
Finding Secure Curves with the Satoh-FGH

Algorithm and an Early-Abort Strategy

Mireille Fouquet1, Pierrick Gaudry1, and Robert Harley2

1 LIX, École polytechnique, 91128 Palaiseau Cedex, France
2 ArgoTech, 26 ter rue Nicoläı, 75012 Paris, France

Abstract. The use of elliptic curves in cryptography relies on the ability
to count the number of points on a given curve. Before 1999, the SEA
algorithm was the only efficient method known for random curves. Then
Satoh proposed a new algorithm based on the canonical p-adic lift of
the curve for p ≥ 5. In an earlier paper, the authors extended Satoh’s
method to the case of characteristics two and three. This paper presents
an implementation of the Satoh-FGH algorithm and its application to the
problem of finding curves suitable for cryptography. By combining Satoh-
FGH and an early-abort strategy based on SEA, we are able to find secure
random curves in characteristic two in much less time than previously
reported. In particular we can generate curves widely considered to be as
secure as RSA-1024 in less than one minute each on a fast workstation.

1 Introduction

Since elliptic curve cryptosystems were first proposed in the mid-eighties by
Koblitz [Kob87] and Miller [Mil87], their efficiency and security have been the
focus of intense study. In recent years, they have become widely accepted as
an alternative to cryptosystems based on factorisation or discrete logarithms in
finite fields, especially for constrained environments.

One of the initial steps in protocols based on elliptic curve cryptography is to
generate a suitable curve defined over a finite field. To ensure that the system is
secure, the curve must be chosen to have a number of points which is divisible by
a large prime so that computing discrete logarithms on the curve is intractable
using known attacks. Hence it is necessary to know the cardinality of the curve.

Among the elliptic curves defined over a given finite field, there are some
classes of curves with particular properties that are useful for counting points
or for accelerating arithmetic operations occurring in the protocols. However
choosing such curves can be dangerous.

Perhaps the most striking example is trace 1 curves. The number of points
over Fq is simply q. However Smart [Sma99], Satoh-Araki [SA98] and Semaev
[Sem98] independently discovered a polynomial-time attack.

Another attack due to Menezes-Okamoto-Vanstone [MOV91], and gener-
alised by Frey-Rück [FR94], reduces discrete logs on supersingular and trace
2 curves to discrete logs in a small-degree extension of Fq. This yields an algo-
rithm that runs in sub-exponential time.

Finding Secure Curves with Satoh-FGH and Early-Abort 15

A minor weakness is known for curves with many automorphisms [vOW99],
[GLV], [DGM99] including curves defined over a small subfield, proposed by
Koblitz, and some complex-multiplication curves. Attacks on these curves take
less time than for generic curves, but remain in exponential time.

It has recently been shown by Gaudry-Hess-Smart [GHS00] that curves de-
fined over composite extension fields are also weak in certain cases, using a
reduction via hyperelliptic curves.

These results suggest that for maximum security one should avoid curves
with special properties and instead choose a random curve whose number of
points is divisible by a large prime, over a prime field or an extension of prime
degree. This ideal procedure was made possible in practice by the SEA algorithm
due to Schoof [Sch85], [Sch95], Elkies [Elk98], Atkin [Atk92] and others [Cou94]
[Cou96], [Mor95], [Ler97a], [Mül95], [Dew98], etc. With this method, counting
points on one given curve is reasonably fast.

However finding a cryptographically suitable curve requires testing many
curves and this takes much more time. For instance, Johnson and Menezes [JM99]
recently described this process as a “complicated and cumbersome task” requir-
ing “a few hours on a workstation” for 200 bits.

Recently, a new algorithm for counting points on curves in small character-
istic p ≥ 5 was designed by Satoh [Sat00] and we extended it to characteristics
two and three in [FGH00]. An independent extension to characteristic two is
described by Skjernaa [Skj].

Satoh’s algorithm is asymptotically superior to SEA for fixed p, requiring
O(log3+ε q) deterministic time, instead of O(log4+ε q) under reasonable hypothe-
ses. As demonstrated in [FGH00], the Satoh-FGH algorithm is much faster in
practice in characteristic two. Indeed we were able to count points over much
larger fields (up to 8009 bits) than had previously been possible, and could match
the largest size reached with SEA (i.e. 1999 bits) in just three hours.

In the following we will describe a method for generating cryptographically
suitable curves, over fields of 113 to 571 bits, using an implementation of the
Satoh-FGH algorithm combined with an efficient early-abort strategy based on
ideas from SEA. In this manner we reduce substantially the time required for
curve-generation, finding suitable 200-bit curves in minutes rather than hours
on a workstation, for instance.

In section 2, we recall some basic facts about elliptic curves defined over finite
fields of characteristic two. Next we review some algorithms that can be used
to compute the cardinality of a curve, and in particular we give a description
of the Satoh-FGH algorithm. Section 4 gives the conditions that a curve must
satisfy in order to be suitable for cryptographic applications. It also describes the
early-abort strategy first used by Lercier in [Ler97a] for selecting good curves.
Last but not least we describe our implementation and the results we obtained by
combining a more aggressive early-abort strategy and the Satoh-FGH algorithm.

