
Encryption Modes with Almost Free Message

Integrity

Charanjit S. Jutla

IBM T. J. Watson Research Center,
Yorktown Heights, NY 10598-704

Abstract. We define a new mode of operation for block encryption
which in addition to assuring confidentiality also assures message in-
tegrity. In contrast, previously for message integrity a separate pass
was required to compute a cryptographic message authentication code
(MAC). The new mode of operation, called Integrity Aware CBC (IACBC)
requires a total of m + 2 block encryptions on a plain-text of length m

blocks. The well known CBC (cipher block chaining) mode requires m

block encryptions. The second pass of computing the CBC-MAC essen-
tially requires additional m block encryptions. A new highly paralleliz-
able mode (IAPM) is also shown to be secure for both encryption and
message integrity.

1 Introduction

Symmetric key encryption is an integral part of world of communication today.
It refers to the schemes and algorithms used to communicate data secretly over
an insecure channel between parties sharing a secret key. It is also used in other
scenarios like data storage.
There are two primary aspects of any security system: confidentiality and au-

thentication. In its most prevalent form, confidentiality is attained by encryption
of bulk digital data using block ciphers. The block ciphers (e.g. DES [15]), which
are used to encrypt fixed length data, are used in various chaining modes to
encrypt bulk data. One such mode of operation is cipher block chaining (CBC)
([1, 9, 14]). The security of CBC has been well studied [2].
Cipher block chaining of block ciphers is also used for authentication be-

tween parties sharing a secret key. The CBC-MAC (CBC Message Authenti-
cation Code) is an international standard [10]. The security of CBC-MAC was
demonstrated in [4]. Authentication in this setting is also called Message In-
tegrity.
Despite similar names, the two CBC modes, one for encryption and the other

for MAC are different, as in the latter the intermediate results of the computation
of the MAC are kept secret. In fact in most standards (TLS, IPsec [19, 17]) and
proprietary security systems, two different passes with two different keys, one
each of the two modes is used to achieve both confidentiality and authentication.
Nevertheless, it is enticing to combine the two passes into one so that in a

single cipher block chaining pass, both confidentiality and authentication are

526 Charanjit S. Jutla

assured. Many such attempts have been made, which essentially use a simple
checksum or manipulation detection code (MDC) in the chaining mode ([16, 13,
6]). Unfortunately, all such previous schemes are susceptible to attacks (see e.g.
[18]).

We mention here that there are two alternative approaches to authenticated
encryption. The first is to generate a MAC using universal hash functions as
in UMAC ([3]). UMACs on certain architectures can be generated rather fast.
However, UMAC suffers from requiring too much key material or a Pseudoran-
dom number generator (PRNG) to expand the key. In another scheme, block
numbers are embedded into individual blocks to thwart attacks against message
integrity ([11]). However, this makes the cipher-text longer.

In this paper, we present a new variant of CBC mode, which in a single
pass achieves both confidentiality and authentication. To encrypt a message of
length m blocks, it requires a total of (m + logm) block encryptions. All other
operations are simple operations, like exclusive-or. To contrast this with the
usual CBC mode, the encryption pass requires m block encryptions, and the
CBC-MAC computation requires another m block encryptions.

Our new mode of operation is also simple. A simpler (though not as efficient)
version of the mode just requires a usual CBC encryption of the plain-text
appended with the checksum (MDC), with a random initial vector r. As already
mentioned, such a scheme is susceptible to message integrity attacks. However, if
one “whitens” the complete output with a random sequence, the scheme becomes
secure against message integrity attacks. Whitening just refers to xor-ing the
output with a random sequence. The random sequence could be generated by
running the block cipher on r + 1, r + 2, ... r +m (but with a different shared
key). This requires m additional cryptographic operations, and hence is no more
efficient than generating a MAC.

The efficiency of the new mode comes from proving that the output whiten-
ing random sequence need only be pair-wise independent. In other words, if the
output whitening sequence is s1, s2,...sm, then each si is required to be random,
but only pairwise-independent of the other entries. Such a sequence is easily gen-
erated by performing only logm cryptographic operations like block encryption.
A simple algebraic scheme can also generate such a sequence by performing only
two cryptographic operations.

In fact, an even weaker condition than pair-wise independence suffices. A
sequence of uniformly distributed n-bit random numbers s1, s2,...sm, is called
pair-wise differentially-uniform if for every n-bit constant c, and every pair i, j,
i 6= j, probability that si ⊕ sj is c is 2

−n. We show that the output whitening
sequence need only be pair-wise differentially-uniform. A simple algebraic scheme
can generate such a sequence by performing only one cryptographic operation.

The pair-wise independent sequence generated to assure message integrity
can also be used to remove chaining from the encryption mode while still as-
suring confidentiality. This results in a mode of operation for authenticated en-
cryption which is highly parallelizable. Once again, we show that a pair-wise

Encryption Modes with Almost Free Message Integrity 527

differentially-uniform sequence suffices to guarantee security of both confiden-
tiality and authentication in this parallelizable version.
Recently and independently, Gligor and Donescu ([7]) also described a mode

of operation similar to CBC (but not the parallelizable mode) which has built-
in message integrity, although with a slightly weaker security bound than our
construction.
The rest of the paper is organized as follows. Section 2 describes the new mode

of operation. Section 3 gives definitions of random permutations, and formalizes
the notions of security, for both confidentiality and message integrity. In section
4 we prove that the new (parallelizable) scheme is secure for message integrity.
In section 5 we state the secrecy theorem of the new mode of operation.

2 The New Modes of Operation

We begin by defining two properties of sequence of random numbers which are
slightly weaker than the well known pair-wise independence property. The first
property also appeared in [8].

