
Potential Weaknesses of the Commutator Key

Agreement Protocol based on Braid Groups

Sang Jin Lee1 and Eonkyung Lee2

1CMI, Université de Provence, Marseille, France
sjlee@knot.kaist.ac.kr

2Korea Information Security Agency, Seoul, Republic of Korea
eonkyung@kisa.or.kr

Abstract. The braid group with its conjugacy problem is one of the
recent hot issues in cryptography. At CT-RSA 2001, Anshel, Anshel,
Fisher, and Goldfeld proposed a commutator key agreement protocol
(KAP) based on the braid groups and their colored Burau representation.
Its security is based on the multiple simultaneous conjugacy problem
(MSCP) plus a newly adopted key extractor. This article shows how
to reduce finding the shared key of this KAP to the list-MSCPs in a
permutation group and in a matrix group over a finite field. We also
develop a mathematical algorithm for the MSCP in braid groups. The
former implies that the usage of colored Burau representation in the key
extractor causes a new weakness, and the latter can be used as a tool to
investigate the security level of their KAP.

Key words: Key agreement protocol, Braid group, Multiple simultane-
ous conjugacy problem, Colored Burau matrix.

1 Introduction

Current braid cryptographic protocols are based on the intractability of the
conjugacy problem: given two conjugate braids a and b, find a conjugator (i.e.,
find x such that b = x−1ax). Because it is hard to find a trapdoor in this problem,
some variants have been proposed for the key exchange purpose [2, 15].

Anshel et al. [2] proposed a key agreement protocol (KAP) assuming the in-
tractability of the following problem: given a1, . . . , ar, x

−1a1x, . . . , x
−1arx ∈ Bn,

find the conjugator x. We call this problem the multiple simultaneous conju-
gacy problem (MSCP). Loosely speaking, their KAP is as follows: given pairs
of n braids (a1, x

−1a1x), . . ., (ar, x
−1arx), (b1, y

−1b1y), . . . , (bs, y
−1bsy), find the

commutator x−1y−1xy, where x and y are in the subgroup generated by {b1, . . . ,

bs} and {a1, . . . , ar}, respectively. The first attack on this KAP is the Length
Attack by Hughes and Tannenbaum [14]. They showed that this KAP leaks
some information about its private keys x and y for some particular choices of
parameters.

At CT-RSA 2001, Anshel et al. [1] proposed a new version of their KAP.
They adopted a new key extractor which transforms a braid into a pair of a

permutation and a matrix over a finite field. Here the matrix is obtained from
a multi-variable matrix, called the colored Burau matrix, by evaluating the vari-
ables at numbers in a finite field. They recommended parameters so as to defeat
the Length Attack, the mathematical algorithm for the conjugacy problem, and
a potential linear algebraic attack on the key extractor.

Our Results. This article attacks the KAPs in [1, 2] from two different angles.
Our attacks are partially related to the potential ones already mentioned in their
paper.

First, we attack the shared key in [1]. The motivation for this attack is that
despite the change of variables in the colored Burau matrix by permutations, the
matrix in the final output(i.e., the shared key) is more manageable than braids.
We show that the security of the key extractor is based on the problems of listing
all solutions to some MSCPs in a permutation group and in a matrix group over
a finite field. So if both of the two listing problems are feasible, then we can
guess correctly the shared key without solving the MSCP in braid groups.

Second, we attack the private keys in [1, 2]. The base problem of these KAPs
is different from the standard conjugacy problem in the following two aspects:
(i) The conjugation is multiple and simultaneous. That is to say, we have a set of
equations x−1aix = ci, i = 1, . . . , r, with a single unknown x. On the one hand,
the problem is more difficult than the conjugacy problem because we must find
a solution which satisfies all the equations simultaneously. On the other hand,
the problem is easier because we have multiple equations. (ii) The conjugator x

is contained in the subgroup generated by some specific braids b1, . . . , bs, which
makes the problem easier. We propose a mathematical algorithm for the MSCP
in braid groups.

Outline. We review in §2 the braid groups, the canonical form of braid, the
colored Burau representation, and the commutator KAP proposed in [1]. We
attack the key extractor in §3 and the private key in §4. We close this article
with conclusions in §5.

Conventions.

– Sn denotes the n-permutation group. Sn acts on the set {1, 2, . . . , n} from
the left so that for α, β ∈ Sn and 1 ≤ i ≤ n, (αβ)(i) = α(β(i)). We express a
permutation as a product of cycles. A cycle α = (k1, k2, . . . , kr) means that
α(ki) = ki+1 for i = 1, . . . , r − 1 and α(kr) = k1.

– For a prime p, Fp denotes the field composed of p elements, {0, . . . , p− 1}.

– GLn(R), R a ring, denotes the set of all invertible (n× n)-matrices over R.

2 Preliminaries

2.1 Braid Group

Definition 1. The n-braid group Bn is an infinite non-commutative group de-
fined by the following group presentation

Bn =

〈

σ1, . . . , σn−1

∣

∣

∣

∣

σiσj = σjσi, |i− j| ≥ 2
σiσi+1σi = σi+1σiσi+1, i = 1, . . . , n− 2

〉

.

