
NSS: An NTRU Lattice-Based Signature Scheme

Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman

NTRU Cryptosystems, Inc., 5 Burlington Woods, Burlington, MA 01803 USA,
jhoff@ntru.com, jpipher@ntru.com, jhs@ntru.com

Abstract. A new authentication and digital signature scheme called the
NTRU Signature Scheme (NSS) is introduced. NSS provides an authenti-
cation/signature method complementary to the NTRU public key cryp-
tosystem. The hard lattice problem underlying NSS is similar to the hard
problem underlying NTRU, and NSS similarly features high speed, low
footprint, and easy key creation.
Keywords: digital signature, public key authentication, lattice-based
cryptography, NTRU, NSS

Introduction

Secure public key authentication and digital signatures are increasingly impor-
tant for electronic communications and commerce, and they are required not
only on high powered desktop computers, but also on SmartCards and wire-
less devices with severely constrained memory and processing capabilities. The
importance of public key authentication and digital signatures is amply demon-
strated by the large literature devoted to both theoretical and practical aspects
of the problem, see for example [1, 2, 6, 7, 9, 11, 12, 15–17].

At CRYPTO ’96 the authors introduced a highly efficient new public key
cryptosystem called NTRU. (See [4] for details.) Underlying NTRU is a hard
mathematical problem of finding short vectors in certain lattices. In this note
we introduce a complementary fast authentication and digital signature scheme
that uses public and private keys of the same form as those used by the NTRU
public key cryptosystem. We call this new algorithm NSS for NTRU Signature
Scheme.

In the original version of this paper for Eurocrypt 2001, we both introduced
NSS and optimized it for maximum efficiency and minimum signature length.
As a result the underlying ideas and security analysis were less transparent than
they might have been. To alleviate this problem and attempt to address some
of the concerns of the referees, the present paper takes the following form. We
first present a complete version of NSS and a set of parameters optimized to
provide security comparable to RSA 1024 along with high efficiency. We then
describe the properties of an implementation of this system at these parameters.
The version of this paper originally submitted to Eurocrypt then provided a
security analysis tailored specifically to these parameters. In the current version
we eliminate some details of the security analysis of the optimized version in
order to include a discussion of the less efficient version. In this way we hope to

NSS: An NTRU Lattice-Based Signature Scheme 211

elucidate the main ideas underlying NSS and thereby make this paper easier to
read. Complete details of the analysis of the optimized version are available on
our website at <www.ntru.com/technology/tech.technical.htm>.

We also note that the signature scheme described in this paper differs in some
respects from the scheme described by Jeff Hoffstein at the CRYPTO 2000 rump
session. In order to optimize NSS, the rump session version used disparate sized
coefficients whose existence was concealed by allowing p to divide q, which led to
a statistical weakness. (This weakness was independently noted by Mironov [10].)
The use of uniform coefficients and relatively prime values for p and q makes
NSS more closely resemble the original NTRU public key cryptosystem, a system
that has withstood intense scrunity since its introduction at CRYPTO ′96.

The authors would like to thank Phil Hirschhorn for much computational
assistance and Don Coppersmith for substantial help in analyzing the security
of NSS. Any remaining weaknesses or errors in the signature scheme described
below are, of course, entirely the responsibility of the authors.

1 A Brief Description of NSS

In this section we briefly describe NSS, the NTRU Signature Scheme. In order
to avoid excessive duplication of exposition, we assume some familiarity with [4],
but we repeat definitions and concepts when it appears useful. Thus this paper
should be readable without reference to [4].

The basic operations occur in the ring of polynomials

R = Z[X]/(XN − 1)

of degree N − 1, where multiplication is performed using the rule XN = 1. The
coefficients of these polynomials are then reduced modulo p or modulo q, where p
and q are fixed integers.

There are five integer parameters associated to NSS,

(N, p, q,Dmin, Dmax).

There are also several sets of polynomials Ff ,Fg,Fw,Fm having small coeffi-
cients that serve as sample spaces. For concreteness, we mention the choice of
integer parameters

(N, p, q,Dmin, Dmax) = (251, 3, 128, 55, 87), (1)

which appears to yield a secure and practical signature scheme. See Section 2
for futher details.

Remark 1. For ease of exposition we often assume that p = 3. We further assume
that polynomials with mod q coefficients are chosen with coefficients in the
range −q/2 to q/2.

212 Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman

The public and private keys for NSS are formed as follows. Bob begins by
choosing two polynomials f and g having the form

f = f0 + pf1 and g = g0 + pg1. (2)

Here f0 and g0 are fixed universal polynomials (e.g., f0 = 1 and g0 = 1 − 2X)
and f1 and g1 are polynomials with small coefficients chosen from the sets Ff
and Fg, respectively. Bob next computes the inverse f−1 of f modulo q, that
is, f−1 satisfies

f−1 ∗ f ≡ 1 (mod q).

Bob’s public verification key is the polynomial

h ≡ f−1 ∗ g (mod q).

Bob’s private signing key is the polynomial f .
Before describing exactly how NSS works, we would like to explain the un-

derlying idea. The coefficients of the polynomial h have the appearance of being
random numbers modulo q, but Bob knows a small polynomial f (i.e., f has
coefficients that have small absolute value compared to q) with the property
that the product g ≡ f ∗h (mod q) also has small coefficients. Equivalently (see
Section 4.2), Bob knows a short vector in the NTRU lattice generated by h. It is
a difficult mathematical problem, starting from h, to find f or to find some other
small polynomial F with the property that G ≡ F ∗ h (mod q) is small. Bob’s
signature s on a digital document D will be linked to D and will demonstrate to
Alice that he knows a decomposition h ≡ f−1 ∗ g (mod q) without giving Alice
information that helps her to find f . The mechanism by which Bob shows that
he knows f without actually revealing its value lies at the heart of NSS and is
described in the next section.

