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Abstract. Serpent is one of the 5 AES finalists. The best attack pub-
lished so far analyzes up to 9 rounds. In this paper we present attacks
on 7-round, 8-round, and 10-round variants of Serpent. We attack a 7-
round variant with all key lengths, and 8- and 10-round variants with
256-bit keys. The 10-round attack on the 256-bit keys variants is the
best published attack on the cipher. The attack enhances the amplified
boomerang attack and uses better differentials. We also present the best
3-round, 4-round, 5-round and 6-round differential characteristics of Ser-
pent.

1 Introduction

Serpent [1] is a block cipher which was suggested as a candidate for the Advanced
Encryption Standard (AES) [8], and was selected to be among the five finalists.
In [4] a modified variant of Serpent in which the linear transformation was

modified into a permutation was analyzed. The permutation allows one active S
box to activate only one S box in the consecutive round, a property that cannot
occur in Serpent. Thus, it is not surprising that this variant is much weaker than
Serpent, and that it can be attacked with up to 35 rounds.
In [6] the 256-bit variant of Serpent up to 9 rounds is attacked using an

amplified boomerang attack. The attack is based on building a 7-round distin-
guisher for Serpent, and using it for attacking up to 9 rounds. The distinguisher
is built using the amplified boomerang technique. It uses a 4-round differential
characteristic in rounds 1–4, and a 3-round characteristic in rounds 5–7.
In this paper we enhance the amplified boomerang attack, and present the

best 3-round, 4-round, 5-round and 6-round differential characteristics of Serpent
published so far. We use these characteristic to devise an attack on 7-round
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Serpent with all key lengths, and an attack on 8-round Serpent with 256-bit
keys. We also use these results to develop the best known distinguisher for 8-
round Serpent by presenting a new cryptanalytic tool — the rectangle attack.
This tool is then used to attack 10-round 256-bit key Serpent.

The paper is organized as follows: In Section 2 we give the description of
Serpent. In Section 3 we present a differential attack on 7-round Serpent, and a
differential attack on 8-round 256-bit key Serpent. In Section 4 we present the
Rectangle Attack, and in Section 5 we describe the 8-round distinguisher and
implement the attack on 10-round 256-bit key Serpent. Section 6 summarizes
the paper. In the appendices we describe new 3-round, 4-round, 5-round and
6-round differential characteristics, which are the best known so far.

2 A Description of Serpent

Serpent [1] is a block cipher with block size of 128 bits and 0–256 bit keys. It is
an SP-network, consisting of alternating layers of key mixing, S boxes and linear
transformation. Serpent has an equivalent bitsliced description, which makes it
very efficient.

The key scheduling algorithm of serpent accepts 256-bit keys. Shorter keys
are padded by 1 followed by as many 0’s needed to have a total length of 256
bits. The key is then used to derive 33 subkeys of 128 bits.

We use the notations of [1]. Each intermediate value of the round i is denoted
by B̂i (which is a 128-bit value). The rounds are numbered from 0 to 31. Each
B̂i is composed of four 32-bit words X0, X1, X2, X3.

Serpent has 32 rounds, and a set of eight 4-bit to 4-bit S boxes. Each round
function Ri (i ∈ {0, . . . , 31}) uses a single S box 32 times in parallel. For example,
R0 uses S0, 32 copies of which are applied in parallel. Thus, the first copy of S0

takes bits 0 from X0, X1, X2, X3 and returns the output to the same bits (0).
This is implemented as a boolean expression of the 4 registers.

The set of eight S-boxes is used four times. S0 is used in round 0, S1 is used
in round 1, etc. After using S7 in round 7 we use S0 again in round 8, then S1

in round 9, and so on. The last round is slightly different from the others: apply
S7 on B̂31 ⊕ K̂31, and XOR the result with K̂32 rather than applying the linear
transformation.

