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Abstract. We present a new algorithm for upper bounding the max-
imum average linear hull probability for SPNs, a value required to de-
termine provable security against linear cryptanalysis. The best previous
result (Hong et al. [9]) applies only when the linear transformation branch
number (B) is M or (M + 1) (maximal case), where M is the number
of s-boxes per round. In contrast, our upper bound can be computed
for any value of B. Moreover, the new upper bound is a function of the
number of rounds (other upper bounds known to the authors are not).
When B = M , our upper bound is consistently superior to [9]. When
B = (M + 1), our upper bound does not appear to improve on [9]. On
application to Rijndael (128-bit block size, 10 rounds), we obtain the
upper bound UB = 2−75, corresponding to a lower bound on the data
complexity of 8

UB
= 278 (for 96.7% success rate). Note that this does not

demonstrate the existence of a such an attack, but is, to our knowledge,
the first such lower bound.
Keywords: substitution-permutation networks, linear cryptanalysis, max-
imum average linear hull probability, provable security

1 Introduction

The substitution-permutation network (SPN) [6] is a fundamental block cipher
architecture designed to be a practical implementation of Shannon’s principles of
confusion and diffusion [15], through the use of substitution and linear transfor-
mation (LT), respectively. There has been a recent increase in interest in SPNs,
in part because their simplicity lends itself to analysis, and, from an implemen-
tation viewpoint, because they tend to be highly parallelizable. This interest will
no doubt be spurred on by the recent adoption of Rijndael (a straightforward
SPN) as the U.S. Government Advanced Encryption Standard (AES)[5].

The two most powerful cryptanalytic attacks on block ciphers are generally
considered to be linear cryptanalysis (LC) [11] and differential cryptanalysis
(DC) [2]. There exists a strong duality between these two attacks which allows
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certain results related to one of the attacks to be translated into the correspond-
ing results for the other attack [1][12]. This duality applies to the work of this
paper; for this reason we will limit our focus to LC.

In carrying out LC, an attacker typically computes a vector called the best
linear characteristic, for which the associated linear characteristic probability
(LCP) is maximal. This LCP allows the attacker to estimate the number of
chosen plaintexts required to mount a successful attack. In [14], Nyberg showed
that the use of linear characteristics underestimates the success of LC. In order
to guarantee provable security, a block cipher designer needs to consider approx-
imate linear hulls instead of linear characteristics, and the maximum average
linear hull probability instead of the LCP of the best linear characteristic.

In this paper we present a new method for computing an upper bound on
the maximum average linear hull probability for SPNs. The best previous result
is that of Hong et al. [9], which applies only to SPNs with highly diffusive LTs.
In contrast, our method can be applied to an SPN with any LT (computation
time may vary). Moreover, the upper bound we compute is a function of the
number of rounds of the SPN; all other upper bounds known to the authors do
not depend on the number of rounds. When the diffusiveness of the LT is one less
than maximum (the relevant definition is given in Section 5.3), our upper bound
is consistently superior to that of [9]. For LTs with maximum diffusiveness, our
upper bound does not appear to improve on [9].

Application of our method to Rijndael (128-bit block size, 10 rounds), which
involved extensive computation, yielded the upper bound UB = 2−75, for a
corresponding lower bound on the data complexity of LC of 8

UB
= 278 (for 96.7%

success rate—see Section 3). Note that this does not demonstrate the existence
of a such an attack, but is, to our knowledge, the first such lower bound.

Conventions
In what follows, {0, 1}d denotes the set of all d-bit vectors, which we view as row
vectors. For a vector or matrix w, w′ denotes the transpose of w. We adopt the
convention that numbering of the bits of a binary vector proceeds from left to
right, beginning at 1. The Hamming weight of a vector x is written wt(x). If Z
is a random variable (r.v.), E [Z] denotes the expected value of Z. And we use
#A to indicate the number of elements in the set A.

2 Substitution-Permutation Networks

A block cipher is a bijective mapping from N bits to N bits (N is called the
block size) parameterized by a bitstring called a key, denoted k. Common block
sizes are 64 and 128 bits. The input to a block cipher is called a plaintext, and
the output is called a ciphertext.

An SPN encrypts a plaintext through a series of R simpler encryption steps
called rounds. The input to round r (1 ≤ r ≤ R) is first bitwise XOR’d with
an N -bit subkey, denoted kr, which is typically derived from the key, k, via
a separate key-scheduling algorithm. The substitution stage then partitions the
resulting vector into M subblocks of size n (N = Mn), which become the inputs
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to a row of bijective n×n substitution boxes (s-boxes)—bijective mappings from
{0, 1}n to {0, 1}n. Finally, the permutation stage applies an invertible LT to the
output of the s-boxes (classically, a bitwise permutation). Often the permutation
stage is omitted from the last round. A final subkey, kR+1, is XOR’d with the
output of round R to form the ciphertext. Figure 1 depicts an example SPN
with N = 16, M = n = 4, and R = 3.

We assume the most general situation for the key, namely, that k is an inde-
pendent key [1], a concatenation of (R+ 1) independent subkeys—symbolically,
k =

〈
k1,k2, . . . ,kR+1

〉
. We use K to denote the set of all independent keys.

