
Non-Malleable Secret Sharing in the
Computational Setting: Adaptive Tampering,
Noisy-Leakage Resilience, and Improved Rate

Antonio Faonio1? and Daniele Venturi2

1 IMDEA Software Institute, Madrid, Spain
2 Department of Computer Science, Sapienza University of Rome, Italy

Abstract. We revisit the concept of non-malleable secret sharing (Goyal
and Kumar, STOC 2018) in the computational setting. In particular, un-
der the assumption of one-to-one one-way functions, we exhibit a com-
putationally private, threshold secret sharing scheme satisfying all of the
following properties.

– Continuous non-malleability: No computationally-bounded ad-
versary tampering independently with all the shares can produce
mauled shares that reconstruct to a value related to the original se-
cret. This holds even in case the adversary can tamper continuously,
for an unbounded polynomial number of times, with the same target
secret sharing, where the next sequence of tampering functions, as
well as the subset of shares used for reconstruction, can be chosen
adaptively based on the outcome of previous reconstructions.

– Resilience to noisy leakage: Non-malleability holds even if the
adversary can additionally leak information independently from all
the shares. There is no bound on the length of leaked information,
as long as the overall leakage does not decrease the min-entropy of
each share by too much.

– Improved rate: The information rate of our final scheme, defined
as the ratio between the size of the message and the maximal size of
a share, asymptotically approaches 1 when the message length goes
to infinity.

Previous constructions achieved information-theoretic security, sometimes
even for arbitrary access structures, at the price of at least one of the
following limitations: (i) Non-malleability only holds against one-time
tampering attacks; (ii) Non-malleability holds against a bounded num-
ber of tampering attacks, but both the choice of the tampering functions
and of the sets used for reconstruction is non-adaptive; (iii) Information
rate asymptotically approaching zero; (iv) No security guarantee in the
presence of leakage.

Keywords: Secret sharing, non-malleability, leakage resilience, compu-
tational security.

? Supported by the Spanish Government through the projects Datamantium (ref.
RTC-2016-4930-7), SCUM (RTI2018-102043-B-I00), and ERC2018-092822, and by
the Madrid Regional Government under project BLOQUES (ref. S2018/TCS-4339).

1 Introduction

In a secret sharing (SS) scheme, a trusted dealer divides a secret message m into
shares that are distributed to n parties, in such a way that any authorized subset
of parties can efficiently determine the secret, whereas unauthorized subsets of
parties have (statistically) no information about the message. In this paper, we
focus on threshold secret sharing (TSS), where the unauthorized subsets are those
with at most τ − 1 players, for a parameter τ ≤ n.

The above type of SS is also known as τ -out-of-n TSS, and was originally
introduced by Shamir [56] and Blakey [14]. SS has found many applications to
cryptography, ranging from data storage [45] and threshold cryptography [28],
to secure message transmission [31], multi-party computation [40,20,12], and
private circuits [46,38,9].

An important parameter of an SS scheme is its information rate, defined as
the ratio between the size of the message and the maximal size of a share. It is
well-known that the best possible information rate for TSS satisfying statistical
privacy is 1, meaning that the size of each share must at least be equal to that
of the message being shared [11].

1.1 Non-Malleable Secret Sharing

Classical SS offers no guarantee in the presence of a tampering adversary mod-
ifying (possibly all!) the shares. Motivated by this shortcoming, Goyal and Ku-
mar [42] introduced one-time non-malleable secret sharing (NMSS), which intu-
itively guarantees that even if all of the shares are tampered once, the recon-
structed message is either equal to the original shared value or independent of
it. The only limitation is that the adversary is restricted to change the shares
independently, a model sometimes known under the name of individual tamper-
ing. As usual, in order to reconstruct the secret, only % ≤ n shares are required,
and typically the reconstruction threshold % equals the privacy threshold τ .

Recently, the topic of NMSS has received a lot of attention. We summarize
the state of the art below, and in Tab. 1.

– In their original paper, Goyal and Kumar [42] gave a construction of NMSS
with 1-time non-malleability against individual tampering. The rate of this
construction is Θ(1

n log µ), where µ is the size of the message. In the same
paper, the authors also propose a more complex construction that satisfies
1-time non-malleability in a stronger model where the adversary is allowed
to jointly tamper subsets of up to τ − 1 shares.
In [43], the same authors construct NMSS satisfying 1-time non-malleability
against individual and joint tampering, and further supporting arbitrary
monotone access structures. The rate of these constructions asymptotically
approaches zero when the length of the message goes to infinity.

– Badrinarayanan and Srinivasan [10] construct NMSS with improved rate. In
particular, they put forward a stronger security model called p-time non-
malleability, in which the adversary can tamper with the same target secret

2

sharing s = (s1, . . . , sn) for p ≥ 1 times, by non-adaptively specifying se-
quences of tampering functions

(f
(1)
1 , . . . , f (1)n), . . . , (f

(p)
1 , . . . , f (p)n) (1)

yielding mauled shares s̃(q) = (s̃
(q)
1 , . . . , s̃

(q)
n), for each q ∈ [p]. Non-malleability

here means that for every reconstruction set T with size at least τ , fixed be-

fore tampering takes place, the secrets reconstructed out of s̃
(1)
T , . . . , s̃

(p)
T are

independent of the original message.
The main result of [10] are NMSS schemes with p-time non-malleability,
both for threshold access structures (with % = τ ≥ 4), and for arbitrary

4-monotone access structures, with rates, respectively, Θ
(

1
p3·τ ·log2 n

)
and

Θ
(

1
p3·τmax·log2 n

)
(where τmax is the maximum size of a minimal authorized

subset). Importantly, the maximal value of p is a priori fixed and, in fact, the
shares’ size can depend on it. Moreover, they proved that, in the information-
theoretic setting, it is impossible to construct NMSS achieving non-malleability
against an unbounded polynomial number of tampering attempts.

– Aggarwal et al. [2] consider a strengthening of p-time non-malleability, in
which the adversary tampers non-adaptively p times, as in Eq. (1), but
additionally specifies p different sets T1, . . . , Tp for the reconstruction of each
mauled shares s̃(1), . . . , s̃(p). In other words, the requirement is now that

s̃
(1)
T1 , . . . , s̃

(p)
Tp are independent of the original message. They dub their model

p-time non-malleability under non-adaptive concurrent reconstruction, since
the sets T1, . . . , Tp are specified in a non-adaptive fashion.

Reference Access Structure Non-Malleability Leakage Resilience Rate Assumption Notes

[42]
Threshold (τ ≥ 2) 1-time 7 Θ

(
1

n log µ

)
— IT

Threshold (τ ≥ 2) 1-time 7 Θ
(
µ−9

)
— JT

[43]
Arbitrary (monotone) 1-time 7 Θ

(
1

n log µ

)
— IT

Threshold (τ = n) 1-time 7 Θ(µ−6) — JT

[10]
Threshold (τ ≥ 4) p-time 7 Θ

(
1

p3·τ ·log2 n

)
— IT, NAT

Arbitrary (4-monotone) p-time 7 Θ
(

1
p3·τmax·log2 n

)
— IT, NAT

[2] Arbitrary (3-monotone) p-time 7 Θ
(

1
n log µ

)
– IT, NAT, NACR

[58] Arbitrary (4-monotone) 1-time 7 Θ(1) – IT

[49] Arbitrary (monotone) 1-time `-Bounded Θ
(

1
`n logn log µ

)
– IT

This paper Threshold (τ ≤ %− 1) poly-time Noisy Ω
(

µ
µ+n2λ8

)
1-to-1 OWFs IT, ACR

Table 1: Comparison of state-of-the-art NMSS schemes. The value n denotes the num-
ber of parties, µ denotes the size of the message, ` denotes the leakage parameter, λ
denotes the security parameter, and τ (resp. %) is the privacy (resp. reconstruction)
threshold in case of TSS, where % = τ unless stated otherwise. In case of general ac-
cess structures, τmax is the maximum size of a minimal authorized subset. IT stands
for “individual tampering”, JT for “joint tampering”, NAT for “non-adaptive tam-
pering”, NACR for “non-adaptive concurrent reconstruction”, and ACR for “adaptive
concurrent reconstruction”.

3

The main result of [2] is a construction of NMSS with rate Θ(1
n log µ), satis-

fying p-time non-malleability under non-adaptive concurrent reconstruction.
– Srinivasan and Vasudevan [58] construct the first NMSS for 4-monotone

access structures, and satisfying 1-time non-malleability with rate Θ(1).
– Finally, Kumar, Meka, and Sahai [49] construct NMSS with 1-time non-

malleability, but where the adversary is additionally allowed to adaptively
leak information on the shares independently, i.e. they considered for the
first time leakage-resilient NMSS (LR-NMSS). Note that here, the choice of
the tampering functions can adaptively depend on the leakage. The rate of
this scheme asymptotically approaches zero.

1.2 Our Contributions

All the above mentioned works construct NMSS, with different characteris-
tics, in the information-theoretic setting, where both the privacy and the non-
malleability of the scheme holds even against unbounded adversaries. A natural
question is whether one can improve the state of the art in the computational
setting, where the adversary for privacy and non-malleability is computationally
bounded. Note that this is particularly appealing, in view of the fact that fully-
fledged continuous non-malleability is impossible to achieve in the information-
theoretic setting [10]. Hence, the following question is open:

Can we construct NMSS where a computationally-bounded adversary
can tamper adaptively, with the same target shares, for an unbounded

polynomial number of times, and under adaptive concurrent
reconstruction?

In this work, we answer the above question affirmatively for the case of
threshold access structures and individual tampering, assuming 1-to-1 one-way
functions (OWFs). Our final scheme has rate asymptotically approaching 1, and
furthermore satisfies leakage resilience.

Theorem 1 (Main Theorem, Informal). Let τ, %, n ∈ N be such that τ, % ≤ n
and τ ≤ %− 1. Assuming 1-to-1 OWFs, there exists noisy-leakage-resilient, con-
tinuously non-malleable τ -out-of-n secret sharing (LR-CNMSS) under adaptive
concurrent reconstruction (where at least % parties are needed to reconstruct the
secret), with information rate (asymptotically) one.

We observe that leakage resilience holds in the so-called noisy-leakage model,
where the actual amount of information that can be leaked independently from
each share is unbounded, as long as the uncertainty of each share does not
decrease by too much. Also, notice that there is a minimal gap3 between the
reconstruction threshold % and the privacy threshold τ (i.e., τ ≤ %−1). Interest-
ingly, as we explain in §4.2, CNMSS cannot exist unconditionally for the optimal
parameters τ = %, and thus our work leaves open the question of constructing

3 Secret sharing scheme with a gap between reconstruction and privacy are known in
literature as ramp secret sharing scheme.