2.1 Pairwise Differentially-Uniform Random Numbers

Definition 2.1 (pair-wise differentially-uniform): A sequence of uniformly dis-
tributed n-bit random numbers s1, s2, ..., sz, is called pair-wise differentially-
uniform if for every n-bit constant c, and every pair i, j, i 6= j, probability that
si ⊕ sj is c is 2

−n.
Definition 2.2A sequence of random numbers s1, s2, ..., sz uniformly distributed
in GFp, is called pair-wise differentially-uniform in GFp if for every constant c
in GFp, and every pair i, j, i 6= j, probability that (si − sj) mod p is c is 1/p.

2.2 The New Modes - IACBC and IAP

Now we describe the new modes of operation for encryption, which also guarantee
message integrity. We will describe the parallelizable mode in more detail, as it
is for this mode that we provide detailed proofs in this paper.
The mode similar to CBC is called IACBC for integrity aware cipher block

chaining. It is described in Fig 1. The parallelizable mode is called IAPM for
integrity aware parallelizable mode. It is described in Fig 2. We now give more
details for IAPM. After reading the details for IAPM, the definition of IACBC
will be clear from Fig 1.
Let n be the block size of the underlying block cipher (or pseudo-random

permutation). For now we assume that if the block cipher requires keys of length
k, then this mode of operation requires two keys of length k . Let these keys be
calledK1 andK2. From now on, we will use fx to denote the encryption function
under key x. The same notation also holds for pseudo-random permutations.
The message to be encrypted P , is divided into blocks of length n each. Let

these blocks be P1, P2, ...Pz−1. As in CBC, a random initial vector of length n

528 Charanjit S. Jutla

 f f f
K1 K1 K1

 f
K1

 f
K1
 f
K1

.....

P checksum

M

C C

S

N

 f

K1

N
0

N1 N2

M
1

M2

C
0 C1 C

2

S1 S
2

S
0

P P
1 2

 f f f

K2 K2 K2

rr+1 r+2 r+t

1 2 t

...

S
0 S1S

W W W

z−1

z−1

z

z−1

z

z−1 z

Fig. 1. Encryption with Message Integrity (IACBC)

 f f f
K1 K1 K1

 f
K1

 f
K1
 f
K1

.....

P checksum

M

C C

S

N
N1 N2

M
1

M2

C
0 C1 C

2

S1 S
2

S
0

P P
1 2

 f f f

K2 K2 K2

r

1 2 t

...

S
0 S1S

S S
2 S S

1

W W W

r W W
1 1+t−2

z

z−1

z

z

zz−1

z−1

z−1 z

Fig. 2. Parallelizable Encryption with Message Integrity (IAPM)

Encryption Modes with Almost Free Message Integrity 529

(bits) is chosen. This random vector r is expanded into t = O(log z) new random
vectors W1, ...Wt using the block cipher and key K2 as follows:

W1 = fK2(r)
for i = 2 to t do

Wi = fK2(W1 + i− 2)
end for

As we will show in section 4, with high probability, the t vectors are independent.
The t random and independent vectors are used to prepare z + 1 new pair-wise
differentially-uniform random vectors S0, S1, ..., Sz. There are several ways to
generate such a sequence, some requiring t to be only one. Such a scheme will
be described towards the end of this section. For now, consider the following
method using subsets (t = dlog(z + 2)e):

for i = 1 to 2t − 1 do
Let < a1, a2, ...at > be the binary representation of i
Si−1 =

∑t
j=1 (aj ·Wj)

end for

The summation in the for loop above is an xor-sum.

The cipher-text message C = < C0, C1, ..., Cz > is generated as follows (see
Figure 2). The encryption pseudo-code follows:

C0 = r
for i = 1 to z − 1 do

Mi = Pi ⊕ Si
Ni = fK1(Mi)
Ci = Ni ⊕ Si

end for
checksum =

∑z−1
i=1 Pi

Mz = checksum ⊕ Sz
Nz = fK1(Mz)
Cz = Nz ⊕ S0

Again, the summation above is an xor-sum. Note that S0 is used in the last
step.

It is easy to see that the above scheme is invertible. The inversion process
yields blocks P1, P2, ..., Pz. The decrypted plain-text is < P1, P2, ..., Pz−1 >.
Message integrity is verified by checking Pz = P1 ⊕ P2 ⊕ ...⊕ Pz−1.

The random vectors W1, ...Wt can also be generated as in Fig 1, in which
case C0 is set to fK1(r) (instead of r).

There are many other ways of generating the pair-wise differentially-uniform
vectors S0, S1, ..., Sz (z < 2

n). One could generate a sequence of pairwise differ-
entially uniform vectors by an algebraic construction in GFp as follows: generate
two random vectors W1, and W2, and then let Si = (W1 +W2 ∗ i) mod p, where
p is a prime of appropriate size. For example, if the block cipher has block size
64 bits, p could be chosen to be 264 − 257. This leads to a fast implementation.

A sequence of 2n − 1 n-bit uniform random numbers, which are pair-wise
differentially uniform, can also be generated by viewing the n-bit numbers as
elements of GF(2n). Consider, Si = e(i) · W , where W is a random number

530 Charanjit S. Jutla

in GF(2n), e(i) is a one to one function from Z2n−1 to non-zero elements of
GF(2n), and the multiplication is in GF(2n). Then Si is a pair-wise differen-
tially uniform sequence of uniformly distributed random numbers. Note that
this requires generation of only one W (i.e. t = 1).
The GFp construction with only oneW , instead of two, is not pair-wise differ-

entially uniform (as opposed to the previous construction in GF(2n)). However,
it is pair-wise differentially uniform in GFp (see definition 2.2). More precisely,
the sequence Si = (W1 ∗ i) mod p, is pair-wise differentially uniform in GFp
(assuming W1 is uniformly distributed in GFp). Such a sequence can be used
securely in a slight variant of the mode described above where “whitening” now
refers to addition modulo 2n (see section 4.2).