The cipher may be formally described by the following equations:

B̂0 := P

B̂i+1 := Ri(B̂i)

C := B̂32

where

Ri(X) = LT (Ŝi(X ⊕ K̂i)) i = 0, . . . , 30

Ri(X) = Ŝi(X ⊕ K̂i)⊕ K̂32 i = 31



340 Eli Biham, Orr Dunkelman, and Nathan Keller

where Ŝi is the application of the S-box Si mod 8 thirty two times in parallel, and
LT is the linear transformation.
The linear transformation is as follows: The 32 bits in each of the output

words are linearly mixed by

X0, X1, X2, X3 := Ŝi(B̂i ⊕ K̂i)

X0 := X0 <<< 13

X2 := X2 <<< 3

X1 := X1 ⊕X0 ⊕X2

X3 := X3 ⊕X2 ⊕ (X0 << 3)

X1 := X1 <<< 1

X3 := X3 <<< 7

X0 := X0 ⊕X1 ⊕X3

X2 := X2 ⊕X3 ⊕ (X1 << 7)

X0 := X0 <<< 5

X2 := X2 <<< 22

B̂i+1 := X0, X1, X2, X3

where <<< denotes rotation, and << denotes shift. In the last round, this linear
transformation is replaced by an additional key mixing: B32 := S7(B31⊕K31)⊕
K32.

3 Differential Attack on 7- and 8-Round Serpent

In this section we present attacks on 7-round and 8-round Serpent from round 4
to round 10 (or round 11 in the 8-round variant), i.e., encryption starts with
S4 and ends with S2 (S3 for the 8-round variant)

1. In Appendix D a 6-round
differential characteristic between round 4 and round 9 with probability 2−93

is presented. In the rest of this paper we keep the round numbers as in the
corresponding rounds of Serpent, i.e., from round 4 to round 10, rather than
from round 0 to round 6.
We adopt the representation of the differential characteristics using figures

as in [5], but add more data to the figures. The figures describe data blocks by
rectangles of 4 rows and 32 columns. The rows are the bitsliced 32-bit words,
and each column is the input to a different S box. The upper line represents
X0, the lower line represents X3, and the rightmost column represents the least
significant bits of the words. A thin arrow represents a probability of 1/8 for
the specific S box (given the input difference, the output difference is achieved
with probability 1/8), and a fat arrow stands for probability 1/4. If there is a

1 Attacks starting from other rounds do not necessarily have the same complexities
since the S boxes used in the various rounds are different.
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difference in a bit, the box related to it is filled. Example for our notation can
be found in Figure 1, in which in the first S box (S box 0; related to bits 0) the
input difference 1 causes an output difference 3 with probability 1/4, and in S
box 30 input difference 3 causes an output difference 1 with probability 1/8.

Fig. 1. Difference Representation Example

The attack uses 214 characteristics with different input differences but the
same output difference. The 214 characteristics differ only in the first round, in
which they have the same active S boxes with different input differences. All the
characteristics have the same differences after the first round, and all have the
same probability 2−93. The input difference for one of the 6-round characteristics
is presented in Figure 2, and the common output is presented in Figure 3 (the
full characteristic is presented in Appendix D).

Fig. 2. The Input Difference of the 6-Round Differential Characteristic

Fig. 3. The Output Difference of the 6-Round Differential Characteristic

The attack requires 232 structures of 252 chosen plaintexts each. In each
structure all the inputs to the 19 inactive S boxes in the first round are fixed to
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some (random) value, while the 52 bits of input to the 13 active S boxes receive
all the 252 possible values. In these data structures there are 232 · 251 = 283

pairs for each possible characteristic. Each characteristic has probability 2−93,
therefore, we expect that about 283 · 214 · 2−93 = 24 pairs satisfy one of the
characteristics. We call these pairs right pairs. The number of possible pairs in
each structure is (252)2/2 = 2103, thus we have 2103 ·232 = 2135 pairs to consider
in total.