4

TSS where both privacy and continuous non-malleability hold statistically, as
long as τ < %.

A final remark is that the definition of continuous non-malleability uses a
special self-destruct feature, in which after the first invalid mauled secret sharing

is found (i.e., a collection of shares s̃
(q)
Tq whose reconstruction equals an error

symbol ⊥), the answer to all future tampering queries is by default set to be ⊥.
As we show in §4.3, such a feature is necessary, in the sense that without it no
CNMSS exists (even without considering leakage and concurrent reconstruction).

1.3 Tamper-Resilient Threshold Signatures

As an application, we consider a generalization of the classical transformation
from standard security to tamper-proof security via non-malleable codes [33], in
the setting of threshold cryptography. For concreteness, we focus on threshold
signatures, which allow to secret share a signing key among n servers, in such
a way that any subset of at least % servers can interact in order to produce the
signature of a message. The standard security guarantee here is that an adversary
corrupting up to τ−1 servers cannot forge a valid signature, even after observing
several transcripts of the signing protocol with the honest servers.

Given any CNMSS, we show how to compile a non-interactive threshold sig-
nature into an interactive (2-round) threshold signature that additionally is se-
cure in the presence of continuous tampering attacks. More precisely, we imagine
an external forger corrupting the memory of (possibly all!) the servers indepen-
dently (say via a malware installed on each of the servers), and observing several
signatures produced using arbitrarily modified secret-key shares.

A similar application was recently considered in [2]. The main advantage
of our model is that the attacker is allowed to tamper continuously with the
memory of the servers, and further can adaptively choose the subset of servers
participating in each invocation of the signature protocol; on the negative side,
our adversary is not allowed to fully corrupt any of the servers, whereas in the
model of [2] the forger, after tampering once, obtains the secret-key shares of
τ−1 servers. In our perspective, this difference stems from the fact that [2] makes
a non-black-box usage of the underlying NMSS, which allows to exploit a slightly
stronger form of non-malleability which, although not formalized by the authors,
seems to be met by their specific construction. (I.e., non-malleability still holds
even if the attacker learns a subset of the original shares, after tampering is over;
such a property is sometimes known as augmented non-malleability in the non-
malleable codes literature [1,25].) In contrast, our compiler only makes black-box
calls to the underlying primitives.

1.4 Further Related Works

Robust secret sharing. In robust SS (see, e.g. [54,16,55,13]), a monolithic adver-
sary can (non-adaptively) corrupt up to τ players, and thus jointly tamper their
shares. Robustness guarantees that given all the % = n shares, the reconstructed
message is identical to the original shared value.

5

While robustness is a strong form of non-malleability, it is clearly impossible
when more than n/2 shares are corrupted (even in the computational setting).

Non-malleable codes. The concept of NMSS is intimately related to the notion of
non-malleable codes (NMCs) [33]. Intuitively, a NMC allows to encode a message
in such a way that tampering with the resulting codeword via a function f ∈ F ,
where F is a set of allowed tampering functions that is a parameter in the
definition, yields a modified codeword that either decodes to the original message
or to an unrelated value. Several constructions of NMCs exist in the literature, for
different families F ; one of the most popular choices is to think of the tampering
function as a sequence of n functions f = (f1, . . . , fn), where each function fi
modifies a different chunk of the codeword arbitrarily, yet independently. This
is often known as the n-split-state model [33,51,32,22,21,4,19,7,3,18,17,50,47,6],
the most general case being the case n = 2.

As shown by Aggarwal et al. [7], every NMC in the 2-split-state model is a 2-
out-of-2 NMSS in disguise. Similarly, it is easy to see that any (leakage-resilient)
continuously NMC (LR-CNMC) in the 2-split-state model [37,34,53,25] is a 2-
out-of-2 LR-CNMSS as per our definition.

Leakage-resilient codes. When no tampering is considered, our definition of LR-
CNMSS collapses to that of leakage-resilient secret sharing, as originally intro-
duced by Dav̀ı, Dziembowski, and Venturi, for the case n = τ = % = 2 [27]. This
topic recently received renewed attention, see, in particular, [2,58,49].

2 Technical Highlights

Intuitively, the proof of Thm. 1 proceeds in two steps. In the first step, we show
how to obtain LR-CNMSS with information rate asymptotically approaching 0,
assuming 1-to-1 OWFs. In the second step, we show how to boost the asymptotic
rate generically, from 0 to 1, under the same assumption. Below, we explain these
two steps with some details, after presenting our security model informally.

2.1 Security Model

Let Σ be an n-party TSS, with reconstruction threshold % (i.e., given at least
% shares we can efficiently reconstruct the message) and privacy threshold τ (i.e.,
τ−1 shares reveal no information on the message to the eyes of a computationally-
bounded adversary). In order to define continuous non-malleability for TSS,
we consider an efficient adversary interacting with a target secret sharing s =
(s1, . . . , sn) of some message m ∈M, via the following queries.

– Tampering: The attacker can specify a sequence of efficiently-computable

functions (f
(q)
1 , . . . , f

(q)
n), yielding mauled shares

s̃(q) = (s̃
(q)
1 , . . . , s̃(q)n) = (f

(q)
1 (s1), . . . , f (q)n (sn)),

6

along with a set Tq ⊆ [n], with size %̃ ≥ %. The answer to such a query is

the message m̃(q) which is reconstructed using the shares s̃
(q)
Tq . The above

queries can be chosen in a fully-adaptive fashion for all q ∈ [p], where p is
an arbitrary polynomial in the security parameter; however, after the first
tampering query generating an invalid message ⊥ during reconstruction, the
system switches to a “self-destruct mode” in which the answer to future
tampering queries is automatically set to ⊥.

– Leakage: The attacker can specify an efficiently-computable function g, and
an index i ∈ [n], upon which it obtains g(si). These queries can be chosen in a
fully-adaptive fashion, as long as the uncertainty of each share conditioned on
the leakage (measured via conditional average min-entropy [30]) is reduced
at most by a value ` ∈ N that is a parameter of the scheme.

The formal definition of leakage-resilient continuous non-malleability essentially
says that for each pair of messages m0,m1 ∈ M, the adversary’s view in the
above experiment is computationally indistinguishable in the two cases where
m = m0 and m = m1. Note that when n = τ = % = 2, and further when ` is
an upper bound on the total amount of leakage, our definition collapses to the
standard notion of a LR-CNMC in the split-state model [51,7].

One might observe that our definition is game based, whereas all previous
definitions of non-malleable secret sharing are simulation based. While it would
be possible to give a simulation-based definition for LR-CNMSS, it is not hard to
show that the two formulations are equivalent, as long as the length of the shared
value is super-logarithmic in the security parameter. The same equivalence, in
fact, holds true for the case of LR-CNMCs [33,53].

We also remark that the limitations of computational security and self-
destruct are somewhat inherent. First, as shown by [10], no TSS scheme with
% = τ , and satisfying statistical privacy, can achieve information-theoretic con-
tinuous non-malleability w.r.t. an arbitrary polynomial number of tampering
queries; as we explain in §4.2, however, the latter might still be possible with a
non-zero gap τ < %. Second, as we formally prove in §4.3, it is also impossible to
achieve continuous non-malleability without a self-destruct capability. The latter
is reminiscent of similar impossibility results in the settings of tamper-resilient
cryptography and non-malleable codes [39,37]. Note that both these impossibil-
ity results hold even without considering leakage and concurrent reconstruction.

2.2 First Step: Achieving Continuous Non-Malleability (Poor Rate)

A scheme with low privacy. Consider the following simple idea, inspired by [42],
how to construct a 2-out-of-n CNMSS by leveraging any CNMC in the split-state
model (i.e., any 2-out-of-2 CNMSS). To share a message m ∈M, we enumerate
over all the possible pairs of distinct indices smaller than n, and for each such
pair we compute a 2-out-of-2 CNMSS of the message. In other words, for each
subset H = {h1, h2} ∈

(
[n]
2

)
, we consider a non-malleable split-state encoding

sH := (sH,h1
, sH,h2

) of the message m, which we assign to the indices h1 and h2.
The final share s∗i for party i ∈ [n] is then defined to be the collection of all the

7

shares sH,i, where H is such that i ∈ H. Reconstruction is defined in the natural
way, i.e. given an authorized set H′ = {h′1, h′2}, we simply ignore all the shares
but sH′ , and use (sH′,h′1 , sH′,h′2) to reconstruct the message.

Intuitively, the above scheme is secure because the
(
n
2

)
shares of the mes-

sage m are independently sampled, and furthermore the reconstruction for an
authorized set H is independent of all the shares but one. In particular, the 2-
threshold privacy property follows easily by privacy of the underlying CNMC. As
for continuous non-malleability, consider a sequence of hybrid experiments, one
hybrid for each subset H in

(
[n]
2

)
in lexicographic order: In each hybrid step, we

change the distribution of the target secret sharing s∗ = (s∗1, . . . , s
∗
n) by letting

(sH,h1
, sH,h2

) be a 2-out-of-2 CNMSS of m0 for all sets in
(
[n]
2

)
up to H, whereas

we use m1 to define the remaining shares.

For the proof, we can build a reduction to the continuous non-malleability
of the underlying split-state encoding. In particular, the simulation of a generic
tampering query of the form (T , (f1, . . . , fn)), proceeds as follows:

– If T and H do not share any index, then they cannot possibly interfere with
each other. In particular, the reduction knows all the shares for the positions
in T , and therefore it can simulate the answer without even querying the
underlying tampering oracle for the split-state CNMC.

– If T and H share (at least) an index, then we can use the target tampering
oracle to compute the mauled shares corresponding to T using the tam-
pering oracle corresponding to H. However, there is a catch. Let, e.g., be
T = {t1, t2} and H = {h1, h2}, and suppose t2 = h1. To compute the tam-
pered share s̃T ,t2 , we need to know the value sH,h1 , which is only accessible
through the tampering oracle; as a consequence, the reduction would only
be able to obtain the reconstructed message corresponding to (s̃T ,t2 , s̃T ,t1),
which is possibly different from the reconstructed message corresponding
to (s̃T ,t1 , s̃T ,t2). We bypass this problem by assuming that the underlying
split-state CNMC has symmetric decoding, namely the decoding output is
invariant w.r.t. the order of the two shares. As we explain later, this property
is satisfied by known schemes.

