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Abstract. The block ciphers MISTY1 and MISTY2 proposed by Mat-
sui are based on the principle of provable security against differential
and linear cryptanalysis. This paper presents attacks on reduced-round
variants of both ciphers, without as well as with the key-dependent lin-
ear functions FL. The attacks employ collision-searching techniques and
impossible differentials. KASUMI, a MISTY variant to be used in next
generation cellular phones, can be attacked with the latter method faster
than brute force when reduced to six sounds.

1 Introduction

The MISTY algorithms proposed by Matsui [8] are designed to be resistant
against differential [3] and linear [7] cryptanalysis. One design criterion is that
no single differential or linear characteristic with a usable probability does hold
for the cipher. An additional feature is the use of key-dependent linear functions
which were introduced to counter other than differential and linear attacks.

Previous attacks by Tanaka, Hisamatsu and Kaneko [12] on MISTY1 and
by Sugita [10] on MISTY2 employ higher order differentials against 5-round
variants without the linear FL functions. A cryptographic weakness of the round
construction of MISTY2 was pointed out by Sakurai and Zheng [9].

In this paper we present attacks on reduced-round variants of MISTY1 and
MISTY2, both without and with the key-dependent linear functions FL. The
round function involves a huge amount of keying material, so it is one purpose of
this paper to point out properties of the round function that allow to use divide-
and-conquer techniques on the subkeys in order to improve basic attacks which
make use of impossible differentials [2, 5] and collision-searching [1]; the latter
technique is extended by using multiple permutations. Furthermore reduced-
round KASUMI, a MISTY variant to be used in next generation cellular phones,
is attacked with impossible differentials. Table 1 shows a summary of the attacks.

This paper is organised as follows. The MISTY algorithms are described in
Section 2; properties of the key scheduling and the round function that are used
here are explained in Section 3; the new attacks on MISTY1 resp. MISTY2 are
described in Section 4 resp. 5. A comparison to KASUMI is made in Section 6.
Conclusions are drawn in Section 7.
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Cipher FL Rounds Complexity Comments

functions [data] [time]

MISTY1 – 5 11× 27 217 [12] (previously known)

– 5 26 238 [10, 11] (previously known)

– 6 239 2106 impossible differential (new)

– 6 254 261 impossible differential (new)

X 4 223 290.4 impossible differential (new)

X 4 238 262 impossible differential (new)

X 4 220 289 collision-search (new)

X 4 228 276 collision-search (new)

MISTY2 – 5 27 239 [10, 11] (previously known)

X 5 223 290 impossible differential (new)

X 5 238 262 impossible differential (new)

X 5 220 289 collision-search (new)

X 5 228 276 collision-search (new)

KASUMI X 6 255 2100 impossible differential (new)

Table 1. Summary of attacks on MISTY variants.

2 Description of MISTY

The MISTY algorithms [8] are symmetric block ciphers with a block size of
64 bits and a key size of 128 bits. There are two flavors called MISTY1 and
MISTY2, which differ by their global structure (see Figure 1). MISTY1 is a
Feistel network with additional key-dependent linear functions FL placed in
the data path before every second round. MISTY2 has a different structure
that allows parallel execution of round functions during encryption. The FL
functions are applied in MISTY2 to both halfs of the data before every fourth
round and also in every second round just before XORing the right to the left
half of the data. In both ciphers the linear functions are also used as an output
transformation.

MISTY has a recursive structure, that is, the round function consists of a
network with a smaller block size using the function FI that itself is again a
smaller network; the structure of both the round function FO and the function
FI is that of MISTY2. Figure 2 shows FO, FI and FL in a representation that
is equivalent to the original description [8]. This equivalent description1 is the
result moving the mixing of the leftmost seven bits of each KIij in each FI (as
given in the specification [8]) out of FI and to the end of its superstructure
FO; this is possible because these key bits do not affect any S-box inside the
instance of FI where they are inserted. Due to the recursive structure a huge
amount of keying material is involved in each round, i.e. 112 bits for FO in

1 For another equivalent description of MISTY’s round function see [12].
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Fig. 1. Global structure of MISTY1 and MISTY2.

the original description; the equivalent description has a key size of 107 bits.
Additional subkey bits are used if the round contains FL functions. The ciphers
are proposed with 8 (MISTY1) resp. 12 (MISTY2) rounds.