3 Encryption Schemes: Message Security with Integrity

Awareness

We give definitions of schemes which explicitly define the notion of secrecy of
the input message. Of course, pseudo-random permutations can be used to build
encryption schemes which guarantee such message secrecy ([2], [12]).
In addition, we also define the notion of message integrity. Moreover, we allow

arbitrary length input messages (upto a certain bound).
Let Coins be the set of infinite binary strings. Let l(n) = 2O(n), and w(n) =

O(n). Let N be the natural numbers.
Definition A (probabilistic, symmetric, stateless) encryption scheme with mes-
sage integrity consists of the following:

– initialization: All parties exchange information over private lines to estab-
lish a private key x ∈ {0, 1}n. All parties store x in their respective private
memories, and |x| = n is the security parameter.

– message sending with integrity:

Let E : {0, 1}n × Coins×N × {0, 1}l(n) → {0, 1}l(n) ×N

D : {0, 1}n ×N × {0, 1}l(n) → {0, 1}l(n) ×N

MDC : N × {0, 1}l(n) → {0, 1}w(n)

be polynomial-times function ensembles. In E, the third argument is sup-
posed to be the length of the plain-text, and E produces a pair consisting of
cipher-text and its length. Similarly, in D the second argument is the length of
the cipher-text. We will drop the length arguments when it is clear from con-
text. The functions E and D have the property that for all x ∈ {0, 1}n, for all
P ∈ {0, 1}l(n), c ∈ Coins

Dx(Ex(c, P)) = P‖MDC(P)

We will usually drop the random argument to E as well, and just think of E
as a probabilistic function ensemble.It is also conceivable that MDC may depend
on Coins, cipher-text.

Encryption Modes with Almost Free Message Integrity 531

Definition (Security under Find-then-Guess [2]) Consider an adversary A that
runs in two stages. During the adversary’s find stage he endeavors to come up
with a pair of equal length messages, P 0, P 1, whose encryptions he wants to tell
apart. He also retains some state information s. In the adversary’s guess stage
he is given a random cipher-text y for one of the plain-texts P 0, P 1, together
with s. The adversary is said to “win” if he correctly identifies the plain-text.

An Encryption Scheme is said to be (t, q, µ, ε)-secure in the find-then-guess
sense, if for any adversary A which runs in time at most t and asks at most q
queries , these totaling at most µ bits,

AdvA
def
= 2 · Pr[(P 0, P 1, s)←AEx(·)(find); b←{0, 1}; y←Ex(P

b) :

AEx(·)(guess, y, s) = b]− 1 ≤ ε

The following notion of security is also called integrity of ciphertext ([5]).
Definition (Message Integrity): Consider an adversary A running in two stages.
In the first stage (find) A asks r queries of the oracle Ex. Let the oracle replies
be C1, ...Cr. Subsequently, A produces a cipher-text C ′, different from each Ci,
i ∈ [1..r]. Since D has length of the cipher-text as a parameter, the breakup of
Dx(C

′) as P ′‖P ′′, where |P ′′| = w(n), is well defined. The adversary’s success
probability is given by

Succ
def
= Pr[MDC(P ′) = P ′′]

An encryption scheme is secure for message integrity if for any adversary A, A’s
success probability is negligible.

4 Message Integrity

In this section we show that the mode of operation IAPM in Fig 2 guarantees
message integrity with high probability.

In the following theorem, we will assume that the block cipher (under a key
K1) is a a random permutation F . We also assume that the t W ’s are generated
using an independent random permutation G (for instance, using a different key
K2 in a block cipher).

Let the adversary’s queries in the first stage be p1, P 2, ...Pm. We write p1

in lower case, as for each adversary p1 is fixed. All random variables will be
denoted by upper case letters. Let the corresponding ciphertexts be C1, ..., Cm.
We will use C to denote the sequence of ciphertext messages C1, ..., Cm. For all
random variables corresponding to a block, we will use superscripts to denote
the message number, and subscripts to denote blocks in a particular message.
Thus Ci

j will be the random variable representing the jth block in ciphertext

message i. More precisely, this variable should be written C i
j(F,G), as it is a

function of the two permutations. However, we will drop the arguments when it
is clear from context.

532 Charanjit S. Jutla

Let the adversary’s query in the second stage be cipher-text C ′, different
from all ciphertexts in the first stage. We will use primed variables to denote the
variables in the second stage.
We will use W to denote the set of variables {W i

j : i ∈ [1..m], j ∈ [1..t]} ∪

{W ′
j , j ∈ [1..t]}. We will use S

i (S′) to denote masks or “whitening” blocks

generated using W i (W ′ resp). Any method can be used to generate Si from
W i, as long as Sij are pairwise differentially uniform. For a particular adversary,

Sij is a function of permutation G and the initial vector, and hence should (more

precisely) be written as Sij(G,C
i
0(F,G)) (C

i
0(F,G) being the IV used to generate

W i
1). But, we will drop the arguments as it will be clear from context. For any

constant r, we will denote by Sij(r) the random variable S
i
j(G, r).

The variables M and N are as in Fig 2. For example, M i
j = P i

j ⊕ S
i
j .