Amplifying the privacy. Intuitively, the transformation above is based on the
fact that by composing a secret sharing for an access structure A with a secret
sharing for an access structure A′, we obtain a new secret sharing for access
structure A∪A′. Unfortunately, we cannot generalize this idea to go from %-out-
of-% to %-out-of-n secret sharing for any % ≤ n, as for efficiency we need

(
n
%

)
≈ n%

to be polynomial in n.

The key idea behind our main construction of CNMSS is to compose to-
gether

(
n
2

)
secret sharing schemes with different access structures, such that

their union gives the desired %-threshold access structure. Specifically, consider
the following construction of a %-out-of-n TSS based on a split-state CNMC,
on an authenticated secret-key encryption (AE) scheme, and on an auxiliary
(%− 3)-out-of-(n− 2) TSS.

8

For a fixed pair of indices H = {h1, h2} ∈
(
[n]
2

)
, pick a uniformly random

key κH for the AE scheme, compute a split-state encoding of κH, and call the
resulting shares (sH,h1

, sH,h2
); hence, encrypt the message m under the key κH

obtaining a ciphertext cH, and secret share cH using the auxiliary TSS, yielding
shares (sH,h3

, . . . , sH,hn
) where {h3, . . . , hn} = [n] \ H. Notice that this scheme

has access structure AH = {S ⊂ [n] : |S| ≥ %,H ⊂ S}. By repeating the above

procedure for each set H ∈
(
[n]
2

)
, we obtain that the final share s∗i for party

i ∈ [n] is the collection of all the shares sH,i, so that
⋃
H∈([n]

2)AH yields the

%-threshold access structure, as desired. Moreover, the size of each share is still
polynomial in the number of parties.

The proof of threshold privacy is rather straightforward, at least if we set
the privacy threshold for the final scheme to be τ ≤ % − 2. However, in the
computational setting, we can even show privacy τ ≤ %− 1. The key idea is that
either the adversary has enough shares to reconstruct the underlying ciphertext
(but in this case it does not have access to the secret key, and therefore it learns
nothing by semantic security of the encryption scheme), or, the adversary knows
at most %− 3 shares of the ciphertext (which by perfect privacy of the auxiliary
TSS reveal nothing about the ciphertext).

Proving continuous non-malleability. The intuition for non-malleability of the
secret sharing scheme with access structure AH is that by tampering the shares
corresponding to indices h1, h2, the adversary either obtains the original key or
a completely unrelated value: In the former case, by the authenticity of the AE
scheme, the adversary cannot produce a new ciphertext that decrypts correctly;
in the latter case, by the semantic security of the AE scheme, the adversary can-
not produce a ciphertext that decrypts to a related message (under the unrelated
key generated via tampering).

Next, we analyze how continuous non-malleability is preserved when we com-
pose together the different secret sharing schemes with access structure AH (for

H ∈
(
[n]
2

)
). In contrast to the simple composition for the 2-out-of-n CNMSS

construction hinted above, in the new composed scheme the share of party i
consists of both the shares of a split-state encoding of a key, and the shares of
a ciphertext under an auxiliary standard TSS. Hence, in a tampering query, the
adversary could swap these two kinds of shares, with the consequence that the
reconstruction procedure of the underlying (%− 3)-out-of-(n− 2) TSS would de-
pend on one of the two shares of the split-state CNMC. To resolve this problem
we rely on two different ideas: First, we additionally assume that the split-state
CNMC is resilient to noisy leakage; second, we make sure that the reconstruction
procedure of the auxiliary TSS does not leak information about single shares.

The second idea is the most important one. In fact, by simply assuming leak-
age resilience we could at most tolerate an a priori bounded number of tampering
queries. The reason for this is that, even if each reconstruction leaks just a single
bit of a share sH,i under the split-state CNMC, after |sH,i| consecutive tampering
queries this share could be leaked without provoking a self-destruct. The latter
is better understood by looking at Shamir’s TSS, where to share m ∈M we pick

9

a random polynomial of degree % that evaluates to m at point 0, and distribute
to the i-th party the share si obtained by evaluating the polynomial at point
i ∈ [n]. The reconstruction algorithm, given any set of % shares si, interpolates
the corresponding points, thus obtaining a polynomial that is evaluated on the
origin. It is easy to see that such a reconstruction procedure, under tampering
attacks, potentially leaks a lot of information about the single points (without
the risk of self-destruct). In particular, the reconstruction algorithm is a linear
function of the shares, and thus perturbing one point by a multiplicative factor,
allows to recover the value of a share in full via a single tampering query.

We now show how to avoid the above leakage. Fix some index i ∈ [n] for the
i-th share. Given an authorized set of size %, we let our reconstruction proce-
dure select two different subsets4 of size %− 3, such that one subset includes the
index i, whereas the second subset excludes it. Thus, we run the standard recon-
struction procedure twice, one for each subset, and we accept the reconstructed
message if and only if the two runs yield the same value, otherwise we return an
error message (which triggers a self-destruct). The main observation is that the
second run of the reconstruction algorithm is independent of sH,i, and thus, con-
ditioned on the returned message not being ⊥, the output of the reconstruction
is independent of sH,i. On the other hand, when the returned message is equal
to ⊥, the output of the reconstruction could indeed leak information about the
share with index i, but notice that this situation triggers a self-destruct, and
thus such leakage happens only once.

More in details, for the proof we perform a hybrid argument over all sets
H = {h1, h2} ∈

(
[n]
2

)
, where at each step we change the shared value of the

secret sharing relative to the access structure AH. To show that each pair of
adjacent hybrids are computationally indistinguishable, we consider a reduction
to the continuous non-malleability of the underlying split-state CNMC. Denote
by (sH,h1

, sH,h2
) the target codeword. Note that the reduction can sample all

the randomness necessary to create the shares s∗1, . . . , s
∗
n, except for the shares

s∗h1
, s∗h2

for which the values sH,h1 , sH,h2 are missing and will be defined through
the target tampering oracle. Now, suppose the adversary sends a tampering
query (T = {t1, . . . , t%}, (f1, . . . , fn)), and suppose that t1 = h1 and t3 = h2.5

While the reduction cannot simulate the tampered shares s̃∗h1
and s̃∗h2

locally,
it can use the tampering oracle to obtain the decoding relative to the split-
state codeword (s̃T ,t1 , s̃T ,t2); in fact, s̃T ,t2 can be computed by the reduction
itself—as it knows the share s∗t2 in full—and hard-wired into the description of
the right tampering function, whereas the value s̃T ,t1 can be perfectly emulated
inside the tampering oracle by hard-wiring into the left tampering function all
the information known about s∗h1

.

4 In retrospect, this is the reason why we set the reconstruction/privacy threshold of
the underlying TSS to %− 3 (i.e., 2 shares for decoding the non-malleable encoding
and %− 3 + 1 = %− 2 shares to run the reconstruction procedure of the TSS twice).

5 Clearly, the reduction needs to handle many other cases; however, this particular
case is enough to illustrate our technique.

10

In order to complete the simulation, the reduction still needs to run twice
the reconstruction process of the underlying TSS, given the tampered shares
s̃T ,t3 , . . . , s̃T ,t% . Note that since the values s̃T ,t4 , . . . , s̃T ,t% can be computed lo-
cally, the reduction can perform one reconstruction (yielding a first reconstructed
ciphertext c1). However, in order to run the second reconstruction, it needs the
value s̃T ,t3 which is not directly available, as it might depend on sH,t3 = sH,h2 .
The idea is then to get the second ciphertext c2 via a leakage query. We claim
that, as long as c1 = c2, such leakage does not decrease the min-entropy of sH,h2

;
roughly speaking, the reason is that c2 = c1 can be also computed as a function
of s̃H,t4 , . . . , s̃H,t% , which are known by the reduction and independent of sH,t3 .

Notice that the double-reconstruction trick—i.e., running the reconstruction
procedure twice, in the above example one with t3 and one without—is sufficient
to prove that the reconstruction does not leak information about one specific
share. However, we need to ensure that no information about any of the shares
is leaked. One simple idea would be to lift the previous argument by repeating
the reconstruction for all subsets of size %−3. Nicely, in the case of, e.g. Shamir’s
TSS this is not necessary. In fact, we can have a more efficient reconstruction
procedure that only checks two subsets. This is because if two different subsets
of size %− 3 yield polynomials with identical evaluation in the origin, then they
must encode the same polynomial, and since these two subsets cover an entire
authorized set, then we are ensured that using any other subset would yield the
same reconstructed message.

Instantiating the construction. All that remains is to construct a split-state
CNMC with the special symmetric decoding feature, and for which the non-
malleability property still holds even in the presence of noisy (independent)
leakage from the left and right shares.

We do this by revisiting the recent construction of Ostrovsky et al. [53], which
gives a split-state CNMC assuming non-interactive, perfectly binding commit-
ments (which in turn can be based on 1-to-1 OWFs). In their scheme, a split-
state encoding of a message m is a pair of values (L,R) = ((com, L′), (com, R′)),
where com is a non-interactive commitment to the message m using randomness
δ, and (L′, R′) is a split-state encoding of the string m||δ obtained by running
an auxiliary code satisfying leakage-resilient one-time non-malleability, in the
information-theoretic setting and in the bounded-leakage model. The decoding
algorithm first checks that the left and right share contain the same commit-
ment. If not, it returns ⊥. Else, it decodes (L′, R′) obtaining a string m′ = m||δ,
and returns m if and only if δ is a valid opening of com w.r.t. m.

Our first observation is that the above code satisfies symmetric decoding, as
long as the inner encoding (L′, R′) does. Additionally, we extend the security
proof of [53] to show that if the auxiliary split-state code is secure in the noisy-
leakage model, so is the final encoding. As a side result, and thanks to the power
of noisy leakage, we even obtain a simpler proof.

The missing piece of the puzzle is then to exhibit a split-state code satisfying
leakage-resilient one-time non-malleability, in the information-theoretic setting
and in the noisy-leakage model, and with symmetric decoding. Luckily, it turns

11

out that the coding scheme by Aggarwal et al. [7], based on the inner-product
extractor [23], already satisfies all these requirements. We refer the interested
reader to the full version of this paper [36] for the details.