The integer n is called the braid index and the elements in Bn are called n-braids.
The generators σi’s are called the Artin generators.

We can give braids the following geometric interpretation. An n-braid can
be thought as a collection of n horizontal strands intertwining themselves. See
Figure 1. Each generator σi represents the process of swapping the ith strand
with the (i+1)st one, where the strand from upper-left to lower-right is over the
other.

We can cut a long geometric braid into simple pieces so that each piece
contains only one crossing. This decomposition gives a word W = σε1

i1
σε2
i2
· · ·σεk

ik
,

ε = ±1. k is called the word length of W .

There is a natural projection π : Bn → Sn, sending σi to the transposition
(i, i + 1). Let’s denote π(a) by πa, and call it the induced permutation of a.
The braids whose induced permutation is the identity are called pure braids.
Conversely, for a permutation α ∈ Sn, we can make a simple braid Aα, called a
permutation braid, by connecting the ith point on the right to the α(i)th point
on the left by straight lines, where the strand from upper-left to lower-right is
over the other at each crossing.

2.2 Canonical Form

We review the canonical form of braids and the related invariants, inf, len, and
sup, which can be used in measuring how complicated the given braid is. This
section is needed only for §4.

1. A word σε1
i1
· · ·σεs

is
is called a positive word if all the exponents εi’s are

positive. Because the relations in the group presentation of Bn are equiva-
lences between positive words with the same word-length, the exponent sum
e(σε1

i1
· · ·σεs

is
) = ε1 + · · ·+ εs is well-defined and invariant under conjugation.

If P is a positive word, then e(P) is equal to the word-length of P . The
positive braid monoid, denoted by B+

n , is the set of all braids which can be
represented by positive words.

2. The permutation braid corresponding to the permutation α(i) = (n − i)
is called the fundamental braid and denoted by ∆. It can be written as
∆ = (σ1)(σ2σ1) · · · (σn−1σn−2 · · ·σ1).

3. Theorem(See [9, 10, 4]). Every n-braid a can be decomposed uniquely into

a = ∆uA1A2 . . . Ak,

where each Ai is a permutation braid and for each 1 ≤ i < k, AiAi+1 is
left-weighted. For the definition of ‘left-weighted’, see Appendix A.

4. The expression above is called the left-canonical form. The invariants the
infimum, the canonical length, and the supremum are defined by inf(a) = u,
len(a) = k, and sup(a) = u + k, respectively. Similarly, we can also define
the right-canonical form. The two canonical forms give the same inf, len,
and sup.

5. Let a = ∆uP and b = ∆vQ be conjugate, where P,Q ∈ B+
n . Then e(a) =

ue(∆) + e(P) = ve(∆) + e(Q). So in a conjugacy class, a braid with greater
inf is simpler than the one with smaller inf. Similarly, we can also say that
a braid with smaller sup is simpler than the one with greater sup.

2.3 Colored Burau Representation

Morton [20] introduced the colored Burau matrix which is a generalization of the
Burau matrix. It would be helpful to see the Burau matrix first. Let Z[t±1] be
the ring of Laurent polynomials f(t) = akt

k+ak+1t
k+1+ · · ·+amtm with integer

coefficients (and possibly with negative degree terms). Let GLn−1(Z[t
±1]) be the

group of (n − 1) × (n − 1) invertible matrices over Z[t±1]. Note that a matrix
over Z[t±1] is invertible if and only if its determinant is ±tm for some integer m.

For 1 ≤ i ≤ n − 1, let Ci(t) be the matrix which differs from the identity
matrix only at the ith row as shown below. When i = 1 or i = n− 1, the ith row
vector is truncated to (−t, 1, 0, . . . , 0) or (0, . . . , 0, t,−t).

Ci(t) =

1
. . .

1
t −t 1

1
. . .

1

, C−1
i (t) =

1
. . .

1
1 − 1

t
1
t

1
. . .

1

.

The Burau representation ρ:Bn → GLn−1(Z[t
±1]) is defined by ρ(σi) =

Ci(t) [3]. The matrices Ci(t)’s satisfy the braid relations, i.e., Ci(t)Cj(t) =
Cj(t)Ci(t) for |i − j| ≥ 2 and Ci(t)Ci+1(t)Ci(t) = Ci+1(t)Ci(t)Ci+1(t) for
i = 1, . . . , n − 2, and so ρ is a group homomorphism. The elements in ρ(Bn)
are called Burau matrices. Here is an example of a Burau matrix.

ρ(σ−1
1 σ2σ

−1
1) =

(

− 1
t

1
t

0 1

)(

1 0
t −t

)(

− 1
t

1
t

0 1

)

=

(

1
t2
− 1

t
− 1

t2
+ 1

t
− 1

−1 1− t

)

.

Roughly speaking, the colored Burau matrix is a refinement of the Burau
matrix by assigning σi to Ci(ti+1) so that the entries of the resulting matrix

have several variables. But such a naive construction does not give a group
homomorphism. Thus the induced permutations are considered simultaneously.
Let’s label the strands of an n-braid by t1, . . . , tn, putting the label tj on the
strand which starts from the jth point on the right. Figure 1 shows this labelling
for the 3-braid σ−1

1 σ2σ
−1
1 σ2.