16 Mireille Fouquet, Pierrick Gaudry, and Robert Harley

2 Elliptic Curves over Finite Fields of Characteristic Two

In this section, we recall some basic facts about elliptic curves defined over Fq
where q = 2d. We will only be concerned with characteristic two. For more
informations on elliptic curves, the reader can refer to [Men93], [Sil86], [BSS99].

For our purposes, we can choose the equation of an elliptic curve E (with
non-zero j-invariant) to be:

E : y2 + xy = x3 + a6 where a6 ∈ F ∗
q .

Its twist curve is:

E∗ : y2 + xy = x3 + a2x
2 + a6

where a2 is some fixed element of trace 1.

An important invariant of the curve is its j-invariant j(E) = 1/a6. In the
following we assume j(E) 6∈ F4 and in particular that curves are ordinary i.e.,
not supersingular.

The set of points E(Fq) of the curve is:

E(Fq) = {(x, y) ∈ F 2
q | (x, y) satisfies the equation of E} ∪ {OE},

where OE is the point at infinity.

The Frobenius automorphism F is the map x 7→ xq on Fq. It can be extended
to an endomorphism of E:

F : E → E
(x, y) 7→ (xq, yq)

Its characteristic equation is of the form:

F 2 − cF + q = 0.

One can show that the number of points on E is

N = q + 1− c, with |c| ≤ 2
√
q

where c is the trace of Frobenius on E. The bound on c is due to Hasse [Has33].
Note that 4 |N since the point (4

√
a6,
√
a6) on E has order four. The number of

points on E∗ is N∗ = q + 1 + c and one has 2 ‖ N∗.

The little Frobenius automorphism σ is the map x 7→ x2. It can be extended
to an isogeny from E to the conjugate curve Eσ : y2 + xy = x3 + a2

6 as follows:

σ : E → Eσ

(x, y) 7→ (x2, y2).

Finding Secure Curves with Satoh-FGH and Early-Abort 17

3 Counting the Number of Points

3.1 The Schoof-Elkies-Atkin Algorithm

The first polynomial-time algorithm for counting points on elliptic curves over
finite fields was described by Schoof in [Sch85]. The basic idea is to find the trace
of the curve modulo small primes ` by studying the action of F on the `–torsion
part of E. Restricting the characteristic equation of F to the `–torsion results in

(Xq2 , Y q2)− [q](X,Y) = [c`](X
q, Y q)

for each point (X,Y), where c` ≡ c mod `. This equality can be tested, for
each candidate c` ∈ [0 . . . `− 1], by doing polynomial arithmetic modulo the
`–division polynomial. Now, it suffices to compute c` for many small primes `
and then to recover the exact result using the Chinese Remainder Theorem. The
time required for point-counting over Fq with this algorithm is O(log5+ε q) using
asymptotically fast methods for arithmetic (or O(log8 q) using näıve arithmetic).
The degree of the `–division polynomial is O(`2), which grows quickly and causes
this algorithm to be slow in practice.

In large characteristic, Elkies [Elk98] and Atkin [Atk92] improved Schoof’s
method yielding the so-called SEA algorithm (see [Sch95]) with run-time re-
duced to O(log4+ε q) (or O(log6 q)) under reasonable hypotheses. Their idea is
to construct a factor of degree O(`) of the division polynomial and work with it
instead. Such a factor can be found by factoring the modular polynomial to find
eigenspaces of the Frobenius endomorphism F restricted to E[`].

Further work by Morain [Mor95] and others led to practical implementations
of SEA for prime fields. Couveignes extended SEA to work in small characteristic
using the formal group [Cou94] or the p-torsion [Cou96] and Lercier found an
efficient method for characteristic two [Ler97a].

3.2 The Satoh-FGH Algorithm

Here we present our adaptation of Satoh’s algorithm to the case of characteristic
two. The reader can find more details, including for odd characteristic, in [Sat00]
and [FGH00].

The principal idea of this new algorithm is to lift E to a curve E over a 2–adic
ring Zq and to compute the trace of the Frobenius on E .

Canonical Lift of the Curve Just as Fq is obtained from F2 by taking an
algebraic extension modulo an irreducible polynomial f(x), one can obtain Zq

from the 2–adic integers Z2 by taking an extension modulo a polynomial g(x)
which reduces modulo 2 to f(x). Thus we have Zq = Z2[x]/(g(x)). We represent
this situation with the following figure.

18 Mireille Fouquet, Pierrick Gaudry, and Robert Harley

�����������������������������
�����������������������������
�����������������������������

���������������������������
���������������������������
���������������������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������

�����
�����
�����

�
�
�

n

F2

d

Zq

Z2

Fq

A Frobenius morphism F can also be defined on Zq. In this case it is not a
simple q-th powering operation but something much more complicated. We do
not define it explicitly since we will never have to compute it. Similarly, there
exists a little Frobenius morphism Σ. For further details on Zq and its Frobenius
maps, see [Ser68].

A theorem of Lubin, Serre and Tate [LST64] guarantees the existence and
uniqueness of a canonical lifted curve E over Zq such that End(E) = End(E), via
a canonical lift of the j-invariant. Indeed J = j(E) is characterised by J ≡ j(E)
modulo 2 and Φ2(J,Σ(J)) = 0, where Φ2 is the 2–modular polynomial.