Invertible Linear Transformation

Invertible Linear Transformation

round 3

round 2

round 1

s-boxes

k1

k2

k4

k3

Fig. 1. SPN with N = 16, M = n = 4, R = 3

3 Linear Cryptanalysis

Linear cryptanalysis (LC) was introduced by Matsui in 1993 [11]. The more
powerful version is known as Algorithm 2 (Algorithm 1 extracts only a single
subkey bit). As applied to SPNs, Algorithm 2 can be used to extract the first
subkey, k1. Once k1 is known, the first round can be stripped off, and LC can
be reapplied to obtain k2, and so on.

Let P, C, andX be r.v.’s representing the plaintext, ciphertext, and interme-
diate input to round 2, respectively. The attacker attempts to identify the best
correlation between the parity of a subset of the bits of X and the parity of a
subset of the bits of C. Symbolically, the attacker wants masks a,b ∈ {0, 1}N \0
which maximize the following linear probability:

LPk(a→ b)
def
= (2 · Prob {a •X = b •C} − 1)

2
, (1)

for a fixed key, k (the symbol • denotes the inner product over GF(2)). Note
that LPk(a→ b) ∈ [0, 1]. Given a and b, the attack proceeds as in Figure 2.
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Obtain NL known 〈plaintext, ciphertext〉 pairs:

〈p1, c1〉 , 〈p2, c2〉 , . . . ,
〈
pNL

, cNL

〉

Guess k1 = k̂. Encrypt each pi through round 1 to obtain xi

If a • xi = b • ci then increment counter µ(k̂)

Choose the k̂ which maximizes
(

2 · µ(k̂)−NL

)2

2 . . . R

rounds

round 1

pi

Guess k1 = k̂

xi Form a • xi

ci Form b • ci

Fig. 2. Summary of linear cryptanalysis (Algorithm 2)

The probability that Algorithm 2 will determine the correct value of k1 in-
creases as the number of known 〈plaintext, ciphertext〉 pairs, NL, is increased.
The value NL is called the data complexity of the attack—this is what the at-
tacker wants to minimize. Given an assumption about the behavior of round-1
output [11], Matsui shows that if NL = c

LPk(a→b) , then Algorithm 2 has the

success rates in the following table, for various values of the constant, c.

c 2 4 8 16
Success rate 48.6% 78.5% 96.7% 99.9%

3.1 Notational Generalization

In describing Algorithm 2, we have discussed input and output masks (a and
b, respectively) and the associated linear probability for rounds 2 . . . R of an
R-round SPN. It is useful to consider these and other related concepts as ap-
plying to any T ≥ 2 consecutive rounds of an SPN. Hereafter, unless specified
otherwise, terms such as “first round” and “last round” are relative to the T

rounds under consideration. For Algorithm 2, then, T = R − 1, and the “first
round,” or “round 1,” is actually round 2 of the SPN. And for simplicity, we will
always assume that the LT is absent from round T (this does not affect LC).
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4 Linear Characteristics

For fixed a,b ∈ {0, 1}N , direct computation of LPk(a→ b) is generally infeasi-
ble, first since it requires encrypting all N -bit vectors through rounds 1 . . . T , and
second because LPk(a→ b) depends on the unknown key, k. The latter is usu-
ally handled by working not with LPk(a→ b), but with the average (expected)
value of LPk(a→ b) over all independent keys k ∈ K, denoted ET [a,b]:

ET [a,b]
def
= E[LPK(a→ b)] (2)

(K is an r.v. uniformly distributed over K). The implicit assumption is that
LPk(a → b) is approximately equal to ET [a,b] for most values of k (Harpes
et al. refer to this as the Hypothesis of fixed-key equivalence [7]). The data com-
plexity of Algorithm 2 for masks a and b is now taken to be NL = c

ET [a,b] .

The problem of computational complexity is usually treated by approximating
ET [a,b] through the use of linear characteristics (or simply characteristics).

4.1 One-Round and Multi-round Linear Characteristics

Note that the linear probability in (1) can be defined for any binary mapping—
in particular, for a bijective n× n s-box, S. Let α,β ∈ {0, 1}n, and let X be an
r.v. uniformly distributed over {0, 1}n. Define

LPS(α→ β)
def
= (2 · Prob {α •X = β • S(X)} − 1)

2
(3)

q
def
= max

S∈SPN
max

α,β∈{0,1}n\0
LPS(α→ β) . (4)

A one-round characteristic for round t, 1 ≤ t ≤ T , is a pair Ωt = 〈at,bt〉 in
which at and bt are input and output masks, respectively, for round t, exclud-
ing the permutation stage. The linear characteristic probability of Ωt, denoted
LCP t(Ωt) or LCP t(at → bt), is simply the linear probability obtained by view-
ing round t (minus the permutation stage) as an N ×N s-box:

LCP t(Ωt)
def
=

(
2 · Prob

{
at •X = bt • St(X⊕ kt)

}
− 1

)2
, (5)

where St(·) denotes application of the s-boxes of round t, and X is an r.v.
uniformly distributed over {0, 1}N . (Note: It can be shown that LCP t(Ωt) is
independent of the (unknown) subkey kt, and therefore the operation ⊕kt can
be removed from (5).) Let the M s-boxes of round t be enumerated from left to
right as St

1, S
t
2, . . . , S

t
M . Note that at and bt determine input and output masks

for each s-box in round t; let the masks for St
i be denoted α

t
i and β

t
i, respectively.

