
On the Security of Joint Signature and Encryption

Jee Hea An1, Yevgeniy Dodis2, and Tal Rabin3

1 SoftMax Inc., San Diego, USA. (Work done while at UCSD) jeehea@cs.ucsd.edu
2 Department of Computer Science, New York University, USA. dodis@cs.nyu.edu

3 IBM T.J. Watson Research Center, USA. talr@watson.ibm.com

Abstract. We formally study the notion of a joint signature and encryption in
the public-key setting. We refer to this primitive as signcryption, adapting the
terminology of [35]. We present two de£nitions for the security of signcryption
depending on whether the adversary is an outsider or a legal user of the system.
We then examine generic sequential composition methods of building signcryp-
tion from a signature and encryption scheme. Contrary to what recent results in
the symmetric setting [5, 22] might lead one to expect, we show that classical
“encrypt-then-sign” (EtS) and “sign-then-encrypt” (StE) methods are both se-
cure composition methods in the public-key setting.
We also present a new composition method which we call “commit-then-encrypt-
and-sign” (CtE&S). Unlike the generic sequential composition methods, CtE&S
applies the expensive signature and encryption operations in parallel, which could
imply a gain in ef£ciency over the StE and EtS schemes. We also show that the
new CtE&S method elegantly combines with the recent “hash-sign-switch” tech-
nique of [30], leading to ef£cient on-line/off-line signcryption.
Finally and of independent interest, we discuss the de£nitional inadequacy of
the standard notion of chosen ciphertext (CCA2) security. We suggest a natural
and very slight relaxation of CCA2-security, which we call generalized CCA2-
security (gCCA2). We show that gCCA2-security suf£ces for all known uses of
CCA2-secure encryption, while no longer suffering from the de£nitional short-
comings of the latter.

1 Introduction

Signcryption. Encryption and signature schemes are fundamental cryptographic tools
for providing privacy and authenticity, respectively, in the public-key setting. Until very
recently, they have been viewed as important but distinct basic building blocks of vari-
ous cryptographic systems, and have been designed and analyzed separately. The sep-
aration between the two operations can be seen as a natural one as encryption is aimed
at providing privacy while signatures are used to enable authentication, and these are
two fundamentally different security goals. Yet clearly, there are many settings where
both are needed, perhaps the most basic one is in secure e-mailing, where each message
should be authenticated and encrypted. A straightforward solution to offering simulta-
neously both privacy and authenticity might be to compose the known solutions of each
of the two components. But given that the combination of the two security goals is so
common, and in fact a basic task, it stands to reason that a tailored solution for the com-
bination should be given. Indeed, a cryptographic tool providing both authenticity and
privacy has usually been called an authenticated encryption, but was mainly studied in
the symmetric setting [6, 5, 22]. This paper will concentrate on the corresponding study



in the public key setting, and will use the term signcryption to refer to a “joint signa-
ture and encryption”. We remark that this term was originally introduced and studied
by Zheng in [35] with the primary goal of reaching greater ef£ciency than when car-
rying out the signature and encryption operations separately. As we will argue shortly,
ef£ciency is only one (albeit important) concern when designing a secure joint signa-
ture and encryption. Therefore, we will use the term “signcryption” for any scheme
achieving both privacy and authenticity in the public key setting, irrespective of its per-
formance, as long as it satis£es a formal de£nition of security we develop in this paper.
Indeed, despite presenting some security arguments, most of the initial work on sign-
cryption [35, 36, 26, 19] lacked formal de£nitions and analysis. This paper will provide
such a formal treatment, as well as give new general constructions of signcryption.

Signcryption as a primitive? Before devoting time to the de£nition and design of (ad-
ditional) signcryption schemes one must ask if there is a need for de£ning signcryption
as a separate primitive. Indeed, maybe one should forgo this notion and always use a
simple composition of a signature and encryption? Though we show in the following
that these compositions, in many instances, yield the desired properties, we still claim
that a separate notion of signcryption is extremely useful. This is due to several reasons.
First, under certain de£nitions of security (i.e., so called CCA2-security as explained in
Section 8), the straightforward composition of a secure signature and encryption does
not necessarily yield a secure signcryption. Second, as we show in Section 3, there are
quite subtle issues with respect to signcryption — especially in the public-key setting
— which need to be captured in a formal de£nition. Third, there are other interest-
ing constructions for signcryption which do not follow the paradigm of sequentially
composing signatures and encryption. Fourth, designing tailored solutions might yield
ef£ciency (which was the original motivation of Zheng [35]). Finally, the usage of sign-
cryption as a primitive might conceptually simplify the design of complex protocols
which require both privacy and authenticity.