A crucial part of Satoh’s contribution is an efficient algorithm for lifting j-
invariants. Instead of lifting j(E) in isolation, he suggests lifting the whole cycle
of conjugate j’s simultaneously. He also proposes considering the duals Σ̂i of the
little Frobenius isogenies instead of Σi themselves. Indeed the duals are separable
and hence are determined by their kernel. After having lifted the j-invariants
using Satoh’s method, we lift the coefficients of the curves and then compute the
kernels by lifting a 2–torsion point on each conjugate curve, using the methods
from [FGH00]. As a result, we compute the following diagram:

E0
π

²²

Σ̂0
// E1

π

²²

Σ̂1
// · · · Σ̂d−2

// Ed−1

π

²²

Σ̂d−1
// E0

E0
σ̂0

// E1
σ̂1

// · · · σ̂d−2
// Ed−1

σ̂d−1
// E0

Here the top row is over Zq to precision O(2d/2+o(d)) and π is reduction modulo
2 down to Fq.

Computing the Trace in Zq Since traces are preserved by taking the dual
and by canonical lifting, we have the equation:

Tr(F) = Tr(F̂) = Tr(F̂).

Moreover F̂ can be written as the composition

F̂ = Σ̂d−1 ◦ . . . ◦ Σ̂1 ◦ Σ̂0.

Finding Secure Curves with Satoh-FGH and Early-Abort 19

To find its trace we go to the formal groups of the curves. In formal groups,
isogenies are represented by power series and composing isogenies is done by
composing the power series. The first coefficient c1 of the power series of F̂ is
related to its trace as follows:

Tr F̂ = c1 +
q

c1
.

Therefore, computing the trace can be done by computing c1, and the latter
can be computed by composing all the power series of the Σ̂i. Only the first
coefficients gi of the Σ̂i have to be determined, and this can be done with Vélu’s
formulae [Vél71]. More precisely, g2

i is given by an explicit formula involving the
lifted curves and 2–torsion. Taking one of the square roots of

∏

g2
i produces the

trace to sufficient precision for it to be recovered exactly using Hasse’s bound.

3.3 Description of the Algorithm

In this section, we give a synthetic description of the algorithm. For a more
detailed one, we refer the reader to [FGH00]. The general procedure is:

Procedure MainAlgorithm

Input: An elliptic curve E defined over Fq, with j(E) 6∈ F4 .
Output: The trace of the curve.

1. Compute the cycle of d curves Ei and their j-invariants ji.
2. Lift all the ji’s simultaneously, yielding Ji.
3. Lift each curve by lifting its a6 coefficient.
4. Lift the kernel of each Σ̂i.
5. Compute the trace from the lifted data.

In this procedure, points 2, 3 and 4 concern the lifting of the cycle of curves
and of the kernels. We will detail these first. An essential ingredient is Newton’s
iteration for improving the (2–adic) precision of a root of a function.

Procedure LiftCurvesAnd2Torsion

Input: A cycle of d conjugate curves, and their j-invariants.
Output: The canonical lift of this cycle over Zq.

1. Lift the j-invariants simultaneously using an adaptation of the Newton iter-
ation to the multivariate case. The function to be considered acts on a 1× d
vector: Θ(x0, . . . , xd−1) = (Φ2(x0, x1), Φ2(x1, x2), · · · , Φ2(xd−1, x0)) and the
initial approximation of the root is the vector (j0, j1, . . . , jd−1) modulo 2.

2. Lift each curve Ei by lifting its a6 coefficient, yielding Ai, using a Newton
iteration with the function f(x) = 1+ J(x+ 432x2) and the initial approxi-
mation −1/Ji modulo 16.

3. Lift the 2–torsion point in the kernel of each Σ̂i yielding (Xi, Yi) on Ei, using
a Newton iteration based on the function f(x) = 8x3 + x2 + Ai with initial
approximation 1/Ji+1 modulo 4.

20 Mireille Fouquet, Pierrick Gaudry, and Robert Harley

With these algorithms, one can perform the lifting efficiently. Once this is
done, it remains to compute the trace of F̂ . The equations in the following
algorithm are derived from Vélu’s formulae.

Procedure ComputeTrace

Input: A cycle of d curves, given by Ai, and 2–torsion abscissae Xi.
Output: The trace of F̂ .

1. Compute the square of the first coefficient of the expansion of each Σ̂i in the
formal group of Ei using Vélu’s formulae. The result is:

g2
i =

1− 252Xi + 19008Ai

(1 + 120(Xi + 6X2
i)) (1 + 864Ai+1)

.

2. Compute c2 =
∏

g 2
i .

3. Compute c by computing a square root of c2 and by determining the sign
using c ≡ 1 mod 4.

4 Good Elliptic Curves in Cryptography

The security of elliptic curve cryptosystems depends on the difficulty of solving
the elliptic curve discrete logarithm (ECDL) problem. As mentioned in the in-
troduction, there are several attacks against curves with special properties such
as the one against trace 1 curves, or the MOV reduction for supersingular curves,
etc.

For random curves, the chance that one of these methods can apply is van-
ishingly small. However there are other attacks that work for generic abelian
finite groups.