1.1 NSS Key Generation, Signing, and Verifying

We now describe in more detail the steps used by Bob to sign a document and
by Alice to verify Bob’s signature. The key computation involves the following
quantity.

Definition 1. Let a(X) and b(X) be two polynomials in R. First reduce their
coefficients modulo q to lie between −q/2 to q/2, then reduce their coefficients
modulo p to lie in the range between −p/2 and p/2. If

ā(X) = ā0 + · · ·+ āN−1X
N−1 and b̄(X) = b̄0 + · · ·+ b̄N−1X

N−1

are the reductions of a and b, respectively, then the deviation of a and b is

Dev(a, b) = #{i : āi 6= b̄i}.

Intuitively, Dev(a, b) is the number of coefficients of a mod q and b mod q that
differ modulo p.

NSS: An NTRU Lattice-Based Signature Scheme 213

Key Generation: This was described above, but we briefly repeat it for con-
venience. Bob chooses two polynomials f and g having the appropriate
form (2). He computes the inverse f−1 of f modulo q. Bob’s public veri-
fication key is the polynomial h ≡ f−1 ∗ g mod q and his private signing key
is the pair (f, g).

Signing: Bob’s document is a polynomial m modulo p. (In practice, m must be
the hash of a document, see Section 4.9.) Bob chooses a polynomial w ∈ Fw
of the form

w = m+ w1 + pw2,

where w1 and w2 are small polynomials whose precise form we describe later,
see Section 2.1. He then computes

s ≡ f ∗ w (mod q).

Bob’s signed message is the pair (m, s).
Verification: In order to verify Bob’s signature s on the message m, Alice

checks that s 6= 0 and then verifies the following two conditions:

(A) Alice compares s to f0 ∗m by checking if their deviation satisfies

Dmin ≤ Dev(s, f0 ∗m) ≤ Dmax.

(B) Alice uses Bob’s public verification key h to compute the polynomial
t ≡ h ∗ s (mod q). She then checks if the deviation of t from g0 ∗ m
satisfies

Dmin ≤ Dev(t, g0 ∗m) ≤ Dmax.

If Bob’s signature passes tests (A) and (B), then Alice accepts it as valid.

The check by Alice that s 6= 0 is done to eliminate the small possibility of
a forgery via the trivial signature. This is described in more detail in [5] We
defer until Section 3 below a detailed explanation of why NSS works. However,
we want to mention here the reason for allowing s and t to deviate from f0 ∗m
and g0 ∗m, respectively. This permits us to take w1 to be nonzero and to allow a
significant amount of reduction modulo q to occur in the products f ∗w and g∗w.
This makes it difficult for an attacker to find the exact values of f ∗ w or g ∗ w
over Z, which in turn means that potential attacks via lattice reduction require
lattices of dimension 2N rather than N .

This is the key difference between the optimized version of NSS presented
in the next section and a somewhat less efficient version. If we take Dmin =
Dmax = 0, i.e., if we allow no deviations, then a transcript will reveal f ∗ w
and g ∗w exactly. Lattices of dimension N can be reduced faster than lattices of
dimension 2N . Consequently, for a secure version of NSS assuming no deviations
we require a larger value of N . We will show that if N is chosen greater than
about 700 this still gives a fast and equally secure signature scheme, albeit with
somewhat larger key and signature sizes than the optimized version of NSS
described in this note.

214 Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman

This concludes our overview of how NSS works. In the next section we suggest
a parameter set and explain why we believe that it provides a level of security
comparable to RSA 1024. Table 1 compares the efficiency of NSS to other sys-
tems. In the following sections we provide a security analysis, although due to
space constraints, we refer the reader to [5] for some details, especially for the
optimized version with Dmin, Dmax > 0.

2 A Practical Implementation of NSS

The following parameter selection for NSS appears to create a scheme with a
breaking time of at least 1012 MIPS years:

(N, p, q,Dmin, Dmax) = (251, 3, 128, 55, 87). (3)

This leads to the following key and signature sizes for NSS:

Public Key: 1757 bits Private Key: 502 bits Signature: 1757 bits

We take f0 = 1 and g0 = 1 − 2X, where recall that f = f0 + pf1 and
g = g0 + pg1. In order to describe the sample spaces, we let

T (d) = {F (X) ∈ R : F has d coefs = 1 and = −1, with the rest 0}.

Then the sample spaces corresponding to the parameter set (3) are

Ff = T (70), Fg = T (40), Fm = T (32).

Note that m is a hash of the digital document D being signed. Thus the users
must agree on a method (e.g., using SHA1) to transform D into a list of 64 dis-

tinct integers 0 ≤ ei < 251, and then m =
∑32

i=1 Xei −∑64
i=33 Xei .

The polynomial w has the form w = m+w1 + pw2, so we also must explain
how to choose the polynomials w1 and w2. This must be done carefully so as
to prevent an attacker from either lifting to a lattice over Z (see Section 4.4) or
gaining information via a reversal averaging attack (see Section 4.6). Roughly,
the idea is to choose random w2, compute s′ ≡ f ∗ (m + pw2) (mod q) and
t′ ≡ g ∗ (m + pw2) (mod q), choose w1 to cancel all of the common deviations
of (s′, f0∗m) and (t′, g0∗m) and to exchange some of the noncommon deviations,
and finally to alter w2 to move approximately 1/p of the nonzero coefficients of
m+ w1. For the parameter set (3) given above, the polynomial w1 has up to
25 nonzero coefficients and w2 is initially chosen at random from the set T (32).
The precise prescription for creating w is described in Section 2.1.