Summarizing the above discussion, we believe that the study of signcryption as a
primitive is important and can lead to very useful, general as well as speci£c, paradigms
for achieving privacy and authenticity at the same time.

Our Results. This paper provides a formal treatment of signcryption and analyzes sev-
eral general constructions for this primitive. In particular, we note that the problem of
de£ning signcryption in the public key setting is more involved than the corresponding
task in the symmetric setting studied by [5, 22], due to the asymmetric nature of the for-
mer. For example, full-¤edged signcryption needs to be de£ned in the multi-user setting,
where some issues with user’s identities need to be addressed. In contrast, authenticated
encryption in the symmetric setting can be fully de£ned in a simpler two-user setting.
Luckily, we show that it suf£ces to design and analyze signcryption schemes in the
two-user setting as well, by giving a generic transformation to the multi-user setting.

We give two de£nitions for security of signcryption depending on whether the ad-
versary is an outsider or a legal user of the network (i.e., either the sender or the re-
ceiver). In both of these settings, we show that the common “encrypt-then-sign” (EtS)
and “sign-then-encrypt” (StE) methods in fact yield a secure signcryption, provided
an appropriate de£nition of security is used. Moreover, when the adversary is an out-
sider, these composition methods can actually provide stronger privacy or authenticity



properties for the resulting signcryption scheme than the assumed security properties on
the base encryption or signature scheme. Speci£cally, the security of the base signature
scheme can help amplify the privacy of EtS, while the security of the base encryp-
tion scheme can do the same to the authenticity of StE . We remark that these possibly
“expected” results are nevertheless somewhat surprising in light of recent “negative”
indications from the symmetric setting [5, 22], and illustrate the need for rigorous de£-
nitions for security of signcryption.

In addition, we present a novel construction of signcryption, which we call “commit-
then-encrypt-and-sign” (CtE&S). Our scheme is a general way to construct signcryp-
tion from any signature and encryption schemes, while utilizing in addition a commit-
ment scheme. This method is quite different from the obvious sequential composition
paradigm. Moreover, unlike the previous sequential methods, the CtE&S method ap-
plies the expensive signature and encryption operations in parallel, which could imply
a gain in ef£ciency. We also show that our construction naturally leads to a very ef£-
cient way to implement off-line signcryption, where the sender can prepare most of the
authenticated ciphertext in advance and perform very little on-line computation.

Finally and of independent interest, we discuss the de£nitional inadequacy of the
standard notion of chosen ciphertext (CCA2) security [13, 4]. Motivated by our appli-
cations to signcryption, we show that the notion of CCA2-security is syntactically ill-
de£ned, and leads to arti£cial examples of “intuitively CCA2-secure” schemes which
do not meet the formal de£nition (such observations were also made by [8, 9]). We sug-
gest a natural and very slight relaxation of CCA2-security, which we call generalized
CCA2-security (gCCA2). We show that gCCA2-security suf£ces for all known uses of
CCA2-secure encryption, while no longer suffering from the de£nitional shortcomings
of the latter.

Related Work. The initial works on signcryption [35, 36, 26, 19] designed several sign-
cryption schemes, whose “security” was informally based on various number-theoretic
assumptions. Only recently (and independently of our work) Baek et al. [3] showed
that the original scheme of Zheng [35] (based on shortened ElGamal signatures) can be
shown secure in the random oracle model under the gap Dif£e-Hellman assumption.

We also mention the works of [34, 29], which used Schnorr signature to amplify
the security of ElGamal encryption to withstand a chosen ciphertext attack. However,
the above works concentrate on providing privacy, and do not provide authenticity, as
required by our notion of signcryption.