The first is Pohlig-Hellman reduction [PH78]. When the group order N has
all its prime factors small, discrete logs can be computed quickly by working in
small subgroups. Thus for good security it is essential to pick a group whose
order is divisible by a large prime.

The other attacks are algorithms that run in time O(
√
N). They include

Shanks’ baby-step giant-step algorithm (see [Coh96]) and Pollard’s ρ method
[Pol78]. In practice, the most difficult ECDL that has been computed is on a
Koblitz curve over F2109 using a distributed version of Pollard–ρ [Har00].

By extrapolating the work required to larger sizes and allowing safety margins
for future increases in computing power, it is generally believed (see [FIPS186],
[LV00], [P1363], [Sil00]) that a random curve whose order is divisible by a prime
of at least 160 bits will offer reasonable security, comparable to 80-bit symmet-
ric systems or 1024-bit RSA. For applications with the highest security require-
ments, one may take larger safety margins.

To find a secure curve, Lercier [Ler97a] proposed an early-abort strategy to
use when computing the cardinality of the curve using SEA. The idea is to test
on the fly if q + 1 − c ≡ 0 mod `. If the test is true, then we throw away the
curve and try again with another one. Since SEA computes c mod `, this test
is easy to implement and costs no extra run-time. In large characteristic where

Finding Secure Curves with Satoh-FGH and Early-Abort 21

Satoh-FGH does not apply this is still the best known method and we refer to
the existing literature on the subject [LM95], [IKNY98], [MP98].

A difficulty that arises when designing an early-abort strategy to use with
the Satoh-FGH algorithm is that c mod ` is not available (except for ` a power
of p). Our solution is to implement a simplified version of SEA to determine
whether the curve has a rational point of `-torsion or not for the first few primes
`, as a preliminary step before launching Satoh-FGH. There is a trade-off to be
made between the extra cost of these calculations and the benefit to be gained by
avoiding an entire cardinality computation. In practice we found this strategy to
be very worthwhile and obtained run-times lower than those previously reported
in the literature.

5 Implementation and Results

5.1 Implementation Details

We wrote optimised implementations of the early-abort strategy and the Satoh-
FGH algorithm for characteristic two, in the C programming language. This
implementation of the early-abort strategy is independant of Lercier’s one. For
multiplication in Fq we used Karatsuba’s algorithm; in Zq we used Toom’s al-
gorithm. To ensure that modular reduction took very little time, we chose the
irreducible polynomial to be a trinomial or pentanomial. For division we used
the binary Euclidean algorithm in Fq, and inversion by Newton iterations in Zq.

Most of our timing tests were run on a 750 MHz EV6 Alpha. In order to
compare results with [Ler97a], we also ran some tests on a 266 MHz EV4 Alpha
identical to the one Lercier used. Note that the difference between these proces-
sors is more than what we could think by just comparing the clock speeds: for
usual applications, the gain is by a factor of about 15. Finally we timed curve
generation for one small field on a 275 MHz StrongARM chip.

In the early-abort part, as explained below, the most time consuming parts
are lazy factorizations of small-degree polynomials over Fq. The most frequent
operation is multiplication in Fq. We give relevant timings obtained on the 750
MHz Alpha in Table 1.

Field size 163 bits 193 bits 239 bits 409 bits 571 bits

Cost of a multiplication in Fq 0.488 µs 0.639 µs 0.917 µs 2.632 µs 4.685 µs

Table 1. Cost of a multiplication in Fq on a 750 MHz EV6 Alpha.

The most frequent operation in the point-counting part is multiplication in
Zq. In Table 2, we give the time for one such operation at the highest 2–adic
precision required i.e., dd/2e+3 bits, for various field sizes d. These measurements
were also done on the 750 MHz Alpha.

22 Mireille Fouquet, Pierrick Gaudry, and Robert Harley

Base field size 163 bits 193 bits 239 bits 409 bits 571 bits

Maximal precision 85 100 123 208 289

Cost of a multiplication in Zq 0.19 ms 0.24 ms 0.36 ms 4.6 ms 8.0 ms

Table 2. Cost of a multiplication in Zq on a 750 MHz EV6 Alpha.

Field size SEA (timings from [Ler97b]) Satoh-FGH Ratio
Min Max Avg

155 bits 58.8 s 132 s 86.5 s 36.3 s 2.4

196 bits 212 s 1029 s 308 s 68.8 s 4.5

300 bits 1519 s 3686 s 2434 s 408.4 s 6

Table 3. Times for point-counting on a 266 MHz EV4 Alpha

5.2 Counting the Number of Points on One Curve

When computing the cardinality of a curve, one has to decide whether to use
SEA or Satoh. Two cases have to be dealt with differently: the case of large
characteristic and the case of small characteristic.

The complexity of Satoh’s algorithm has a bad dependency in the character-
istic p of the base field and when p is large, it is not efficient at all. This is due
to the use of the modular equation Φp for the lifting of the curves. This equation
has O(p2) coefficients that have to be known at least modulo p(d/2)+O(1). Hence
a complexity which is exponential in p appears to be unavoidable. On the other
hand, the SEA algorithm is polynomial-time independently of p. For instance,
Morain succeeded in counting the number of points of a curve over a field of size
10499 + 153 [Mor95].