We start with some informal observations to aid the reader in the eventual
formal proof. Since the new ciphertext C ′ is different from all old ciphertexts,
it must differ from each old ciphertext C i in a least block number, say d(i).
For each Ci (except at most one Ck), the block number d(i) = 0, with high
probability. In Lemma 3 we show that with high probability N ′

d(k) is different

from all old N i
j , and all other new N ′ blocks (except for a special case). Thus,

M ′
d(k) is random. Then it follows (Theorem 1) that in either case the checksum

is unlikely to validate.
We first prove the theorem for schemes in which the pairwise differentially

uniform sequence is generated using only one W , i.e. t = 1. The general case is
addressed in a later subsection.

Theorem 1. Let A be an adversary attacking the message integrity of IAPM
(t = 1) with random permutations F and G. Let A make at most m queries in
the first stage, totaling at most µ blocks. Let u = µ+m. Let v be the maximum
number of blocks in the second stage. Then for adversary A,

Succ < (2 ∗ u2 +m2 + (m+ 1)2 + u+ v + 2 + o(1)) ∗ 2−n

Proof:

In the first stage the adversary makes queries with a total of at most m plain-
text messages (chosen adaptively). W.l.o.g. assume that the adversary actually
makes exactly m total message queries in the first stage. Let Li be the random
variable representing the length of ciphertext C i (i.e. the checksum block has
index Li − 1). Similarly, L′ will denote the length of C ′.
We prove that either the adversary forces the following event E0, or the event

E1 happens with high probability. In either case the checksum validates with low
probability.
The first event E0 is called deletion attempt, as the adversary in this case

just truncates an original ciphertext, but retains the last block.
Event E0 (deletion attempt): There is an i ∈ [1..m], such that 2 ≤ L′ < Li,

and

(i) ∀j ∈ [0..L′ − 2] : C ′j = Ci
j

Encryption Modes with Almost Free Message Integrity 533

and (ii) C ′L′−1 = Ci
Li−1

Event E1 says that there is a block in the new ciphertext C ′, such that its
N variable is different from all previous Ns (i.e. from original ciphertexts from
the first stage), and also different from all other new Ns.

Event E1: there is an x ∈ [1..L′ − 1] such that

(i) ∀s ∈ [1..m]∀j ∈ [1..Ls − 1] : N ′x 6= Ns
j

and (ii) ∀j ∈ [1..L′ − 1], j 6= x : N ′x 6= N ′j

We next show that in both cases (i.e E0 or E1) the checksum validates with
low probability.
For the case that E0 happens, we have (since S ′ = Si and N ′L′−1 = N i

Li−1),

(

L′−1
∑

j=1

P ′j = 0) ∧ E0

⇒
L′−2
∑

j=1

(P i
j) +M i

Li−1 + SiL′−1 = 0

≡
L′−2
∑

j=1

(P i
j) +

Li−2
∑

j=1

(P i
j) + SiLi−1 + SiL′−1 = 0

Note that ri can be chosen after P i has been determined (as P i is a deterministic
function of C1, . . . , Ci−1), and hence the Sis are independent of P i. Since the
Sis are pairwise differentially uniform and L′ < Li, the above event happens
with probability at most 2−n.
For the case E1, by Lemma 2, the checksum validates with probability at

most 1/(2n − u− v)
Thus the adversary’s success probability is upper bounded by

Pr[¬(E0 ∨ E1)] +
1

2n − (u+ v)
+
1

2n

which by Lemma 3 is at most

(u2 +m2 + u+ v + 2) ∗ 2−n + (u2 + (m+ 1)2) ∗ 2−n +O(u+ v) ∗ 2−2n

2

Lemma 2: Pr[
∑L′−1

j=1 P ′j = 0 | E1] ≤
1

2n−(u+v)

Proof: F being a random permutation, under E1, F−1(N ′x) can not take values
already assigned to F−1(Ns

j), s ∈ [1..m], j ∈ [1..L
s − 1]. Also, F−1(N ′x) can

be chosen after F−1(N ′j) have been assigned values (j 6= x). Thus, under the

condition that event E1 has happened we have that M ′
x = F−1(N ′x) can take

any of the other values, i.e. excluding the following (at most) (µ+m) + L′ − 2
values, with equal probability (independently of C, C ′, ri, i ∈ [1..m], G, and
hence independently of W , and independent of E1 itself):

534 Charanjit S. Jutla

– values already taken by M s
1 , ...,M

s
Ls−1, for each s, and

– the values to be taken (or already fixed) by M ′
j , j ∈ [1..L

′ − 1], j 6= x.

Now,
∑L′−1

j=1 P ′j = 0 iff

F−1(N ′x) = M ′
x =

L′−1
∑

j=1,j 6=x

(M ′
j ⊕ S

′
j) ⊕ S

′
x

Given any value of the RHS, since the LHS can take (at least) 2n − (u+ v − 2)
values, the probability of LHS being equal to RHS is at most 1/(2n − (u+ v)).
2

Lemma 3: Let events E0,E1 be as in Theorem 1. Then,

Prob[¬(E0 ∨ E1)] < (u2 +m2 + u+ v) ∗ 2−n + (u2 + (m+ 1)2) ∗ 2−n

Proof:We first calculate the probability of event (E0∨E1) happening under the
assumption that F and G are random functions (instead of random permuta-
tions). Since F (and G) is invoked only u times ((m+1) times resp.), a standard
argument shows that the error introduced in calculating the probability of event
(E0 ∨ E1) is at most (u2 + (m+ 1)2) ∗ 2−n.
We now consider an event, which says that all the M variables are different.