Recently, much work has been done about authenticated encryption in the sym-
metric (private-key) setting. The £rst formalizations of authenticated encryption in the
symmetric setting were done by [21, 6, 5]. The works of [5, 22] discuss the security of
generic composition methods of a (symmetric) encryption and a message authentica-
tion code (MAC). In particular, a lot of emphasis in these works is given to the study
of suf£cient conditions under which a given composition method can amplify (rather
than merely preserve) the privacy property of a given composition method from the
chosen plaintext (CPA) to the chosen ciphertext (CCA2) level. From this perspective,
the “encrypt-then-mac” method — which always achieves such an ampli£cation due
to a “strongly unforgeable” MAC — was found generically preferable to the “mac-
then-encrypt” method, which does so only in speci£c (albeit very useful) cases [22]. In



contrast, An and Bellare [1] study a symmetric question of under which conditions a
“good” privacy property on the base encryption scheme can help amplify the authentic-
ity property in the “mac-then-encrypt” (or “encrypt-with-redundancy”) method. On a
positive side, they found that chosen ciphertext security on the base encryption scheme
is indeed suf£cient for that purpose. As we shall see in Section 4, all these results are
very related to our results about “sign-then-encrypt” and “encrypt-then-sign” methods
for signcryption when the adversary is an “outsider”.

Another related paradigm for building authenticated encryption is the “encode-then-
encipher” method of [6]: add randomness and redundancy, and then encipher (i.e., apply
a pseudorandom permutation) rather than encrypt. Even though a strong pseudorandom
permutation is often more expensive than encryption, [6] shows that very simple public
redundancy functions are suf£cient — in contrast to the “encrypt-with-redundancy”
method, where no public redundancy can work [1].

Finally, we mention recently designed modes of operations for block ciphers that
achieve both privacy and authenticity in the symmetric setting: RFC mode of [21],
IACBC and IAPM modes of [20], OCB mode of [28], and SNCBC mode of [1].

2 De£nitions

In this section we brie¤y review the (public-key) notions of encryption, signature and
commitment schemes. In addition, we present our extended de£nition for CCA2.

2.1 Encryption

Syntax. An encryption scheme consists of three algorithms: E = (Enc-Gen,Enc,Dec).
Enc-Gen(1k), where k is the security parameter, outputs a pair of keys (EK,DK). EK is
the encryption key, which is made public, and DK is the decryption key which is kept
secret. The randomized encryption algorithm Enc takes as input a key EK and a message
m from the associated message spaceM, and internally ¤ips some coins and outputs a
ciphertext e; we write e ← EncEK(m). For brevity, we will usually omit EK and write
e← Enc(m). The deterministic decryption algorithm Dec takes as input the ciphertext
e, the secret key DK, and outputs some message m ∈M, or ⊥ in case e was “invalid”.
We write m ← Dec(e) (again, omitting DK). We require that Dec(Enc(m)) = m, for
any m ∈M.

Security of Encryption. When addressing the security of the schemes, we deal with two
issues: what we want to achieve (security goal) and what are the capabilities of the
adversary (attack model). In this paper we will talk about the most common security
goal: indistinguishability of ciphertexts [16], which we will denote by IND. A related
notion of non-malleability will be brie¤y discussed in Section 8.

Intuitively, indistinguishability means that given a randomly selected public key, no
PPT (probabilistic polynomial time) adversary A can distinguish encryptions of any
two messages m0,m1 chosen by A: Enc(m0) ≈ Enc(m1). Formally, we require that
for any PPT A, which runs in two stages, find and guess, we have

Pr
[

b = b̃
∣

∣

∣

(EK,DK)← Enc-Gen(1k), (m0,m1, α)← A(EK, find),

b
R

← {0, 1}, e← EncEK(mb), b̃← A(e, α, guess)

]

≤
1

2
+negl(k)



Here and elsewhere negl(k) is some negligible function in the security parameter k, and
α is some internal state information A saves and uses in the two stages.

We now turn to the second issue of security of encryption — the attack model. We
consider three types of attack: CPA, CCA1 and CCA2. Under the chosen plaintext
(or CPA) attack, the adversary is not given any extra capabilities other than encrypting
messages using the public encryption key. A more powerful type of chosen ciphertext
attack gives A access to the decryption oracle, namely the ability to decrypt arbitrary
ciphertexts of its choice. The £rst of this type of attack is the lunch-time (CCA1) at-
tack [27], which gives access only in the find stage (i.e., before the challenge ciphertext
e is given). The second is CCA2 on which we elaborate in the following.

CCA2 Attacks. The adaptive chosen ciphertext attack [13] (CCA2) gives access to
the decryption oracle in the guess stage as well. As stated, the CCA2 attack does not
make sense since A can simply ask to decrypt the challenge e. Therefore, we need to
restrict the class of ciphertexts e′ that A can give to the decryption oracle in the guess
stage. The minimal restriction is to have e′ 6= e, which is the way the CCA2 attack is
usually de£ned. As we will argue in Section 8, stopping at this minimal (and needed)
restriction in turn restricts the class of encryption schemes that we intuitively view as
being “secure”. In particular, it is not robust to syntactic changes in the encryption (e.g.,
appending a harmless random bit to a secure encryption suddenly makes it “insecure”
against CCA2). Leaving further discussion to Section 8, we now de£ne a special case of
the CCA2 attack which does not suffer from the above syntactic limitations and suf£ces
for all the uses of the CCA2-secure encryption we are aware of.