2.3 Second Step: Amplifying the Rate

Next, we describe another generic transformation yielding LR-CNMSS with in-
formation rate asymptotically approaching 1, starting from a LR-CNMSS with
asymptotic rate 0, and an AE scheme. Such transformations, in the setting of
non-malleable codes, are sometimes known as rate compilers [8,1,25].

Our rate compiler generalizes a construction by Agrawal et al. [1] in the
setting of split-state NMCs, which has been very recently analyzed also in the
case of continuous tampering [25]. In order to secret share the message m ∈
M, we first sample a uniformly random key κ for the AE scheme, and then
we encrypt the message m under this key, yielding a ciphertext c. Hence, we
secret share the key κ using the underlying rate-0 secret sharing scheme, yielding
n shares (κ1, . . . , κn). Finally, we set the share of party i ∈ [n] to be si =
(κi, c). The reconstruction procedure, given % shares, first checks that all shares
contain the same ciphertext c. If not, an error is triggered. Else, the secret key
is reconstructed from the shares and used to decrypt the unique ciphertext c.

Note that the length of the secret key is independent of the size of the mes-
sage, and thus the above construction achieves information rate asymptotically
approaching 1. As for security, it is not hard to show that the compiled scheme
inherits the threshold privacy property from the underlying rate-0 secret sharing.
Here, we additionally need to rely on the semantic security of the AE scheme to
argue that the ciphertext c reveals nothing about the message.

Proving continuous non-malleability. Turning to continuous non-malleability,
the main step of the proof is a game hop in which the values (κ1, . . . , κn) result
from a secret sharing of an unrelated key κ′ 6= κ. In order to establish the indis-
tinguishability between this modified experiment and the original experiment,
we consider a reduction to the continuous non-malleability of the underlying LR-
CNMSS. Such a reduction can interact with a target secret sharing (κ1, . . . , κn)
that is either a secret sharing of κ or of κ′. The main obstacle, here, comes from
the simulation of tampering queries. In fact, although the reduction can perfectly
emulate the distribution of the individual shares si = (κi, c) inside the tampering
oracle, as the ciphertext c can be sampled locally, the difficulty is that to emulate
the output of the reconstruction w.r.t. a given subset T = {t1, . . . , t%̃} we need
to: (i) ensure that all of the mauled shares s̃tj = (κ̃tj , c̃tj) actually contain the
same ciphertext, i.e. c̃t1 = . . . = c̃t%̃ = c̃, and (ii) use the mauled secret key κ̃
received by the reduction in response to a tampering query in order to obtain
the decryption of the unique ciphertext c̃ (if such a ciphertext exists).

We overcome both of the above obstacles by exploiting the fact that the
starting CNMSS is resilient to noisy leakage. This is crucial in our setting, since
the size of the ciphertext might very well exceed the maximal length of a share
of the secret key. Hence, generalizing a trick from [34,25], we proceed to check

12

equality of all the ciphertexts in a block-wise fashion, by leaking blocks of λ
bits from each share, where λ is the security parameter. This leakage routine
continues until eventually we obtain the entire ciphertext c̃, unless some of the
blocks leaked from each share differ, in which case we answer the tampering
query by ⊥ and trigger a self-destruct.

It remains to show that the above methodology does not result in too much
leakage. Intuitively, this holds because up to the point where the leaked blocks
of the ciphertexts are all the same, the leakage on each share can be thought
of as a function of the other shares, so that this leakage does not decrease the
min-entropy of each share more than conditioning on the other shares, which is
fine since in known constructions the mutual information between the shares is
very low. On the other hand, when a self-destruct is triggered, we reveal only λ
bits of information; by a standard argument, this causes a min-entropy drop of
roughly λ bits, which again is tolerated by the underlying scheme.

3 Preliminaries

3.1 Standard Cryptographic Primitives

Threshold Secret Sharing An n-party secret sharing scheme Σ consists of
a pair of polynomial-time algorithms (Share,Rec) specified as follows: (i) The
randomized sharing algorithm Share takes as input a message m ∈ M, and
outputs n shares s1, . . . , sn where each si ∈ Si; (ii) The deterministic algorithm
Rec takes as input a certain number of candidate shares and outputs a value in
M ∪ {⊥}. Given s = (s1, . . . , sn) and a subset I ⊆ [n], we often write sI to
denote the shares (si)i∈I .

Definition 1 (Threshold secret sharing). Let n, τ, % ∈ N, with τ ≤ % ≤ n.
We say that Σ = (Share,Rec) is an (n, τ, %)-threshold secret sharing scheme
((n, τ, %)-TSS for short) over message spaceM and share space S = S1×· · ·×Sn
if it is an n-party secret sharing with the following properties.

(i) %-Threshold Reconstruction: For all messages m ∈ M, and for all sub-
sets I ⊆ [n] such that |I| ≥ %, we have that Rec((Share(m))I) = m, with
overwhelming probability over the randomness of the sharing algorithm.

(ii) τ-Threshold Privacy: For all pairs of messages m0,m1 ∈ M, and for all
unqualified subsets U ⊆ [n] such that |U| < τ , we have that

{(Share(1λ,m0))U}λ∈N ≈c {(Share(1λ,m1))U}λ∈N.

If the ensembles {(Share(1λ,m0))U}λ∈N and {(Share(1λ,m1))U}λ∈N are sta-
tistically close (resp. identically distributed), we speak of statistical (resp.
perfect) τ -threshold privacy.

Typical TSS schemes achieve the optimal parameters % = τ . However, having
a small gap between the privacy and reconstruction threshold makes sense too,
and looking ahead our constructions will have minimal gap %− τ ≥ 1.

13

Gsem
Π,A(λ, b):

κ←$K
(m0,m1, α)←$ A0(1λ)
c←$ AEnc(κ,mb)
Return A1(c, α)

Gauth
Π,A(λ):

κ←$K
(m,α)←$ A0(1λ)
c←$ AEnc(κ,m)
c′←$ A1(c, α)
Return 1 iff:

(i) c′ 6= c; and
(ii) ADec(κ, c′) 6= ⊥

Fig. 1: Experiments defining security of authenticated encryption.

Special reconstruction. We will need TSS schemes meeting an additional recon-
struction property, called special reconstruction. This means that for any subset
I ⊂ [n] of size at least % + 1, and for any m ∈ M which is secret shared as in
(s1, . . . , sn)←$ Share(m), if there are two subsets I1, I2 ⊂ I of size % such that

Rec((si)i∈I1) = Rec((si)i∈I2),

then the above equation holds for all subsets I1, I2 ⊂ I of size %.

Authenticated Encryption A (secret-key) authenticated encryption (AE)
scheme is a tuple of polynomial-time algorithms Π = (KGen,AEnc,ADec) spec-
ified as follows: (i) The randomized algorithm KGen takes as input the security
parameter λ ∈ N, and outputs a uniform key κ←$K; (ii) The randomized al-
gorithm AEnc takes as input a key κ ∈ K and a message m ∈ M, and outputs
a ciphertext c ∈ C; (iii) The deterministic algorithm ADec takes as input a key
κ ∈ K and a ciphertext c ∈ {0, 1}∗, and outputs a value m ∈M∪{⊥}, where ⊥
denotes an invalid ciphertext. We call K, M, C, respectively, the key, message,
and ciphertext space of Π.6

We say that Π meets correctness if for all κ ∈ K, and all messages m ∈M, we
have that P [ADec(κ,AEnc(κ,m)) = m] = 1 (where the probability is taken over
the randomness of AEnc). As for security, we will need AE schemes that satisfy
two properties (see below for formal definitions). The first property, usually
known as semantic security, says that it is hard to distinguish the encryption
of any two (adversarially chosen) messages. The second property, usually called
authenticity, says that, without knowing the secret key, it is hard to produce a
valid ciphertext (i.e., a ciphertext that does not decrypt to ⊥).

Definition 2 (Security of AE). Let Π = (KGen,AEnc,ADec) be an AE scheme.
We say that Π is secure if the following holds for the games defined in Fig. 1.

∀ PPT A :
{
Gsem
Π,A(λ, 0)

}
λ∈N ≈c

{
Gsem
Π,A(λ, 1)

}
λ∈N ,

P
[
Gauth
Π,A(λ) = 1

]
∈ negl(λ).

6 These sets typically depend on the security parameter, but we drop this dependency
to simplify notation.

14

Note that since both authenticity and semantic security are one-time guaran-
tees, in principle, information-theoretic constructions with such properties are
possible when |K| ≥ |M|. However, we are interested in constructions where
|M| � |K|, for which the existence of one-way functions is necessary.

3.2 Non-Malleable Codes

A split-state code Γ = (Enc,Dec) consists of a pair of polynomial-time algorithms
specified as follows: (i) The randomized encoding algorithm Enc takes as input
a message m ∈ M and returns a split-state codeword (L,R) ∈ L × R; (ii)
The (deterministic) decoding algorithm Dec takes as input a codeword (L,R) ∈
({0, 1}∗)2 and outputs a value inM∪{⊥}, where ⊥ denotes an invalid codeword.
A codeword (L,R) such that Dec(L,R) 6= ⊥ is called a valid codeword; we call
M the message space, and L,R the left and right codeword space.

We say that Γ satisfies correctness if, for allm ∈M, we have that Dec(Enc(m))
= m with overwhelming probability over the randomness of the encoding.

Noisy leakage. We will leverage codes where non-malleability (as defined below)
is satisfied even in the presence of adversaries that can obtain independent leakage
on the two shares of a target encoding (L,R).

Following a long tradition in leakage-resilient cryptography [29,52,35], we
model the leakage as an arbitrary function of its input. The only restriction is
that the overall leakage on L does not decrease the min-entropy of L more than a
fixed amount ` ∈ N (that is a parameter of the scheme). Of course, an analogous
condition must be satisfied for the leakage on the right side R. We formalize this
restriction via a notion of admissibility, as defined below.

Definition 3 (Admissible adversaries for split-state codes). Let Γ =
(Enc,Dec) be a split-state code. We say that a PPT adversary A is `-admissible

if it outputs a sequences of leakage queries (chosen adaptively) (g
(q)
left , g

(q)
right)q∈[p],

with p(λ) ∈ poly(λ), such that for all messages m ∈M:

H̃∞
(
L|R, g(1)left(L), · · · , g(p)left (L)

)
≥ H̃∞(L|R)− `

H̃∞
(
R|L, g(1)right(R), · · · , g(p)right(R)

)
≥ H̃∞(R|L)− `,

where (L,R) is the joint random variable corresponding to Enc(1λ,m).