The goal is to claim independence of the corresponding N variables, and hence
the C variables. However, the situation is complicated by the fact that the con-
dition that all the M i

j variables for some i are different, may cause the variables

Ci′

j , for i
′ < i, to be no more independent. However, a weaker statement can be

proved by induction. To this end, consider the event E2(y), for y ≤ m:

∀i, i′ ∈ [1..y],∀j, j′, j ∈ [1..Li − 1], j′ ∈ [1..Li
′

− 1], (i, j) 6= (i′, j′) : (M i
j 6=M i′

j′)

Event E2(m) will also be denoted by E2.

We also predicate on the event that all the initial variables C i
0 are different.

Let E3 be the event that

∀i, j ∈ [1..m], i 6= j : Ci
0 6= Cj

0

For −→r = r1, ..., rm, all ri different, let E3(−→r) be the event that for all i ∈ [1..m],
Ci

0 = ri.

Let l() be the length of the first ciphertext (determined by the adversary). We
will use constant ci to denote strings of arbitrary block length. We will use c to
denote the sequence c1, ..., cm. The function | · | is used below to represent length
of a message in blocks. Given a sequence of ciphertext messages c1, ..., ci, i ≤ m,
let l(c1, ..., ci) be the length of the (i + 1)th ciphertext (which is determined
by the adversary, and therefore is a deterministic function of c1, ...ci). Recall
that each ciphertext includes the block C i

0, which is just r
i under E3(−→r). Also,

Encryption Modes with Almost Free Message Integrity 535

since C ′ is a deterministic function of C, given c1, ..., cm let the ciphertext in the
second stage be c′ with length l′. We have

Pr[¬(E0 ∨ E1) ∧ E2 | E3(−→r)] =
∑

c1: |c1|=l()

...
∑

ci: |ci|=l(ci−1,...,c1)

...

...
∑

cm: |cm|=l(cm−1,...,c1)

Pr[¬(E0 ∨ E1) ∧
∧

i

Ci = ci ∧ E2 | E3(−→r)] (1)

In this sum, if for some i, ci0 6= ri, then the inside expression is zero. Also, if
event E0 holds for c (which determines c′), then the inside expression above for
that c is zero. So, from now on, we will assume that E0 does not hold for C = c.
Then, the inside expression above becomes:

Pr[¬(E0 ∨ E1) ∧
∧

i

Ci = ci ∧ E2 | E3(−→r)]

≤ minx∈[1..l′−1]

{

∑

s∈[1..m],j∈[1..|cs|−1]

Pr[(N ′x = Ns
j) ∧

∧

i

Ci = ci ∧ E2 | E3(−→r)]

+
∑

j∈[1..l′−1],j 6=x

Pr[(N ′x = N ′j) ∧
∧

i

Ci = ci ∧ E2 | E3(−→r)]

}

For each s, j, we have (N ′x = Ns
j) iff (S

′
x∗ ⊕S

s
j∗) = (C

′
x⊕C

s
j), where S

′
x∗ , S

s
j∗

are the masks that are used for these ciphertext blocks. That is, j∗ = j if
j < |cs| − 1 and j∗ = 0 otherwise, and similarly x∗ = x if x < l′ − 1 and x∗ = 0
otherwise (Similarly for j 6= x we have (N ′x = N ′j) iff (S

′
x∗ ⊕ S

′
j∗) = (C

′
x ⊕ C

′
j)).

Since each of the summands in the expression above has a conjunct C = c
for some constant string c (and since the forged ciphertext C ′ is a function
of C), it follows that each of the summands in the first sum can be written as
Pr[(S′x∗(c

′
0)⊕S

s
j∗(c

s
0) = c′x⊕c

s
j) ∧C = c∧E2 | E3(−→r)]. Note that S′x∗(c

′
0)⊕S

s
j∗(c

s
0)

can in some cases be identically zero. As c is some constant string, then c′x ⊕ c
s
j

is also constant, and recall that the variables S(c0) depend only on the choice
of G. Thus, each of these summands (if S ′x∗(c

′
0)⊕S

s
j∗(c

s
0) is not identically zero)

can be bounded by

Pr[S′x∗(c
′
0)⊕ S

s
j∗(c

s
0) = c′x ⊕ c

s
j ∧ C = c ∧ E2 | E3(−→r)]

= Pr[C = c ∧ E2 | S′x∗(c
′
0)⊕ S

s
j∗(c

s
0) = c′x ⊕ c

s
j ∧ E3(

−→r)]

∗ Pr[S′x∗(c
′
0)⊕ S

s
j∗(c

s
0) = c′x ⊕ c

s
j | E3(

−→r)]

≤ (2−n)µ ∗ Pr[S′x∗(c
′
0)⊕ S

s
j∗(c

s
0) = c′x ⊕ c

s
j | E3(

−→r)]

where the last inequality follows by Claim 5 with µ =
∑

i∈[1..m](l(c
i−1, . . . , c1)−

1). A similar inequality holds for the summands in the second sum (i.e. N ′
x =

N ′j case). Thus, by Claim 4, the inside expression in equation (1) is at most
2−nµ ∗ (u+ v) ∗ 2−n. Since we have 2nµ summands, it follows that

Pr[¬(E0 ∨ E1) ∧ E2 | E3(−→r)] ≤ (u+ v) ∗ 2−n

536 Charanjit S. Jutla

Finally, we calculate Pr[¬(E0 ∨ E1)]

Pr[¬(E0 ∨ E1)]

≤ Pr[¬(E0 ∨ E1) ∧ E2 | E3] + Pr[¬E2 | E3] + Pr[¬E3]