We have implemented NSS in C and run it on various platforms. Table 1
describes the performance of NSS on a desktop machine and on a constrained
device and gives comparable figures for RSA and ECDSA signatures.

NSS: An NTRU Lattice-Based Signature Scheme 215

Pentium Palm

NSS Sign 0.35 ms 0.33 sec

RSA Sign 66.56 ms 36.13 sec

ECDSA Sign 1.18 ms 1.79 sec

NSS Verify 0.29 ms 0.25 sec

RSA Verify 1.23 ms 0.73 sec

ECDSA Verify 1.70 ms 3.26 sec
Table 1. Speed Comparison of NSS, RSA, and ECDSA

Notes for Table 1.

1. NSS speeds from the NERI implementation of NSS by NTRU Cryptosystems.
2. RSA and ECDSA speeds presented by Alfred Menezes [8] at CHES 2000.
3. RSA 1024 bit verify uses a small verification exponent for increased speed.
4. ECDSA 163 bit uses a Koblitz curve for increased speed. Time is approximately

doubled if a random curve over F2163 is used.

2.1 Selection of the Masking Polynomial w

The polynomial w = m+w1+pw2 has two purposes. First, it includes the message
digest m and is thus the means by which m is attached to the signature s. Second,
it contains polynomials w1 and w2 that introduce variability into the signature
and prevent an attacker from gaining useful information that might be used to
find the private key f or to directly forge a signature.

There are two principle areas that must be addressed when selecting w. First,
in the optimized version we must ensure that an attacker cannot lift the values
of s ≡ f ∗ w (mod q) and t ≡ g ∗ w (mod q) to the exact values of f ∗w or g ∗w
in Z[X]. Second, we must ensure that the attacker cannot use averages formed
from long transcripts of signatures to deduce information about f or g.

The first item is addressed by selecting w1 so as to alter many of the coeffi-
cients of f ∗ (m+ pw2) and g ∗ (m+ pw2) that lie outside the range from −q/2
to q/2. This has the effect of masking the coefficients that have suffered nontriv-
ial reduction modulo q and prevents the attacker from undoing the reduction.
The second item is handled by changing 1/p of the coefficients of w2; this has the
effect of forcing all second moment transcript averages to converge to 0. We now
describe exactly how w1 and w2 are created. For ease of exposition, we assume
that p = 3. For further details of why this procedure protects against lifting and
averaging attacks, see [5].

The first step is to choose a random polynomial w2 ∈ T (dw2
). That is, w2

has a specified number of 1’s and −1’s. For example, the parameter set (3) takes
w2 ∈ T (32). The next step is to compute preliminary signature polynomials

s′ ≡ f ∗ (m+ pw2) (mod q) and t′ ≡ g ∗ (m+ pw2) (mod q). (4)

Next we choose w1. We start with w1 = 0. We let i = 0, 1, 2, . . . , N − 1 and run
through the coefficients s′i and t′i of s

′ and t′, performing the following steps. [The

216 Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman

quantity w1-Limit used below is a prespecified parameter. For the parameter
set (3), its value is 25.]

• If s′i 6≡ mi (mod p) and t′i 6≡ mi (mod p) and s′i ≡ t′i (mod p),
then set w1,i ≡ mi − s′i (mod p).

• If s′i 6≡ mi (mod p) and t′i 6≡ mi (mod p) and s′i 6≡ t′i (mod p),
then set w1,i = 1 or −1 at random.

• If s′i 6≡ mi (mod p) and t′i ≡ mi (mod p),
then with probability 25%, set w1,i ≡ mi − s′i (mod p).

• If s′i ≡ mi (mod p) and t′i 6≡ mi (mod p),
then with probability 25%, set w1,i ≡ mi − t′i (mod p).

• If i = N − 1 or if w1(X) has more than w1-Limit nonzero coordinates, the
construction of w1 is complete.

Finally, we need to make some alterations to w2 to prevent the averaging
of long transcripts of signatures. This is done by taking each coefficient w2,i,
0 ≤ i < N , and with probability 1/3, replacing it with with w2,i −mi − w1,i.

This completes the description of how w1 and w2 are chosen.

3 Completeness of NSS

A signature scheme is deemed to be complete if Bob’s signature, created with
the private signing key f , will be accepted as valid. Thus we need to check that
Bob’s signed message (m, s) passes the two tests (A) and (B).

3.1 The Norm of a Polynomial

In order to analyze the two verification conditions we briefly digress to discuss
norms of polynomials.

Let
a(X) = a0 + a1X + a2X

2 + · · ·+ aN−1X
N−1

be a polynomial with integer coefficients and let µ be the average of the coeffi-
cients. We define the centered Euclidean Norm and the Sup Norm of a, denoted
respectively ‖a‖ and ‖a‖∞, by the formulas

‖a‖ =
√

(a0 − µ)2 + · · ·+ (aN−1 − µ)2 and ‖a‖∞ = max
{

|a0|, . . . , |aN−1|
}

.

In our examples, µ will be close to or equal to zero.
We require certain facts about polynomials with small coefficients. For ran-

dom polynomials with small coefficients such as f and w, it is generally true
that

‖f ∗ w‖ ≈ ‖f‖ · ‖w‖ and ‖f ∗ w‖∞ ≈ γ‖f‖ · ‖w‖, (5)

where γ < 0.15 for N < 1000. The NTRU cryptosystem relies on these properties
of small polynomials, which are discussed in [4]. (Note that the infinity norm
defined in [4] is actually twice the infinity norm defined here.)

With this background we now easily check the completeness of NSS.

NSS: An NTRU Lattice-Based Signature Scheme 217

Test (A): The polynomial s that Alice tests is congruent to the product

s ≡ f ∗ w (mod q)

≡ (f0 + pf1)(m+ w1 + pw2) (mod q)

≡ f0 ∗m+ f0 ∗ w1 + pf0 ∗ w2 + pf1 ∗ w (mod q).