The key scheduling takes as input a 128 bit key consisting of 16 bit values
K1, . . . ,K8 and computes additional 16 bit values K ′

t = FIKt+1
(Kt), 1 ≤ t ≤ 8

where K9 = K1. The subkeys of each round are (i is identified with i − 8 for
i > 8):

Subkey KOi1 KOi2 KOi3 KOi4 KIi1 KIi2 KIi3 KLi
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Fig. 2. The functions FO and FI in a form equivalent to the original specification which
eliminates the left 7 bits of the key to FI. S7 and S9 are bijective 7 × 7 resp. 9 × 9
S-boxes; in FL the operators ∩ resp. ∪ denote the bitwise AND resp. OR.

Given KOi = (KOi1, . . . ,KOi4), KIi = (KIi1, . . . ,KIi3), then AKOij and
AKIij of our equivalent description relate to the original subkeys as follows.
Let || denote the concatenation of bitstrings and [x]i..j the selection of the
bits i..j from x where bit 0 is the rightmost bit. Let KI′ij denote the 16 bits
[KIij ]15..9||00||[KIij ]15..9. Then the actual subkeys are

AKOik = KOik, with 1 ≤ k ≤ 2

AKOi3 = KOi2 ⊕KOi3 ⊕KI′i1 (1)

AKOi4 = KOi2 ⊕KOi4 ⊕KI′i1 ⊕KI′i2

AKOi5 = KOi2 ⊕KI′i1 ⊕KI′i2 ⊕KI′i3

AKIik = [KIik]8..0, with 1 ≤ k ≤ 3

Notation. Throughout this paper all differences are taken as XOR of the ap-
propriate values. Let Li resp. Ri denote the left resp. right half of the input to
round i, Xi the input to the round function FO, and Zi its output; so L1 resp.
R1 denotes the left resp. right half of the plaintext data. If round i uses FL in
its data path (for example every odd round in MISTY1) let Xi resp. Yi denote
the left resp. right half of the data after the transformation through FL, and set
Xi = Li, Yi = Ri otherwise. For MISTY2 let Ỹi denote the possibly transformed
value of Yi that is XORed to Zi to form the half of the round’s output that
becomes Ri+1 after the swap.
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3 Observations on the Key Scheduling and the Round

Function

Key Scheduling. The key scheduling is designed such that every round is
affected by all key bits. This causes major problems in terms of complexity
when exhaustively guessing the subkey of one round with a distinguisher for the
other rounds, but it also allows to recover the whole key with reasonable effort
once a large part of one round subkey is known.

For example consider the first round’s subkeys AKO11, AKO12, AKO13 and
AKI11, AKI12, AKI13. By equation 1 (and the key scheduling table in Section 2)
the 16 bits of key words K1 and K3 are known. AKI12 resp. AKI13 provides
a 9 bit condition for K2 resp. K4 and K5. After guessing the 7 bits of KI ′11
in AKO13 there is – knowing AKI11 – a 16 bit condition for K6 and K7; also
the word K8 is known from AKO13. Using a factor of 2 for the 8 computations
of FI in the key schedule the total complexity of exhaustive search is about
2 ·2128−32 ·2−9 ·2−9 ·2−32 = 247 encryptions using two or three known plaintexts
and corresponding ciphertexts.

Round function in differential and collision-searching attacks. The sub-
keys AKOi4 and AKOi5 are invisible in our attacks as they introduce fixed
constants after all non-linearities when FO is applied in forward direction. The
following properties of FO allow divide-and-conquer techniques for the other 75
subkey bits at the cost of increased chosen plaintext or ciphertext requirements.

Property 1. In forward direction, consider FO in round i having an output
XOR of the form (β, β) where β is a nonzero 16 bit value. Then the input and
output XOR of the third instance of FI must be zero, so (AKOi3,AKIi3) does
not influence the output XOR. The input XOR to FO must be (αl, αr) such
that αr cancels the output XOR of the first FI under key (AKOi1,AKIi1)
when the input XOR is αl from the given input values. The value of β is
solely influenced by (AKOi2,AKIi2).

Property 2. In forward direction, consider inputs to FO in round i of the
form (ai, b) where the ai are all different (thus forming a permutation in
the notation of [1]) and b is a constant. Then the output of the second FI
is a constant that depends on AKOi2 and AKIi2; the input of the third
FI is a permutation, namely the XOR of the output of the first FI and
b⊕AKOi2 ⊕AKOi3. As long as AKOi2 ⊕AKOi3 has the same value as for
the unknown key, and AKOi1, AKIi1 and AKIi3 are also correct, the output
of FO is the same as for the correct subkey, up to XORing with a constant.
So one can set AKOi2 = 0, AKIi2 = 0 in a first step, making sure that
AKOi2 ⊕AKOi3 has the correct value.