Note that we measure the min-entropy drop due to the leakage w.r.t. the
conditional average min-entropy of L|R and R|L. We find this meaningful as it
allows to capture automatically the correlation between L and R. Alternatively,
we could define admissibility by conditioning only on the leakage (without fur-
ther considering the other share in the equations above); we observe, however,
that these two notions of admissibility are equivalent up to a small loss in the
leakage parameter. This is due to the fact that, in known instantiations [7,50],
the mutual information between L and R is small, a property sometimes known
as conditional independence [53,34,25].

15

CNMCΓ,A(λ,m0,m1, b):

(L,R)←$ Enc(mb)
stop← false

Return AOnmc((L,R),·,·),Oleak((L,R),·,·)(1λ)
Oleak((L,R), side, g):

If side = left

Return g(L)
If side = right

Return g(R)

Oracle Onmc((L,R), fleft, fright):

If stop = true

Return ⊥
Else

(L̃, R̃) = (fleft(L), fright(R))

m̃ = Dec(L̃, R̃)
If m̃ ∈ {m0,m1}

Return
If m̃ = ⊥

Return ⊥, and stop← true

Else
Return m̃

Fig. 2: Experiment defining continuously non-malleable codes in the split-state
model. The tampering oracle Onmc is implicitly parameterized by the flag stop.

Continuous non-malleability. Intuitively, a split-state code is non-malleable [33,51]
if no adversary tampering independently (yet arbitrarily) with the two sides of a
given target encoding (L,R) of some value m, can generate a modified codeword
(L̃, R̃) that decodes to a value related to m. Continuous non-malleability [37]
is a strengthening of this guarantee, where the attacker is allowed to tamper
continuously, and adaptively, with (L,R), until a decoding error occurs, after
which the system “self-destructs” and stops answering tampering queries. Such
a self-destruct capability, that in practice might be implemented via a public
write-once flag, is well known to be necessary for achieving continuous non-
malleability, as otherwise simple attacks are possible [39].

We formalize continuous non-malleability for split-state non-malleable codes
using a game-based definition. Simulation-based definitions also exist, but the
two formulations are known to be equivalent as long as the messages to be en-
coded have super-logarithmic length in the security parameter [33,53]. In order
to model (split-state) tampering attacks, we use a stateless leakage oracle Oleak

and a stateful oracle Onmc that are initialized with a target encoding (L,R) of
either of two messages m0,m1 ∈ M. The goal of the attacker is to distinguish
which message was encoded, while performing both leakage and tampering at-
tacks: The leakage oracle allows the adversary to obtain information from L and
R, while the tampering oracle allows the adversary to tamper with L and R
independently. In case the decoded message corresponding to a modified code-
word (L̃, R̃) is equal to one of the original messages m0,m1, the oracle returns a
special symbol , as otherwise it would be trivial to distinguish which message
was encoded by querying the oracle with, e.g., the identity function.

Definition 4 (Split-state continuously non-malleable codes). Let Γ =
(Enc,Dec) be a split-state code. We say that Γ is an `-noisy leakage-resilient
split-state continuously non-malleable code (`-LR-CNMC for short) if for all
m0,m1 ∈M and for all PPT `-admissible adversaries A as per Def. 3, we have

16

that

{CNMCΓ,A(λ,m0,m1, 0)}λ∈N ≈c {CNMCΓ,A(λ,m0,m1, 1)}λ∈N , (2)

where, for b ∈ {0, 1}, experiment CNMCΓ,A(λ,m0,m1, b) is depicted in Fig. 2.

Message uniqueness. An important property that must be satisfied by any split-
state continuously non-malleable code is that of message uniqueness (MU) [37,53].
Informally, this means that if we fix the left side L of an encoding, there are no7

two right sides R1, R2, such that both (L,R1) and (L,R2) are valid codewords
that decode to different messages m1 6= m2. (An analogous guarantee must hold
if we fix the right side.)

A simple observation, due to [53], is that both the left side L and the right
side R of a split-state non-malleable encoding constitute a perfectly binding
commitment to the message.

Lemma 1 ([53]). Let Γ be a split-state code satisfying MU. Then, for any string
L ∈ {0, 1}∗ (resp. R ∈ {0, 1}∗), there exists at most a single value m ∈ M such
that Dec(L,R) = m 6= ⊥ for some R ∈ {0, 1}∗ (resp. for some L ∈ {0, 1}∗).

Additional properties. For our main construction, we will need CNMCs satisfying
two additional properties as defined below. The first property, called symmetric
decoding, says that for all possible inputs L,R, decoding (L,R) yields the same
as decoding (R,L). Note that this implies some (very weak) form of resilience
against tampering via permutations, in that any split-state continuously non-
malleable code with symmetric decoding is still secure w.r.t. attackers that first
tamper the two states (L,R) independently, and later swap L and R.

Definition 5 (Symmetric decoding). We say that a split-state code Γ =
(Enc,Dec) has symmetric decoding if for all L,R ∈ ({0, 1}∗)2, we have that
Dec(L,R) = Dec(R,L).

The second property, called codewords uniformity, requires that, for any mes-
sage, the encoder outputs codewords that are uniform over the set of all possible
encodings of the message.

Definition 6 (Codewords uniformity). We say that a split-state code Γ =
(Enc,Dec) has codewords uniformity if for all m ∈M, we have that Enc(1λ,m) is
distributed uniformly over the set of all possible pairs (L,R) s.t. Dec(L,R) = m.

4 Continuously Non-Malleable Secret Sharing

4.1 Non-Malleability under Adaptive Concurrent Reconstruction

We now give the definition of leakage-resilient continuously non-malleable secret
sharing (LR-CNMSS) under adaptive concurrent reconstruction. We focus on

7 Observe that “perfect” MU, as opposed to “computational” MU is wlog. in the plain
model.

17

the case of threshold secret sharing, where the adversary is allowed to tamper
(possibly all!) the shares arbitrarily, but independently. Non-malleability intu-
itively guarantees that the reconstructed message, where the indices T (with
|T | = %̃ ≥ %) used for reconstruction are also chosen by the adversary, is inde-
pendent of the original message.

Importantly, in our model, the adversary is allowed to tamper continuously,
and adaptively, with the same target secret sharing; the set used for reconstruc-
tion in each tampering attempt is also adversarial, and moreover can be chosen
adaptively based on the outcome of previous queries. This feature, known as
concurrent reconstruction, was already considered in previous work [2], although
in a non-adaptive setting. There are only two limitations: (i) The adversary is
computationally bounded; (ii) After the first tampering query yielding a mauled
secret sharing that reconstructs to ⊥, the answer to all future tampering queries
will be ⊥ by default. The second limitation is sometimes known as “self-destruct
feature” in the literature of non-malleable codes [37]. Both of these limitations
are somewhat necessary (see below).

In order to make our model even stronger, we further allow the adversary
to leak information independently from all the shares. The only restriction here
is that the leakage does not decrease the amount of uncertainty contained in
each of the shares by too much. This leads to the notion of admissible adversary,
which is similar in spirit to the notion of admissible adversaries for codes (cf.
§3.2), as defined below.

Definition 7 (Admissible adversaries for secret sharing). Let Σ = (Share,
Rec) be an n-party secret sharing scheme. We say that a PPT adversary A
is `-admissible if it outputs a sequence of leakage queries (chosen adaptively)

(i, g
(q)
i)i∈[n],q∈[p], with p(λ) ∈ poly(λ), such that for all i ∈ [n], and for all

m ∈M:

H̃∞
(
Si|(Sj)j 6=i, g(1)i (Si), · · · , g(p)i (Si)

)
≥ H̃∞(Si|(Sj)j 6=i)− `,

where (S1, . . . ,Sn) is the random variable corresponding to Share(1λ,m).

Definition 8 (Continuously non-malleable threshold secret sharing).
Let n, τ, %, ` ∈ N. Let Σ = (Share,Rec) be an n-party secret sharing over mes-
sage space M and share space S = S1 × · · · × Sn. We say that Σ is an `-
noisy leakage-resilient continuously non-malleable (n, τ, %)-threshold secret shar-
ing scheme under adaptive concurrent reconstruction ((n, τ, %, `)-LR-CNMSS for
short) if it is an (n, τ, %)-TSS as per Def. 1, and additionally for all pairs of mes-
sages m0,m1 ∈ M, and all PPT `-admissible adversaries A as per Def. 7, we
have:

{CNMSSΣ,A(λ,m0,m1, 0)}λ∈N ≈c {CNMSSΣ,A(λ,m0,m1, 1)}λ∈N ,

where, for b ∈ {0, 1}, experiment CNMSSΣ,A(λ,m0,m1, b) is depicted in Fig. 3.

18

CNMSSΣ,A(λ,m0,m1, b):

s := (s1, . . . , sn)←$ Share(mb)
stop← false

Return AOnmss(s,·,·),Oleak(s,·,·)(1λ)

Oracle Oleak(s, i ∈ [n], g):

Return g(si)

Oracle Onmss(s, T , (f1, . . . , fn)):

If stop = true

Return ⊥
Else
T := {t1, . . . , t%̃}
s̃ := (s̃1, . . . , s̃n) = (f1(s1), . . . , fn(sn))
m̃ = Rec(s̃t1 , . . . , s̃t%̃)
If m̃ ∈ {m0,m1}

Return
If m̃ = ⊥ return ⊥, and stop← true

Else return m̃

Fig. 3: Experiment defining leakage-resilient continuously non-malleable secret
sharing against individual tampering, under adaptive concurrent reconstruction.
Note that the oracle Onmss is implicitly parameterized by the flag stop.

Remark 1 (On game-based security). Note that Def. 8 is game based in spirit.
This is in contrast with all previous definitions of non-malleable secret sharing,
which instead are simulation based. While, one could also formulate a simulation-
based definition for LR-CNMSS, it is not hard to show that the two formulations
are equivalent as long as the shared value has super-logarithmic length in the
security parameter. A similar equivalence holds for the case of (continuously)
non-malleable codes [33,53].

Remark 2 (On the relation with CNMCs). When ` = 0, n = 2, and τ = % = 2,
one obtains the definition of split-state CNMCs as a special case. In fact, similar
to [7], one can show that any split-state CNMC satisfies 2-threshold privacy.

In the following subsections, we show that both limitations of computational
security and self-destruct are somewhat inherent in our model (even when no
leakage is allowed, i.e. ` = 0). This is immediate for the case n = 2 = τ = % = 2,
as the same limitations hold for the case of split-state CNMCs [37]. The theorems
below8 generalize the impossibility results of [37] for certain values of n, τ, %.