Each pair satisfying one of the characteristics has 19 active S boxes in
round 10, thus any pair with non-zero output difference in one of the remaining
13 S boxes can be automatically discarded. Thus, about 2103−52 = 251 candidates
for right pairs remain from each structure.

Moreover, in 3 S boxes only 4 output differences are possible if one of the
characteristics is satisfied; in 6 S boxes only 6 output differences are possible;
in 9 S boxes only 7 output differences are possible, and in the remaining S box
eight output differences are possible. Discarding any pair with a wrong output

difference using the above filter should keep only a fraction of 4

16

3
· 6

16

6
· 7

16

9
· 8

16
≈

2−26.22 of the pairs. Thus, only about 251 · 2−26.22 = 224.78 pairs remain for each
structure.

For each structure, we check whether the remaining pairs satisfy one of the 214

possible plaintext differences (corresponding to the 214 characteristics). As there
are about 252 possible input differences, only a fraction of about 2−52 ·214 = 2−38

of the pairs remain at this stage. Thus, the expected number of remaining pairs
in all the 232 structures is 224.78 · 2−38 · 232 = 218.78.

For each remaining pair we compute a list of possible whitening subkeys of
the 19 active S boxes in the last round. For each active S box, each pair suggests
at most 4 values for the subkey of that S box. Thus, counting on m S boxes
results in at most 218.78 · 4m = 218.78+2m hits. The average number of hits (for a
wrong value) is 218.78+2m/24m, which is smaller than 1 for m ≥ 10. On the other
hand, the correct subkey is counted for each right pair, i.e., about 16 times, and
thus it can be easily identified when m ≥ 10. Then, we count on the remaining
9 S boxes and take the only value suggested more than two or three times. Note
that even if we got more than one possible subkey after counting on 10 S boxes,
only one of them is expected to remain after this stage. In total we retrieve 76
subkey bits using at most 238.78 one round encryptions and 240 4-bit counters.
We can retrieve 52 additional bits by analyzing the first round as well.

After we retrieve 128 bits of subkey material we can easily find a 128-bit
key using linear equations. For 192- and 256-bit keys we can take another set
of characteristics. The new set includes the original characteristics used in the
attack rotated one bit to the left, i.e., if we have a difference in the least significant
bit of X0 in the original characteristics, we have a difference in the second bit
(bit 1) of X0 in the new set. There is an additional set, in which the rotation is
by two bits. (Note that rotation by 3 bits does not make good characteristics).
This way we obtain additional 36 subkey bits from round 4 (as out of the 52 bits
in the input to the 13 active S boxes there are 16 common bits). This phase of
the attack is much simpler, as we already know the common 16 subkey bits, and
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can easily discard wrong pairs. We also get 32 additional bits from round 10,
thus obtaining additional 68 bits (36 from round 4, and 32 from round 10). For
192-bit keys, this information is sufficient to recover the key. For 256-bit keys
we can use other differentials with probability 2−94 (which are just equivalent
to the differential we have used with slight modifications in the last round of
the characteristic) using similar techniques and retrieve the remaining unknown
bits.
We conclude that the attack requires 252 · 232 = 284 plaintexts for 128-bit

keys, and twice as much for 192-bit and 256-bit keys. The time complexity of the
attack is 285 memory accesses. The memory requirements are 240 4-bit counters
and 252 cells for a hash table.
In order to reduce the time of analysis we perform the algorithm in the

following way:

1. For each structure:
(a) Insert all the ciphertexts into a hash table according the 52 ciphertext’s

bits of the inactive S boxes in the last round.
(b) For each entry with collision (a pair of ciphertext with equal 52-bit val-

ues) check whether the plaintexts’ difference (in round 4) is one of the
214 characteristics’ input difference.

(c) If a pair passes the above test, check whether the difference (in the 76
bits) can be caused by the output difference of the characteristics.

(d) If a pair passes also the above test, we add 1 to the counter related to
the 40 bits of the subkey (as there are 4m subkey bits, and for m = 10
we get the best results).