Directional Asymmetry. Due to the Feistel network, FO is used in MISTY1
in forward direction both for encrypting and decrypting data. But for MISTY2
this is not the case. In forward direction the output of the second FI does not
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affect the input of the third FI; this fact is inherently used in both properties
explained above. In backward direction, the output of the first and second FI
each affect the input of every subsequent FI, which makes analysis harder in
this direction. This is the reason that for MISTY2 the attacks presented in this
paper use the chosen ciphertext model of attack, as then FO in the first round
can be used in forward direction.

4 Attacks on Reduced-Round MISTY1

In this section we present attacks on MISTY1; it is assumed that the final swap
of MISTY is also present in the reduced variant. One attack finds the last round
subkey of 6 rounds of MISTY1 without FL functions, other attacks find the last
round subkey of MISTY1 reduced to 4 rounds with FL functions but without
the final output transformation; these attacks break exactly half of the cipher.

4.1 Attacking MISTY1 without FL Functions

This attack is based on the generic 5-round impossible differential for Feistel
networks with bijective round functions

(0, 0, αl, αr)
5R

6→ (0, 0, αl, αr), (αl, αr) 6= (0, 0),

discovered by Knudsen [5]. The attack looks for differences (βl, βr, αl, αr) after
6 rounds (including the final swap) and rules out all subkeys that can yield
(αl, αr)→ (βl, βr) from the given outputs, as that is impossible.

The basic attack uses a structure of 232 chosen plaintexts Pi = (x, y, ai, bi)
with some fixed values x, y and (ai, bi) running through all 232 values. Af-
ter obtaining the corresponding ciphertexts (ci, di, ei, fi) by encryption under
the unknown key set up a list of values wi = (ai, bi) ⊕ (ei, fi). For a pair
i, j such that wi = wj the input difference is (0, 0, αl, αr) with (αl, αr) =
(ai ⊕ aj , bi ⊕ bj); the output difference after six rounds and the final swap is
(βl, βr, αl, αr) with (βl, βr) = (ci ⊕ cj , di ⊕ dj). Now check for all 75 bit sub-
keys k = (AKO61,AKI61, . . . ,AKO63,AKI63) if FOk((ei, fi)) ⊕ FOk((ej , fj)) =
(βl, βr). Such a subkey is wrong while a correct guess never yields this difference.

About
(

232

2

)

· 2−32 ≈ 231 pairs wi = wj are expected in a structure. A wrong
key has a probability of about 2−32 to cause a given output XOR, so a fraction
of (1 − 2−32)2

31

= e−1/2 of the wrong subkeys are discarded. After repeating
this basic step 75/ log2(e

1/2) ≈ 104 times only the correct subkey is expected to
survive.

This attack takes about 104·232 ≈ 239 chosen plaintexts. The time complexity
is 2 · 231 computations of FO per guessed key and per structure, so the total

complexity is about
(

∑103
i=0(e

−1/2)i
)

· 275+32 ≈ 2108.4 evaluations of FO which is

equivalent to about 2106 encryptions of 6-round MISTY1 without FL functions;
this is hardly a practical attack.
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It is possible to reduce the amount of work at the cost of increased chosen
plaintext requirements using Property 1 of FO (see Section 3). Using the above
structure of plaintexts and their ciphertexts set up a list of (wi, ui) with wi =
(ai ⊕ ei, bi ⊕ fi) and ui = ci ⊕ di. Now only matches with wi = wj and ui = uj

are of interest which yield (ci, di, ei, fi) ⊕ (cj , dj , ej , fj) = (β, β, αl, αr). About
(

232

2

)

· 2−32 · 2−16 ≈ 215 matches are expected with this form; these pairs are
analysed. We determine subkeys that yield (αl, αr) → (β, β) via FO as follows
(such a subkey cannot be the correct one). For each (AKO61,AKI61) we check if
the first FI gives output XOR αr from ei, ej . Then each guess of (AKO62,AKI62)
is checked if it yields output XOR β by the second instance of FI. Each part
results in about 29 candidates due to a 16 bit restriction.

Each structure is expected to discard about 29+9 · 215 = 233 50 bit key
candidates. Due to collisions a fraction of 1/e of the wrong keys is expected to
remain after 217 structures, but using in total 217 ln 250 ≈ 217 · 25 structures,
only the correct subkey remains. Thus about 232 · 222 = 254 chosen plaintexts
with about 215 · 222 = 237 analysed pairs are needed. The time complexity of
this part is 2 · 2 · 225 evaluations of FI per analysed pair equivalent to about 226

evaluations of FO. In total this is 226 · 237 = 263 evaluations of FO equivalent to
about 261 encryptions of 6-round MISTY1 without FL functions.