We see that the ith coefficients of s and f0 ∗m will agree modulo p unless
one of the following situations occurs:
• The ith coefficient of f0 ∗ w1 is nonzero.
• The ith coefficient of f ∗ w is outside the range (−q/2, q/2], so differs

from the ith coefficient of s by some multiple of q.
The estimates in (5) tell us that before reduction modulo q, the absolute
value of the coefficents of f ∗ w is bounded above by γ‖f‖ · ‖w‖. As long
as this quantity does not greatly exceed q/2, little reduction modulo q will
take place. If the parameters and sample spaces are chosen properly (e.g., as
in Section 2) then there will be at least Dmin and at most Dmax deviations
between s mod p and m mod p. Alternatively, if ‖f‖ and ‖w‖ are sufficiently
small, then no reduction modulo q will take place and one can set Dmin =
Dmax = 0. Thus Bob’s signature will pass test (A).

Test (B): The polynomial t is given by

t ≡ h ∗ s ≡ (f−1 ∗ g) ∗ (f ∗ w) ≡ g ∗ w (mod q).

Since g has the same form as f , the same reasoning as for test (A) shows
that t will pass test (B).

Remark 2. We have indicated why, for appropriate choices of parameters, Bob’s
signature will probably be accepted by Alice. Note that when Bob creates his
signature, he should check to make sure that it is a valid signature. For the pa-
rameters (N, p, q,Dmin, Dmax) = (251, 3, 128, 55, 87) from Section 2, we see from
Table 2 that the probability that Dev(s, f0 ∗m) is valid is approximately 87.33%
and the probability that Dev(t, g0 ∗m) is valid is approximately 90.92%. Thus
Bob’s signature will be valid about 79.40% of the time. Of course, if it is not
valid, he simply chooses a new random polynomial w2 and tries again. In prac-
tice it will not take very many tries to find a valid signature. The timings given
in Table 1 take this factor into account.

4 Security Analysis of NSS

It was shown in Section 3 that given a message m, Bob can produce a signature s
satisfying the necessary requirements. In this section we discuss various ways in
which an observer Oscar might try to break the system. There are many attacks
that he might try. For example, he might attempt to discover the private key f or
a useful imitation, either directly from the public key h or from a long transcript
of valid signatures. He might also try to forge a signature on a message without

218 Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman

Range Dev(s, f0 ∗m) Dev(t, g0 ∗m)

32 to 39 0.02% 0.08%

40 to 47 0.38% 0.99%

48 to 55 3.53% 6.98%

56 to 63 14.21% 26.32%

64 to 71 27.58% 37.79%

72 to 79 28.51% 21.22%

80 to 87 17.03% 5.58%

88 to 95 6.54% 0.90%

96 to 103 1.74% 0.11%

104 to 158 0.46 0.02%

(N, p, q) = (251, 3, 128)—106 Trials
Table 2. Deviations Between f0 ∗m and s and Between g0 ∗m and t

first finding the private key. We describe the hard lattice problems that underlie
some of these attacks and examine the success probabilities of other attacks
that rely on random searches. In all cases we explain why the indicated attacks
are infeasible for an appropriate choice of parameters such as those given in
Section 2. Due to space constraints, we must refer the reader to [5] for many of
the technical details related to the analysis of the optimized parameter set.

4.1 Random Search for a Valid Signature on a Given Message

Given a message m, Oscar must produce a signature s satisfying:

(A) Dmin ≤ Dev(s, f0 ∗m) ≤ Dmax.
(B) Dmin ≤ Dev(t, g0 ∗m) ≤ Dmax, where t ≡ s ∗ h (mod q).

If Dmin = Dmax = 0 these conditions become:

(A′) s ≡ f0 ∗m (mod p).
(B′) t ≡ h ∗ s (mod q) satisfies t ≡ g0 ∗m (mod p).

The most straightforward approach for Oscar is to choose s at random sat-
isfying condition (A), which is obviously easy to do, and then to hope that t
satisfies condition (B). If it does, then Oscar has successfully forged Bob’s sig-
nature, and if not, then Oscar can try again with a different s. Thus we must
examine the probability that a randomly chosen s satisfying (A) will yield a t
that satisfies (B).

The condition (A) on s has no real effect on the end result t, since t is
formed by multiplying s ∗ h and reducing the coefficients modulo q, and the
coefficients of h are essentially uniformly distributed modulo q. Thus we are really
asking for the probability that a randomly chosen polynomial t with coefficients
between −q/2 and q/2 will satisfy condition (B). This is easily computed using
elementary probability theory.

NSS: An NTRU Lattice-Based Signature Scheme 219

The coefficients of a randomly chosen t can be viewed as N independent ran-
dom variables taking values uniformly modulo q. The coefficients of m are fixed
target values modulo p. We need to compute the probability that a randomly
chosen N -tuple of integers modulo q has at least Dmin and no more than Dmax

of its coordinates equal modulo p to fixed target values. Assuming that q is
significantly larger than p, this probability is approximately

Prob(Dmin ≤ Dev(t, g0 ∗m) ≤ Dmax) ≈
1

pN

Dmax
∑

d=Dmin

(

N

d

)

(p− 1)d.

(Notice that for condition (B′), the probability is p−N , since all N “random”
coefficients of t (mod p) must match g0 ∗ m.) Table 3 gives this probability
for (N, p) = (251, 3) and several values of Dmin and Dmax. For example, the
table shows that for D = 87, the probability of a successful forgery using a
randomly selected s is approximately 2−80.95.