However in small characteristic Satoh’s algorithm is efficient. In particular in
characteristic two, Satoh-FGH is clearly faster than SEA in practice. To illustrate
the difference in speed between the two algorithms, we compare Lercier’s results
[Ler97b] with the timings we get over the same fields, using an identical 266 MHz
Alpha. The results are given in Table 3. We do not give minimal or maximal
times for Satoh-FGH since the runtime of this algorithm is essentially constant
when treating different curves over the same field. These results show that the
bigger the field the greater the advantage for Satoh-FGH, as expected from the
asymptotics.

We give timings for point-counting on the 750 MHz Alpha in Table 4. Most
of the field sizes that we chose are recommended in cryptographic standards
(ANSI X9.63, IEEE P1363, IPSec, NIST, WAP).

Remark: In some cases, the SEA and Satoh-FGH algorithms can be combined
to speed-up point-counting. This works particularly well when the field size is
such that the maximum precision required in Satoh-FGH is a little more than
a multiple of the machine word-size. A good example is q = 2251: the maximum
precision in the lifting calculations is d 251

2 e+3 = 129 bits. In this case, computing

Finding Secure Curves with Satoh-FGH and Early-Abort 23

Field size Satoh-FGH Field size Satoh-FGH Field size Satoh-FGH

157 bits 2.39 s 197 bits 4.45 s 283 bits 26.5 s

163 bits 2.76 s 233 bits 6.57 s 409 bits 76.3 s

193 bits 4.10 s 239 bits 6.94 s 571 bits 257 s

Table 4. Times for point-counting on a 750 MHz EV6 Alpha

the trace modulo 3 with the SEA algorithm allows the precision to be reduced
to 128 bits which fits perfectly in a whole number of words. This approach could
certainly be pushed further, although implementation complexity would appear
to outweigh the moderate gain in speed.

5.3 Finding a Good Curve

The näıve strategy to find a curve suitable for cryptographic use is to count the
number of points for many curves, until one with almost prime order is found.
As mentioned before, if the SEA algorithm is used then many bad curves can be
detected early; this nice property does not hold for the Satoh-FGH algorithm.

Hence, for small to medium sizes, the näıve strategy using Satoh-FGH is not
better than the early-abort strategy with SEA. For instance over F2155 , Lercier
[Ler97b] was able to select the good curves among a set of 1000 random ones
in 14112 seconds. On the same computer, the Satoh-FGH method takes 36.5
seconds per curve, so that selecting the good ones would take 36500 seconds
with the naive strategy, and would be worse by a factor 2.5. (For larger sizes,
this phenomenon vanishes and Satoh-FGH is always better.)

To counter this, we take advantage of both methods: we first eliminate many
candidate curves by an early-abort strategy based on SEA’s techniques, and then
run Satoh-FGH on the remaining ones.

Let E be a curve over Fq. For a small prime `, E is called `-good if its order
is coprime to `, and `-bad otherwise. Early-abort works as follows for each `:

1. Compute the number of roots of Φ`(X, j(E)). It can be 0, 1, 2 or `+1. (The
cases 1 or `+ 1 cannot occur unless q is a square modulo `.)

2. If there are no roots, E is `-good.
3. Otherwise, for each root of Φ`, build the corresponding factor of the `-division

polynomial and search for a root x of the factor. If there is such an x in Fq
and a corresponding y too, then (x, y) is an `-torsion point over Fq and E is
`-bad.

4. Otherwise E is `-good.

The major cost in step 1 is that of computing Xq modulo Φ`(X, j(E)), which
has degree ` + 1. To accelerate the calculation, we replace Φ` by the canonical
modular polynomial Φc`, which has the same degree but is sparser and involves
lower powers of j. We refer to [Mor95] for the construction and the properties
of these equations.

24 Mireille Fouquet, Pierrick Gaudry, and Robert Harley

q = 2163 q = 2239

` Root finding Average Root finding Average
of Φc

`(X, j) total time of Φc
`(X, j) total time

3 0.17 ms 0.17 ms 0.28 ms 0.28 ms
5 0.34 ms 0.38 ms 0.61 ms 0.68 ms
7 0.34 ms 1.18 ms 0.56 ms 2.18 ms
11 4.42 ms 6.93 ms 9.14 ms 14.1 ms
13 1.07 ms 4.19 ms 1.94 ms 8.36 ms
17 3.71 ms 8.63 ms 7.34 ms 17.9 ms
19 4.97 ms 11.6 ms 10.1 ms 23.7 ms

Table 5. Average runtime for checking if E is `-good (EV6 – 750 MHz)

Heuristically, in half of the cases there will be no root (in such a case ` is
called an Atkin prime) and we are done. Otherwise, we have to continue to step 3.
The factor of the division polynomial corresponding to a root of the modular
polynomial is calculated using a system of formulae due to Lercier [Ler97a]. For
small ` the solution to this system can be written explicitly, and the factor is
obtained at almost no cost. (For larger ` the system could be solved efficiently by
an algorithm also due to Lercier.) The cost of searching for a root is dominated
by the computation of Xq modulo the factor, which has degree (`− 1)/2.

In Table 5 we give the run-time for this procedure, measured on the 750 MHz
Alpha.