It remains to determine the 25 key bits (AKO63,AKI63) using the basic attack
with 25/ log2(e

1/2) ≈ 35 structures requiring 238.2 chosen plaintexts which can
be reused from previous structures. The time complexity of this second part is

about
(

∑34
i=0(e

−1/2)i
)

·225+32 ≈ 258.4 evaluations of FO equivalent to about 256

encryptions, which is much less than for the first part.
In total this attack needs about 254 chosen plaintexts and time comparable

to 261 encryptions; about 237 pairs are analysed.

4.2 Attacking MISTY1 with FL Functions

Here we show two attacks on 4-round MISTY1 where FL functions are present
with the exception of the final output transformation. One attack uses an im-
possible differential, the other uses the collision-searching technique of Biham’s
attack on Ladder-DES [1]; in order to use Property 2 we extend this technique
by employing multiple permutations.

Differential-style attack. The impossible differential used to attack MISTY1
without the FL functions does not work here. The problem occurs because FL
changes nonzero differences.

Lemma 1. The generic 5-round impossible differential for Feistel networks does

not work for MISTY1 with the keyed linear functions FL.

Proof. Assume that the differential starts at an odd-numbered round, i.e. a round
where the FL functions are applied in, w.l.o.g. at round 1. The difference in the
Ri is changed by FL for i ∈ {1, 3, 5}. For the impossible differential to work the
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differences in Y3 and L4 have to be the same, and thus the output XOR of the
round function must be zero (which is impossible). But as the application of FL
in general changes the differences, this cannot be assured. In the second case
the differential starts at an even numbered round, i.e. a round where FL is not
applied in; here the reasoning goes along the same lines. ut

The following 3-round impossible differential does work since FL cannot
change zero differences. An input difference (0, 0, αl, αr) to round 1 with some
nonzero values αl, αr cannot yield an output difference of (0, 0, δl, δr) before
the swap in round 3 for a nonzero values δl, δr. After round 1 the difference is
(βl, βr, 0, 0) for some nonzero βl, βr as FL is bijective. Going backwards from
round 3, the output difference of round 2 (before the swap) must have been
(γl, γr, 0, 0) with nonzero γl, γr which is only possible if (γl, γr) = (βl, βr) and
if FO causes a zero output difference which is impossible. Basically the same
argument works when the differential starts at round 2, where the nonzero part
of the difference is changed in round 3.

The attack works along similar lines as in Section 4.1 but uses structures
of 216 plaintexts Pi = (x, y, ai, bi) where x, y are constant and the (ai, bi) all
different. Let (ci, di, ei, fi) denote the ciphertexts. For each structure all about
231 pairs can be used which rule out a fraction of about e−1/2 of the wrong keys.
This attack requires about 75/ log2(e

1/2) ≈ 104 structures (223 chosen plain-

texts) and about
(

∑74
i=0(e

−1/2)i
)

· 275+16 ≈ 292.4 evaluations of FO comparable

to 290.4 encryptions.
We can improve this result by using Property 1. From the ciphertexts a list

ui = ci⊕di is set up. So we can easily find those pairs which yield an output XOR
(β, β, αl, αr); their number is expected to be 215 per structure. The analysis of
the first part from the improved analysis in Section 4.1 can be used for finding
AKO41,AKO42, AKI41, and AKI42 requiring about 217 · 25 = 222 structures
(238 chosen plaintexts) and 222 · 216 · 226 = 264 computations of FO comparable
to 262 encryptions. The second part for recovering AKO43 and AKI43 needs

another
(

∑24
i=0(e

−1/2)i
)

· 225+16 ≈ 242.4 computations of FO where the needed

plaintexts/ciphertexts are reused. In total this attack needs 238 chosen plaintexts
and work of about 262 encryptions.

Attack using collisions. Biham’s attack on Ladder-DES [1] is also applicable
to 4 round MISTY1 with FL functions, as these are bijective and thus cannot pro-
duce collisions. Consider a collection of chosen plaintexts of the form (x, y, ai, bi)
with i ∈ I for some index set I where x, y are constants and (ai, bi) different
random values. Using the notation from [1] this property of the collection of
{(ai, bi)}i∈I is called a permutation, that is, there can be no collision.