Fig. 1. The labelled braid σ−1

1 σ2σ
−1

1 σ2

Definition 2. Let a ∈ Bn be given by a word σε1
i1
σε2
i2
· · ·σεk

ik
, εj = ±1. Let tjr

be the label of the under-crossing strand at the rth crossing. Then the colored
Burau matrix Ma(t1, . . . , tn) of a is defined by

Ma(t1, . . . , tn) =

k
∏

r=1

(Cir (tjr
))εr .

We can compute the colored Burau matrix by substituting σε
i by Ci(·)

ε and then
filling (·) by the variable tj according to the label of the under-crossing strand.
Note that the colored Burau matrix is an invertible matrix over Z[t±1

1 , . . . , t±1
n],

the ring of Laurent polynomials with n variables. In the example σ−1
1 σ2σ

−1
1 σ2

shown in Figure 1, the colored Burau matrix is

Mσ
−1
1

σ2σ
−1
1

σ2
(t1, t2, t2) = C1(t3)

−1C2(t2)C1(t1)
−1C2(t3)

=

(

−t−1
3 t−1

3

0 1

)(

1 0
t2 −t2

)(

−t−1
1 t−1

1

0 1

)(

1 0
t3 −t3

)

=

(

− 1
t1
− t2 +

t2
t1

+ 1
t1t3
− t2

t1t3

1
t1

+ t2 −
t2
t1

− t2
t1
− t2t3 +

t2t3
t1

t2t3 −
t2t3
t1

)

.

Now we describe the colored Burau group as in [1]. We follow the convention
of Morton [20], which is a little different from that in [1]. The permutation
group Sn acts on Z[t±1

1 , . . . , t±1
n] from left by changing variables: for α ∈ Sn,

α(f(t1, . . . , tn)) = f(tα(1), . . . , tα(n)). Then Sn also acts on the matrix group

GLn−1(Z[t
±1
1 , . . . , t±1

n]) entry-wise: for α ∈ Sn and M = (fij), α(M) = (α(fij)).

Definition 3. The colored Burau group CBn is Sn × GLn−1(Z[t
±1
1 , . . . , t±1

n])
with multiplication (α1,M1)·(α2,M2) = (α1α2, (α

−1
2 M1)M2). The colored Burau

representation C : Bn → CBn is defined by C(σi) = ((i, i+ 1), Ci(ti+1)).

Then it is easy to see the following: (i) CBn is a group, where the identity is
(e, In−1) and (α,M)−1 = (α−1, αM−1), (ii) C(σi)’s satisfy the braid relations
and so C : Bn → CBn is a group homomorphism, and (iii) for a ∈ Bn, C(a) =
(πa,Ma), where πa is the induced permutation and Ma is the colored Burau
matrix in Definition 2.

2.4 Commutator Key Agreement Protocol

Recall the commutator KAP of Anshel et al. [1]. Fix a (small) prime number p.
Let Kn,p be the set of pairs (α,M) ∈ Sn ×GLn−1(Fp).

Definition 4. Let τ1, . . . , τn be distinct invertible integers in Fp. The key ex-
tractor E = Ep,τ1,...,τn

: Bn → Kn,p is defined by

E(a) = (πa,Ma(τ1, . . . , τn) mod p),

where reduction ‘mod p’ means reduction of every entry in the matrix.

Anshel et al. gave a very fast algorithm for computing the key extractor
in [1]. The running time is O(n`(log p)2), where ` is the word-length. The idea is
that we can compute E(σε1

i1
· · ·σε`

i`
) from σε1

i1
and E(σε2

i2
· · ·σε`

i`
). The commutator

KAP using the key extractor is constructed as follows.

Public Information

1. An integer n > 6. A prime p > n.

2. Distinct and invertible integers τ1, . . . , τn ∈ F
∗
p.

3. (a1, . . . , ar) ∈ (Bn)
r and (b1, . . . , bs) ∈ (Bn)

s.

Private Key

1. Alice’s private key is a word W (b1, . . . , bs).

2. Bob’s private key is a word V (a1, . . . , ar).

Public Key

1. Alice’s public key is (x−1a1x, . . . , x
−1arx), where x = W (b1, . . . , bs).

2. Bob’s public key is (y−1b1y, . . . , y
−1bsy), where y = V (a1, . . . , ar).

Shared key

E(x−1y−1xy) = (πx−1y−1xy, Mx−1y−1xy(τ1, . . . , τn) mod p).

Parameter Recommendation in [1].

– The only restriction on p used in the key extractor is that p > n so that
one can choose distinct and invertible elements τ1, . . . , τn. One can choose
p < 1000.

– Take the braid index n = 80 or larger and r = s = 20. Let each of ai and
bj be the product of 5 to 10 Artin generators and let each set of public
generators involve all the Artin generators of Bn.

– Private keys, x and y, are products of 100 public generators.

3 Linear Algebraic Attack on the Key Extractor

If the KAP [1] is restricted to pure braids, then its key extractor E becomes a
group homomorphism. In this case, one can attack the key extractor by linear
algebraic methods. To defeat this attack, [1] recommended to choose the private
keys x and y such that their induced permutations are sufficiently complex.
This section shows that a linear algebraic attack can also be mounted on the
KAP even for such parameters. The (list-)MSCP is the following variant of the
conjugacy problem.