It is necessary to bound the maximum size of ` in order to balance the
cost of early-abort against the gain obtained by avoiding point-counting. In
theory, it would be beneficial to increase ` until the above early-abort procedure
took approximately one `-th of the time required for point-counting. Hence the
maximum size of ` would grow with the field size.

However almost all of the advantage to be gained comes from using the first
few primes and in practice we found ` ≤ 19 to be a good trade-off. For these
primes it is not difficult to determine if curves are `-good: Lercier’s construction
of isogenies is relatively easy, as in the search for `-torsion points. Thus we were
able to keep our code simple and reliable.

For comparison with Lercier’s results reported in [Ler97b], we ran some fur-
ther tests on the 266 MHz Alpha. We chose a similar early-abort strategy, search-
ing for good curves with order 4p without considering the twist curves at all (but
see below). The results can be found in Table 6. As a first step in the early-abort,
we determine whether the order is divisible by 8. This can be decided very quickly
by computing Tr a6. Note that we measured our timings for 157 and 197 bits in-
stead of 155 and 196 because composite extension fields may be weak in certain
cases, as mentioned in the introduction.

Next, in order to maximise the performance of curve generation we decided to
search simultaneously for twist curves with order 2p and this allowed us roughly
to double the speed. As is clear from section 2, the cardinality of the twist can
be found immediately from that of the curve itself. Furthermore, the early-abort

Finding Secure Curves with Satoh-FGH and Early-Abort 25

Field size SEA (from [Ler97b]) Satoh-FGH + early-abort

155 bits 14112 s 4490 s

196 bits 30254 s 7850 s

Table 6. Time to select good curves among 1000 (EV4 – 266 MHz)

Field size Time for e.-a. Remaining Time to count Good Average time to
(in bits) on 10000 curves curves remaining curves curves find a good curve

157 21.1 s 435 17.3 min 45 23.6 s
163 23.1 s 473 21.7 min 55 24.1 s
193 25.1 s 402 27.5 min 33 50.7 s
197 30.8 s 415 30.8 min 43 43.6 s
233 40.3 s 402 44 min 29 92,4 s
239 43.5 s 435 50.3 min 29 105.6 s
283 122 s 418 3h 4 min 20 9.2 min
409 245 s 467 9h 54 min 22 27 min
571 524 s 375 26h 40 min 11 146 min

Table 7. Average time to find a good curve (EV6 – 750 MHz)

strategy can easily be adapted to take the twist into account since it has the same
j-invariant and the same division polynomials. (This is because the curve and
its twist are isomorphic over an algebraic closure and the isomorphism preserves
the abscissae.)

One possibility would be to reject a pair consisting of a curve and its twist
only when the early-abort strategy determines that both curves are cryptograph-
ically unsuitable. Alternatively one may pursue a more aggressive strategy by
rejecting them both as soon as either one is found to be unsuitable, and immedi-
ately moving on to a new pair. Using the latter method for 10000 random curve
pairs on the 750 MHz Alpha, we measured the timing results shown in Table 7.

Although the O(d3) space complexity of Satoh’s algorithm grows quickly, the
tricks described in [FGH00] keep the constant factor small. With these tricks,
the largest key size we dealt with (571 bits) requires under 10 megabytes and
for moderate key sizes the memory usage was only a few hundred kilobytes. We
chose a different trade-off, using more memory in exchange for slightly higher
speed.

To investigate the possibility of generating curves in constrained environ-
ments, we ran some tests at 113 bits on an ARM chip. This small key size
is recommended for key-exchange in the Wireless Application Forum’s WTLS
standard (WAP) and can be used for short-term security at a level comparable
to DES. The results can be seen in Table 8.

26 Mireille Fouquet, Pierrick Gaudry, and Robert Harley

Field size Frequency Time to Average time to RAM + ROM used
count one curve find a good curve

113 bits 275 MHz 5.9 s 38 s 240 KB + 136 KB

Table 8. Time to find a good WAP curve on an ARM chip

Field size Time Field size Time Field size Time

157 bits 0.50 s 197 bits 0.91 s 283 bits 6.32 s

163 bits 0.56 s 233 bits 1.39 s 409 bits 19.4 s

193 bits 0.84 s 239 bits 1.47 s 571 bits 58.2 s

Table 9. New times for point-counting on a 750 MHz EV6 Alpha

6 Conclusion

The Satoh-FGH algorithm has proven to be the method of choice whenever one
wants to compute the cardinality of a random elliptic curve defined over a finite
field of characteristic two. But in spite of Satoh-FGH’s excellent performance
(see Table 4), the SEA algorithm should not be abandoned too quickly. In the
case of large characteristic it is the only practical method available. Moreover
the early-abort strategy, which is closely related to it, is valuable when looking
for a curve for cryptographic use, even in small characteristic. By combining this
technique and the Satoh-FGH algorithm, we obtain an efficient way of computing
secure curves (see Table 7). We conclude that it is no longer necessary to use
precomputed curves in cryptography since one can easily compute new curves as
desired. Finding a curve with a security level comparable with RSA-1024 takes
minutes or less. Curve generation for short-term security, with a level equivalent
to DES, is feasible on a low-power chip. Finally, very high security levels similar
to the highest AES level are now possible albeit in several hours.