By the FL functions X1 is a constant (x′, y′), and Y1 is a permutation, say
{(a′i, b

′
i)}i∈I . Z1 is another fixed constant (x′′, y′′) derived from (x′, y′) by FO,

so L2 = X2 is the permutation {(a′i⊕x′′, b′i⊕ y′′)}i∈I while R2 = Y2 is constant.
Then Z2 is yet another permutation, and so is L3. X3 is still a permutation after
the FL in round 3, as is Z3, but Z3⊕Y3 behaves like a pseudo-random function.
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The attack proceeds as follows. Prepare 220 plaintexts Pi = (x, y, ai, bi) and
get their encryptions Ci = (ci, di, ei, fi) under the unknown key. For all guesses
k = (AKO41,AKI41, . . . ,AKO43,AKI43) of the last round’s FO 75 bit key de-
crypt the ciphertexts one round

wi = FOk((ei, fi))⊕ (ci, di).

If wi = wj for some i, j then the key guess is wrong. The one-round decryption
with a wrong key behaves like a pseudo-random function, so on average about 216

decryptions are needed to eliminate a wrong guess; a correct guess never produces
a collision. The attack needs 220 chosen plaintexts and at most 220 · 275 = 295

evaluations of FO. But on average a wrong guess should be ruled out after about
216 tries, so the workload is expected to be about 216 · 275 = 291 evaluations of
FO equivalent to 289 encryptions.

The probability of each wrong key guess to survive is the probability that
all 220 decrypted values are distinct. By the birthday paradox this probability is
exp(−220(220 − 1)/(2 · 232)) ≈ exp(−27) ≈ 2−184, so for all keys the probability
for a false guess to survive is 2−109.

This attack can be improved using Property 2 at the cost of more chosen
plaintexts. This version uses 228 chosen plaintexts Pi = (x, y, ai, bi) with con-
stants x, y and all different (ai, bi). The ciphertexts Ci = (ci, di, ei, fi) are par-
titioned into sets Bt, t ∈ {0, . . . , 2

16 − 1}, such that Ci ∈ Bt ⇔ fi = t. First,
set AKO42 = 0, AKI42 = 0. For each guess k = (AKO41,AKI41, k23,AKI43) of
50 bits with k23 in the role of AKO43 and each Bt, 0 ≤ t ≤ 216 − 1 decrypt all
Ci ∈ Bt one round yielding wt

i = FOkt
((ei, fi))⊕ (ci, di). If at one point w

t
i = wt

j

then this key is discarded, and the procedure is started with the next guess. This
takes at most 250 · 228 = 278 evaluations of FO comparable to 276 encryptions
to complete.

Once a correct k with k23 = AKO42 ⊕ AKO43 has been found the correct
25 bits AKO42,AKI42 with AKO43 = k23 ⊕AKO42 have to be found. This time
ciphertexts are used such that fi varies. Here about 220 ciphertexts from the
collection of the 228 should be sufficient to find the correct key. This requires
work of at most 220 · 225 = 245 evaluations of FO equivalent to 243 encryptions.
The time and chosen plaintext requirements are dominated by the first part (276

work and 228 chosen plaintexts).
The first part uses several permutations, with the complication that the sum

of the number of elements over all permutations is a constant. The probability
of success can be estimated using methods from convexity theory [6]; we show
that the case that all permutations are of equal size is the worst case. Let mt =
|Bt| and N = 232. For each Bt a wrong key survives the test with probability

pt = exp(−mt(mt−1)
2N ) with 0 ≤ |mt| ≤ 228 and

∑216−1
t=0 |mt| = 228. The product

of all pt is the probability of failure to eliminate the wrong key.

Lemma 2. The function p(m0, . . . ,m216−1) =
∏

pt with mi ∈ {0, . . . ,M},
∑216−1

i=0 mi = M > 0 has its maximum for m0 = · · · = m216−1 = M/216.
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Proof. Consider the function f(m) = exp(−m(m−1)
2N ); it is clear that ln(f(m))

is a concave function for 0 ≤ m ≤ M . It follows from [6, Prop. E.1] that
p(m0, . . . ,m216−1) is Schur-concave and thus has its maximum when all mi are
equal, as claimed. ut

By Lemma 2 the maximum probability of each wrong key guess to survive is

(

exp(−
212(212 − 1)

2 · 232
)

)216

≈
(

exp(−2−9)
)216

= exp(−27) ≈ 2−184.

It follows that also the probability is negligible that a single wrong key guess
survives the first part. The probability that a wrong guess survives in the second
part is, by the birthday paradox, about 2−184, so for all 25 key bits this is about
2−159 which is also negligible.