Dmin Dmax Probability

55 82 2−90.86

55 87 2−80.95

55 92 2−71.66

55 98 2−61.32

Table 3. Probability Random t Satisfies Dmin ≤ Dev(t, g0 ∗m) ≤ Dmax

4.2 NTRU Lattices and Lattice Attacks on the Public Key

Oscar can try to extract the private key f from the public key h with or with-
out a long transcript of genuine signatures. Alternatively, he can try to forge a
signature without knowledge of f , using only h and a transcript. In this section
we discuss attempts by Oscar to obtain the private key from the public key by
lattice reduction methods. As is the case with the NTRU cryptosystem, recov-
ery of the private key by this means is equivalent to solving a certain class of
shortest or closest vector problems.

We begin with a brief exposition of our approach to the analysis of lattice
reduction problems. We have perfomed a large number of computer experiments
to quantify the effectiveness of current lattice reduction techniques. This has
given us a strong empirical foundation for analyzing and quantifying the vul-
nerability of several general classes of lattices to lattice reduction attacks. The
following analysis and heuristics applies to the lattices discussed in this paper.
(See also the lattice material in the papers [3, 4, 6, 7].)

Let L be a lattice of determinant d and dimension n. Let v0 denote a given
fixed vector, possibly the origin. Let r denote a given radius and consider the

220 Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman

problem of locating a vector v ∈ L such that ‖v − v0‖ < r. The difficulty of
solving this problem for large n is related to the quantity

κ = κ(L, r) =
r

d1/n
√

n/(2πe)
. (6)

Here the denominator is the length that the gaussian heuristic predicts for the
shortest expected vector in L. See [4] for a similar analysis.

If κ < 1, then the gaussian heuristic says that a solution, if one exists at all,
will probably be unique (or unique up to obvious symmetries of the lattice). The
closer that κ is to 0, the easier it will be to find the unique solution using lattice
reduction methods. As κ gets close to 1, lattice reduction methods become less
effective.

For example, let (Ln, rn, v0,n) be a sequence of lattices, radii, and target
vectors of increasing dimension n that contain a target vector vn ∈ Ln (i.e.,
satisfying |vn − v0,n| < rn) and whose κ values satisfy

κn = κ(Ln, rn) = c/
√
n (7)

for a constant c. Then our experiments suggest that the time necessary for
lattice reduction methods to find the target vector vn grows like eαn for a value
of α that is roughly proportional to c. Similarly, if κ ≥ 1, then a solution will
probably not be unique, but it becomes progressively harder to find a solution
as κ approaches 1.

We must stress here that the above statements are not intended to be a
proof of security or to convey any assurance of security. They merely supply a
conceptual framework that we have found useful for formulating working param-
eter sets. The lattices associated to these parameter sets are then subjected to
extensive experimental testing.

Recall from (2) that the public key has the form h ≡ f−1 ∗ g (mod q), where
f = f0 + pf1 and g = g0 + pg1. As this is very similar to the form of an NTRU
public key, a 2N -dimensional lattice attack based on the shortest vector can
be used to try to derive f and g from h. See [4, 13] for details on the NTRU
lattice and the use of lattice reduction methods to compute the shortest expected
vector.

If we identify polynomials with their vector of coefficients, then the 2N -
dimensional NTRU lattice LNT consists of the linear combinations of the 2N
vectors in the set

{

(Xi, Xi ∗ h) : 0 ≤ i < N
}

∪
{

(0, qXi) : 0 ≤ i < N
}

.

Equivalently, LNT is the set of all vectors (F (X), F (X) ∗ h(X)), where F (X)
varies over all N -dimensional vectors and the last N coordinates are allowed to
be changed by arbitrary multiples of q. It is not hard to see that the vector (f, g)
is contained in LNT and will be shorter than the expected shortest vector of LNT

(i.e., κ < 1). Thus in principle, (f, g) should be essentially unique and findable
by lattice reduction methods.

NSS: An NTRU Lattice-Based Signature Scheme 221

A more effective attack is to use the knowledge of f0, g0 to set up a clos-
est vector attack on f1, g1 in the same 2N -dimensional lattice The object is to
search for the vector in LNT that is closest to the vector (0, (g0 − f0 ∗ h)p′),
where pp′ ≡ 1 (mod q). If successful, this attack produces a small F such that
G ≡ F ∗ h− (g0 − f0 ∗ h)p′ (mod q) is also small. Then (f0 + pF, g0 + pG) is ei-
ther the original key or a useful substitute. With this approach, after balancing
the lattice as in [4], we obtain the following estimate for the constant c in equa-
tion (7):

c > 2
√

πe‖f1‖‖g1‖/q. (8)

Experimental evidence shows that if L runs through a sequence of NTRU
type lattices of dimension 2N with N > 80 and q ≈ N/2 and if the constant
c of (7) satisfies c > 3.7, then the time T (in MIPS-years) necessary for the
LLL reduction algorithm to find a useful solution to the closest vector problem
satisfies

log T ≥ 0.1707N − 15.82. (9)

Thus if N = 251 and c = 3.7, one has T > 5 · 1011 MIPS-years.
For the optimized version of NSS presented in Section 2, we have N = 251

and c > 5.3. Since larger c values in (7) yield longer LLL running times, we see
that the time to find the target vector should be at least 1012 MIPS-years, and
is probably considerably higher. In general, we obtain this lower bound provided
that N,Ff ,Fg are chosen so that ‖f1‖, ‖g1‖ give a large enough value for c in
(8).