We £rst generalize the CCA2 attack with respect to some equivalence relation
R(·, ·) on the ciphertexts. R is de£ned as part of the encryption scheme, it can depend
on the public key EK, but must have the following property: if R(e1, e2) = true ⇒
Dec(e1) = Dec(e2). We call suchR decryption-respecting. Now A is forbidden to ask
any e′ equivalent to e, i.e. R(e, e′) = true. Since R is re¤exive, this at least rules out
e, and since R is decryption-respecting, it only restricts ciphertexts that decrypt to the
same value as the decryption of e (i.e. mb). We note that the usual CCA2 attack corre-
sponds to the equality relation. Now we say that the encryption scheme is secure against
generalized CCA2 (or gCCA2) if there exists some ef£cient decryption-respecting re-
lation R w.r.t. which it is CCA2-secure. For example, appending a harmless bit to
gCCA2-secure encryption or doing other easily recognizable manipulation still leaves
it gCCA2-secure.

We remark that the notion of gCCA2-security was recently proposed in [32] (under
the name benign malleability) for the ISO public key encryption standard. In the private-
key setting, [22] uses equivalences relations to de£ne “loose ciphertext unforgeability”.

2.2 Signatures

Syntax. A signature scheme consists of three algorithms: S = (Sig-Gen,Sig,Ver).
Sig-Gen(1k), where k is the security parameter, outputs a pair of keys (SK,VK). SK
is the signing key, which is kept secret, and VK is the veri£cation key which is made
public. The randomized signing algorithm Sig takes as input a key SK and a message
m from the associated message spaceM, internally ¤ips some coins and outputs a sig-
nature s; we write s ← SigSK(m). We will usually omit SK and write s ← Sig(m).



Wlog, we will assume that the message m can be determined from the signature s
(e.g., is part of it), and write m = Msg(s) to denote the message whose signature is
s. The deterministic veri£cation algorithm Ver takes as input the signature s, the pub-
lic key VK, and outputs the answer a which is either succeed (signature is valid) or
fail (signature is invalid). We write a ← Ver(s) (again, omitting VK). We require that
Ver(Sig(m)) = succeed, for any m ∈M.

Security of Signatures. As with the encryption, the security of signatures addresses two
issues: what we want to achieve (security goal) and what are the capabilities of the ad-
versary (attack model). In this paper we will talk about the the most common security
goal: existential unforgeability [17], denoted by UF. This means that any PPT adver-
sary A should have a negligible probability of generating a valid signature of a “new”
message. To clarify the meaning of “new”, we will consider the following two attack
models. In the no message attack (NMA), A gets no help besides VK. In the chosen
message attack (CMA), in addition to VK, the adversary A gets full access to the sign-
ing oracle Sig, i.e. A is allowed to query the signing oracle to obtain valid signatures
s1, . . . , sn of arbitrary messages m1, . . . ,mn adaptively chosen by A (notice, NMA
corresponds to n = 0). Naturally, A is considered successful only if it forges a valid
signature s of a message m not queried to signing oracle: m 6∈ {m1 . . .mn}. We denote
the resulting security notions by UF-NMA and UF-CMA, respectively.

We also mention a slightly stronger type of unforgeability called strong unforge-
ability, denoted sUF. Here A should not only be unable to generate a signature of a
“new” message, but also be unable to generate even a different signature of an already
signed message, i.e. s 6∈ {s1, . . . , sn}. This only makes sense for the CMA attack, and
results in a security notion we denote by sUF-CMA.

2.3 Commitment

Syntax. A (non-interactive) commitment scheme consists of three algorithms: C =
(Setup,Commit,Open). The setup algorithm Setup(1k), where k is the security pa-
rameter, outputs a public commitment key CK (possibly empty, but usually consisting of
public parameters for the commitment scheme). Given a messagem from the associated
message spaceM (e.g., {0, 1}k), CommitCK(m; r) (computed using the public key CK
and additional randomness r) produces a commitment pair (c, d), where c is the com-
mitment to m and d is the decommitment. We will usually omit CK and write (c, d) ←
Commit(m). Sometimes we will write c(m) (resp. d(m)) to denote the commitment
(resp. decommitment) part of a randomly generated (c, d). The last (deterministic) al-
gorithm OpenCK(c, d) outputs m if (c, d) is a valid pair for m (i.e. could have been
generated by Commit(m)), or ⊥ otherwise. We require that Open(Commit(m)) = m
for any m ∈M.