Then by Matsui’s Piling-up Lemma [11],

LCP t(Ωt) =
M∏

i=1

LPSt
i (αt

i → βt
i) . (6)
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Definition 1. Let L denote the N -bit LT of the SPN represented as a binary
N ×N matrix, i.e., if x,y ∈ {0, 1}N are the input and output, respectively, for
the LT, then y = (Lx′)′.

Lemma 1 ([3]). If b ∈ {0, 1}N and a = (L′b′)′, then a•x = b•y for all N -bit
inputs to the LT, x, and corresponding outputs, y (i.e., if b is an output mask
for the LT, then a = (L′b′)′ is the (unique) corresponding input mask).

Now given one-round characteristics for each of rounds 1 . . . T , Ω1 =
〈
a1,b1

〉
,

Ω2 =
〈
a2,b2

〉
, . . ., ΩT =

〈
aT ,bT

〉
, these can be concatenated to form a single

T -round characteristic if at+1 and bt are corresponding output and input masks
for the LT, respectively, for 1 ≤ t ≤ (T−1) (see Lemma 1). The resulting T -round
characteristic is the tuple Ω =

〈
a1,a2, . . . ,aT ,bT

〉
. The linear characteristic

probability of Ω is again given by Matsui’s Piling-up Lemma:

LCP(Ω) =
T∏

t=1

LCP t(Ωt) . (7)

4.2 Choosing the Best Characteristic

In carrying out LC, the attacker typically runs an algorithm to find the T -round
characteristic, Ω, for which LCP(Ω) is maximal; such a characteristic (not nec-
essarily unique) is called the best characteristic [12]. If Ω =

〈
a1,a2, . . . ,aT ,bT

〉
,

and if the input and output masks used in Algorithm 2 are taken to be a = a1

and b = bT , respectively, then ET [a,b] (used to determine NL = c
ET [a,b] ) is

approximated by

ET [a,b] ≈ LCP(Ω) . (8)

5 Provable Security Against Linear Cryptanalysis

The approximation in (8) has been widely used to evaluate the security of block
ciphers against LC [8]. Knudsen calls a block cipher practically secure if the
data complexity determined by this method is prohibitive [10]. However, in 1994
Nyberg demonstrated that this approach underestimates the success of LC [14].
We state Nyberg’s results in the context of SPNs.

5.1 Approximate Linear Hulls

Definition 2 (Nyberg). Given nonzero N -bit masks a,b, the approximate lin-
ear hull, ALH(a,b), is the set of all T -round characteristics, for the T rounds
under consideration, having a as the input mask for round 1 and b as the output
mask for round T , i.e., all characteristics of the form Ω =

〈
a,a2,a3, . . . ,aT ,b

〉
.
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Remark: Recall that any characteristic Ω ∈ ALH(a,b) determines an input and
an output mask for each s-box in rounds 1 . . . T . If this yields at least one s-box
for which the input mask is zero and the output mask is nonzero, or vice versa,
the linear probability associated with that s-box will be 0 (see (3)) and therefore
LCP(Ω) = 0 by (6) and (7). We exclude such characteristics from consideration.

Definition 3. For a,b ∈ {0, 1}N \ 0, let ALH(a,b)∗ consist of the elements
Ω ∈ ALH(a,b) such that for each s-box in rounds 1 . . . T , the input and output
masks determined by Ω for that s-box are either both zero or both nonzero.

Theorem 1 (Nyberg). Let a and b be fixed nonzero N -bit input and output
masks, respectively, for T rounds of an SPN. Then

ET [a,b] =
∑

Ω∈ALH(a,b)∗

LCP(Ω) . (9)

It follows immediately from Theorem 1 that (8) does not hold in general, since
ET [a,b] is shown to be equal to the sum of terms LCP(Ω) over a (large) set of
characteristics. Therefore, on average, the linear characteristic probability of the
best characteristic will be strictly less than ET [a,b]. An important implication
of this is that the attacker will overestimate the number of 〈plaintext, ciphertext〉
pairs required for a given success rate. Indeed, Harpes et al. [7] comment that
Matsui observed that his attacks performed better than expected.

5.2 Maximum Average Linear Hull Probability

An SPN is considered to be provably secure against LC if the maximum average
linear hull probability (MALHP), maxa,b∈{0,1}N\0 ET [a,b], is sufficiently small
that the resulting data complexity is prohibitive for any conceivable attacker.
Note that this must hold for T = R − 1, because Algorithm 2 as presented
attacks the first round. Since variations of LC can be used to attack the first
and last rounds of an SPN simultaneously, it may also be important that the
data complexity remain prohibitive for T = R− 2.

5.3 Best Previous Result

Since evaluation of the MALHP appears to be infeasible in general, researchers
have adopted the approach of upper bounding this value. If such an upper bound
is sufficiently small, provable security can be claimed. Hong et al. [9] give the best
previously known result for the SPN architecture, stated in Theorem 2 below.
First we need the following concepts.