2. Collect all the (few) subkeys whose counter has at least 10 hits. With a high
probability the correct subkey is in this list (and it is the only one in it).

3. For each pair suggesting a value in the list, we complete the subkey of the
other 9 S boxes in round 10, and the 13 S boxes from round 4. As we should
have only right pairs (with very few additional wrong pairs), and as the right
pairs agree on the rest of the subkey, we can identify the right subkey by
intersecting the sets proposed by the various pairs.

.
For each structure 252 memory accesses are performed for the hashing. In the

hash table about 1/e of the entries are empty, and 1/e of the entries contain only
one plaintext (and no pairs need to be analyzed). Counting on all the possibilities
for the number of plaintexts in each entry of the hash table we conclude that 251

pairs from each structure need to be analyzed. Most of them are discarded by
the first filter, and about 213 pairs remain for the second filtering and counting.
Therefore, we can estimate the work for each structure as the work needed to
hash all plaintexts and then to look at the hash table afterwards, and to perform
the search whenever there are more than two plaintexts in one hash entry. The
number of pairs we expect to check is 251 and most of them can be discarded
almost immediately. We perform about 253 memory accesses for each structure,
and the amount of work needed for the whole attack is equivalent to about
233 · 252 = 285 memory accesses.
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3.1 8-Round 256-Bit Key Serpent

One can easily extend our attack to 8 rounds for the 256-bit key variant by
guessing the subkey of round 11. For each possible value of the subkey of round 11
we decrypt the last round and use the attack from the previous subsection.
This way, there is no need to make the extra work of completing the key by
retrieving other subkeys. The data complexity remains the same 284, and the
time complexity is 2128 · 285 = 2213 memory accesses with 240 counters.

4 The Rectangle Attack

4.1 Amplified Boomerang Attack

The main idea of the amplified boomerang attack [6] is to use two short differen-
tial characteristics instead of one long characteristic. Therefore, this technique
is very useful when we have good short differential characteristics and very bad
long ones.
Let a cipher E : {0, 1}n × {0, 1}k → {0, 1}n be composed of two encryption

functions E0 and E1. Thus, E = E1 ◦ E0. We assume that a good differential
is not known for E, but for E0 we have a differential characteristic α → β
with probability p, and for E1 we have a differential characteristic γ → δ with
probability q, where pq À 2−n/2.
The basic attack is based on building quartets of plaintexts (x, y, z, w) which

satisfy several differential conditions. Assume that x ⊕ y = α and z ⊕ w =
α. Each pair has probability p to satisfy the characteristic α → β in E0. We
denote by x′, y′, z′, w′ the encrypted values of x, y, z, w under E0, respectively
(x′ = E0(x), . . . , w

′ = E0(w)). We are interested in the cases where x′ ⊕ y′ = β,
z ⊕w′ = β and x′⊕ z′ = γ, as in these cases y′⊕w′ = (x′⊕β)⊕ (z′⊕β) = γ as
well. We receive two pairs for E1 each with input difference γ. When encrypting
those x′, y′, z′, w′ by E1, in some of the cases the input difference γ becomes
δ, and we look for the cases where both differences become x′′ ⊕ z′′ = δ and
y′′ ⊕ z′′ = δ after E1. A quartet satisfying all these differential requirements is
called a right quartet. An outline of such a quartet is shown in Figure 4.
The question which rises is what is the fraction of the right quartets among

all the quartets. If we have m pairs with difference α, a fraction of about p
of them satisfies the characteristic for E0. Thus, we have about mp pairs with
output difference β in the input to E1, giving about (mp)2/2 quartets consisting
of two such pairs. Assuming that the intermediate encryption values distribute
uniformly over all possible values, then with probability 2−n we get x′ and z′

such that x′ ⊕ z′ = γ, but once this occurs we automatically get another pair
with input difference γ (the pairs are (x′, z′) and (y′, w′)). Note that x′ and w′

have also a probability 2−n to have a difference x′⊕z′ = γ, thus, given two pairs
(x′, y′) and (z′, w′) we have two ways to use them as a quartet, with probability
2−n+1. Therefore, we have (mp)2/2 · 2−n+1 quartets which might satisfy our
requirements. Each of the pairs satisfies the second characteristic for E1 with
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Fig. 4. Right Quartet for the Rectangle Attack

probability q. Thus, starting with m pairs (x, y),(z, w), the expected number of
right quartets is:

(

mp
2

)

· 2−n+1 · q2 · 2−n = m2 · 2−n · (pq)2.