Remark

We have recently implemented a new and quite different point-counting algo-
rithm with lower memory requirements and a gain in speed by a factor ranging
from 4 to 5 depending on key-size. For instance a secure 113-bit curve can be
found in 8 seconds using 36 KB of RAM on the 275 MHz StrongARM. Repeating
the calculations from Tables 4 and 7 gave the times in Table 9 and Table 10.

Acknowledgements

We would like to thank François Morain for his continuous support and many
invaluable suggestions during this work.

We are also grateful to Rajit Manohar from Cornell Computer Systems Labo-
ratory. He provided the computer resources needed for many of our calculations.

Finding Secure Curves with Satoh-FGH and Early-Abort 27

Field size Average time to
(in bits) find a good curve

157 5 s
163 5 s
193 10 s
197 10 s
233 21 s
239 22 s
283 138 s
409 7 min
571 34 min

Table 10. New times to find good curves (EV6 – 750 MHz)

References

[FIPS186] FIPS 186-2. Digital Signature Standard. Federal Information Pro-
cessing Standards publication, january 2000. U.S. Departement of
Commerce/National Institute of Standards and Technology. Available at
http://csrc.nist.gov/cryptval/dss.htm.

[P1363] IEEE P1363. Standard specifications for public key cryptography. Available
at http://www.manta.ieee.org/groups/1363/.

[Atk92] A. O. L. Atkin. The number of points on an elliptic curve modulo a prime.
Series of e-mails to the NMBRTHRY mailing list, 1992.

[BSS99] I. Blake, G. Seroussi, and N. Smart. Elliptic curves in cryptography, volume
265 of London Math. Soc. Lecture Note Ser. Cambridge University Press,
1999.

[Coh96] H. Cohen. A course in algorithmic algebraic number theory, volume 138 of
Graduate Texts in Mathematics. Springer–Verlag, 1996. Third printing.

[Cou94] J.-M. Couveignes. Quelques calculs en théorie des nombres. Thèse, Université
de Bordeaux I, July 1994.

[Cou96] J.-M. Couveignes. Computing `-isogenies using the p-torsion. In H. Co-
hen, editor, Algorithmic Number Theory, volume 1122 of Lecture Notes in
Comput. Sci., pages 59–65. Springer Verlag, 1996. Second International Sym-
posium, ANTS-II, Talence, France, May 1996, Proceedings.

[Dew98] L. Dewaghe. Remarks on the Schoof-Elkies-Atkin algorithm. Math. Comp.,
67(223):1247–1252, July 1998.

[DGM99] I. Duursma, P. Gaudry, and F. Morain. Speeding up the discrete log compu-
tation on curves with automorphisms. In Kwok Yan Lam, Eiji Okamoto, and
Chaoping Xing, editors, Advances in Cryptology – ASIACRYPT ’99, volume
1716 of Lecture Notes in Comput. Sci., pages 103–121. Springer-Verlag, 1999.
International Conference on the Theory and Applications of Cryptology and
Information Security, Singapore, November 1999, Proceedings.

[Elk98] N. Elkies. Elliptic and modular curves over finite fields and related com-
putational issues. In D.A. Buell and eds. J.T. Teitelbaum, editors, Compu-
tational Perspectives on Number Theory, pages 21–76. AMS/International
Press, 1998. Proceedings of a Conference in Honor of A.O.L. Atkin.

[FGH00] M. Fouquet, P. Gaudry, and R. Harley. An extension of Satoh’s algorithm
and its implementation. J. Ramanujan Math. Soc., 15:281–318, 2000.

28 Mireille Fouquet, Pierrick Gaudry, and Robert Harley

[FR94] G. Frey and H.-G. Rück. A remark concerningm-divisibility and the discrete
logarithm in the divisor class group of curves. Math. Comp., 62(206):865–
874, April 1994.

[GHS00] P. Gaudry, F. Hess, and N. Smart. Constructive and destructive facets of
Weil descent on elliptic curves. Submitted to J. Crypt. and available at
http://www.cs.bris.ac.uk/~nigel/weil_descent.html, 2000.

[GLV] R. Gallant, R. Lambert, and S. Vanstone. Improving the parallelized Pollard
lambda search on binary anomalous curves. To appear in Math. Comp.

[Har00] R. Harley. http://cristal.inria.fr/~harley/ecdl7/q, 2000.
[Has33] H. Hasse. Beweis des Analogons der Riemannschen Vermutung für die Artin-

schen und F. K. Smidtschen Kongruenzzetafunktionen in gewissen elliptis-
chen Fällen. Ges. d. Wiss. Narichten. Math.-Phys. Klasse, pages 253–262,
1933.

[IKNY98] T. Izu, J. Kogure, M. Noro, and K. Yokoyama. Efficient implementation of
Schoof’s algorithm. In K. Ohta and D. Pei, editors, Advances in Cryptology
– ASIACRYPT ’98, volume 1514 of Lecture Notes in Comput. Sci., pages
66–79. Springer-Verlag, 1998. International Conference on the theory and
application of cryptology and information security, Beijing, China, October
1998.