Definition 5. Let G be a group. The MSCP in G is: given a pair of r-tuples (r ≥
2) of elements in G, (a1, . . . , ar) and (x−1a1x, . . . , x

−1arx), find x in polynomial
time (in the input length). In this case, the list-MSCP in G is to find the list of
all such x ∈ G in polynomial time.

Their hardness will be discussed later. Henceforth, we will use the notations in
§2.4 if there is no confusion from the context.

Theorem 1. If the induced permutations of the private keys are known, then
we can construct four list-MSCPs in GLn−1(Fp) such that computing the matrix
part of the shared key is reduced to solving all these list-MSCPs.

Proof. By the definition of the colored Burau representation C, we get the fol-
lowing equation

C(x−1y−1xy) = (πx,Mx)
−1(πy,My)

−1(πx,Mx)(πy,My)

= (π−1
x π−1

y πxπy, (π
−1
y π−1

x πyπxM
−1
x)(π−1

y π−1
x πyM

−1
y)(π−1

y Mx)My).

So the matrix part of the shared key is the product of the following four matrices
evaluated at (t1, . . . , tn) = (τ1, . . . , τn):

(π−1
y π−1

x πyπxM
−1
x), (π−1

y π−1
x πyM

−1
y), (π−1

y Mx), and My.

Now we propose a method of composing MSCPs in GLn−1(Fp) for these
matrices, assuming that we already know the permutations πx and πy. Here we
consider only (π−1

y Mx)(τ1, . . . , τn). Similar constructions work for the other three
matrices. The following technique makes (π−1

y Mx)(τ1, . . . , τn) to be a solution
to an MSCP with N equations in GLn−1(Fp) for given N . The basic idea is:
if a is a pure braid and c = x−1ax, then (αMx)(τ1, . . . , τn) is a solution to
AX = XC, where α is an arbitrary permutation, A = (απ−1

x Ma)(τ1, . . . , τn),
and C = (αMc)(τ1, . . . , τn).

1. Choose a word a = U(a1, . . . , ar) such that a is a pure braid.
2. Compute c = U(c1, . . . , cr). Then, c = x−1ax and c is also a pure braid.
3. Compute Ma and Mc. Since ax = xc and

C(ax) = (πx, (π
−1
x Ma)Mx), C(xc) = (πx,MxMc),

we have (π−1
y π−1

x Ma)(π
−1
y Mx) = (π−1

y Mx)(π
−1
y Mc).

4. Compute (π−1
y π−1

x Ma)(τ1, . . . , τn) and (π−1
y Mc)(τ1, . . . , τn). Refer to the re-

sulting matrices as A and C, respectively.
5. Repeat the above steps to get a system of equations AjX = XCj for j =

1, . . . , N .

It is easy to see that (π−1
y Mx)(τ1, . . . , τn) is a solution to the MSCP in

GLn−1(Fp), {AjX = XCj}1≤j≤N . ut

Now we discuss how to construct the algorithm in Theorem 1 practically, the
hardness of the list-MSCPs in Sn and in GLn−1(Fp), and possible fixes.

How to generate a pure braid a = U(a1, . . . , ar) in the first step. An easy con-
struction is to choose a word V (a1, . . . , ar) at random and then take a power
U = V k, where k is the order of the induced permutation. However, the order
of a permutation is the least common multiple of the lengths of cycles, and so it
can be too large. For example, for n = 87, the maximal order of n-permutations
is greater than 107. See [19]. One way to avoid this huge order is to choose
V (a1, . . . , ar) as a short word. For example, if V is a product of three ai’s, then
its induced permutation is a product of 15 to 30 transpositions and so its order
is small. (Note that ai’s are products of 5 to 10 Artin generators.) And once we
have a pure braid a = U(a1, . . . , ar), then we can also use W−1aW for any word
W on ai’s.

Hardness of the list-MSCPs in permutation group and in matrix group. The
MSCP in permutation group is easy. Note that two permutations are conjugate
if and only if they have the same cycle decomposition. The MSCP in matrix
group is also easy because the equation AX = XC can be considered as a
system of homogeneous linear equations in the entries of X. One can use the
polynomial time deterministic algorithm by Chistov, Ivanyos, and Karpinski [7].

So the difficulty of the list-MSCP lies only in the number of its solutions.
Let G be a group and let (a1, . . . , ar) and (c1, . . . , cr) ∈ Gr be an instance of a
list-MSCP in G. If x1 and x2 are two solutions, then (x2x

−1
1)ai = ai(x2x

−1
1) for

each i. Hence x2 = x1z for some z in ∩ri=1Cent(ai), where Cent(ai) = {g ∈ G |
gai = aig} is the centralizer of ai. So the number of the solutions is exactly the
cardinality of the subgroup ∩ri=1Cent(ai). We don’t have the average cardinality
of this subgroup when G is either Sn or GLn−1(Fp). But it does not seem large
for generic ai’s in Sn or in GLn−1(Fp) from the following observation.