Therefore, the distinguisher counts quartets (x, y, z, w) of plaintexts which
satisfy that x′′ ⊕ z′′ = y′′ ⊕ w′′ = δ.
For a random permutation (or for a random value of α and δ) the expected

number of quartets ism2 ·2−2n, as there arem2 possible quartets (there arem2/2
pairs of pairs, and each pair of pairs can create two quartets e.g., (x, y), (z, w) and
(x, y), (w, z)). For each pair (x, z) or (y, w) the probability of having a specific
difference in the output is 2−n. Therefore, if pq > 2−n/2, we would count more
quartets than random noise. This way when m is sufficiently large we can have
a distinguisher which distinguishes between E and a random cipher.

4.2 Rectangling the Boomerang

The first improvement was suggested in [6], in which it was observed that instead
of requiring a specific γ, we can count on all possible γ ′ values for which γ′ → δ
by E1.
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Therefore, the probability Pr2(γ → δ) = q2 for the pairs (x′, z′) and (y′, w′)
to have output difference δ is replaced by the probability

∑

any γ′ Pr
2(γ′ → δ),

and we have about
(

m · Pr(α→ β)
2

)

· 2−n+1 ·
∑

any γ′

Pr 2(γ′ → δ)

quartets satisfying the rectangle conditions. As a result, we might prefer the dif-
ference x′′⊕z′′ to be some value δ which has many lower probability characteris-
tics instead of an optimal δ with one characteristic with the highest probability.
Our second improvement is quite similar. Instead of discarding pairs with

wrong β value, we sort the pairs into piles according to the output difference (β)
of E0. For each possible pile we perform the original attack. For each pile we
have probability

∑

any γ′ Pr
2(γ′ → δ) to have a quartet at the end. The number

of pairs in each pile β′ is
(

m · Pr(α→ β′)
2

)

Thus, we have about

∑

any β′

(

m · Pr(α→ β′)
2

)

· 2−n+1 ·
∑

any γ′

Pr 2(γ′ → δ) =

m2 · 2−n ·
∑

any β′

Pr 2(α→ β′) ·
∑

any γ′

Pr 2(γ′ → δ)

quartets for the second step of the attack.
Our third improvement is based on the first two. We can take into consider-

ation more quartets. Assume that for the first pair the difference α causes some
difference a, and for the second pair α → b. Then, we can count also charac-
teristics for which γ → δ and γ ⊕ a ⊕ b → δ. This way the number of quartets
is

m2 · 2−n ·
∑

a,b

[

Pr(α→ a) Pr(β → b) ·
∑

γ

Pr(γ → δ) Pr(γ ⊕ a⊕ b→ δ)

]

Note that this improvement counts all the quartets with plaintext difference
α and ciphertext difference δ. However, it is very hard to do the exact calculation.

5 Attacking 10-Round Serpent

In Section 4 we presented a method to build a distinguisher for a function
E = E1 ◦ E0. We now present a method to use the distinguisher to find subkey
material.
We attack a 10-round 256-bit key Serpent (round 0 to round 9) using an

8-round rectangle distinguisher. In this distinguishing attack E0 is rounds 1–4
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of Serpent, and E1 is rounds 5–8. The basic differential characteristic (α → β)
used in rounds 1–4 is also the best known 4-round differential characteristic
of Serpent. This characteristic and the basic differential characteristic used in
rounds 5–8 are presented in Appendix B. α and δ are presented in Figure 5 and
Figure 6, respectively.