Definition 4 ([1]). Any T -round characteristic, Ω, determines an input and
an output mask for each s-box in rounds 1 . . . T . Those s-boxes having nonzero
input and output masks are called active.
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Definition 5. Let Ω ∈ ALH(a,b)∗, and let v be one of the masks in Ω. Then
v is either an input or an output mask for the substitution stage of some round
of the SPN. By the definition of ALH(a,b)∗ (Definition 3), the active s-boxes
in this round can be determined from v (without knowing the corresponding out-
put/input mask). We define γv to be the M -bit vector which encodes this pattern
of active s-boxes: γv = γ1γ2 . . . γM , where γi = 1 if the ith s-box is active, and
γi = 0 otherwise, for 1 ≤ i ≤M .

Definition 6 ([4]). The branch number of the LT, denoted B, is the minimum
number of active s-boxes in any two consecutive rounds. It can be given by

B = min
{
wt(γv) + wt(γw) : w ∈ {0, 1}N \ 0 and v = (L′w′)′

}
.

It is not hard to see that 2 ≤ B ≤ (M + 1).

Theorem 2 (Hong et al.). If B = (M + 1), then maxa,b∈{0,1}N\0 ET [a,b] ≤

qM , and if B = M , then maxa,b∈{0,1}N\0 ET [a,b] ≤ qM−1, where q is defined
as in (4).

6 New Upper Bound for Maximum Average Linear Hull

Probability

In this section we present a new method for upper bounding the maximum
average linear hull probability. Our main results are Theorem 3 and Theorem 4.
The upper bound we compute depends on:

(a) q, the maximum linear probability over all SPN s-boxes (see (4))
(b) T , the number of rounds being approximated by Algorithm 2
(c) the structure of the SPN LT (via the W [ ] table in Definition 7 below)

6.1 Definition and Technical Lemmas

Definition 7. Let γ, γ̂ ∈ {0, 1}M . Then

W [γ, γ̂]
def
= #

{
y ∈ {0, 1}N : γx = γ, γy = γ̂, where x = (L′y′)′

}
.

Remark: Informally, the value W [γ, γ̂] represents the number of ways the LT can
“connect” a pattern of active s-boxes in one round (γ) to a pattern of active
s-boxes in the next round (γ̂).

Lemma 2. Let Ω be a one-round or T -round characteristic that makes A s-boxes
active. Then LCP(Ω) ≤ qA.

Proof. Follows directly from (4), (6), and (7).

Lemma 3. Let 1 ≤ t ≤ T , and a,bt ∈ {0, 1}N . Then

∑

x∈{0,1}N

ET [a,x] =
∑

x∈{0,1}N

LCP t(x→ bt) = 1 .
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Proof. The second sum equals 1 by application of Parseval’s Theorem[13] to
round t. To see that the first sum is equal to 1, apply Parseval’s Theorem to
the decryption function for rounds 1 . . . T (masked by a), and take the expected
value over the set of independent keys with uniform distribution.

Lemma 4. Let T ≥ 2, and let a,b ∈ {0, 1}N \ 0. For any x ∈ {0, 1}N viewed
as an input mask for the LT, let y denote the unique corresponding output mask
(via the relationship given in Lemma 1). Then

ET [a,b] =
∑

x∈{0,1}N\0

ET−1[a,x] · LCP
T (y→ b) .

Proof. Follows immediately from (7) and (9).

Lemma 5. Let m ≥ 2, and suppose {ci}
m
i=1, {di}

m
i=1 are sequences of nonnega-

tive values. Let {ċi}
m
i=1,

{

ḋi

}m

i=1
be the sequences obtained by sorting {ci} and

{di}, respectively, in nonincreasing order. Then
∑m

i=1 cidi ≤
∑m

i=1 ċiḋi.

Proof. See Appendix A.

Lemma 6. Suppose {ċi}
m
i=1, {c̈i}

m
i=1, and

{

ḋi

}m

i=1
are sequences of nonnegative

values, with
{

ḋi

}

sorted in nonincreasing order. Suppose there exists m̃, 1 ≤

m̃ ≤ m, such that
(a) c̈i ≥ ċi, for 1 ≤ i ≤ m̃

(b) c̈i ≤ ċi, for (m̃+ 1) ≤ i ≤ m

(c)
∑m

i=1 ċi ≤
∑m

i=1 c̈i

Then
∑m

i=1 ċiḋi ≤
∑m

i=1 c̈iḋi.

Proof. See Appendix A.

6.2 Derivation of New Upper Bound

Our approach is to compute an upper bound for each nonzero pattern of active
s-boxes in round 1 and round T (T ≥ 2); that is, we compute UBT [γ, γ̂], for
γ, γ̂ ∈ {0, 1}M \ 0, such that the following holds:

UB Property for T. For all a,b ∈ {0, 1}N \ 0, ET [a,b] ≤ UBT [γa, γb].