≤ Pr[¬E3] +
∑

r1,...,rm

((Pr[¬(E0 ∨ E1) ∧E2 |E3(−→r)] + Pr[¬E2 |E3(−→r)]) ∗ Pr[E3(−→r)|E3])

≤ m2 ∗ 2−n + (u+ v) ∗ 2−n + (u)2 ∗ 2−n

where the last inequality follows by Claim 6. 2

Claim 4: For each constant c (and its corresponding c′) for which event E0 does
not hold, and constant −→r with distinct values, there is an x ∈ [1..l′ − 1] such
that

(i) ∀s ∈ [1..m]∀j ∈ [1..|cs| − 1]:
if S′x∗(c

′
0)⊕ S

s
j∗(c

s
0) is identically zero then c

′
x ⊕ c

s
j 6= 0, otherwise

Pr[S′x∗(c
′
0)⊕ S

s
j∗(c

s
0) = c′x ⊕ c

s
j | E3(

−→r)] ≤ 2−n,

(ii) ∀j ∈ [1..|l′ − 1], j 6= x,:

Pr[S′x∗(c
′
0)⊕ S

′
j∗(c

s
0) = c′x ⊕ c

′
j | E3(

−→r)] ≤ 2−n

Proof: These are the different cases (we will drop the argument from Ss and S′

as it will be clear from context):
(a) (New IV) If for all i ∈ [1..m], c′0 6= ri, then we choose x = 1. In that case
N ′1 = N ′j is same as C

′
1 ⊕ C ′j = S′1 ⊕ S′j∗ , where j

∗ = j if j 6= (l′ − 1), and
j∗ = 0 otherwise. Thus, for j ∈ [1..l′−1], j 6= x, since S′ is pairwise differentially
uniform, probability of (S′1 ⊕ S

′
j∗ = c′1 ⊕ c

′
j) is 2

−n (even under E3(−→r)).
Similarly, N ′1 = Ns

j is same as C
′
1⊕C

s
j = S′1⊕S

s
j∗ , where j

∗ = j if j 6= |cs|−1,
and j∗ = 0 otherwise. Under event E3(−→r), and the fact that c′0 is different from
all ri, we have that S′1 ⊕ S

s
j∗ is uniformly distributed.

(b) There exists a k, k ∈ [1..m] such that c′0 = rk. For all other k′ ∈ [1..m],
c′0 6= rk. Thus S′ = Sk. We have several cases:
(b1) (truncation attempt) If c′ is a truncation of ck, then we let x = l′− 1 which
is the index of the last block of c′.
(b2) (extension attempt) If c′ is an extension of ck, then we let x = |ck|−1 which
is the index of the last block of ck.
(b3) Otherwise, let x be the least index in which c′ and ck are different.

In all the cases (b1), (b2) and (b3), conjunct (ii) is handled as in (a).
In case (b1), N ′x = Ns

j is same as C
′
l′−1 ⊕ Sk0 = Cs

j ⊕ Ssj∗ , where j
∗ = j if

j 6= |cs|− 1, and j∗ = 0 otherwise. Now, for s = k, j∗ = 0 (in which case S′0⊕S
s
j

is identically zero), we have c′x ⊕ csj = c′l′−1 ⊕ ck|ck|−1. This quantity is not zero,

Encryption Modes with Almost Free Message Integrity 537

since E0 (the deletion attempt) doesn’t hold for c. Otherwise, S ′0⊕S
s
j∗ = Sk0 ⊕S

s
j

is uniformly distributed.
In case (b2), N ′x = Ns

j is same as C
′
|ck|−1⊕S

k
|ck|−1 = Cs

j ⊕S
s
j∗ , where j

∗ = j

if j 6= |cs| − 1, and j∗ = 0 otherwise. When s = k, j∗ is never |ck| − 1, and hence
Sk|ck|−1 ⊕ S

s
j∗ is uniformly distributed.

In case (b3), N ′x = Ns
j is same as C

′
x ⊕ Skx∗ = Cs

j ⊕ Ssj∗ , where j
∗ = j if

j 6= |cs| − 1, and j∗ = 0 otherwise, and x∗ = x if x 6= (l′ − 1), and x∗ = 0
otherwise. If s = k, and j∗ = x∗, then either j∗ = x∗ = 0, or j = x. In the
latter case, c′x ⊕ csj = c′x ⊕ ckx, which is non-zero as x is the index in which c

′

and ck differ. In the former case, j = |ck| − 1, and x = (l′ − 1). In this case,
c′x⊕ c

s
j = c′l′−1⊕ c

k
|ck|−1. If this quantity is zero, then since x (= (l

′− 1)) was the

least index in which ck and c′ differed, event E0 would hold for c, leading to a
contradiction. In other cases, Skx∗ ⊕ S

s
j∗ is uniformly distributed. 2

Recall that E3(−→r) is the event that all Ci
0 are distinct (and set to

−→r).

Claim 5: Let l1 be the length of the first ciphertext. Let y ≤ m. For any
constant lengths li (i ∈ [2..y]) and constant strings c

i, (i ∈ [1..y], |ci| = li), and
any function G independent of F ,

Pr[
∧

i∈[1..y]

Ci = ci ∧ E2(y) | G ∧ E3(−→r)] ≤ (2−n)µ

where µ = Σi∈[1..y](l
i − 1).

Proof: The above probability is zero unless for all i ∈ [2..y], li = l(c1, ..., ci−1).
From now on, we will assume that the li are indeed such.
We do induction over y, with base case y = 0.

The base case is vacuously true, as µ = 0 and conditional probability of TRUE
is 1.
Now assume that the lemma is true for y. We prove the lemma for y + 1. The
explanation for the inequalities is given below the sequence of inequalities.