[JM99] D. Johnson and A. Menezes. The elliptic curve digital signature algorithm
(ECDSA). Technical Report CORR 99-34, U. Waterloo, 1999. Available at
http://www.cacr.math.uwaterloo.ca/.

[Kob87] N. Koblitz. Elliptic curve cryptosystems. Math. Comp., 48(177):203–209,
January 1987.

[Ler97a] R. Lercier. Algorithmique des courbes elliptiques dans les corps finis. Thèse,
École polytechnique, June 1997.

[Ler97b] R. Lercier. Finding good random elliptic curves for cryptosystems defined
over F2n . In W. Fumy, editor, Advances in Cryptology – EUROCRYPT ’97,
volume 1233 of Lecture Notes in Comput. Sci., pages 379–392. Springer-
Verlag, 1997. International Conference on the Theory and Application of
Cryptographic Techniques, Konstanz, Germany, May 1997, Proceedings.

[LM95] R. Lercier and F. Morain. Counting the number of points on elliptic curves
over finite fields: strategies and performances. In L. C. Guillou and J.-J.
Quisquater, editors, Advances in Cryptology – EUROCRYPT ’95, volume
921 of Lecture Notes in Comput. Sci., pages 79–94, 1995. International
Conference on the Theory and Application of Cryptographic Techniques,
Saint-Malo, France, May 1995, Proceedings.

[LST64] J. Lubin, J. P. Serre, and J. Tate. Elliptic curves and formal groups.
In Lecture notes prepared in connection with the seminars held at the
Summer Institute on Algebraic Geometry, Whitney Estate, Woods Hole,
Massachusetts, July 6-July 31, 1964, 1964. Scanned copies available at
http://www.ma.utexas.edu/users/voloch/lst.html.

[LV00] A. Lenstra and E. Verheul. Selecting cryptographic key sizes, January 2000.
Presented at PKC2000.

[Men93] A. J. Menezes. Elliptic curve public key cryptosystems. Kluwer Academic
Publishers, 1993.

[Mil87] V. Miller. Use of elliptic curves in cryptography. In A. M. Odlyzko, editor,
Advances in Cryptology – CRYPTO ’86, volume 263 of Lecture Notes in
Comput. Sci., pages 417–426. Springer-Verlag, 1987. Proceedings, Santa
Barbara (USA), August 11–15, 1986.

Finding Secure Curves with Satoh-FGH and Early-Abort 29

[Mor95] F. Morain. Calcul du nombre de points sur une courbe elliptique dans un
corps fini : aspects algorithmiques. J. Théor. Nombres Bordeaux, 7:255–282,
1995.

[MOV91] A. Menezes, T. Okamoto, and S. A. Vanstone. Reducing elliptic curves
logarithms to logarithms in a finite field. In Proceedings 23rd Annual ACM
Symposium on Theory of Computing (STOC), pages 80–89. ACM Press,
1991. May 6–8, New Orleans, Louisiana.

[MP98] V. Müller and S. Paulus. On the generation of cryptographically strong
elliptic curves. Preprint, 1998.

[Mül95] V. Müller. Ein Algorithmus zur Bestimmung der Punktanzahl elliptischer
Kurven ber endlichen Körpern der Charakteristik gröer drei. PhD thesis,
University of Saarland, 1995.

[PH78] S. Pohlig and M. Hellman. An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance. IEEE Trans. Inform. Theory,
IT–24:106–110, 1978.

[Pol78] J. M. Pollard. Monte Carlo methods for index computation mod p. Math.
Comp., 32(143):918–924, July 1978.

[SA98] T. Satoh and K. Araki. Fermat quotients and the polynomial time discrete
log algorithm for anomalous elliptic curves. Comment. Math. Univ. St. Paul.,
47:81–92, 1998.

[Sat00] T. Satoh. The canonical lift of an ordinary elliptic curve over a finite field
and its point counting. J. Ramanujan Math. Soc., 15:247–270, 2000.

[Sch85] R. Schoof. Elliptic curves over finite fields and the computation of square
roots mod p. Math. Comp., 44:483–494, 1985.

[Sch95] R. Schoof. Counting points on elliptic curves over finite fields. J. Théor.
Nombres Bordeaux, 7:219–254, 1995.

[Sem98] I. A. Semaev. Evaluation of discrete logarithms in a group of p-torsion
points of an elliptic curves in characteristic p. Math. Comp., 67(221):353–
356, January 1998.

[Ser68] J. P. Serre. Corps locaux. Hermann, 1968.
[Sil86] J. H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate

Texts in Mathematics. Springer–Verlag, 1986.
[Sil00] R. Silverman. A cost-based security analysis of symmetric and assymetric

key lengths. Bulletin Number 13 of RSA Security, April 2000.
[Skj] B. Skjernaa. Satoh’s algorithm in characteristic 2. Copies available at

http://www.imf.au.dk/~skjernaa/.
[Sma99] N. Smart. The discrete logarithm problem on elliptic curves of trace one. J.

Cryptology, 12:193–196, 1999.
[Vél71] J. Vélu. Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér. I

Math., 273:238–241, July 1971. Série A.
[vOW99] P. C. van Oorschot and M. J. Wiener. Parallel collision search with crypt-

analytic applications. J. of Cryptology, 12:1–28, 1999.