If the UB Property for T holds, then an upper bound for the MALHP is given
by maxγ,γ̂∈{0,1}M\0 UBT [γ, γ̂]. We first handle the case T = 2 in Theorem 3,
and then use a recursive technique for T ≥ 3 in Theorem 4.

Theorem 3. Let γ, γ̂ ∈ {0, 1}M \ 0, f = wt(γ), ` = wt(γ̂), and W = W [γ, γ̂].
If

UB2[γ, γ̂]
def
=







min
{
qf , q`

}
if max

{
qf , q`

}
·W > 1

qf+` ·W if max
{
qf , q`

}
·W ≤ 1

(10)

then the UB Property for 2 holds.
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Proof. Let γ, γ̂ ∈ {0, 1}M \0 be fixed, and let a,b ∈ {0, 1}N \0 such that γa = γ

and γb = γ̂. We want to show that E2[a,b] ≤ UB2[γ, γ̂]. There are W = W [γ, γ̂]
ways that the LT can “connect” the f active s-boxes in round 1 to the ` active
s-boxes in round 2. Let x1,x2, · · · ,xW be the corresponding input masks for
the LT, and let y1,y2, · · · ,yW be the respective output masks (so γxi

= γ and
γyi

= γ̂). Let ci = LCP1(a→ xi) and di = LCP2(yi → b), for 1 ≤ i ≤W .

From Lemma 4 we have E2[a,b] =
∑W

i=1 cidi. We know that 0 ≤ ci ≤ qf ,

0 ≤ di ≤ q` (by Lemma 2) and
∑W

i=1 ci ≤ 1,
∑W

i=1 di ≤ 1 (by Lemma 3). Without
loss of generality, assume that f ≥ `, so min

{
qf , q`

}
= qf and max

{
qf , q`

}
= q`

(since 0 ≤ q ≤ 1). Note that qf always upper bounds E2[a,b], since E2[a,b] =
∑W

i=1 cidi ≤ qf
∑W

i=1 di ≤ qf ; we use this upper bound in the first case of (10).

On the other hand, qf+` · W also upper bounds E2[a,b], since
∑W

i=1 cidi ≤∑W
i=1 q

fq` = qf+` · W . If q` · W = 1, the two upper bounds are identical. If
q` ·W < 1, then qf+` ·W < qf , so we use qf+` ·W as the upper bound in the
second case of (10).

Theorem 4. Let T ≥ 3. Assume that values UBT−1[γ, γ̂] have been computed
for all γ, γ̂ ∈ {0, 1}M \0 such that the UB Property for (T − 1) holds. Let values
UBT [γ, γ̂] be computed using the algorithm in Figure 3. Then the UB Property
for T holds.

Proof. Throughout this proof, “Line X” refers to the X th line in Figure 3. Let
a,b ∈ {0, 1}N \0. It suffices to show that if γ = γa in Line 1 and γ̂ = γb in Line 2,
then the value UBT [γ, γ̂] computed in Figure 3 satisfies ET [a,b] ≤ UBT [γ, γ̂].
Enumerate the nonzero output masks for the LT as y1,y2, . . . ,y2N−1, and let
the corresponding input masks be given by x1,x2, . . . ,x2N−1, respectively. From

Lemma 4 we have ET [a,b] =
∑2N−1

i=1 ET−1 [a,xi] · LCP
T (yi → b). If γyi

6=

γb (= γ̂), then LCPT (yi → b) = 0 (by the Piling-up Lemma), so these yi can
be removed from consideration, leaving ȳ1, ȳ2, . . . , ȳL, and corresponding input
masks, x̄1, x̄2, . . . , x̄L, respectively.

Let ci = ET−1 [a, x̄i] and di = LCPT (ȳi → b), for 1 ≤ i ≤ L. Then

ET [a,b] =
∑L

i=1 cidi. Let ` = wt(γ̂) (Line 3), and let ui = UBT−1[γ, γx̄i
], for

1 ≤ i ≤ L. Then 0 ≤ ci ≤ ui, 0 ≤ di ≤ q` (the latter by Lemma 2), and
∑

ci ≤ 1,
∑

di ≤ 1 (by Lemma 3). It follows immediately that ET [a,b] ≤ q` ·
∑L

i=1 di ≤ q`.
We use this upper bound in Case I (Lines 19, 20).

Now note that some of the terms in {ui} are identical, since if 1 ≤ i < j ≤ L

and γx̄i
= γx̄j

, then ui = uj . We use this to define an equivalence relation on
{x̄i}: x̄i ≡ x̄j iff γx̄i

= γx̄j
. It can be seen that the number of elements in the

equivalence class of x̄i is W [γx̄i
, γ̂].