For a1, . . . , ar ∈ Sn, let z ∈ ∩ri=1Cent(ai). Then for each 1 ≤ i ≤ r and for
each 1 ≤ k ≤ n, if k lies in an m-cycle of ai, then so does z(k). Moreover, if
(k1, . . . , km) and (l1, . . . , lm) are m-cycles in ai such that z(k1) = l1, then z(kj) =
lj for all 2 ≤ j ≤ m. For example, let a1 = (1, 2)(4, 5)(8, 9), a2 = (3, 4)(5, 7, 8),
and a3 = (1, 5, 6)(9, 10) be the cycle decompositions of permutations in S10. Let
z ∈ ∩3

i=1Cent(ai). Then z(1) = 1 because z(1) must lie in a 2-cycle of a1, in an
1-cycle of a2, and in a 3-cycle of a3 simultaneously. In addition, z(k) = k for
k = 2, 5, 6 because z must fix all the numbers in a cycle of ai containing 1, for
any i = 1, 2, 3. By continuing this argument we can see that z is the identity

permutation. The list-MSCP in GLn−1(Fp) can be discussed similarly using the
Jordan canonical form of matrices. See §5.6 in [8].

Possible fix. To defeat our linear algebraic attack, at least one of the list-MSCPs
in permutation group and in matrix group must be infeasible. Here, we discuss
how to make the induced list-MSCP in permutation group infeasible. One way to
do so is to use pure braids. But if all the braids (a1, . . . , ar) and (b1, . . . , bs) are
pure, then the induced permutation is nothing more than the identity. Hence,
we can consider the following simple cases.

1. Choose (a1, . . . , ar) in Bn and (b1, . . . , bs) in the pure braid group. Then the
induced permutation of x = W (b1, . . . , bs) is the identity but it is impossible
to list all y = V (a1, . . . , ar) because the equation y−1biy = di gives no
information about πy.

2. Choose (a1, . . . , ar) and (b1, . . . , bs) so that the induced permutations of ai’s
fix {1, . . . , bn2 c} and those of bj ’s fix {b

n
2 c+ 1, . . . , n}.

In both cases, the list-MSCP in permutation group is infeasible. But these fixes
give disadvantage that the braids ai’s or bj ’s become complicated, and so the
KAP becomes less secure against the Length Attack.

4 Attack on the Private Key

This section proposes an attack on the private keys of the commutator KAPs
in [1, 2] by solving the MSCPs in braid groups; given (a1, . . . , ar) and (c1, . . . , cr)
in (Bn)

r, find x ∈ Bn such that ci = x−1aix for all i simultaneously. We start
with some discussions.

Uniqueness of the solution to the MSCP in braid groups. For generic choice of
a1, . . . , ar, the solution x is unique up to a power of ∆2 (See Appendix B). That
is, if x′ is another solution such that x′−1aix

′ = ci for all i, then x′ = ∆2kx for
some integer k. Note that x′−1y−1x′y = x−1y−1xy for any y, because ∆2 is a
central element. Therefore, it suffices to find ∆2kx for any k.

Length Attack. The commutator KAPs in [1, 2] have the following condition in
addition to the standard MSCP: x is contained in the subgroup generated by
some publicly known braids b1, . . . , bs. This fact is crucial to the Length Attack
of J. Hughes et al. [14]. They showed that the KAP is vulnerable to the Length
Attack when bj ’s are complicated and x is a product of a small number of
b±1
j ’s. And same for ai’s and y. To defeat the Length Attack, Anshel et al. [1]
recommended using simple ai’s and bj ’s and complicated x and y as mentioned
in §2.4. Our attack of this section is strong when ai’s and bj ’s are simple and it
does not depend on how complicated x and y are.

Which braid is simpler in the conjugacy class? Recall the discussion in §2.2. Let
a = ∆uA1 . . . Ak and c = ∆vC1 . . . C` be the left canonical forms of conjugate
braids. It is natural to say that a is simpler than c if (i) the word-length of
A1 . . . Ak is smaller than that of C1 . . . C`, or (ii) they have same word-length
but k is smaller than `. The former is equivalent to u = inf(a) > v = inf(c) and
the latter is equivalent to inf(a) = inf(c) and sup(a) < sup(b).

Mathematical algorithm for the conjugacy problem. The conjugacy problem in
braid groups is: given (a, c) ∈ (Bn)

2, decide whether they are conjugate and if
so, find x ∈ Bn such that x−1ax = c. The algorithm for the conjugacy problem,
first proposed by Garside [13] and still being improved [10, 9, 4, 5, 11], works as
follows:

1. For each element in Bn, the super summit set is defined as the set of all
conjugates which have the minimal canonical length. Then it is a finite set
and two braids are conjugate if and only if the corresponding super summit
sets coincide.

2. Given a braid a ∈ Bn, one can compute an element in the super summit set
easily.

3. Given two elements u and v in the same super summit set, there is a chain
leading from u to v, where successive elements are conjugated by a permu-
tation braid.