4.2 Shared-Value Uniqueness

Consider the following natural generalization of the MU property for continu-
ously non-malleable codes (cf. §3.2) to the case of TSS schemes.9

Definition 9 (Shared-value uniqueness). Let Σ = (Share,Rec) be an n-
party TSS with reconstruction threshold % ≤ n. We say that Σ satisfies shared-
value uniqueness (SVU) if for all subsets I = {i1, . . . , i%} ⊆ [n], there exists j∗ ∈
8 We stress that the attacks described in the proof of Thm. 2 and Thm. 3 do not

require to change the reconstruction set T among different queries, and thus even
hold without considering concurrent reconstruction.

9 As for MU, “perfect” SVU, rather than “computational” SVU, is wlog. in the plain
model.

19

[%] such that for all shares si1 , . . . , sij∗−1
, sij∗+1

, . . . , si% , and for all sij∗ , s
′
ij∗

, we
have that either

m = Rec(si1 , . . . , sij∗ , . . . , si%) = Rec(si1 , . . . , s
′
ij∗
, . . . , si%) = m′, (3)

where m,m′ ∈M, or at least one of m,m′ equals ⊥.

Intuitively, the above property says that for every possible choice of an authorized
set I, there exists at least one index ij∗ ∈ I, such that if we fix arbitrarily all
the shares but the one in position ij∗ , the reconstruction process can possibly
output a single outcome within the space of all valid messages. The theorem
below (whose proof appears in the full version [36]) says that SVU is necessary
for achieving continuous non-malleability (without leakage) for threshold secret
sharing, in the computational setting.

Theorem 2. For any n, τ, % ∈ N, with τ ≤ % ≤ n, every (n, τ, %, 0)-LR-CNMSS
must also satisfy SVU.

Notice that in the information-theoretic setting, when the privacy threshold
τ equals the reconstruction threshold %, and when considering the authorized
set I = [%], statistical privacy implies that for each i∗ ∈ [%] there always exist
shares (s1, . . . , si∗−1, si∗ , si∗+1, . . . , s%) and (s1, . . . , si∗−1, s

′
i∗ , si∗+1, . . . , s%) that

violate SVU. Hence, CNMSS with the optimal parameters τ = % is impossible
in the information-theoretic setting, a fact recently established in [10].

Corollary 1 ([10]). For any n, τ, % ∈ N, with τ = % ≤ n, there is no (n, τ, %, 0)-
LR-CNMSS in the information-theoretic setting.

τ
=
%

τ

%

Fig. 4: Possible parameters %, τ of CN-
MSS. Values on the red line require
computational assumptions.

Mind the gap. What if there is a small
gap between the reconstruction thresh-
old % and the privacy threshold τ (e.g.,
τ ≤ % − 1)? In this case, the above
impossibility result does not apply. For
concreteness, let Σ be an (n, % − 1, %)-
TSS and consider the reconstruction set
I = [%]. By perfect privacy, since any
collection of % − 2 shares reveals no in-
formation on the shared value, for every
sequence of shares s1, . . . , s%−2, and for
every message m̂ ∈ M, there exist at
least two shares ŝ%−1, ŝ% such that run-
ning the reconstruction algorithm upon
(s1, . . . , s%−2, ŝ%−1, ŝ%) yields m̂ as out-
put. However, there is no guarantee that
a pair of shares (ŝ′%−1, ŝ

′
%) yielding an-

other message m̂′ 6= m̂, and such that,
e.g., ŝ′%−1 = ŝ%−1, actually exists. This

circumvents the attack described above. Put differently, whenever τ = % − 1,
given any collection of %− 1 shares, we can consider two cases (cf. also Fig. 4):

20

– There are at least two possible valid outcomes for the reconstruction pro-
cedure. In this case, a computationally unbounded attacker can still find
a sequence of shares violating SVU, and thus continuous non-malleability
requires computational assumptions.

– The shared value is information-theoretically determined, i.e. there exists an
inefficient algorithm which can reconstruct the message. In this case, SVU
is not violated, and thus it is plausible that TSS with perfect privacy and
statistical continuous non-malleability exists.

4.3 Necessity of Self-Destruct

Finally, in the full version [36], we show that continuous non-malleability as
per Def. 8 is impossible without assuming self-destruct. This fact is reminiscent
of a similar impossibility result for continuously non-malleable codes [37], and
tamper-resilient cryptography [39].

Theorem 3. For any n, τ, % ∈ N, with τ ≤ % ≤ n, there is no (n, τ, %, 0)-LR-
CNMSS without assuming the self-destruct capability.

5 A Scheme with Poor Rate

Before describing our scheme, we introduce some useful notation. The shares will
be of the form s∗i = (sH,i)H∈([n]

2) (see Fig. 5), where i ∈ [n]. Given a set A ⊆ [n],

we identify with Â the first two indices (according to the natural order) of A.

Our threshold secret sharing Σ∗ = (Share∗,Rec∗), which is formally depicted
in Fig. 5, is based upon the following ingredients:

– An authenticated secret-key encryption (AE) scheme Π = (AEnc,ADec) (cf.
§3.1), with message spaceM, ciphertext space C, and key space K = {0, 1}λ.

– An (n−2)-party secret sharing scheme Σ = (Share,Rec), with reconstruction
threshold equal to %− 3, message space C, and share space Sn−2 (cf. §3.1).

– A split-state encoding Γ = (Enc,Dec), with message space K and codeword
space L ×R (cf. §3.2).

The main intuition behind the construction has been already discussed in §2.
The formal proof of the theorem below can be found in the full version [36].

Theorem 4. Let n, %, `, `∗ ∈ N be such that n ≥ % > 2. Assuming that Π is a se-
cure AE scheme, that Σ is a (n−2, %−3, %−3)-TSS with perfect threshold privacy
and with the special reconstruction property, and that Γ is an `-LR-CNMC with
symmetric decoding and with codewords uniformity, the secret sharing scheme
Σ∗ of Fig. 3 is an (n, %− 1, %, `∗)-LR-CNMSS, as long as ` = `∗+ 2γ+O(log λ)
where γ = log |C| is the size of a ciphertext under Π.

21

Basic Construction of LR-CNMSS

Let Π = (AEnc,ADec), Σ = (Share,Rec), and Γ = (Enc,Dec) be as described in
the text. Consider the following construction of an n-party secret sharing Σ∗ =
(Share∗,Rec∗) with reconstruction threshold % ≤ n, and message space M∗ =M.

Sharing function Share∗(m): The secret sharing of a message m ∈M∗ is a collection
of shares s∗ = (s∗1, . . . , s

∗
n), where s∗i = (sH,i)H∈([n]

2) and for any H = {h1, h2} ∈(
[n]
2

)
the share sH,i is computed following the steps below:

1. Let H̄ = [n] \ H = {h3, . . . , hn};
2. Sample κH←$K and run cH←$ AEnc(κH,m);
3. Compute (sH,h1 , sH,h2)←$ Enc(κH) and (sH,h3 , . . . , sH,hn)←$ Share(cH).

Reconstruction function Rec∗(s∗I) : Let I = {i1, . . . , i%}. Wlog. we assume that the
set I is ordered and that is made of exactly % indices. (If not, we can just order it
and use only the first % indices.)
1. Let Î = {i1, i2}, and parse s∗I = (s∗i1 , . . . , s

∗
i%), where for each j ∈ [%] we have

s∗ij = (sH,ij)H∈([n]
2);

2. Compute κ = Dec(sÎ,i1 , sÎ,i2), and for sets A1 = {i3, . . . , i%−1} and A2 =
{i4, . . . , i%} let c1 = Rec((sÎ,a)a∈A1) and c2 = Rec((sÎ,a)a∈A2);

3. If c1 6= c2 output ⊥, else let c = c1 = c2 and return m = ADec(κ, c).

Fig. 5: A construction of leakage-resilient continuously non-malleable secret shar-
ing for threshold access structures, in the computational setting.

Instantiating the construction. In the full version of this paper [36], we show
how to instantiate Thm. 4, under the assumption of 1-to-1 OWFs. It is well-
known that authenticated encryption can be constructed in a black-box way
from any OWF, whereas we can use the classical Shamir’s construction [56]
for the underlying TSS scheme. The latter is easily seen to meet the special
reconstruction property.

It remains to exhibit a split-state CNMC with the required properties, which
we do by revisiting the construction (and security analysis) of [53].

6 Boosting the Rate

6.1 Information Rate of Secret Sharing

An important measure of the efficiency of a secret sharing scheme is its informa-
tion rate, defined as the ratio between the size of the message and the maximum
size of a share as function of the size of the message and the number of shares.10

10 One can also define a more general notion of information rate for secret sharing
schemes [15], which depends on the entropy of the distribution M of the input mes-
sage. The above definition is obtained as a special case, by considering the uniform
distribution.

22

Rate-Optimizing Compiler for LR-CNMSS

Let Σ′ = (Share′,Rec′) be an n-party TSS over message spaceM′ := K and share space
S ′n. Let Π = (AEnc,ADec) be an authenticated secret-key encryption scheme with key
space K, message spaceM, and ciphertext space C. Consider the following construction
of a derived n-party TSS over message space M and share space S := (S ′ × C)n.

Sharing function Share(m): Sample κ←$K, and compute c←$ AEnc(κ,m). Let (κ1,
. . . , κn)←$ Share′(κ). Output s = (s1, . . . , sn), where si := (κi, c) for all i ∈ [n].

Reconstruction function Rec(sI): Parse sI = (si1 , . . . , si%), where sij = (κij , cij)
for all j ∈ [%]. Let κ = Rec′(κi1 , . . . , κi%); if κ = ⊥, return ⊥. Else, if ci1 = . . . =
ci% := c, output ADec(κ, c), and otherwise output ⊥.

Fig. 6: Boosting the rate of any leakage-resilient continuously non-malleable se-
cret sharing (in the computational setting).

Definition 10 (Rate of secret sharing). Let Σ = (Share,Rec) be an n-party
secret sharing over message space M and share space S = S1 × · · · × Sn. We
define the information rate of Σ to be the ratio

˚rffl(µ, n, λ) := min
i∈[n]

µ

σi(µ, n, λ)

where µ = log |M| and σi(µ, n, λ) = log |Si| denote, respectively, the bit-length
of the message and of the i-th share under Σ. Moreover, we say that Σ has
asymptotic rate 0 (resp. 1) if infλ∈N limµ→∞ ˚rffl(µ, n, λ) is 0 (resp. 1).