Select indices j1, j2, . . . , jH such that {x̄jh
}H
h=1 consists of one representative

from each equivalence class. Let γh = γx̂jh
, Uh = ujh

= UBT−1[γ, γh], and
Wh = W [γh, γ̂], for 1 ≤ h ≤ H. Without loss of generality, assume that the
indices are ordered such that U1 ≥ U2 ≥ · · · ≥ UH . It is an important observation
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1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.
12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

(Case I)

(Case II)

(Case III)

(Case IV)

UBT−1 [γ, γ1] ≥ UBT−1 [γ, γ2] ≥ · · · ≥ UBT−1 [γ, γH ]

For each γ ∈ {0, 1}M \ 0

For each γ̂ ∈ {0, 1}M \ 0

Order the elements of Γ as γ1, γ2, . . . , γH such that

Γ ←
{
ξ ∈ {0, 1}M \ 0 : W [ξ, γ̂] 6= 0

}
`← wt(γ̂)

If Su > 1 then
Hu ← H

Hu ← min
{

G : 1 ≤ G ≤ H,
∑G

h=1 UhWh > 1
}

δu ← 1−
∑Hu−1

h=1
UhWh

Hq ← H

If Sq > 1 then

δq ← 1− q` ·
∑Hq−1

h=1
Wh

Hq ← min
{

G : 1 ≤ G ≤ H, q` ·
∑G

h=1 Wh > 1
}

Su ←
∑H

h=1 UhWh

Wh ←W [γh, γ̂], for 1 ≤ h ≤ H

Uh ← UBT−1 [γ, γh], for 1 ≤ h ≤ H

Else if (Su ≤ 1 < Sq) or (1 < Su, Sq and Hu > Hq) then

UBT [γ, γ̂]←
(

q` ·
∑Hq−1

h=1
UhWh

)

+ UHq
· δq

Else if
(

1 < Su, Sq and Hu = Hq
def
= H̃

)

then

Sq ← q` ·
∑H

h=1 Wh

UBT [γ, γ̂]←
(

q` ·
∑H̃−1

h=1
UhWh

)

+ min
{
U

H̃
· δq , q` · δu

}

If (Sq ≤ 1 < Su) or (1 < Su, Sq and Hu < Hq) then

UBT [γ, γ̂]← q`

Else if (Su, Sq ≤ 1) then

UBT [γ, γ̂]← q`Su

Fig. 3. Algorithm to compute UBT [ ] for T ≥ 3

that the values γh, Uh, and Wh are the same as those defined in Lines 5, 7, and
8. The following four facts are straightforward.

Fact 1
∑H

h=1 Wh = L.

Fact 2
∑L

i=1 ui =
∑H

h=1 UhWh = Su (Su is defined in Line 9).

Fact 3 q`L = q` ·
∑H

h=1 Wh = Sq (Sq is defined in Line 10).

Using Fact 2, we get the upper bound ET [a,b] =
∑L

i=1 cidi ≤ q` ·
∑L

i=1 ui =
q`Su. If Su ≤ 1, this upper bound is no larger than that of Case I; if Su < 1, it
is strictly smaller. This is the upper bound we use in Case II (Lines 21, 22).
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The proofs of Cases I and II have parallels to the proofs of the two cases in
Theorem 3. For Cases III and IV, however, we require additional techniques,
since the terms which upper bound the ci (namely, the ui) are not, in general, all
the same (in the proof of Theorem 3, all the ci are upper bounded by qf ). The

intuition for what follows is this: Since
∑L

i=1 di ≤ 1, it is not necessary to replace

all the di by the value q` if the consequence is that
∑L

i=1 q
` > 1. Instead, certain

of the di are replaced by q` and the rest by 0, so that the resulting summation
is 1 (a residue term may be required). To ensure an upper bound, it is necessary
that the q` terms be multiplied by the largest of the ui terms. This is the reason
for the sorting in Lines 5–6. (A “cutoff” of the ui terms at the value 1 is also
applied.)

Sort {ci}, {di}, and {ui} in nonincreasing order to obtain the sequences {ċi},{

ḋi

}

, and {u̇i}, respectively. Clearly ċi ≤ u̇i, for 1 ≤ i ≤ L. Applying Lemma 5

we have
∑L

i=1 cidi ≤
∑L

i=1 ċiḋi. If Su =
∑L

i=1 u̇i ≤ 1, let c̈i = u̇i, for 1 ≤ i ≤ L.

If Su > 1, let Lu (1 ≤ Lu ≤ L) be minimum such that
∑Lu

i=1 u̇i > 1, and let {c̈i}

consist of the first L terms of u̇1, u̇2, . . . , u̇Lu−1,
(

1−
∑Lu−1

i=1 u̇i

)

, 0, 0, 0, . . ..

If Sq = q`L ≤ 1, let d̈i = q` for 1 ≤ i ≤ L. Otherwise, if Sq > 1, let Lq =
⌊

1
q`

⌋

,

and let
{

d̈i

}

consist of the first L terms of q`, . . . , q`
︸ ︷︷ ︸

Lq terms

,
(
1− q`Lq

)
, 0, 0, 0, . . ..

Then {ċi}, {c̈i}, and {ḋi} satisfy the conditions on the identically named se-

quences in the statement of Lemma 6, so
∑L

i=1 ċiḋi ≤
∑L

i=1 c̈iḋi. Also, {ḋi},

{d̈i}, and {c̈i} satisfy the conditions on the three sequences in the statement of

Lemma 6 (in that order), and therefore
∑L

i=1 c̈iḋi ≤
∑L

i=1 c̈id̈i. Combining, we

get ET [a,b] ≤
∑L

i=1 c̈id̈i, so it remains to show that
∑L

i=1 c̈id̈i ≤ UBT [γ, γ̂].