Pr[
∧

i∈[1..y+1]

Ci = ci ∧ E2(y + 1) | G ∧ E3(−→r)]

≤ Pr[Cy+1 = cy+1 |
∧

i∈[1..y]

Ci = ci ∧ E2(y + 1) ∧ G ∧ E3(−→r)]

∗ Pr[
∧

i∈[1..y]

Ci = ci ∧ E2(y + 1) | G ∧ E3(−→r)]

≤ (2−n)l
y+1−1 ∗ Pr[

∧

i∈[1..y]

Ci = ci ∧ E2(y) | G ∧ E3(−→r)]

≤ (2−n)Σi∈[1..y](l
i−1)

The second inequality follows because under the condition E2(y+1), all the
My+1
j are different from the previous M , and hence the sequence of variables,

538 Charanjit S. Jutla

for all j ∈ [1..Ly+1 − 1], F (My+1
j) can take all possible (2n)(L

y+1−1) values,

independently of G, and F (M≤y
j), and hence also all ciphertext messages till

index t. Hence, the sequence Cy+1
j = F (My+1

j) ⊕ Sy+1
j can take all possible

values. Moreover, Ly+1 = l(c1, ..., cy) = ly+1.
The last inequality follows by induction. 2

Claim 6: For every fixed −→r with distinct values,

Pr[¬E2 | E3(−→r)] < u2 ∗ 2−n

Proof: Recall that Event E2 is

∀i, i′ ∈ [1..m],∀j, j′, j ∈ [1..Li], j′ ∈ [1..Li
′

], (i, j) 6= (i′, j′) : (M i
j 6=M i′

j′)

Under E3(−→r), we have
(a) The set of variables {W i

1}, i ∈ [1..m], are uniformly random and independent
variables.
(b) For each i, the variable W i

1 is independent of all ciphertext messages C
i′ ,

i′ < i, and hence all plaintext messages P i′ , i′ ≤ i. This follows because W i
1 can

be chosen after Ci′ , i′ < i have been chosen.
Given E3(−→r), the probability that event E2 does not happen is at most

(Σi∈[1..m]L
i)2 ∗ 2−n, which is at most u2 ∗ 2−n. This is seen as follows:

Pr[M i
j =M i′

j′] = Pr[P i
j ⊕ S

i
j = P i′

j′ ⊕ S
i′

j′] = Pr[Sij = Si
′

j′ ⊕ P
i
j ⊕ P

i′

j′]

Without loss of generality, let i ≥ i′. Then from (b) above it follows that this
probability is at most 2−n (if i = i′, then we also use the fact that the sequence
S is pairwise differentially uniform). 2

4.1 General Case

We now prove the scheme IAPM (t ≥ 1) secure for message integrity. Here F
and G are independent random permutations.

Theorem 4: Let A be an adversary attacking the message integrity of IAPM
(t ≥ 1) with random permutations F and G. Let A make at most m queries in
the first stage, totaling at most µ blocks. Let u = µ+m. Let v be the maximum
number of blocks in the second stage. Then for adversary A,

Succ < (2 ∗ u2 + 2tm2 + tm+ t2(m+ 1)2 + 3t(2m+ 1)(u+ v) + 2 + o(1)) ∗ 2−n

Proof Sketch:We first calculate the adversary’s success probability assuming that
G is a random function. Then, the error introduced in the probability because
of this approximation is at most ((t(m+ 1))2 ∗ 2−n).
The differences in the proof from that of Theorem 1 are (i) we can not assume

a priori, that the sequence Si is pairwise differentially uniform, (ii) E3(−→r) as

Encryption Modes with Almost Free Message Integrity 539

defined in Lemma 3 does not imply that Si is independent of Sj , for i 6= j, (iii) in
proof of Theorem 1, the case of event E0 requires Si to be pairwise differentially
uniform, and (iv) in claim 4 case (a), S ′(c′0) is not necessarily independent of all
Si(ri).
To this end, Event E3 is now defined to be the event that all entries in the

following (multi-) set are different:

{Ci
0, i ∈ [1..m]} ∪ {G(C

i
0) + j − 1, i ∈ [1..m], j ∈ [1..t− 1]}

For −→r = r1, ..., rm, all ri different, let E3(−→r) be the event E3 and that for all
i ∈ [1..m], Ci

0 = ri.
For −→r =r1, ..., rm, all ri different, Pr[¬ E3(−→r)] ≤ (2tm2 + tm) ∗ 2−n

Under event E3, for all i ∈ [1..m], the sequence Si is pairwise differentially
uniform, and is independent of Sj (j ∈ [1..m], j 6= i). Now (in Theorem 1) the
case of event E0 is also handled under the condition E3(−→r).
In Claim 4, case (a) (i.e. New IV) now requires showing that S ′(c′0) (with c

′
0

different from all ri) is independent of all Si(ri) (i ∈ [1..m]).
Consider the following events (note that W i

1 = G(ri)):
Event E4: ∀i ∈ [1..m],∀j ∈ [1..t− 1] : c′0 6=W i

1 + j − 1.
Event E5: ∀i ∈ [1..m] : |G(c′0)−W

i
1| > t ∧ |G(c′0)− r

i| > t ∧ |G(c′0)− c
′
0| > t

Now given that, for all k ∈ [1..m], c′0 6= rk, and under event E4, it is the case
that c′0 has never been an oracle query to G, and thus Pr[¬E5 | E4 ∧ E3(