4.3 Lattice Attacks on Transcripts

Another potential area of vulnerability is a transcript of signed messages. Oscar
can examine a list of signatures s, s′, s′′ . . ., which means that he has at his
disposal the lists

fw, fw′, fw′′, . . . mod q and gw, gw′, gw′′, . . . mod q. (10)

If Oscar can determine any of the w values, then he can easily recover f and g.
Using division, Oscar can obtain w−1w′ mod q and other similar ratios, so he can
launch an attack on the pair (w,w′) identical to that described in the preceding
section. As long as ‖w‖, ‖f‖, and ‖g‖ are about the same size, the value of κ will
remain the same or increase, leading to no improvement in the breaking time.

Oscar can also set up a kN -dimensional NTRU type lattice using the ratios
of signatures w(1)/w(1), w(2)/w(1), . . . , w(k)/w(1). The target is (w(1), . . . , w(k)).
With this approach the value of κ decreases as k increases, giving the attacker
a potential advantage, but the increasing dimension more than offsets any ad-
vantage gained. With the parameters given in Section 2, the optimal value of k
for the attacker is k = 10, giving κ = 4.87/

√
10N. This is a bit better than the

c > 5.3 coming from the original 2N dimensional lattice, but still considerably
worse than the c = 3.7 that gave us the original lower bound of 1012 MIPS-years.

222 Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman

There are several other variations on the lattice attacks described in this and
the previous section, but none appears to be stronger then the closest vector
attack on the public key given in Section 4.2.

4.4 Lifting a NSS Signature Lattice to Z

Recall that an attacker Oscar is presumed to have access to a transcript of signed
messages such as given in (10). Various ways in which he might try to exploit this
mod q information are described in Sections 4.3. In this section we are concerned
with the possibility that Oscar might lift the transcript information (10) and
recover the values of f ∗ w, f ∗ w′, . . . exactly over Z.

This is the primary area where the signature scheme with zero deviations
differs from the optimized scheme. If the signatures can be recovered over Z, as
they can be if Dmin = Dmax = 0, then two additional lattice attacks are made
possible. In the optimized scheme of Section 2, we ensure that a lift back to Z
is impractical by making the number of possible liftings greater than 280. This
leaves Oscar with only the lattice attacks described in Sections 4.2 and 4.3 and
allows us to take N = 251 while maintaing a breaking time in excess of 1012

MIPS years.
We now investigate the attacks that are possible if such a lifting can be

accomplished. This analysis, irrelevant for the optimized parameters, allows us
to set parameters for a simpler variant of NSS with Dmin = Dmax = 0.

Suppose that Oscar forms the lattice L′ generated byXi∗f∗w with 0 ≤ i < N
and a few different values of w (or similarly for X i ∗g ∗w). It is highly likely that
the shortest vectors in L′ are the rotations of f . Essentially, Oscar is searching
for a greatest common divisor of the products f ∗ w, though the exponentially
large class number of the underlying cyclotomic field greatly obstructs the search.
Although it is still not easy to find very short vectors in the lattice L′ using lattice
reduction, the fact that dim(L′) = N , as compared to the NTRU lattice LNT of
dimension 2N , means that L′ is easier to reduce than LNT.

The difficulty of finding a solution to the shortest vector problem for the
lattice L′ appears to be related, as one might expect, to the magnitude of the
norm of f . For example, if one considers a sequence of lattices L′ of dimension N
formed with f satisfying ‖f‖ ≈

√

2N/3, then our experiments have shown that
the extrapolated time necessary for the LLL reduction algorithm to locate f is
at least T MIPS years, where T is given by the formula

log T = 0.1151N − 7.9530. (11)

As the norm of f is reduced, the time goes down. For example, if we take
‖f‖ ≈

√
0.068N , then our experiments show that the breaking time is greater

than the T given by the formula

log T = 0.0785N − 6.2305. (12)

One further lattice attack of dimension 2N is enabled if a lifting to Z is
possible. One can view it as an alternative attack on the gcd problem. Given

NSS: An NTRU Lattice-Based Signature Scheme 223

two products f ∗ w and g ∗ w, one can reduce these modulo any integer Q and
then take the ratio, obtaining f−1 ∗ g modulo Q. This is very similar to the
original problem of finding the private key from the public key, but there is an
important difference. The integer Q can be chosen as large as desired, which has
the effect of decreasing the value of κ. As a result, it becomes easier to reduce the
lattice. The advantage of making Q larger does not continue indefinitely, and the
ultimate result is to reduce the effective dimension of the lattice from 2N to N .
Experiments have shown that when f and g satisfying ‖f‖ = ‖g‖ =

√

2N/3 are
used to generate these lattices and an optimal value of Q is chosen for each N ,
the extrapolated time necessary for the LLL reduction algorithm to locate f is
at least T MIPS years, where T is given by the formula

log T = 0.0549N + 1.7693. (13)

This third approach seems to be the strongest attack, yielding a lower bound
of 1012 MIPS years when N > 680. As with the N -dimensional lattice, decreas-
ing the norms of f and g does not seem to lower the slope of the line very much,
while increasing the norms increases the slope somewhat. A closest vector at-
tack on (f1, g1) might decrease this lower bound a bit, but should not alter it
substantially.

4.5 Forgery Via Lattice Reduction

The opponent, Oscar, can try to forge a signature s on a given message m by
means of lattice reduction. We show in this section that an ability to accomplish
this implies an ability to consistently locate a very short vector in a large class
of (2N + 1)-dimensional lattices.

First consider the case that Dmin = Dmax = 0, so Oscar must find a polyno-
mial s satisfying s ≡ f0 ∗m (mod p) and such that t ≡ h ∗ s (mod q) satisfies
t ≡ g0 ∗ m (mod p). Let ms and mt be the polynomials with coefficients be-
tween −p/2 and p/2 satisfying ms ≡ f0 ∗ m mod p and mt ≡ g0 ∗ m mod p,
respectively. Consider the (2N + 1)-dimensional lattice Lm generated by

{

(Xi, Xi ∗ h, 0) : 0 ≤ i < N
}

∪
{

(0, qXi, 0) : 0 ≤ i < N
}

∪
{

(ms,mt, 1)
}

.