5 Attacks on Reduced-Round MISTY2

While the attacks given in this section work for 5-round MISTY2 both with
and without FL functions, the attacks on MISTY2 without FL functions have
a much higher complexity than the one given in [10]; therefore we present here
only the attacks on MISTY2 with FL functions; again we assume that the final
swap but no output transformation is present.

Because of the asymmetry of the round function described in Section 3 it
seems to help to attack MISTY2 in the chosen ciphertext model, as then the
round function is used in the forward direction when testing a guessed value of
a subkey.

Differential-style attack. This attack on 5-round MISTY2 makes use of the
following impossible differential:

Proposition 1. Given MISTY2 without FL, any input XOR (αl, αr, 0, 0) with
nonzero (αl, αr) to round i cannot yield a difference (δ1, δ2, δ1, δ2) for any (δ1, δ2)
in round i+ 3. Conversely, a difference (δ1, δ2, δ1, δ2), (δ1, δ2) 6= (0, 0), in round
i+ 3 cannot decrypt to a difference (αl, αr, 0, 0) before round i.

For MISTY2 with FL functions this differential is also impossible provided

that Ỹi+3 = Yi+3, i.e. round i+ 3 does not apply FL to the right half before it is

XORed to the left half.

Proof. This differential uses the miss-in-the-middle approach (see [2]) where two
differentials with probability 1 are concatenated such that a contradiction arises.
The 2-round differential used here has input difference (αl, αr, 0, 0) and output
difference (β1, β2, β1, β2) which happens with probability 1. The input difference
of (αl, αr, 0, 0) causes a nonzero input difference for the first FO, which then
becomes output difference (β1, β2) 6= (0, 0) as FO is bijective. The XOR with
the right hand side zero difference does not change this. So at the beginning of
round 2 the difference is (0, 0, β1, β2) which FO cannot change. After round 2
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the difference is (β1, β2, β1, β2). The same reasoning works for the backwards
direction, where an output difference (δ1, δ2, δ1, δ2) 6= (0, 0, 0, 0) decrypts always
to (γ1, γ2, 0, 0). Connecting two instances of this differential yields the contra-
diction.

When FL functions are present, the assumption on round i+ 3 ensures that
the output difference of FO in this round is zero. Application of FL in the first
two rounds cannot yield a zero difference in the right half input to round i+ 2,
so the contradiction between rounds i+ 1 and i+ 2 still occurs. ut

In oder to use this impossible differential the condition of a missing FL func-
tion in the last round must be met. From the specification of MISTY2 it is clear
that if a group of 4 rounds does not employ FL functions in the fourth round the
round preceeding this group also does not use FL, so no additional key material
has to be guessed besides the subkey for FO. This holds for example for rounds 2
to 6.

The attack works as follows. Set up a structure of 216 ciphertexts Ci =
(ei, fi, ei⊕x, fi⊕y) where x, y are constants and (ei, fi) are different values. Get
the plaintexts Pi = (ai, bi, ci, di) by decryption under the unknown key. Every
pair of ciphertexts fulfills the ciphertext condition of the impossible differential.
For each pair Pi, Pj any key k to the first round that encrypts Pi and Pj to
a difference (α1, α2, 0, 0) must be a wrong guess, while a correct guess never
yields such a contradiction. There are about 231 such pairs, so that a fraction of
(1−2−32)2

31

= e−1/2 of the wrong keys survives. Thus about 75/ log2(e
1/2) ≈ 104

structures (about 223 chosen ciphertexts) are required to eliminate all wrong

keys. The work complexity is
(

∑103
i=0(e

−1/2)i
)

· 275+16 ≈ 292.4 computations of

FO roughly comparable to 290 decryptions.
An improvement of the work factor can be reached using Property 1 in a

similar way as for MISTY1 in sections 4.1 and 4.2. For the attack we use the
same structures as above. From their decryptions Pi = (ai, bi, ci, di) we make a
list wi = ci⊕di. All matches wi = wj , i 6= j yield a plaintext difference Pi⊕Pj =
(αl, αr, β, β) for some value of β; these are the analysed pairs. With the input
resp. output XOR (αl, αr) resp. (β, β) for FO in the first round we determine
subkeys (AKO11,AKI11), (AKO12,AKI12) that yield this output difference from
(ai, bi) and (aj , bj) as follows. For each (AKO11,AKI11) we check if the first
FI gives output XOR αr from ai, aj . Then each guess for (AKO12,AKI12) is
checked if it yields output XOR β by the second FI. Each part is expected to
result in about 29 candidates due to the 16 bit restriction. Each of the expected
218 combinations is a wrong guess by the impossible differential.