Define the partial sums P0 = 0 and Ph =
∑h

j=1 Wj , for 1 ≤ h ≤ H (so PH = L).

Case III (Lines 23, 24) If either condition in Line 23 holds, then

(a) c̈i = Uh and d̈i = q`, for (Ph−1 + 1) ≤ i ≤ Ph, 1 ≤ h ≤ (Hq − 1)

(b) c̈i = UHq
, for (PHq−1 + 1) ≤ i ≤ PHq

(c)
∑PHq

i=(PHq−1+1) d̈i = δq

(d) d̈i = 0, for i ≥ (PHq
+ 1)

It follows that
∑L

i=1 c̈id̈i =
(

q` ·
∑Hq−1

h=1 UhWh

)

+ UHq
· δq, which is the upper

bound used in Case III.

Case IV (Lines 25, 26) If the condition in Line 25 holds, then (using the
definition of H̃ in Line 25)

(a) c̈i = Uh and d̈i = q`, for (Ph−1 + 1) ≤ i ≤ Ph, 1 ≤ h ≤ (H̃ − 1)

(b)
∑PH̃

i=(PH̃−1
+1) c̈i = δu and

∑PH̃

i=(PH̃−1
+1) d̈i = δq

(c) c̈i = d̈i = 0, for i ≥ (PH̃ + 1)
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Let Y = q` ·
∑H̃−1

h=1 UhWh. For (PH̃−1 + 1) ≤ i ≤ PH̃ , replacing c̈i by its upper

bound UH̃ gives
∑L

i=1 c̈id̈i ≤ Y + UH̃ · δq. For i in the same range, replacing d̈i

by its upper bound q` gives
∑L

i=1 c̈id̈i ≤ Y + q` · δu. Combining the above, we

get
∑L

i=1 c̈id̈i ≤ Y + min
{
UH̃ · δq, q` · δu

}
, the right-hand side of which is the

upper bound used in Case IV.

7 Application of New Upper Bound to Rijndael

To test our new upper bound, we generated random invertible LTs for SPNs
with various parameters. We found that for LTs with branch number B = M ,
our upper bound was consistently superior to that of Hong et al. [9]. We give the
results for one such LT in Appendix B. For LTs with B = (M + 1), our upper
bound did not appear to improve on that of [9].

However, the bulk of our analysis we reserved for Rijndael with the following
parameters:N = 128, R = 10,M = 16, n = 8, q = 2−6. Note that the result of [9]
does not apply to Rijndael, since for Rijndael, B = 5 < M = 16) [5]. Tailoring
our algorithm to any particular SPN involves computation of the values in W [ ]
(Definition 7), which for Rijndael is a 216×216 table. The Rijndael LT is depicted
in Figure 4.

MDS MDS MDS MDS

Fig. 4. Rijndael linear transformation

The 128-bit input block can be viewed as an array of 16 bytes. These bytes
are first shuffled according to the figure, and then consecutive 4-byte sequences
are fed into copies of the same highly diffusive 32-bit LT (based on maximum-
distance-separable (MDS) codes). We first computed the 24 × 24 W [ ] table
for the MDS LT, denoted WMDS[ ], by transforming all 232 output masks (see
Definition 7). Given γ ∈ {0, 1}16 representing a pattern of active s-boxes for the
Rijndael LT input, a corresponding 4-bit input pattern is determined for each
copy of the MDS LT simply by tracing through the byte “shuffle”: denote these
γ1, γ2, γ3, γ4 ∈ {0, 1}4, from left to right, respectively. Then given γ̂ ∈ {0, 1}16

representing a pattern of active s-boxes for the Rijndael LT output, partition γ̂

into consecutive 4-bit sequences representing output patterns for the MDS LT,
denoted γ̂1, γ̂2, γ̂3, γ̂4 ∈ {0, 1}4. Then W [γ, γ̂] =

∏4
i=1 WMDS[γi, γ̂i].

Since W [ ] turns out to be quite sparse (roughly 80,000,000 of the 232 entries
are nonzero, around 2%), we precompute it, and store the nonzero entries. By
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doing this first for the WMDS[ ] table, computation of W [ ] becomes fairly fast.
Computing the upper bound in the case T = 2 using Theorem 4 is easy. The
main work involves executing the algorithm in Figure 3 for T = 3 . . . 10. Lines 3–
26 are executed (216 − 1)2 times for each value of T (3 ≤ T ≤ 10), a total
of ≈ 235 iterations. Once the values γ1, γ2, . . . , γH in Line 5 are known, the
time complexity of Lines 7–26 is O(H). Since the values in Γ in Line 4 can
be precomputed and stored during generation of W [ ], the sorting specified in
Lines 5–6 is the most expensive (O(H logH)). The average value for H is 1191,
although individual values vary widely.

For a fixed value of γ, computing UBT [γ, γ̂] for all γ̂ ∈ {0, 1}M \ 0 and all
T (2 ≤ T ≤ 10) takes approximately 40 minutes on a Sun Ultra 5, for a total
running time in the range of 44,000 hours on that platform. We completed the
computation by distributing it over roughly 60 CPUs for several weeks.