Then Lm contains the vector τ = (s −ms, t −mt,−1). The norm of τ can be
estimated by assuming that its coordinates are more-or-less randomly distributed
in the interval [−q/2, q/2]. This yields ‖τ‖ ≈ q

√

N/6.
The vector τ is also contained in the lattice Lp = (pZ)2N ⊕ Z. Let Lm,p =

Lm ∩ Lp be the intersection. In other words, letting IN denote the N -by-N
identity matrix and H the N -by-N circulant matrix formed from the coefficients
of the public key h, the lattice Lm,p is the intersection of the lattices generated
by the rows of the following matrices:

Lm,p =

IN H 0
0 qIN 0
ms mt 1

 ∩

pIN 0 0
0 pIN 0
0 0 1

 .

224 Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman

Then Lm,p has determinant equal to (detL)p2N . Referring to (6) we see that

κ ≈
√

πeq/6p2.

For example, (N, p, q) = (719, 3, 359) gives κ ≈ 7.5. This means that the
construction of a signed message is equivalent to finding a vector in Lm,p that
is about 7.5 times longer than the expected shortest vector. It follows that if
Oscar is able to forge messages with a reasonable probability, then with reason-
able probability he can also find vectors within a factor of 7.5 of the shortest
vector. Experiments have indicated that for N ≈ 700, it requires far in excess of
1012 MIPS-years to find such a vector in the (2N +1)-dimensional lattice Lm,p.
We note also that the probability that such a vector would have all of its coeffi-
cients bounded in absolute value by q/2 is extremely low.

The case of the optimized parameters of Section 2 is similar. Oscar’s best
strategy is probably to simply choose ms at random having the correct properties
(i.e., with Dev(ms, f0 ∗m) in the allowable range) and to choose

mt ≡ g0 ∗m mod p

exactly. The optimized parameters (N, p, q) = (251, 3, 128) lead to a 503-dimen-
sional lattice with κ = 4.5. Oscar must first try to find a vector no more than 4.5
times longer than the shortest vector. He must then refine his search so that the
first N coordinates of his vector have absolute value less than q/2 and so that
the second N coordinates have at least 55 and no more than 87 coordinates
with absolute value greater than q/2. The norm condition alone requires about
105 MIPS years for LLL to produce a candidate. Experiments indicate that if
the necessary additional constraints are placed on the sup norms of the vectors,
then the required time will significantly exceed 1012 MIPS years.

Another, less efficient, forgery attack requiring a 3N -dimensional lattice is
described in detail in [5].

In conclusion, forgery solutions probably exist in both the general and the
optimized versions of NSS, but the time required to find a forgery is sufficiently
large so as to preclude a successful attack based on this approach.

4.6 Transcript Averaging Attacks

As mentioned previously, examination of a transcript (10) of genuine signatures
gives the attacker a sequence of polynomials of the form

s ≡ f ∗ w ≡ (f0 + pf1)(m+ w1 + pw2) (mod q)

with varying w1 and w2. A similar sequence is known for g. Because of the
inherent linearity of these expressions, we must prevent Oscar from obtaining
useful information via a clever averaging of long transcripts.

The primary tool for exploiting such averages is the reversal of a polynomial
a(X) ∈ R defined by ρ(a) = a(X−1). Then the average of a∗ρ(a) over a sequence
of polynomials with uncorrelated coefficients will approach the constant ‖a‖2,

NSS: An NTRU Lattice-Based Signature Scheme 225

while the average of a′ ∗ ρ(a) over uncorrelated polynomials will converge to 0.
If m, w1, and w2 were essentially uncorrelated, then Oscar could obtain useful
information by averaging expressions like s∗ρ(m) over many signatures. Indeed,
this particular expression would converge to f‖m‖2, and thus would reveal the
private key f .

There is an easy way to prevent all second moment attacks of this sort.
Briefly, after m, w1, and a preliminary w2 are chosen, Bob goes through the
coefficients of m + w1 and, with probability 1/p, subtracts that value from the
corresponding coefficient of w2. This causes averages of the form a∗ρ(b) created
from signatures to equal 0. For further details on this attack and the defense
that we have described, see [5]. We also mention that it might be possible to
compute averages that yield the value of f ∗ ρ(f) and averages that use fourth
power moments, but the former does not appear to be useful for breaking the
scheme and the latter, experimentally, appears to converge much too slowly to
be useful. Again we refer to [5] for details.

4.7 Forging Messages To Known Signatures

Another possible attack is to take a list of one or more valid signatures (s, t,m),
generate a large number of messagesm′, and try to find a signature in the list that
validly signs one of the messages. It is important to rule out attacks of this sort,
since for example, one might take a signature in which m says “IOU $10” and try
to find an m′ that says “IOU $1000”. Note that this attack is different from the
attack in Section 4.1 in which one chooses an m and an s with valid Dev(s,m)
and hopes that t ≡ h∗s (mod q) has a valid Dev(t, g0∗m). The fact that (s, t,m)
is already a valid signature implies some correlation between s and t, which may
make it more likely that (s, t) also signs some other m′.

In the case of zero deviations, if signature encoding is used as suggested in
Section 4.9 then it is quite clear that the probability of a successful attack by
this method is negligable.

In the case of the optimized parameters the situation is somewhat harder to
analyze, but a conservative probabilistic estimate shows that the possibility of a
successful forgery is less than 2−67. For added security, one can reduce the value
of Dmax to 81. This makes it only a little harder to produce a valid signature
while reducing the above probability to less than 2−82. See [5] for details.