In the full version [36], we show an instantiation of the TSS scheme from §5
with shares of length O(n2 ·max{λ8, µ+ λ}). Hence, we have obtained:

Corollary 2. Let λ ∈ N be the security parameter. Under the assumption of
1-to-1 OWFs, there exists a noisy-leakage-resilient continuously non-malleable

n-party threshold secret sharing for µ-bit messages, with rate Ω
(

µ
n2·(λ8+µ)

)
.

6.2 A Rate-Optimizing Compiler

In this section, we show how to optimize the rate of any LR-CNMSS, under com-
putational assumptions. We will achieve this through a so-called rate compiler,
i.e. a black-box transformation that takes any LR-CNMSS with asymptotic rate
0 and returns a LR-CNMSS with asymptotic rate 1.

Our compiler is formally described in Fig. 6, and is inspired by a beautiful
idea of Aggarwal et al. [1], who considered a similar question for the case of (one-
time) non-malleable codes against split-state tampering; recently, their approach
was also analyzed in the case of continuous tampering [25]. Intuitively, the con-
struction works as follows. The sharing function samples a uniformly random
key κ for a symmetric encryption scheme, and secret shares κ using the underly-
ing rate-0 threshold secret sharing, obtaining shares κ1, . . . , κn. Next, the input

23

message m is encrypted under the key κ, yielding a ciphertext c, and the final
share of each player is defined to be si = (κi, c). Importantly, the reconstruction
function, before obtaining the key κ and decrypting the ciphertext c, checks that
the ciphertext contained in every given share is the same.

Note that when the initial secret sharing scheme is a 2-out-of-2 TSS, i.e. Σ′

is actually a split-state LR-CNMC, we obtain as a special case one of the rate
compilers analyzed in [25]. A notable advantage of our result, however, is that
we can instantiate the construction in the plain model (whereas Coretti et al.
assume a CRS). In the full version [36], we establish the following result.

Theorem 5. Let n, τ, % ∈ N, with τ ≤ % ≤ n. Assuming that Σ′ is an (n, τ, %, `′)-
LR-CNMSS, and that Π is a secure AE scheme, the secret sharing scheme Σ of
Fig. 6 is an (n, τ, %, `)-LR-CNMSS as long as `′ = `+ λ+O(log λ).

Note that since the key size is independent of the message size, the length of
a share is µ+poly(n, λ), thus yielding a rate of µ

µ+poly(n,λ) . This asymptotically

approaches 1 when the message size goes to infinity.

Corollary 3. Under the assumption of 1-to-1 OWFs, there exists a noisy-leakage-
resilient continuously non-malleable threshold secret sharing with asymptotic in-
formation rate 1.

7 Threshold Signatures under Adaptive Memory
Corruptions

7.1 Syntax

An n-party threshold signature is a tuple Π = (KGen, Ξ,Vrfy) specified as fol-
lows. (i) The PPT algorithm KGen takes as input the security parameter, and
outputs a verification key vk ∈ VK, and n secret keys sk1, . . . , skn ∈ SK;
(ii) Ξ = (P1, . . . ,Pn) specifies a set of protocols which can be run by a sub-
set I of n interactive PPT Turing machines P1, . . . ,Pn, where each Pi takes
as input a message m ∈ M and secret key sk i, and where we denote by

(σ, ξ)
Ξ←−$ 〈Pi(sk i,m)〉i∈I a run of Ξ by the parties (Pi)i∈I , yielding a signa-

ture σ and transcript ξ. (iii) The deterministic polynomial-time algorithm Vrfy
takes as input the verification key vk , and a pair (m,σ), and returns a bit.

For a parameter % ≤ n, we say that an n-party threshold signature is %-
correct if for all λ ∈ N, all (vk , sk1, . . . , skn) output by KGen(1λ), all messages
m ∈M, and all subsets I such that |I| ≥ %, the following holds:

P
[
Vrfy(vk , (m,σ)) = 1 : (σ, ξ)

Ξ←−$ 〈Pi(sk i,m)〉i∈I
]

= 1.

We also consider non-interactive threshold signature schemes. Such schemes
are fully specified by a tuple of polynomial-time algorithms (KGen,TSign,Combine,
Vrfy), such that KGen,Vrfy are as in the interactive case, whereas the protocol
Ξ, run by a subset I of the parties, has the following simple structure:

24

Ghbc
Π,A,U (λ): Gnm-tsig

Π,A (λ):

(vk , sk1, . . . , skn)←$ KGen(1λ)

U := ∅; stop← false

(m∗, σ∗)←$ AOsign(~sk,·,~id,·)(vk , (sku)u∈U)

(m∗, σ∗)←$ AOsign(~sk,·,·,·)(vk)

Return 1 iff:
(a) m∗ 6∈ Q,
(b) Vrfy(vk , (m∗, σ∗)) = 1

Oracle Osign(~sk , T , (f1, . . . , fn),m):

If stop = true

Return ⊥
Else

(s̃k1, . . . , s̃kn) = (f1(sk1), . . . , fn(skn))

(ξ, σ)
Ξ←−$ 〈Pt(s̃k t,m)〉t∈T

Q := Q∪ {m}
If σ = ⊥ set stop← true

Return (ξU∩T , σ)

Fig. 7: Experiments defining privacy and continuous non-malleability for thresh-
old signatures. The vector ~id contains the identity function (repeated n times).

– For each i ∈ I, party Pi computes locally σi←$ TSign(sk i,m) and broadcasts
the resulting signature share σi;

– For each i ∈ I, party Pi locally computes σ←$ Combine(vk , (σi)i∈I); most
notably, algorithm Combine only uses public information.

7.2 Security Model

We assume authenticated and private channels between each pair of parties.
The standard security notion for threshold signatures deals with an adversary A
statically corrupting a subset U of the players, with size below the reconstruction
threshold of the scheme. The guarantee is that the attacker should not be able to
forge a valid signature on a fresh message, even after seeing a polynomial number
of executions of the signature protocol on several messages and involving different
subsets of the players; note that, for each such subset I, the attacker learns the
transcript of the signature protocol relative to the players in U ∩ I. Below, we
formalize this guarantee in the honest-but-curious case.

Definition 11 (Privacy for threshold signatures). Let Π = (KGen, Ξ,Vrfy)
be an n-party threshold signature scheme. We say that Π is τ -private against
honest-but-curious adversaries if for all PPT attackers A, and all subsets U ⊂ [n]
such that |U| < τ :

P
[
Ghbc
Π,A,U (λ) = 1

]
∈ negl(λ).

where the game Ghbc
Π,A,U (λ) is described in Fig. 7.

Non-malleability. Next, we consider an adversary able to corrupt the memory
of each party independently. The security guarantee is still that of existential
unforgeability, except that the attacker can now see a polynomial number of
executions of the signature protocol under related secret-key shares, where both
the modified shares and the subset of parties used for each signature computa-
tion, can be chosen adaptively. However, since in this case no player is actually

25

corrupted and the protocol’s messages are sent via private channels, for each
run of the signature protocol the attacker only learns the signature (but not the
transcript).

Definition 12 (Tamper-resilient threshold signatures). Let Π = (KGen,
Ξ,Vrfy) be an n-party threshold signature scheme. We say that Π is secure under
continuous memory tampering if for all PPT adversaries A:

P
[
Gnm-tsig
Π,A (λ) = 1

]
∈ negl(λ),

where the game Gnm-tsig
Π,A (λ) is described in Fig. 7.

7.3 The Compiler

Given an n-party threshold signature Π = (KGen, Ξ,Vrfy), and an n-party TSS
Σ = (Share,Rec), consider the following modified n-party threshold signature
Π∗ = (KGen∗, Ξ∗,Vrfy∗).

– Key generation KGen∗(1λ): Upon input the security parameter, run (vk ,
sk1, . . . , skn)←$ KGen(1λ), compute (sk i,1, . . . , sk i,n)←$ Share(sk i) for each
i ∈ [n], set sk∗i = (sk i′,i)i′∈[n], and output (vk , sk∗1, . . . , sk∗n).

– Signature protocol Ξ∗ = (P∗1, . . . ,P
∗
n): For any subset I ⊂ [n], and any

message m ∈M, the protocol 〈P∗i (sk∗i ,m)〉i∈I proceeds as follows:
• Party P∗i parses sk∗i = (sk i′,i)i′∈[n] and sends sk i′,i to the i′-th party, for

every i′ ∈ I \ {i}.
• Party P∗i waits to receive the messages sk i,i′′ for every i′′ ∈ I \ {i}, and

afterwards it computes sk i = Rec((sk i,i′′)i′′∈I).

• The players run (ξ, σ)
Ξ←−$ 〈Pi(sk i,m)〉i∈I .

– Verification algorithm Vrfy∗: Return the same as Vrfy(vk , (m,σ)).

Intuitively, in the above protocol we first create a verification key vk and
secret-key shares (sk1, . . . , skn) under Π; hence, each value sk i is further divided
into n shares (sk i,1, . . . , sk i,n) via the secret sharing Σ. The final secret-key share
sk∗i for the i-th party consists of the shares (sk1,i, . . . , skn,i), i.e. the collection
of all the i-th shares under Σ. In order to sign a message, each player first sends
to each other player the corresponding share. This way, party Pi can reconstruct
sk i, and the involved players can then run the original signature protocol Ξ.
The proof of the theorem below appears in the full version [36].

Theorem 6. For any n, %, τ ∈ N such that n ≥ % ≥ τ , assuming that Π is
non-interactive, %-correct, and τ -private against honest-but-curious adversaries,
and that Σ is an (n, τ, %, 0)-LR-CNMSS, then the above defined threshold signa-
ture Π∗ is %-correct, τ -private against honest-but-curious adversaries, and secure
under continuous memory tampering.

We give a sketch for the proof of Thm. 6. We focus on showing security against
continuous tampering, as honest-but-curious security readily follows from the
privacy of the CNMSS Σ and the honest-but-curious security of Π.

26

The proof is a classical hybrid argument where we switch step by step from
the real distribution to a distribution where all the tampering queries are applied
to shares which encode dummy secret keys. In this last experiment, the reduction
can simulate the tampering oracle Osign(~sk , ·, ·, ·) as a function of the dummy
shares only, and therefore the simulation is independent of the real secret keys.
Thus, we can rely on the unforgeability of the non-interactive threshold signature
scheme to conclude the proof.