In each structure there are about 231 pairs, each of which has a chance of
2−16 to have a plaintext difference (β, β) in the right half. So about 215 pairs
are analysed, each of which excludes about 218 not necessarily distinct subkey
guesses. After about 217 · ln(250) ≈ 217 · 25 structures (238 chosen ciphertexts,
237 analysed pairs) there is only a single remaining key expected. The time
complexity per pair is 2 · 225 evaluations each for the first and the second FI,
which is about 226 evaluations of FO. In total this is about 226 · 238 = 264

evaluations of FO equivalent to about 262 encryptions.
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Determining the last 25 subkey bits AKO13 and AKI13 can be done with
the basic attack and 25/ log2(e

1/2) ≈ 35 structures with about 221.2 chosen
ciphertexts reused from previous structures. The work requirements are about
(

∑34
i=0(e

−1/2)i
)

· 225+16 ≈ 242.4 evaluations of FO which is approximately 240

encryptions, much less than for the first part.
In total about 238 chosen ciphertexts and work of about 262 encryptions is

required to find the first round’s 75 bit subkey; about 237 pairs are analysed.

Attack using collisions. This attack on 5-round MISTY2 with FL functions
but without the output transformation works with collision-searching; it is based
on the following observation in the chosen ciphertext model.

Proposition 2. Given four rounds of MISTY2 starting at round n such that

Ỹn+3 = Yn+3 holds, i.e. Yn+3 is not transformed via FL before the XOR. As-

sume that no output transformation with FL takes place. Given a set of cipher-

texts Ci = (ei, fi, x ⊕ ei, y ⊕ fi) where x, y are constant and {(ei, fi)} form a

permutation. After decryption the right half Rn is a permutation.

Proof. Zn+3 is always the constant (x, y) and thus Xn+3 as well as Ln+3 is
a constant, say (x′, y′). On the other hand, Rn+3 is the permutation {(ei, fi)}.
After being XORed with (x′, y′) this becomes Zn+2, so that also Xn+2 and Ln+2

are permutations while Rn+2 is a constant. Zn+1 is a permutation which is the
XOR of a constant and a permutation Ỹn+1 which is Ln+2 possibly transformed
by an instance of FL. So Xn+1 is a permutation. Now the claim follows. ut

The attack using Proposition 2 works for example on the five rounds of
MISTY2 from round 2 to round 6. Both round 2 and round 6 do not apply any FL
functions. An attack using 289 work and 220 chosen ciphertexts works straight-
forward as in section 4.2 with the same analysis, so the detailed description is
omitted here.

In order to use the observation on reducing the amount key material to
be guessed the attack uses 228 chosen ciphertexts of the form Ci = (ei, fi, x ⊕
ei, y⊕fi) where x, y are constants and {(ei, fi)} form a permutation. Encryption
under the unknown key yields plaintexts Pi = (ai, bi, ci, di) which we partition
into 216 sets Bt such that Pi ∈ Bbi

; thus all Pi ∈ Bt for a given t have the
same value bi = t. First, set AKOi1 = 0, AKI12 = 0. For each 50 bit key guess
k = (AKO11,AKI11, k23,AKI13) with k23 in the role of AKO13, and for each Bt,
t ∈ {0, . . . , 216 − 1} encrypt all Pi ∈ Bt one round yielding wt

i = FOk((ai, bi))⊕
(ci, di). If we find wt

i = wt
j , i 6= j then this key must be discarded, and the

procedure is started with the next key guess. This takes at most 250 · 228 = 278

evaluations of FO comparable to 276 encryptions to complete.
Once a correct k with k23 = AKO12 ⊕ AKO13 has been found, we have to

find the correct 25 bits (AKO12,AKI12) and set AKO13 = k23 ⊕ AKO12. Here
we use plaintexts Pi where both ai and bi vary; about 220 plaintexts from the
collection of 228 plaintexts should be sufficient. This requires work of at most
220 · 225 = 245 evaluations of FO equivalent to 243 encryptions. The time and
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chosen ciphertext requirements are dominated by the first part (276 work, 228

chosen ciphertexts).
The probability that a wrong key guess survives is bounded with the same

arguments as in Section 4.2 by Lemma 2 and the birthday paradox, so the details
are omitted here.