Security of Commitment. Regular commitment schemes have two security properties:
Hiding. No PPT adversary can distinguish the commitments to any two message of its
choice: c(m1) ≈ c(m2). That is, c(m) reveals “no information” about m. Formally, for
any PPT A which runs in two stages, find and guess, we have

Pr
[

b = b̃
∣

∣

∣

CK← Setup(1k), (m0,m1, α)← A(CK, find),

b
R

← {0, 1}, (c, d)← CommitCK(mb), b̃← A(c; α, guess)

]

≤
1

2
+negl(k)



Binding. Having the knowledge of CK, it is computationally hard for the adversary A
to come up with c, d, d′ such that (c, d) and (c, d′) are valid commitment pairs for m
and m′, but m 6= m′ (such a triple c, d, d′ is said to cause a collision). That is,A cannot
£nd a value c which it can open in two different ways.

Relaxed commitments. We will also consider relaxed commitment schemes, where the
(strict) binding property above is replaced by the Relaxed Binding property: for any
PPT adversaryA, having the knowledge of CK, it is computationally hard forA to come
up with a message m, such that when (c, d) ← Commit(m) is generated, A(c, d,CK)
produces, with non-negligible probability, a value d′ such that (c, d′) is a valid commit-
ment to some m′ 6= m. Namely, A cannot £nd a collision using a randomly generated
c(m), even for m of its choice.

To justify this distinction, £rst recall the concepts of collision-resistant hash func-
tion (CRHF) families and universal one-way hash function (UOWHF) families. For
both concepts, it is hard to £nd a colliding pair x 6= x ′ such that H(x) = H(x′), where
H is a function randomly chosen from the corresponding family. However, with CRHF,
we £rst select the function H , and for UOWHF the adversary has to select x before H
is given to it. By the result of Simon [33], UOWHF’s are strictly weaker primitive than
CRHF (in particular, they can be built from regular one-way functions [24]). We note
two classical results about (regular) commitment schemes: the construction of such a
scheme by [11, 18], and the folklore “hash-then-commit” paradigm (used for commit-
ting to long messages by hashing them £rst). Both of these results require the use of
CRHF’s, and it is easy to see that UOWHF’s are not suf£cient to ensure (strict) binding
for either one of them. On the other hand, it is not very hard to see that UOWHF’s suf-
£ce to ensure relaxed binding in both cases. Hence, basing some construction on relaxed
commitments (as we will do in Section 5) has its merits over regular commitments.

Trapdoor Commitments. We also de£ne a very useful class of commitment schemes,
known as (non-interactive) trapdoor commitments [7] or chameleon hash functions [23].
In these schemes the setup algorithm Setup(1k) outputs a pair of keys (CK,TK). That
is, in addition to the public commitment key CK, it also produces a trapdoor key TK.
Like regular commitments, trapdoor commitments satisfy the hiding property and (pos-
sibly relaxed) binding properties. Additionally, they have an ef£cient switching algo-
rithm Switch, which allows one to £nd arbitrary collisions using the trapdoor key TK.

Given any commitment (c, d) to some messagem and any messagem′, SwitchTK((c, d),
m′) outputs a valid commitment pair (c, d′) to m′ (note, c is the same!). Moreover, hav-
ing the knowledge of CK, it is computationally hard to come up with two messages
m,m′ such that the adversary can distinguish CommitCK(m′) (random commitment
pair for m′) from SwitchTK(CommitCK(m),m′) (faked commitment pair for m′ ob-
tained from a random pair for m).

We note that the trapdoor collisions property is much stronger (and easily implies)
the hiding property (since the switching algorithm does not change c(m)). Moreover,
the hiding property is information-theoretic. We also note that very ef£cient trapdoor
commitment schemes exist based on factoring [23, 30] or discrete log [23, 7]. In partic-
ular, the switching function requires just one modulo addition and one modulo multi-



plication for the discrete log based solution. Less ef£cient constructions based on more
general assumptions are known as well [23].