−→r)]
< 2t(2m+ 1) ∗ 2−n. Also, Pr[¬ E4 | E3(−→r)] ≤ mt ∗ 2−n.
Under events E4, E5 and E3(−→r), and c′0 different from all r

i, S′(c′0) is indeed
independent of previous Si(ri), and is also pairwise differentially uniform. 2

4.2 Modes using GFp

In another variant of IACBC and IAPM, a pair-wise differentially uniform se-
quence in GFp is employed for “whitening” the output (and the input for parallel
modes). However, now “whitening” refers to adding modulo 2n, instead of per-
forming an exclusive-or operation. Theorems 1 and 5 also hold for encryption
schemes which employ sequences which are pair-wise differentially-uniform in
GFp; the success probabilities, however are now in terms of 2/p instead of 1/2n.
The condition N ′i = Nj would now translate to C

′
i − Si = Cj − Sj , which is the

same as Si − Sj = C ′i − Cj (here the subtraction is n-bit integer subtraction).
It can be shown that if Si, Sj are independent of C

′, C, then the probability of
this event is at most 2/p.

5 Message Secrecy

We state the theorem for security under the Find-then-Guess notion of security.
The proof follows standard techniques ([2]).

Theorem 5: Let A be an adversary attacking the encryption scheme IAPM in
Figure 2 (with f being a random permutation F) in the find-then-guess sense,

540 Charanjit S. Jutla

making at most q queries, totaling at most µ blocks. Then,

AdvA ≤ (2µ
2) ·

1

2n

6 Security of IACBC

Theorem 6: Let A be an adversary attacking the message integrity of IACBC
with random permutations F and G. Let A make at most m queries in the first
stage, totaling at most µ blocks. Let u = µ+m. Let v be the maximum number
of blocks in the second stage. Then for adversary A,

Succ < (2 ∗ (u+1)2+2tm2+ t2(m+1)2+3tmu+2(u+ v+1)+ 2+ o(1)) ∗ 2−n

Theorem 5 continues to hold for IACBC. Proofs of theorem 5, 6 and IACBC
variant of theorem 5 will be given in the full version of the paper.

7 Acknowledgment

I am extremely grateful to Shai Halevi and Pankaj Rohatgi for help with the
proof of message integrity. I would also like to thank Pankaj for helping me
simplify the overall scheme, and Shai for going through the paper in excruciating
detail and making numerous helpful suggestions.
I would also like to thank Don Coppersmith, Johan Hastad, Nick Howgrave-

Graham, J.R. Rao, Ron Rivest, Phil Rogaway, and referees for helpful sugges-
tions.

References

1. ANSI X3.106, “American National Standard for Information Systems - Data En-
cryption Algorithm - Modes of Operation”, American National Standards Institute,
1983.

2. M. Bellare, A. Desai, E. Jokiph, P. Rogaway, “A Concrete Security Treatment
of Symmetric Encryption: Analysis of the DES Modes of OPeration”, 38th IEEE
FOCS, 1997

3. J. Black, S. Halevi, H. Krawczyk, T. Krovetz and P.Rogaway, “UMAC: Fast and
secure message authentication”, Advances in Cryptology-Crypto 99, LNCS 1666,
1999

4. M. Bellare, J. Kilian, P. Rogaway, “The Security of Cipher Block Chaining”,
CRYPTO 94, LNCS 839, 1994

5. M. Bellare, C. Namprempre, “Authenticated Encryption: Relations among no-
tions and analysis of the generic composition paradigm”, Proc. Asiacrypt 2000, T.
Okamoto ed., Springer Verlag 2000

6. V.D. Gligor, P.Donescu, “Integrity Aware PCBC Encryption Schemes”, 7th Intl.
Workshop on Security Protocols, Cambridge, LNCS, 1999

7. V.D. Gligor, P. Donescu, “Fast Encryption Authentication: XCBC Encryption and
XECB Authentication Modes”, http://csrc.nist.gov/encryption/modes/workshop1

8. Hugo Krawczyk, “LFSR-based Hashing and Authentication”, Proc. Crypto 94.
LNCS 839, 1994

Encryption Modes with Almost Free Message Integrity 541

9. ISO 8372, “ Information processing - Modes of operation for a 64-bit block cipher
algorithm”, International Organization for Standardization, Geneva, Switzerland,
1987

10. ISO/IEC 9797, “Data cryptographic techniques - Data integrity mechanism using
a cryptographic check function employing a block cipher algorithm”, 1989

11. J. Katz and M. Yung, “Unforgeable Encryption and Adaptively Secure Modes of
Operation”, Fast Software Encryption 2000.

12. M. Luby, “Pseudorandomness and Cryptographic Applications”, Princeton Com-
puter Science Notes, Princeton Univ. Press, 1996

13. C.H. Meyer, S. M. Matyas, “Cryptography: A New Dimension in Computer Data
Security”, John Wiley and Sons, New York, 1982

14. National Bureau of Standards, NBS FIPS PUB 81, “DES modes of operation”,
U.S. Department of Commerce, 1980.

15. National Bureau of Standards, Data Encryption Standard, U.S. Department of
Commerce, FIPS 46 (1977)

16. RFC 1510,”The Kerberos network authentication service (V5)”, J. Kohl and B.C.
Neuman, Sept 1993

17. Security Architecture for the Internet Protocol, RFC 2401,
http://www.ietf.org/rfc/rfc2401.txt

18. S.G. Stubblebine and V.D. Gligor, “On message integrity in cryptographic proto-
cols”, Proceedings of the 1992 IEEE Computer Society Symposium on Research
in Security and Privacy, 1992.

19. The TLS Protocol, RFC2246, http://www.ietf.org/rfc/rfc2246.txt