Fig. 5. The Input Difference α of the Rectangle Attack

Fig. 6. The Output Difference δ of the Rectangle Attack

The first differential has probability of 2−29. Using the second improve-
ment and counting on all possible output differences of round 4, we receive
∑

β′ Pr
2[α → β′] = 2−50.8. The second differential has probability of 2−47. Us-

ing the first improvement and counting on a large set of characteristics (all are
very similar to the basic one, and have the same last two rounds) we receive
∑

γ′ Pr
2[γ′ → δ] = 2−69.8. These probabilities were computed by a computer

program which scanned characteristics similar to those presented in Appendix B.
For m = 2125.8 pairs with the difference α of Figure 5 about 2 · (2125.8 ·

2−25.4)2/2 = 2200.8 quartets can be formed after the fourth round. The proba-
bility to get a specific γ is about 2−128, thus the expected number of quartets
with a given γ is about 272.8 quartets. As

∑

γ′ Pr
2[γ′ → δ] = 2−69.8, the number

of right quartets is 8.
To attack 10-round Serpent (rounds 0–9) we use a similar technique to the

one used in [6]. We request 262.8 structures of 264 plaintexts each. The structures
are chosen so that each structure varies over all the possible inputs to the active
S boxes in round 1, while the input of the rest of the S boxes is kept fixed (this
is done by checking which S boxes in round 0 affect the active bits in round 1,
and trying all the inputs to these S boxes). Using this procedure for choosing
the plaintexts we get 2125.8 pairs with difference α after round 0.
We keep all the plaintexts and their corresponding ciphertexts in a large

table (whose size is 2126.8 · 2 · 16 = 2131.8 bytes of memory), and keep 284 4-bit
counters, where each counter corresponds to one of the possible values of the 84
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bits of the subkeys we search for (64 bits entering 16 S boxes in the first round,
and 20 bits entering 5 S boxes in the last round). In order to count the number
of quartets with the given α and δ we perform the following algorithm:

1. Initialize the counter’s array with 0’s.
2. For each 64-bit subkey value in round 0, for each 20-bit value subkey value
in round 9, and for each plaintext x:
– Partially encrypt x through round 0 in the 16 S boxes and denote the
value we get by x1.

– Calculate x1 ⊕ α and denote this value by y1.
– Partially decrypt y1 through round 0 in the 16 S boxes, and find the
corresponding plaintext, which we denote by y (this plaintext y exists
in our data, due to the way we choose the structures). The value of the
plaintext bits of y related to the other 16 S boxes is the same as of x.

– Let x′′ and y′′ be the corresponding ciphertexts of x and y respectively.
then,

– Partially decrypt through the 5 active S boxes x′′ and y′′, denote the
value you get by x′′9 and y′′9 , respectively.

– Partially encrypt x′′9⊕δ and y′′9 ⊕δ and check whether the corresponding
ciphertexts exist in our data. If these ciphertexts exist, we check their
corresponding plaintexts, whether under the guessed 64-bit subkey of
round 0 we get a difference α. If so, we increase the corresponding counter
by 1.

3. Run over all counters, and print the corresponding indices whose counter is
greater than or equal to 7.

The inner loop is performed at most 284 ·2126.8 times, and includes at most 4
times encrypting 16 S boxes (equivalent to two rounds of Serpent) and 4 times
decrypting 5 S boxes (equivalent to 5/8 rounds of Serpent). Thus, the time
complexity of the attack is at most 284 · 2125.8 · 2 5

8
/10 ≈ 2208.4 10-round Serpent

encryptions. The time complexity can be reduced by half by building in advance
an equivalent table in which each entry i contains S1(S

−1
1 (i) ⊕ δ) and use it in

the last round, and similarly computing a table with S−1
0 (S0(i)⊕α) for the first

round.