4.8 Soundness of NSS

A signature scheme is considered sound if it can be proved that the ability to
produce several valid signatures on random messages implies an ability to recre-
ate the secret key. We can not prove this for the parameters given in Section 2,
which have been chosen to maximize efficiency. Instead, the preceding sections
on security analysis make a strong argument that forgery is not feasible without
the private key, and that it is not feasible to recover the private key from either
a transcript of valid signatures or the public key.

226 Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman

We can, however, make a probabilistic argument for soundness under certain
assumptions. For example, recall from Section 4.5 that the existence of a signed
message (m, s) implies the existence of a vector in a lattice which is a factor
of κ =

√

πeq/(6p2) times larger than the expected smallest vector. We have
chosen p = 3 for efficiency, but if p is somewhat larger, for fixed N , then κ will
be less than 1. This implies that the existence of such a vector by random chance
is extremely unlikely, and that such a vector is probably related to a genuine
product f ∗ w. If we assume the ability of Oscar to produce such products on
demand, given an input m, with a somewhat larger p it is not too hard to see
that Oscar can probably recover f1.

4.9 Signature Encoding

In practice, it is important that the signature be encoded (i.e., padded and
transformed) so as to prevent a forger from combining valid signatures to pro-
duce new valid signatures. For example, let s1 and s2 be valid signatures on
messages m1 and m2, respectively. Then there is a nontrivial possibility that
the sum s1 + s2 will serve as a valid signature for the message m1 + m2. This
and other similar sorts of attacks are easily thwarted by encoding the signature.
For example, one might start with the message M (which is itself probably the
hash of a digital document) and concatenate it with a time/date stamp D and
a random string R. Then apply an all-or-nothing transformation to M‖D‖R to
produce the message m to be signed using NSS. This allows the verifier to check
that m has the correct form and prevents a forger from combining or altering
valid signatures to produce a new valid signature.

This is related to the more general question of whether or not Oscar can
create any valid signature pairs (m, s), even if he does not care what the value
of m is. When encoding is used, the probability that a random m will have a
valid form can easily be made smaller than 2−80.

References

1. E.F. Brickell and K.S. McCurley. Interactive Identification and Digital Signatures,
AT&T Technical Journal, November/December, 1991, 73–86.

2. L.C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted to
security microprocessor minimizing both transmission and memory, Advances
in Cryptology—Eurocrypt ’88, Lecture Notes in Computer Science 330 (C.G.
Günther, ed.), Springer-Verlag, 1988, 123–128.

3. J. Hoffstein, B.S. Kaliski, D. Lieman, M.J.B. Robshaw, Y.L. Yin, Secure user iden-
tification based on constrained polynomials, US Patent 6,076,163, June 13, 2000.

4. J. Hoffstein, J. Pipher, J.H. Silverman, NTRU: A new high speed public key cryp-
tosystem, in Algorithmic Number Theory (ANTS III), Portland, OR, June 1998,
Lecture Notes in Computer Science 1423 (J.P. Buhler, ed.), Springer-Verlag, Berlin,
1998, 267–288.

5. J. Hoffstein, J. Pipher, J.H. Silverman, NSS: A Detailed Analysis of the NTRU
Lattice-Based Signature Scheme, <www.ntru.com>.

NSS: An NTRU Lattice-Based Signature Scheme 227

6. J. Hoffstein, D. Lieman, J.H. Silverman, Polynomial Rings and Efficient Public Key
Authentication, in Proceeding of the International Workshop on Cryptographic
Techniques and E-Commerce (CrypTEC ’99), Hong Kong, (M. Blum and C.H.
Lee, eds.), City University of Hong Kong Press.

7. J. Hoffstein, J.H. Silverman, Polynomial Rings and Efficient Public Key Authen-
tication II, in Proceedings of a Conference on Cryptography and Number Theory
(CCNT ’99), (I. Shparlinski, ed.), Birkhauser.

8. A.J. Menezes, Software Implementation of Elliptic Curve Cryptosystems Over Bi-
nary Fields, presentation at CHES 2000, August 17, 2000.

9. A.J. Menezes and P.C. van Oorschot and S.A. Vanstone. Handbook of Applied
Cryptography, CRC Press, 1996.

10. I. Mironov, A note on cryptanalysis of the preliminary version of the NTRU sig-
nature scheme, IACR preprint server, <http://eprint.iacr.org/2001/005/>

11. T. Okamoto. Provably secure and practical identification schemes and correspond-
ing signature schemes, Advances in Cryptology—Crypto ’92, Lecture Notes in
Computer Science 740 (E.F. Brickell, ed.) Springer-Verlag, 1993, 31–53.

12. C.-P. Schnorr. Efficient identification and signatures for smart cards, Advances in
Cryptology—Crypto ’89, Lecture Notes in Computer Science 435 (G. Brassard,
ed), Springer-Verlag, 1990, 239–251.

13. J.H. Silverman. Estimated Breaking Times for NTRU Lattices, NTRU Technical
Note #012, March 1999, <www.ntru.com>.

14. J.H. Silverman. Almost Inverses and Fast NTRU Key Creation, NTRU Technical
Note #014, March 1999, <www.ntru.com>.

15. J. Stern. A new identification scheme based on syndrome decoding, Advances in
Cryptology—Crypto ’93, Lecture Notes in Computer Science 773 (D. Stinson, ed.),
Springer-Verlag, 1994, 13–21.

16. J. Stern. Designing identification schemes with keys of short size, Advances in
Cryptology—Crypto ’94, Lecture Notes in Computer Science 839 (Y.G. Desmedt,
ed), Springer-Verlag,1994, 164–173.

17. D. Stinson, Cryptography: Theory and Practice. CRC Press, 1997.

