the encodings of C1 and σ1,
C1 and σ2, C2 and σ1 and C2 and σ2.19 These are honest partial evaluations
of the circuit Ũ on input σ1 and σ2, so we can perform these evaluations (in
particular, there will not be incompatibilities of encodings levels). We obtain
four pairs of encodings (Rb1b2 = [rb1b2 ]Sb1b2 ,Wb1b2 = [rb1b2 · wb1b2 ]Sb1b2 ), for

b1, b2 ∈ {1, 2}2, where

wb1b2 = (yb1 , Cb1(σb2), ρb1b2).

Recall that the y part of the encoding does not depend on the input σ, so
this is independent of b2 for our notations.

2. A honest evaluator of the obfuscated program would then multiply the en-
codingsW11 andW21 (of C1(σ1) and C2(σ1)) and the encodingsW12 andW22

(of C1(σ2) and C2(σ2)). However, in order to distinguish which circuit has
been obfuscated, we do not perform these honest computations. Instead,
following the idea of the mixed input attack described in Section 4.2, we
compute W11 ·W22 and W12 ·W21 (and we do the same for the r part). We

then obtain two encodings W̃1 and W̃2 of

w̃1 := (y∗, C1(σ1) · C2(σ2), ρ11ρ22)

and w̃2 := (y∗, C1(σ2) · C2(σ1), ρ12ρ21)

19 Recall that U(σ,C) = C(σ) and the universal circuit we chose is Ũ(σ,C1 · C2) =
U(σ,C1) · U(σ,C2).
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at levels S11 ∪ S22 and S12 ∪ S21 respectively. Note that the first slot of the
encodings contains y∗, as it would for a honest evaluation.

3. We then complete the computation as if W̃1 was an honest evaluation on σ1

and W̃2 was an honest evaluation on σ2. That is, we first multiply W̃1

by Ŵσ1
and W̃2 by Ŵσ2

to cancel the third slot. We obtain two encodings

Ŵ1 and Ŵ2 of

ŵ1 := (y∗ · ŷ, α̂ · C1(σ1) · C2(σ2), 0)

and ŵ2 := (y∗ · ŷ, α̂ · C1(σ2) · C2(σ1), 0)

at levels S11 ∪ S22 ∪ Ŝσ1
and S12 ∪ S21 ∪ Ŝσ2

, respectively.

4. Finally, we cancel the first slot by subtracting W̄ to the encodings Ŵ1 and Ŵ2

obtained above. Note that this subtraction is between encodings that are not
at the same level (for both honest and dishonest evaluations), so the resulting
level is the union of the levels of both parts of the subtraction. We obtain
two encodings W̄1 and W̄2 of

w̄1 := (0, α̂ · C1(σ1) · C2(σ2), 0)

and w̄2 := (0, α̂ · C1(σ2) · C2(σ1), 0)

at levels S11 ∪ S22 ∪ Ŝσ1
∪ S̄ and S12 ∪ S21 ∪ Ŝσ2

∪ S̄, respectively.
5. Now, we would like to zero-test the encodings W̄1 and W̄2 obtained above,

but because we mixed the inputs, the levels of the encodings are unlikely
to be Szt and we are not able to zero-test. However, we know that S11 ∪
S21 ∪ Ŝσ1 ∪ S̄ = Szt, because the encoding obtained by honestly evaluating
the obfuscated program on σ1 has this level. In the same way, we know that
S12∪S22∪Ŝσ2

∪S̄ = Szt. Hence, the level of the product W̄1 ·W̄2 is 2Szt. Using
our p′zt parameter, we can then test whether its numerator is a multiple of g2

or not.
• In the case where C1 · C2 = C00 · C00, we have w̄1 = 0 mod g and w̄2 =

0 mod g. Hence, their product is a multiple of g2. So the numerator of
W̄1 ·W̄2 is a multiple of g2, and the zero-test using p′zt answers positively.

• In the case where C1 · C2 = C01 · C10, we have w̄1 = 0 mod g and
w̄2 6= 0 mod g. So the product is a multiple of g2 if and only if w̄1 is
a multiple of g2, which is very unlikely (w̄1 is obtained by subtracting
two values that are equal modulo g1, so this is a multiple of g1 but this
is unlikely to be a multiple of g2

1).20 Hence, the numerator of W̄1 · W̄2

will not be a multiple of g2 (with high probability), and the zero-test
using p′zt will fail.

We can then distinguish between the obfuscated versions of C00 · C00 and
C01 · C10 in (classical) polynomial time, using our new zero-testing parame-
ter p′zt obtained in quantum polynomial time.

This completes our quantum attack against the obfuscators of [4,19,37] and
the proof of Theorem 1.

20 Note that even if w̄1 were a multiple of g2, then, by taking p′zt = (z∗ · g−1)3 mod q,
we could mount the same kind of attack, at level 3Szt instead of 2Szt.
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28. A. Langlois, D. Stehlé, and R. Steinfeld. GGHLite: More efficient multilinear maps
from ideal lattices. In EUROCRYPT 2014, pages 239–256. Springer, Heidelberg,
May 2014.

29. H. Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes. In EUROCRYPT 2016, pages 28–57. Springer, Heidelberg, May 2016.

30. E. Miles, A. Sahai, and M. Weiss. Protecting obfuscation against arithmetic at-
tacks. Cryptology ePrint Archive, Report 2014/878, 2014. http://eprint.iacr.

org/2014/878.
31. E. Miles, A. Sahai, and M. Zhandry. Annihilation attacks for multilinear maps:

Cryptanalysis of indistinguishability obfuscation over GGH13. In CRYPTO 2016,
pages 629–658. Springer, Heidelberg, Aug. 2016.

32. R. Pass, K. Seth, and S. Telang. Indistinguishability obfuscation from semantically-
secure multilinear encodings. In CRYPTO 2014, pages 500–517. Springer, Heidel-
berg, Aug. 2014.

33. A. Pellet-Mary. Quantum attacks against indistinguishablility obfuscators proved
secure in the weak multilinear map model. Cryptology ePrint Archive, 2018. http:
//eprint.iacr.org/

34. A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In 46th Annual ACM Symposium on Theory of Computing,
pages 475–484. ACM Press, May / June 2014.

35. P. W. Shor. Algorithms for quantum computation: Discrete logarithms and fac-
toring. In FOCS 1994, pages 124–134. IEEE, 1994.

36. D. Wichs and G. Zirdelis. Obfuscating compute-and-compare programs under
LWE. In FOCS 2017, pages 600–611. IEEE, 2017.

37. J. Zimmerman. How to obfuscate programs directly. In EUROCRYPT 2015, pages
439–467. Springer, Heidelberg, Apr. 2015.

30

http://eprint.iacr.org/2016/599
http://eprint.iacr.org/2014/878
http://eprint.iacr.org/2014/878
http://eprint.iacr.org/
http://eprint.iacr.org/

	Quantum Attacks against Indistinguishablility Obfuscators Proved Secure in the Weak Multilinear Map Model
	Introduction
	Preliminaries
	Mathematical Background
	The GGH13 multilinear map
	Matrix Branching Programs
	The short Principal Ideal Problem

	An Abstract obfuscator
	The main Attack
	Creating a new zero-testing parameter in quantum polynomial time
	The mixed-input attack
	A concrete example of branching programs
	Other branching program obfuscators

	Adapting the attack to the obfuscator of DGGMM16
	The obfuscator
	The mixed-input attack