However, there is a subtlety. In particular, in one of the intermediate hybrid
steps, the adversary might, for example, overwrite the shares relative to a secret
key sk i with shares that reconstruct to an unrelated secret key s̃k i, while keeping
all the other shares untouched. If the starting threshold signature scheme would
be interactive, we would need to be able to simulate a run of the signature
protocol where all the inputs are the same but the i-th input, which lies out of the
capability of an honest-but-curious adversary. On the other hand, if the threshold
signature scheme is non-interactive as we assume, this problem disappears, as
we can first run the signature protocol using the original secret-key shares, and
later simulate the (single) message of the i-th server thanks to the knowledge of
the mauled secret-key share s̃k i.

8 Conclusions and Open Problems

We have initiated the study of non-malleable, threshold secret sharing with-
standing a powerful adversary that can obtain both noisy leakage from each of
the shares independently, and an arbitrary polynomial number of reconstructed
messages corresponding to shares which can be arbitrarily related to the origi-
nal ones (as long as the shares are modified independently). Importantly, in our
model, both the tampering functions (mauling the original target secret sharing)
and the reconstruction subsets (specifying which shares contribute to the recon-
structed message) can be chosen adaptively by the attacker. Our main result
establishes the existence of such schemes in the computational setting, under the
minimal assumption of 1-to-1 OWFs, and with information rate asymptotically
approaching 1 (as the message length goes to infinity).

Our work leaves several interesting open problems. We mention some of them
below.

– Mind the gap: As we show, continuous non-malleability is impossible
to achieve in the information-theoretic setting whenever the reconstruction
threshold % (i.e., the minimal number of shares required to reconstruct the
message) is equal to the privacy threshold τ (i.e., any collection of τ − 1
shares computationally hides the message). Our schemes, however, have a
minimal gap % − τ ≥ 1. It remains open to construct CNMSS for the op-
timal parameters % = τ , possibly with information-theoretic security (even
without considering leakage and adaptive concurrent reconstruction).

– Optimal rate: It is well known that, in the computational setting, there
exist robust threshold secret sharing schemes with optimal information rate
n [48] (i.e., the size of each share is µ/n where µ is the message size). It

27

remains open whether continuously non-malleable threshold secret sharing
schemes with such rate exist, and under which assumptions.

– Arbitrary access structures: Can we construct continuously non-malleable
secret sharing beyond the threshold access structure, e.g. where the sets of
authorized players can be represented by an arbitrary polynomial-size mono-
tone span program, as in [43]?

– Joint tampering: Can we construct continuously non-malleable secret shar-
ing where the non-malleability property holds even if joint tampering with
the shares is allowed, as in [42,43]?

– Applications: Finally, it would be interesting to explore other applications
of continuously non-malleable secret sharing besides tamper resistance, e.g.
in the spirit of non-malleable cryptography, as in [41,26,44,24,42].

References

1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran,
M.: Optimal computational split-state non-malleable codes. In: TCC. pp. 393–417
(2016)

2. Aggarwal, D., Damgaard, I., Nielsen, J.B., Obremski, M., Purwanto, E., Ribeiro,
J., Simkin, M.: Stronger leakage-resilient and non-malleable secret-sharing schemes
for general access structures. Cryptology ePrint Archive, Report 2018/1147 (2018),
https://ia.cr/2018/1147

3. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and
applications. In: STOC. pp. 459–468 (2015)

4. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In: STOC. pp. 774–783 (2014)

5. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. SIAM J. Comput. 47(2), 524–546 (2018)

6. Aggarwal, D., Döttling, N., Nielsen, J.B., Obremski, M., Purwanto, E.: Continuous
non-malleable codes in the 8-split-state model. Cryptology ePrint Archive, Report
2017/357 (2017), https://ia.cr/2017/357

7. Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-
malleable codes. In: TCC. pp. 398–426 (2015)

8. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and per-
mutations. In: TCC. pp. 375–397 (2015)

9. Ananth, P., Ishai, Y., Sahai, A.: Private circuits: A modular approach. In:
CRYPTO. pp. 427–455 (2018)

10. Badrinarayanan, S., Srinivasan, A.: Revisiting non-malleable secret sharing. Cryp-
tology ePrint Archive, Report 2018/1144 (2018), https://ia.cr/2018/1144

11. Beimel, A.: Secret-sharing schemes: A survey. In: International Conference on Cod-
ing and Cryptology (IWCC). pp. 11–46 (2011)

12. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC. pp. 1–10 (1988)

13. Bishop, A., Pastro, V., Rajaraman, R., Wichs, D.: Essentially optimal robust secret
sharing with maximal corruptions. In: EUROCRYPT. pp. 58–86 (2016)

14. Blakley, G.R.: Safeguarding cryptographic keys. Proceedings of AFIPS 1979 Na-
tional Computer Conference 48, 313–317 (1979)

28

https://ia.cr/2018/1147
https://ia.cr/2017/357
https://ia.cr/2018/1144

15. Blundo, C., Santis, A.D., Gargano, L., Vaccaro, U.: On the information rate of
secret sharing schemes. Theor. Comput. Sci. 154(2), 283–306 (1996)

16. Carpentieri, M., Santis, A.D., Vaccaro, U.: Size of shares and probability of cheat-
ing in threshold schemes. In: EUROCRYPT. pp. 118–125 (1993)

17. Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic local non-
malleable codes and their applications. In: TCC. pp. 367–392 (2016)

18. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. In: STOC. pp. 285–298 (2016)

19. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-
state tampering. In: FOCS. pp. 306–315 (2014)

20. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: STOC. pp. 11–19 (1988)

21. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: Innovations
in Theoretical Computer Science. pp. 155–168 (2014)

22. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: TCC. pp. 440–464 (2014)

23. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988)

24. Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: Sim-
pler, shorter, stronger. In: TCC. pp. 306–335 (2016)

25. Coretti, S., Faonio, A., Venturi, D.: Rate-optimizing compilers for continuously
non-malleable codes. Cryptology ePrint Archive, Report 2019/055 (2019), https:
//ia.cr/2019/055

26. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: TCC. pp. 532–560 (2015)

27. Dav̀ı, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: SCN. pp.
121–137 (2010)

28. Desmedt, Y., Frankel, Y.: Shared generation of authenticators and signatures (ex-
tended abstract). In: CRYPTO. pp. 457–469 (1991)

29. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: FOCS. pp. 511–520 (2010)

30. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: How to gen-
erate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1),
97–139 (2008)

31. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
J. ACM 40(1), 17–47 (1993)

32. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: CRYPTO. pp. 239–257 (2013)

33. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Innovations in
Computer Science. pp. 434–452 (2010)

34. Faonio, A., Nielsen, J.B., Simkin, M., Venturi, D.: Continuously non-malleable
codes with split-state refresh. In: ACNS. pp. 1–19 (2018)

35. Faonio, A., Nielsen, J.B., Venturi, D.: Fully leakage-resilient signatures revisited:
Graceful degradation, noisy leakage, and construction in the bounded-retrieval
model. Theor. Comput. Sci. 660, 23–56 (2017)

36. Faonio, A., Venturi, D.: Non-Malleable Secret Sharing in the Computational Set-
ting: Adaptive Tampering, Noisy-Leakage Resilience, and Improved Rate. Cryp-
tology ePrint Archive, Report 2019/105 (2019), https://ia.cr/2019/105

37. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: TCC. pp. 465–488 (2014)

29

https://ia.cr/2019/055
https://ia.cr/2019/055
https://ia.cr/2019/105

38. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting
circuits from leakage: the computationally-bounded and noisy cases. In: EURO-
CRYPT. pp. 135–156 (2010)

39. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: Theoretical foundations for security against hard-
ware tampering. In: TCC. pp. 258–277 (2004)

40. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: STOC. pp. 218–229
(1987)

41. Goyal, V., Jain, A., Khurana, D.: Witness signatures and non-malleable multi-
prover zero-knowledge proofs. Cryptology ePrint Archive, Report 2015/1095
(2015), http://ia.cr/2015/1095

42. Goyal, V., Kumar, A.: Non-malleable secret sharing. In: STOC. pp. 685–698 (2018)
43. Goyal, V., Kumar, A.: Non-malleable secret sharing for general access structures.

In: CRYPTO. pp. 501–530 (2018)
44. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:

STOC. pp. 1128–1141 (2016)
45. HashiCorp: The Vault project. https://www.vaultproject.io/, accessed: 2018-

12-22
46. Ishai, Y., Sahai, A., Wagner, D.A.: Private circuits: Securing hardware against

probing attacks. In: CRYPTO. pp. 463–481 (2003)
47. Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Four-state non-malleable codes with

explicit constant rate. In: TCC. pp. 344–375 (2017)
48. Krawczyk, H.: Secret sharing made short. In: CRYPTO. pp. 136–146 (1993)
49. Kumar, A., Meka, R., Sahai, A.: Leakage-resilient secret sharing. Cryptology ePrint

Archive, Report 2018/1138 (2018), https://ia.cr/2018/1138
50. Li, X.: Improved non-malleable extractors, non-malleable codes and independent

source extractors. In: STOC. pp. 1144–1156 (2017)
51. Liu, F., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.

In: CRYPTO. pp. 517–532 (2012)
52. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. SIAM J.

Comput. 41(4), 772–814 (2012)
53. Ostrovsky, R., Persiano, G., Venturi, D., Visconti, I.: Continuously non-malleable

codes in the split-state model from minimal assumptions. In: CRYPTO. pp. 608–
639 (2018)

54. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: STOC. pp. 73–85 (1989)

55. Rogaway, P., Bellare, M.: Robust computational secret sharing and a unified ac-
count of classical secret-sharing goals. In: CCS. pp. 172–184 (2007)

56. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
57. Shoup, V.: Sequences of games: A tool for taming complexity in security proofs.

Cryptology ePrint Archive, Report 2004/332 (2004), http://ia.cr/2004/332
58. Srinivasan, A., Vasudevan, P.N.: Leakage resilient secret sharing and applications.

Cryptology ePrint Archive, Report 2018/1154 (2018), https://ia.cr/2018/1154

30

http://ia.cr/2015/1095
https://www.vaultproject.io/
https://ia.cr/2018/1138
http://ia.cr/2004/332
https://ia.cr/2018/1154

	Non-Malleable Secret Sharing in the Computational Setting: Adaptive Tampering, Noisy-Leakage Resilience, and Improved Rate