3 De£nition of Signcryption in the Two-user Setting

The de£nition of signcryption is a little bit more involved than the corresponding def-
inition of authenticated encryption in the symmetric setting. Indeed, in the symmetric
setting, we only have one speci£c pair of users who (1) share a single key; (2) trust each
other; (3) “know who they are”; and (4) care about being protected from “the rest of the
world”. In contrast, in the public key setting each user independently publishes its pub-
lic keys, after which it can send/receive messages to/from any other user. In particular,
(1) each user should have an explicit identity (i.e., its public key); (2) each signcryption
has to explicitly contain the (presumed) identities of the sender S and the receiver R;
(3) each user should be protected from every other user. This suggests that signcryption
should be de£ned in the multi-user setting. Luckily, we show that we can £rst de£ne
and study the crucial properties of signcryption in the stand-alone two-user setting, and
then add identities to our de£nitions and constructions to achieve the full-¤edged multi-
user security. Thus, in this section we start with a simple two-user setting, postponing
the extension to multi-user setting to Section 7.

Syntax. A signcryption scheme SC consists of three algorithms: SC = (Gen,SigEnc,
VerDec). The algorithm Gen(1k), where k is the security parameter, outputs a pair
of keys (SDK,VEK). SDK is the user’s sign/decrypt key, which is kept secret, and
VEK the user’s verify/encrypt key, which is made public. Note, that in the signcryption
setting all participating parties need to invoke Gen. For a user P , denote its keys by
SDKP and VEKP . The randomized signcryption (sign/encrypt) algorithm SigEnc takes
as input the sender S’s secret key SDKS and the receiver R’s public key VEKR and
a message m from the associated message space M, and internally ¤ips some coins
and outputs a signcryption (ciphertext) u; we write u ← SigEnc(m) (omitting SDKS ,
VEKR). The deterministic de-signcryption (verify/decrypt) algorithm VerDec takes as
input the signcryption (ciphertext) e, the receiver R’s secret key SDKR and the sender
S’s public key VEKS , and outputs m ∈M∪ {⊥}, where ⊥ indicates that the message
was not encrypted or signed properly. We write m ← VerDec(u) (again, omitting the
keys). We require that VerDec(SigEnc(m)) = m, for any m ∈M.

Security of Signcryption. Fix the sender S and the receiver R. Intuitively, we would like
to say that S’s authenticity is protected, and R’s privacy is protected. We will give two
formalizations of this intuition. The £rst one assumes that the adversaryA is an outsider
who only knows the public information pub = (VEKR,VEKS). We call such security
Outsider security. The second, stronger notion, protects S’s authenticity even against
R, and R’s privacy even against S. Put in other words, it assumes that the adversary A
is a legal user of the system. We call such security Insider security.

Outsider Security. We de£ne it against the strongest security notions on the signature
(analogs of UF-CMA or sUF-CMA) and encryption (analogs of IND-gCCA2 or IND-
CCA2), and weaker notions could easily be de£ned as well. We assume that the adver-
sary A has the public information pub = (VEKS ,VEKR). It also has oracle access to
the functionalities of both S and R. Speci£cally, it can mount a chosen message attack



on S by asking S to produce signcryption u of an arbitrary message m. In other words,
A has access to the signcryption oracle. Similarly, it can mount a chosen ciphertext
attack on R by giving R any candidate signcryption u and receiving back the message
m (where m could be ⊥), i.e. A has access to the de-signcryption oracle. Notice, A
cannot by itself run either the signcryption or the de-signcryption oracles due to the
lack of corresponding secret keys SDKS and SDKR.

To break the UF-CMA security of the signcryption scheme, A has to come up with
a valid signcryption u of a “new” message m, which it did not ask S to signcrypt earlier
(notice, A is not required to “know” m when producing u). The scheme is Outsider-
secure in the UF-CMA sense if any PPT A has a negligible chance of succeeding. (For
sUF-CMA, A only has to produce u which was not returned by S earlier.)