How to develop an algorithm for the MSCP in braid groups. There are several
directions in designing an algorithm for the MSCP, depending on the character-
istics of the instances. This section focuses on the fact that (a1, . . . , ar) is simple
because ai’s are products of a few Artin generators but (c1, . . . , cr) are usually
complicated because ci = x−1aix for a complicated braid x. See [1].

Let τ : Bn → Bn be the isomorphism defined by τ(σi) = σn−i. Hence τk,
k-composition of τ , is the identity for k even, and τ for k odd.

Proposition 1. Let a, c, x ∈ Bn and c = x−1ax. Let c = ∆wC1 . . . Cl be the
left-canonical form. If inf(a) > inf(c), then x = x0H for some x0 ∈ Bn with
inf(x) = inf(x0) and for a permutation braid H determined by H = ∆τw(C−1

1).

Proof. It is a restatement of the Cycling Theorem in Appendix C (Theorem 4.1
of [9] and Theorem 5.1 of [4]). The statements in [4, 9] look different from the
above, but the argument of their proofs is exactly Proposition 1. ut

We can understand this proposition in the following way.

– x = x0H and inf(x) = inf(x0) means that x0 is simpler than x: if x0 = ∆uP

and x = ∆uQ are the left canonical forms, then the word-length of P is
smaller than that of Q.

– Let c′ = HcH−1. Then x−1ax = c implies that x−1
0 ax0 = c′. Thus we get a

conjugacy problem with simpler solution.

– The condition inf(a) > inf(c) means that c is more complicated than a. And
H is determined not by x but by c(= x−1ax).

– Consequently, we can interpret Proposition 1 as follows: if c is more com-
plicated than a, then we can find H such that the solution to the conjugacy
problem for (a, c′) is simpler than that for (a, c), where c′ = HcH−1.

Definition 6. For a1, . . . , ar ∈ Bn, define C inf(a1, . . . , ar) as the set of all
(u1, . . . , ur) such that inf(ui) ≥ inf(ai) for all i and there exists some w ∈ Bn

satisfying ui = w−1aiw for all i simultaneously.

Theorem 2. Let (a1, . . . , ar) and (c1, . . . , cr) be an instance of an MSCP in Bn

and x a positive braid such that x−1aix = ci for all i. Assume that ai’s and ci’s
are already in the left canonical form. Then we can compute positive braid x0

and (c′1, . . . , c
′
r) such that (c

′
1, . . . , c

′
r) ∈ C inf(a1, . . . , ar) and c′i = x0cix

−1
0 for all

i, in time proportional to

n(log n)|x|

(

|x|+

r
∑

i=1

(|ai|+ |ci|)

)

, (1)

where | · | denotes the word-length in generators. Moreover x = x1x0 for some
positive braid x1, in particular the word-length of x1 is less than that of x.

Proof. We exhibit an algorithm that computes x0 and hence (c′1, . . . , c
′
r).

Input: (a1, . . . , ar), (c1, . . . , cr) ∈ (Bn)
r.

Initialization: x0 = e(identity braid), c′i = ci for all i.
Loop:

STEP 1: If inf(ci) ≥ inf(ai) for all i, then STOP
STEP 2: Choose k such that inf(ck) < inf(ak).

Compute the permutation braid H by applying Proposition 1 to (ak, ck).
STEP 3: x0 ← Hx0, c

′
i ← Hc′iH

−1 for all i. GO TO STEP 1
Output: x0 and (c′1, . . . , c

′
r).

Because H in Proposition 1 is a suffix of x, so is x0 at each step in the above
algorithm. Whenever Proposition 1 is applied in the loop, the word-length of x0

strictly increases and its final length is bounded above by |x|. So the algorithm
stops in at most |x| repetitions of the loop.

All the computations involved is to compute simple conjugations such as
HaH−1, a ∈ Bn and H a permutation braid, which can be done in time
O(n(log n)|a|) and simple multiplications of the form Hx0, which can be done
in time O(n(log n)|x0|). So the whole complexity is (1). ut

Note that the ai’s are much simpler than ci’s [1] and that the newly obtained
braids c′i’s are at least as simple as ai’s in terms of ‘inf’.

Now we have simple instance (a1, . . . , ar) and (c′1, . . . , c
′
r). The natural ques-

tion is how to solve the MSCP for this new instance. It uses a variant of the
Convexity Theorem [4, 9]. See Appendix C.

Theorem 3. Given (c′1, . . . , c
′
r) ∈ C inf(a1, . . . , ar), there exists a chain of ele-

ments in C inf(a1, . . . , ar) from (a1, . . . , ar) to (c′1, . . . , c
′
r), where successive ele-

ments are simultaneously conjugated by a permutation braid. In other words,

there is a sequence (a1, . . . , ar) → (a′1, . . . , a
′
r) → · · · → (a

(k)
1 , . . . , a

(k)
r) =

(c′1, . . . , c
′
r) such that for each j, there is a permutation braid Hj satisfying

a
(j+1)
i = H−1

j a
(j)
i Hj for all i simultaneously.

Proof. This is a restatement of the Convexity Theorem in Appendix C. ut

By Theorem 2 and Theorem 3, we can solve any MSCP in finite time. But the
computational complexity of a naive implementation is exponential with respect
to the braid index n and involves the cardinality of the set C inf(a1, . . . , ar). There
seems to be no previous result concerning the cardinality of C inf(a1, . . . , ar).