5.1 Reducing Time Requirements

One can also use the technique of hash tables presented in [5] to reduce the time
complexity to 2205 memory accesses, in exchange for increasing the memory
complexity to 2196 bytes of RAM.

6 Summary

In this paper we presented the best published attack on 10-round 256-bit key
Serpent. The attack requires 2126.8 chosen plaintexts, 2207.4 time and 2131.8 bytes
of RAM. A variant of the attack requires 2205 time but 2196 bytes of RAM.
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We presented a differential attack on 7-round Serpent, which works for all
key sizes, with data complexity of 284 chosen plaintexts, time complexity of 285

memory accesses and 252 memory (blocks of 128-bit). We presented an attack
on 8-round 256-bit key Serpent requiring 284 chosen plaintexts, 2213 time and
284 memory (blocks of 128-bit). We summarize these results in Table 1.
We also presented the best known 3-round, 4-round, 5-round and 6-round

differential characteristics of Serpent, whose probabilities are 2−15, 2−29, 2−60

and 2−93, respectively. In Table 2 we summarize these characteristics and the
best previously published characteristics.

Rounds Key Size Complexity Source
Data Time Memory

6 all 283 290 240 [5] - Section 3.2
all 271 2103 275 [5] - Section 3.3

192 & 256 241 2163 245 [5] - Section 3.4

7 256 2122 2248 2126 [5] - Section 3.5
all 284 285 MA 252 This paper

8 192 & 256 2128 2163 2133 [5] - Section 4.2
192 & 256 2110 2175 2115 [5] - Section 5.3

256 284 2213 MA 284 This paper

9 256 2110 2252 2212 bytes [5] - Section 5.4

10 256 2126.8 2207.4 2131.8 bytes This paper
256 2126.8 2205 2196 bytes This paper

MA - Memory Accesses
Memory unit is one block, unless written otherwise

Table 1. Summary of Differential Attacks on Serpent with Reduced Numbers of
Rounds

Number of Paper Starting Number of Probability
Rounds from Active S boxes

3 [5] S5 7 2−16

This paper∗ S2 7 2−15

4 [5] S1 14 2−31

[10] S6 14 2−34

This paper S1 13 2−29

5 [5] S1 38 2−80

[10] S5 24 2−61

This paper S5 25 2−60

6 [10] S1 41 2−97

This paper S4 38 2−93

∗ This is also the upper bound presented in this paper.

Table 2. Summary of the Differential Characteristics of Serpent
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A A 3-Round Differential Characteristic

Our 3-round differential characteristic is based on the one found in [5], where a
3-round differential characteristic with 7 active S boxes and probability 2−16 is
presented. The characteristic is based on 4 active S boxes in the first round, 1 in
the second round and 2 in the last round. The problem in finding characteristics
is not finding the first round’s input and the last round’s output of the S boxes,
as they can be chosen to have maximal probability. The problem is to have a
minimal number of active S boxes, which is related to the output of the first
round (which passes the linear transformation), the second round, and the input
for the last round (as this determines the number of active S boxes in the last
round).
We start by selecting the differences of the second round in a similar way to

[5]. We observe that if we use the second round of the characteristic having S3
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instead of S6 and having probability 1/8 in S3, we can ensure that all active S
boxes in rounds 2 and 4 of the cipher (which are the first and third rounds of the
characteristic, respectively) have probability 1/4, thus having a total probability
of 2−15.

The 3-round differential characteristic with probability 2−15 that we get is
as follows: In round 2 (or 10 or 18 or any other round having S2) the following
characteristic holds with probability 2−8:

S2 p=2
-8

After the linear transformation and the application of S3 we get the following
differential characteristic with probability 2−3:

S3 p=2
-3

After the linear transformation and the application of S4 we get the following
differential characteristic with probability 2−4:

S4 p=2
-4

During the search for the best characteristic, we exhaustively checked all
possible 3-round characteristics with 7 active S boxes and found this to be the
best possible characteristic. As all 3-round characteristics have at least 7 active
S boxes, and with 8 active S boxes the probability of the characteristic is at
most 2−16, this proves that this is the best 3-round differential characteristic of
Serpent.
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B A 4-Round Differential Characteristics

B.1 A 4-Round Characteristic for Rounds 1–4

One option for achieving a minimal number of S boxes (13 according to [1]) is to
have in the second round’s S box S2 5→ 4 and 4→ Ax, and in the third round
to have an active S box S3 with 4 → Ax. Of course we would like to maximize
the probabilities of these entries.