To break the indistinguishability of the signcryption scheme,A has to come up with
two messages m0 and m1. One of these will be signcrypted at random, the correspond-
ing signcryption u will be given to A, and A has to guess which message was sign-
crypted. To succeed in the CCA2 attack, A is only disallowed to ask R to de-signcrypt
the challenge u. For gCCA2 attack, similarly to the encryption scenario, we £rst de-
£ne CCA2 attack against a given ef£cient decryption-respecting relation R (which
could depend on pub = (VEKR,VEKS) but not on any of the secret keys). As before,
decryption-respecting means thatR(u, u′) = true⇒ VerDec(u) = VerDec(u′). Thus,
CCA2 attack w.r.t. R disallows A to de-signcrypt any u′ equivalent to the challenge
u. Now, for Outsider-security against CCA2 w.r.t. R, we require Pr[A succeeds] ≤
1
2

+ negl(k). Finally, the scheme is Outsider-secure in the IND-gCCA2 sense if it is
Outsider-secure against CCA2 w.r.t. some ef£cient decryption-respectingR.

Insider Security. We could de£ne Insider security in a similar manner by de£ning the ca-
pabilities of A and its goals. However, it is much easier to use already existing security
notions for signature and encryption schemes. Moreover, this will capture the intuition
that “signcryption = signature + encryption”. More precisely, given any signcryption
scheme SC = (Gen,SigEnc,VerDec), we de£ne the corresponding induced signature
scheme S = (Sig-Gen,Sig,Ver) and encryption scheme E = (Enc-Gen,Enc,Dec).

– Signature S. The generation algorithm Sig-Gen runs Gen(1k) twice to produce
two key pairs (SDKS ,VEKS) and (SDKR,VEKR). Let pub = {VEKS ,VEKR}
be the public information. We set the signing key to SK = {SDKS , pub}, and the
veri£cation key to VK = {SDKR, pub}. Namely, the public veri£cation key (avail-
able to the adversary) contains the secret key of the receiver R. To sign a message
m, Sig(m) outputs u = SigEnc(m), while the veri£cation algorithm Ver(u) runs
m ← VerDec(u) and outputs succeed iff m 6= ⊥. We note that the veri£cation is
indeed polynomial time since VK includes SDKR.

– Encryption E . The generation algorithm Enc-Gen runs Gen(1k) twice to produce
two key pairs (SDKS ,VEKS) and (SDKR,VEKR). Let pub = {VEKS ,VEKR} be
the public information. We set the encryption key to EK = {SDKS , pub}, and the
decryption key to DK = {SDKR, pub}. Namely, the public encryption key (avail-
able to the adversary) contains the secret key of the sender S. To encrypt a message
m, Enc(m) outputs u = SigEnc(m), while the decryption algorithm Dec(u) sim-
ply outputs VerDec(u). We note that the encryption is indeed polynomial time since
EK includes SDKS .



We say that the signcryption is Insider-secure against the corresponding attack (e.g.
gCCA2/CMA) on the privacy/authenticity property, if the corresponding induced en-
cryption/signature is secure against the same attack.1 We will aim to satisfy IND-
gCCA2-security for encryption, and UF-CMA-security for signatures.

Should we Require Non-Repudiation? We note that the conventional notion of digital
signatures supports non-repudiation. Namely, the receiver R of a correctly generated
signature s of the messagem can hold the sender S responsible to the contents ofm. Put
differently, s is unforgeable and publicly veri£able. On the other hand, non-repudiation
does not automatically follow from the de£nition of signcryption. Signcryption only
allows the receiver to be convinced that m was sent by S, but does not necessarily
enable a third party to verify this fact.

We believe that non-repudiation should not be part of the de£nition of signcryption
security, but we will point out which of our schemes achieves it. Indeed, non-repudiation
might be needed in some applications, while explicitly undesirable in others (e.g., this
issue is the essence of undeniable [10] and chameleon [23] signature schemes).

Insider vs. Outsider security. We illustrate some of the differences between Insider and
Outsider security. For example, Insider-security for authenticity implies non-repudiation
“in principle”. Namely, non-repudiation is certain at least when the receiver R is willing
to reveal its secret key SDKR (since this induces a regular signature scheme), or may
be possible by other means (like an appropriate zero-knowledge proof). In contrast,
Outsider-security leaves open the possibility that R can generate — using its secret key
— valid signcryptions of messages that were not actually sent by S. In such a case,
non-repudiation cannot be achieved no matter what R does.