If the instances are extremely simple, for example when all ai’s are positive
braids, then the set C inf(a1, . . . , ar) will be very small, so that the MSCP is
feasible. But the MSCP for generic instances needs more work.

Possible improvement of the algorithm for the MSCP in braid groups. Recently
N. Franco and J. Gonzálex-Meneses [11] improved the algorithm for the conju-
gacy problem in braid groups. The complexity of their algorithm to compute
the super summit set is O(N`2n4 log n), where N is the cardinality of the super
summit set, n is the braid index, and ` is the word-length of the given braid.
The complexity of the old algorithm was O(N`2(n!)n log n). With respect to the
braid index n, the complexity was reduced from exponential function to poly-
nomial. We expect that their idea can also be applied to the MSCP and our
algorithm can be improved so that the computational complexity is a polyno-
mial in (n, r, `,N), where ` is the maximal word-length of ai’s and N is the
cardinality of the set C inf(a1, . . . , ar).

5 Concluding Remarks

For the commutator key agreement protocols of Anshel et al. [2, 1], we have
proposed two kinds of attacks: a linear algebraic attack on the key extractor and
a mathematical algorithm solving the MSCP in braid groups.

Our linear algebraic attack has shown that given the induced permutations
of the private keys, computing the matrix part of the shared key E(x−1y−1xy) is
reduced to some list-MSCPs in GLn−1(Fp). So one can compute the entire shared
key very efficiently if the list-MSCPs in Sn and in GLn−1(Fp) are feasible.

On the other hand, we have proposed an algorithm for the MSCP in braid
groups that is suitable for the instance, (a1, . . . , ar) and (c1, . . . , cr), where ai’s
are simple and ci’s are complicated. It consists of two steps. We first transform
(c1, . . . , cr) into (c′1, . . . , c

′
r) where each c′i is at least as simple as ai, and then find

the conjugator. The first step is really efficient. However, there is no polynomial
time algorithm for the second step.

It is interesting to study the (in-)feasibility of the list-MSCPs in permutation
groups and in matrix groups, and to improve the mathematical algorithm for
the MSCP in braid groups.

Acknowledgement

The authors are grateful to Rosario Genaro, Dorian Goldfeld, Hi-joon Chae, Ga-
bor Ivanyos, the anonymous referees, and Eurocrypt 2002 program committee
for their helpful comments or suggestions. The first author was supported by
postdoctoral fellowship program of KOSEF. And the second author was sup-
ported by 2002 R&D project, Development of models & schemes for the security
analysis of cryptographic protocols, of MIC.

References

1. I. Anshel, M. Anshel, B. Fisher, and D. Goldfeld, New Key Agreement Protocols in
Braid Group Cryptography, Topics in Cryptology—CT-RSA 2001 (San Francisco,
CA), 13–27, Lecture Notes in Comput. Sci., 2020, Springer, Berlin, 2001.

2. I. Anshel, M. Anshel, and D. Goldfeld, An algebraic method for public-key cryptog-
raphy, Math. Res. Lett. 6(1999), no. 3-4, 287–291.

3. J.S. Birman, Braids, links and the mapping class group, Ann. Math. Studies 82,
Princeton Univ. Press, 1974.

4. J.S. Birman, K.H. Ko, and S.J. Lee, A new approaches to the world and conjugacy
problem in the braid groups, Adv. Math. 139(1998), no. 2, 322–353.

5. J.S. Birman, K.H. Ko, and S.J. Lee, The infimum, supremum and geodesic length
of a braid conjugacy class, Adv. Math. 164(2001), no. 1, 41–56.

6. J.C. Cha, K.H. Ko, S.J. Lee, J.W. Han, and J.H. Cheon, An Efficient Implementa-
tion of Braid Groups, Advances in Cryptology—ASIACRYPT 2001, (Gold Coast,
Queensland, Australia), 144–156, Lecture Notes in Comput. Sci., 2248, Springer,
Berlin, 2001.

7. A. Chistov, G. Ivanyos, and M. Karpinski, Polynimial time algorithms for mod-
ules over finite dimensional algebras, Proc. Int. Symp. on Symbolic and Algebraic
Computation (ISSAC) ’97, ACM. 68–74, 1997.

8. C.G. Cullen, Matrices and Linear Transformations, Addison-Wesley, 1972.
9. E.A. Elrifai and H.R. Morton, Algorithms for positive braids, Quart. J. Math.

Oxford Ser. (2) 45(1994), no. 180, 479–497.
10. D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson, and W. Thurston, Word
processing in groups, Jones and Bartlett Publishers, Boston, MA, 1992.

11. N. Franco and J. González-Meneses, Conjugacy problem for braid groups and Gar-
side groups, arXiv:math.GT/0112310, preprint 2001.

12. A. Fathi, F. Laudenbach, and V. Poénaru, Travaux de Thurston sur les surfaces,
Astérisque, 66–67, 1979.

13. F.A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. (2)
20(1969), 235–254.

14. J. Hughes and A. Tannenbaum, Length-based attacks for certain group

based encryption rewriting systems, Institute for Mathematics and Its Ap-
plications, April, 2000, Minneapolis, MN, Preprint number 1696, URL
http://www.ima.umn.edu/preprints/apr2000/1696.pdf.