6 Comparison to KASUMI

The algorithm KASUMI [4] is a MISTY variant that is to be used in next-
generation cellular phones. The global structure is a Feistel network with 8
rounds including the final permutation. Its round function consists of FO and
FL, applied before resp. after FO in odd resp. even-numbered rounds. The FO
function has the same structure as in MISTY with the subkeys KOij , 1 ≤ j ≤ 3
being applied by XOR before FI but a lacking final XOR of KOi4 after all
non-linearities; the FI function involves an additional fourth round, and the FL
function uses left rotations by one bit before each XOR. The S-boxes S7 and S9
are bijective, but different from those of MISTY. Each round uses 128 key bits,
32 bits for FL and 96 bits for FO. These are derived by revolving through the
key bytes and applying rotations and bitwise additions of constants.

The usage of the basic Feistel structure without FL functions in the data path
makes KASUMI susceptible to an attack based on the same 5-round impossible
differential as used in Section 4.1, but with the additional difficulty that FL is
part of the round functions and FO uses more keying material. The differential
can be used as both FO and FL are bijective. It should be noted that a property
similar to Property 1 does also hold for KASUMI’s FO when it is preceeded by
FL as it happens in odd-numbered rounds:

Property 3. Assume that the concatenation of FL and FO has a nonzero
output XOR (δ, δ). Denote the input XOR to FL by (αl, αr) and its output
XOR (the input to FO) by (βl, βr). The difference βr is solely determined
by the first round of FL, so is the right half of the data in the first round of
FO. In order to have the given output XOR of FO the third round’s output
and input XOR must both be zero which means that (KOi3,KIi3) can be
ignored. The output XOR (δ, δ) is determined by the second round of FO
from the inputs with XOR βr; additionally, βr is canceled by the output
XOR βr of the FI in the first round of FO, coming from the left halfs of the
inputs with XOR βl.

The attack on rounds 2 to 7 of KASUMI including the last swap works as
follows. In round 7 the function FL is applied before FO, so we can rely on Prop-
erty 3. The attack uses the same structures as were used in Section 4.1 and looks
for pairs with ciphertext XOR (δ, δ, αl, αr) with the same methods. We expect
about such 215 pairs per structure which will be analysed. Let (ci, di, ei, fi) and
(cj , dj , ej , fj) be such a pair. In order to use Property K we first fix a guess of
the first round subkey KL71 of FL in round 7, yielding f ′i , f

′
j with βr := f ′i ⊕ f ′j .

Then we determine which guesses of (KL72,KO71,KI71) yield the XOR βr after
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the first FI. We expect about 248/216 = 232 guesses to fulfill this condition.
Then, independently, we check which guess for (KO72,KI72) yields output XOR
δ after the second FI from inputs f ′i and f ′j ; here we expect about 2

32/216 = 216

guesses. Combinations of all these guesses are wrong subkeys and can be dis-
carded. Their expected number is 248 for each guess of KL71, so each analysed
pair is expected to discard about 264 subkeys á 96 bits.

After about 217 structures an expected number of 296/e distinct subkeys are
discarded. In total we need about 217 ln(296) ≈ 67 ·217 ≈ 223 structures with 255

chosen plaintexts and about 238 analysed pairs to single out the right subkey.

The work requirements for each pair and each guess of KL71 are 2 · 248 +
2 · 232 ≈ 249 computations of the second round of FL and FI. In total this is
about 2103 computations of FL and FI roughly equivalent to 2100 encryptions.
Although this is much faster than brute force it is hardly a practical attack
because of the high data and work requirements.

7 Conclusion

For MISTY1 the use of keyed linear functions inhibits the attack using the 5-
round impossible differential of Feistel networks with bijective round functions;
for MISTY2 we cannot make this claim as we did not find an impossible differ-
ential longer than 4 rounds.

The attacks on MISTY2 suggest that this structure might be one round
weaker than the Feistel structure, at least when the linear functions FL are
present. The directional asymmetry of the MISTY2 structure used in FO with
embedded 3-round FI suggests that this structure might be stronger in the back-
wards direction compared to the forward direction.

By adding a fourth round to FI – like done for KASUMI – its equivalent
description of FO would not reduce the number of key bits, so the attacks would
only need to guess 7 bits more for each FI. If FO had one more round the
properties used to improve both the differential and collision-searching attacks
would not hold, leaving only the basic forms of attack; but this would require
more keying material.

Instead, the changes for KASUMI, i.e. adding a round to FI and employing
the linear functions as part of the round function does not require more keying
material and seems to make an analysis of the round function very demanding.
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