Our results for Rijndael are given in Figure 5. For 7 ≤ T ≤ 10, the upper
bound value is 2−75, giving a corresponding lower bound on the data complexity
of LC of 278, for a 96.7% success rate (see Section 3). Note that for Algorithm 2
as described in Section 3, T = R− 1 = 9.
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Fig. 5. New upper bound applied to Rijndael

8 Conclusion

We have presented a new method for computing an upper bound on the max-
imum average linear hull probability for SPNs. Our method has the advantage
that it can be computed for an SPN with any LT layer, whereas the best previ-
ous result (Hong et al. [9]) applies only to SPNs with highly diffusive LTs, i.e.,
those having branch number B = M or B = (M + 1), where M is the number
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of s-boxes per round. In addition, our upper bound is a function of the num-
ber of rounds being approximated; other known upper bounds do not vary with
the number of rounds. When applied to an SPN whose LT has branch number
B = (M + 1) (the maximal case), our upper bound does not appear to improve
on that of [9]. For SPNs whose LTs have branch number B = M , our upper
bound is consistently superior to that of [9].

A significant part of our work involved application of our method to Rijndael
(with N = 128 and R = 10). This yielded the upper bound UB = 2−75, for a
corresponding lower bound on the data complexity of LC of 8

UB
= 278 (for a

96.7% success rate). Note that this does not demonstrate the existence of a such
an attack, but is, to our knowledge, the first such lower bound.
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Appendix A

Proof (Lemma 5). Without loss of generality, assume that {di} is already sorted
in nonincreasing order, so ḋi = di. If m = 2 and {ci} is not sorted, i.e., if c1 < c2,
then ċ1 = c2 and ċ2 = c1, so

2∑

i=1

cidi ≤
2∑

i=1

ċiḋi ⇐⇒ c1d1 + c2d2 ≤ c2ḋ1 + c1ḋ2

⇐⇒ (c2 − c1)d2 ≤ (c2 − c1)d1

⇐⇒ d2 ≤ d1 ,

which is true since {di} was assumed to be sorted. Let m ≥ 3 and assume
the lemma holds for m − 1. Let s be the index of a minimal element in {ci},
and let {ĉi}

m
i=1 be the sequence obtained by exchanging cs and cm in {ci}. Then

ċm = ĉm, and therefore sorting {ĉi}
m−1
i=1 in nonincreasing order gives {ċi}

m−1
i=1 . By

an argument similar to that of the m = 2 case, we have
∑m

i=1 ciḋi ≤
∑m

i=1 ĉiḋi.

Applying the induction hypothesis to the first m−1 terms of {ĉi} and {ḋi} gives
∑m−1

i=1 ĉiḋi ≤
∑m−1

i=1 ċiḋi. Combining these facts, we get

m∑

i=1

cidi ≤
m∑

i=1

ĉiḋi =

m−1∑

i=1

ĉiḋi + ĉmḋm ≤
m−1∑

i=1

ċiḋi + ċmḋm =

m∑

i=1

ċiḋi .

Proof (Lemma 6). Let

Ȧ =

m̃∑

i=1

ċi Ḃ =
∑m

i=m̃+1 ċi Ċ =

m∑

i=1

ċi

Ä =
m̃∑

i=1

c̈i B̈ =
∑m

i=m̃+1 c̈i C̈ =
m∑

i=1

c̈i

By assumption, Ȧ ≤ Ä, Ḃ ≥ B̈, and Ċ ≤ C̈. Let ∆A = Ä − Ȧ ≥ 0 and
∆B = Ḃ − B̈ ≥ 0. Note that ∆A−∆B = C̈ − Ċ ≥ 0. We have

m̃∑

i=1

c̈iḋi ≥
m̃∑

i=1

ċiḋi +∆A · ḋm̃ (11)

m∑

i=m̃+1

c̈iḋi ≥
m∑

i=m̃+1

ċiḋi −∆B · ḋm̃+1 (12)
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Adding (11) and (12), we get

m∑

i=1

c̈iḋi ≥
m∑

i=1

ċiḋi +∆A · ḋm̃ −∆B · ḋm̃+1 ≥
m∑

i=1

ċiḋi +∆A · ḋm̃+1 −∆B · ḋm̃+1

=

m∑

i=1

ċiḋi + (∆A−∆B) · ḋm̃+1

≥
m∑

i=1

ċiḋi .

Appendix B
Some of the LTs which we randomly generated were for SPNs with parameters
N = 24, M = 3, and n = 8. For one example of such an LT for which B = M = 3,
we plot our upper bound against that of Hong et al. [9] in Figure 6, using a
log2 scale on the y-axis. We also plot the value qM (the upper bound of [9] for
B = (M + 1) = 4) for comparison purposes. On the x-axis we use minimum
nonlinearity, NLmin; for n = 8, the relationship between NLmin and q is given

by q =
(
1− NLmin

128

)2
. For this particular LT, it happened that our upper bound

settled on a fixed value for T = 2, and did not decrease with an increasing
number of rounds—this is the value we plot for each NLmin.
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Fig. 6. Comparison of new upper bound with that of Hong et al. [9]