15. K.H. Ko, S.J. Lee, J.H. Cheon, J.H. Han, J.S. Kang, and C. Park, New public key
cryptosystem using braid groups, Advances in cryptology—CRYPTO 2000 (Santa
Barbara, CA), 166–183, Lecture Notes in Comput. Sci., 1880, Springer, Berlin,
2000.

16. E. Lee, S.J. Lee, and S.G. Hahn, Pseudorandomness from Braid Groups, Advances
in cryptology—CRYPTO 2001 (Santa Barbara, CA), 486–502, Lecture Notes in
Comput. Sci., 2139, Springer, Berlin, 2001.

17. J. Los, Pseudo-Anosov maps and invariant train track in the disc: a finite algo-
rithm, Proc. Lond. Math. Soc. 66, 400-430, 1993.

18. J. McCarthy, Normalizers and centralizers of psuedo-Anosov mapping clases, Avail-
able at http://www.mth.msu.edu/~mccarthy/research/.

19. W. Miller, The maximum order of an element of a finite symmetric group, Amer.
Math. Monthly 94(1987), no. 6, 497–506.

20. H.R. Morton, The multivariable Alexander polynomial for a closed braid, Low-
dimensional topology (Funchal, 1998), 167–172, Contemp. Math., 233, Amer. Math.
Soc., Providence, RI, 1999.

A Left-weighted

For a positive braid P , the starting set S(P) and the finishing set F (P) is defined
as follows.

S(P) = {i | P = σiQ for some Q ∈ B+
n },

F (P) = {i | P = Qσi for some Q ∈ B+
n }

For positive braids P and Q, we say that PQ is left-weighted if F (P) ⊃ S(Q)
and right-weighted if F (P) ⊂ S(Q).

B Uniqueness of the Solution to the MSCP in Braid

Groups

Proposition 2. For generic instances, the MSCP x−1aix = ci for i = 1, . . . , r,
has unique solution up to power of ∆2.

Proof. Let x1 and x2 be two solutions, i.e., x−1
1 aix1 = x−1

2 aix2 for each i. There-
fore x1x

−1
2 commutes with each ai and so it commutes with any element in the

subgroup generated by a1, . . . , ar.
If we choose an n-braid at random, then it is pseudo-Anosov [12, 16, 17]. So

we may assume that we can choose two pseudo-Anosov braids, a and a′, from
the subgroup generated by {a1, . . . , ar} such that they have different invariant
measured foliations and that there is no symmetry on the foliations. Then a
braid commuting with both of a and a′ is of the form ∆2k for some integer
k [18]. ut

C Algorithm for the Conjugacy Problem

1. The super summit set of a is defined by the set of all braids a′ such that a

and a′ are conjugate and inf(a′) is maximal and sup(a′) is minimal in the
conjugacy class of a. We can compute the super summit set by two theorems,
the Cycling Theorem and the Convexity Theorem.

2. Let a = ∆uA1 · · ·Ak be the left-canonical form of a. The cycling c(a) and
the decycling d(a) of a is defined by

c(a) = ∆uA2 · · ·Akτ
u(A1),

d(a) = ∆uτ−u(Ak)A1 · · ·Ak−1.

In general, the braids on the right hand sides are not in canonical forms,
and so must be rearranged into canonical forms before the operations are
repeated.

3. Cycling Theorem (See [4, 9, 10])

(i) If inf(a) is not maximal in the conjugacy class, then inf cl(a) > inf(a)
for some l.

(ii) If sup(a) is not minimal in the conjugacy class, then supdl(a) < sup(a)
for some l.

(iii) So the maximal value of inf and the minimum value of sup can be
achieved simultaneously. In particular, the super summit set is not empty
for any braid.

4. Convexity Theorem (See [4, 9, 10])
Let c = x−1ax, inf(a) = inf(c), and sup(a) = sup(c). Let H1H2 · · ·Hk be
the left-canonical form of x. Then

inf(H−1
1 aH1) ≥ inf(a) and sup(H−1

1 aH1) ≤ sup(a),

that is, H−1
1 aH1 is as simple as a with respect to both of inf and sup.

5. It is clear that inf(a) = inf(τ(a)) and sup(a) = sup(τ(a)). So by the Convex-
ity Theorem, we know that if both a and c are contained in the same super
summit set, then there is a finite sequence a = a0 → a1 → · · · → ak = c

such that for each i = 1, . . . , k, ai is contained in the super summit set and
ai = H−1

i ai−1Hi for some permutation braid Hi.
So the conjugacy problem can be solved by the following steps: (i) given a

and c, compute elements a′ and c′ contained in the super summit set, by
using the Cycling Theorem, and (ii) for all permutation braids Aα, α ∈ Sn,
compute A−1

α a′Aα and collect the ones with the same inf and sup as a′. Do
the same thing for all the other elements in the super summit set until any
new element cannot be obtained.
The first step can be done in polynomial time and the second step is done
in exponential time because the number of n-permutations is n!.