Checking the S boxes for such instances we found out that the best charac-
teristic is when the first round of the 4-round characteristic is set at rounds using
S1. We receive the following 4-round differential characteristic with probability
2−29:

In round 1 (or any other round having S1) the following characteristic holds with
probability 2−11:

S1 p=2
-11

After the linear transformation and the application of S2 we get the following
differential characteristic with probability 2−5:

S2S2 p=2
-5

After the linear transformation and the application of S3 we get the following
differential characteristic with probability 2−3:

S3 p=2
-3

After the linear transformation and the application of S4 we get the following
differential characteristic with probability 2−10:
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S4 p=2
-10

B.2 A 4-Round Characteristics for Rounds 5–8

This second 4-round differential characteristic is used along with the previous
one in the attack of Section 5, and has probability of 2−47. We use the basic
characteristic described in [10], where a 5-round differential characteristic with
probability 2−61 is described. As we need a characteristic of round 5–8, we remove
the last round and get a 4-round characteristic with probability 2−48. As part of
our efforts to find higher probability differential characteristics for the amplified
boomerang attack, we try a technique found very useful in previous attempts:
we add another active S box in the first round. This might seem a bad thing
(as this reduces the probability) but we found out that in exchange we get 3
more entries with probability 1/4 instead of 1/8. Thus, our characteristic has
probability of 2−47.

In round 5 (or any other round having S5) the following characteristic holds with
probability 2−24:

S5 p=2
-24

After the linear transformation and the application of S6 we get the following
differential characteristic with probability 2−16:

S6 p=2
-16

After the linear transformation and the application of S7 we get the following
differential characteristic with probability 2−5:
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S7 p=2
-5

After the linear transformation and the application of S0 we get the following
differential characteristic with probability 2−2:

S0 p=2
-2

Note that the last two rounds are the same as in [10].

C A 5-Round Differential Characteristic

As stated in Appendix B, we took a 5-round characteristic from [10], truncated
it and improved it to have 4-round characteristic. By adding the last round from
[10] back to the characteristic we get a 5-round characteristic with probability
2−60.
Thus, we add after the 4th round of the characteristic from Appendix B.2

the following round, which apply S1, and has probability of 2
−13:

S1 p=2
-13

We have found another 5-round differential characteristic with probability
2−60, and three more characteristics with probability 2−61 which are quite similar
to the this one.

D A 6-Round Differential Characteristic

In order to get the best 6-round characteristic we can, we add a round before
the 5-round characteristic from Appendix C and alter the first two rounds of it.
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Thus, the 6-round characteristic starts in a round using S4, and has proba-
bility 2−93.
In round 4 (or any other round having S4) the following characteristic holds with
probability 2−28:

S4 p=2
-28

After the linear transformation and the application of S5 we get the following
differential characteristic with probability 2−29:

S5 p=2
-29

After the linear transformation and the application of S6 we get the following
differential characteristic with probability 2−16:

S6 p=2
-16

After this round the characteristic is the same as described for S7, S0 and
S1 in Appendices B.2 and C.
We observe that there are 214 6-round characteristics with the same last 5-

rounds (only the input difference of the first round changes). This follows from
the fact that in 2 S boxes in the first round we have 8 possible input differences
with the same probability for the given output differences and in 8 S boxes we
have two possibilities.
We also observed that by rotating all the characteristics one bit to the left

(or two) the characteristics remain valid with the same probability (rotation by
three or more bits does not work).