Despite the above issues, however, it might still seem that the distinction between
Insider- and Outsider-security is a bit contrived, especially for privacy. Intuitively, the
Outsider-security protects the privacy of R when talking to S from outside intruders,
who do not know the secret key of S. On the other hand, Insider-security assumes
that the sender S is the intruder attacking the privacy of R. But since S is the only
party that can send valid signcryptions from S to R, this seems to make little sense.
Similarly for authenticity, if non-repudiation is not an issue, then Insider-security seems
to make little sense; as it assumes that R is the intruder attacking the authenticity of S,
and simultaneously the only party that needs to be convinced of the authenticity of the
(received) data. And, indeed, in many settings Outsider-security might be all one needs
for privacy and/or authenticity. Still, there are some cases where the extra strength of the
Insider-security might be important. We give just one example. Assume an adversary
A happens to steal the key of S. Even though now A can send fake messages “from
S to R”, we still might not want A to understand previous (or even future) recorded
signcryptions sent from honest S to R. Insider-security will guarantee this fact, while
the Outsider-security might not.

Finally, we note that achieving Outsider-security could be signi£cantly easier than
Insider-security. One such example will be seen in Theorems 2 and 3. Other exam-

1 One small technicality for the gCCA2-security. Recall, the equivalence relationR can depend
on the public encryption key — in this case {SDK S , pub}. We strengthen this and allow it to
depend only on pub (i.e. disallow the dependence on sender’s secret key SDKS).



ples are given in [2], who show that authenticated encryption in the symmetric setting
could be used to build Outsider-secure signcryption which is not Insider-secure. To
summarize, one should carefully examine if one really needs the extra guarantees of
Insider-security.

4 Two Sequential Compositions of Encryption and Signature

In this section, we will discuss two methods of constructing signcryption schemes that
are based on sequential generic composition of encryption and signature: encrypt-then-
sign (EtS) and sign-then-encrypt (StE).

Syntax. Let E = (Enc-Gen,Enc,Dec) be an encryption scheme and S = (Sig-Gen,
Sig,Ver) be a signature scheme. Both EtS and StE have the same generation algo-
rithm Gen(1k). It runs (EK,DK) ← Enc-Gen(1k), (SK,VK) ← Sig-Gen(1k) and sets
VEK = (VK,EK), SDK = (SK,DK). To describe the signcryptions from sender S
to receiver R more compactly, we use the shorthands SigS(·), EncR(·), VerS(·) and
DecR(·) indicating whose keys are used but omitting which speci£c keys are used,
since the latter is obvious (indeed, SigS always uses SKS , EncR — EKR, VerS — VKS

and DecR — DKR).
Now, we de£ne “encrypt-then-sign” scheme EtS by u← SigEnc(m; (SK S ,EKR))

= SigS(EncR(m)). To de-signcrypt u, we let m̃ = DecR(Msg(u)) providedVerS(u) =
succeed, and m̃ = ⊥ otherwise. We then de£ne VerDec(u; (DKR,VKS)) = m̃. Notice,
we do not mention (EKS ,DKS) and (SKR,VKR), since they are not used to send the
message from S to R. Similarly, we de£ne “sign-then-encrypt” scheme StE by u ←
SigEnc(m; (SKS ,EKR)) = EncR(SigS(m)). To de-signcrypt u, we let s = DecR(u),
and set m̃ = Msg(s) provided VerS(s) = succeed, and m̃ = ⊥ otherwise. We then
de£ne VerDec(u; (DKR,VKS)) = m̃.

Insider-security. We now show that both EtS and StE are secure composition paradigms.
That is, they preserve (in terms of Insider-security) or even improve (in terms of Outsider-
security) the security properties of E and S. We start with Insider-security.

Theorem 1. If E is IND-gCCA2-secure, and S is UF-CMA-secure, then EtS and StE
are both IND-gCCA2-secure and UF-CMA-secure in the Insider-security model.

The proof of this result is quite simple (and is omitted due to space limitations).
However, we remark the crucial use of gCCA2-security when proving the security of
EtS. Indeed, we can call two signcryptions u1 and u2 equivalent for EtS, if each ui

is a valid signature (w.r.t. S) of ei = Msg(ui), and e1 and e2 are equivalent (e.g.,
equal) w.r.t. to the equivalence relation of E . In other words, a different signature of the
same encryption clearly corresponds to the same message, and we should not reward
the adversary for achieving such a trivial2 task.

Remark 1. We note that StE achieves non-repudiation. On the other hand, EtS might
not achieve obvious non-repudiation, except for some special cases. One such important
case concerns encryption schemes, where the decryptor can reconstruct the randomness
r used by the encryptor. In this case, presenting r such that EncR(m; r) = e, and u is
a valid signature of e yields non-repudiation.

2 The task is indeed trivial in the Insider-security model, since the adversary has the signing key.



We note that, for the Insider-security in the public-key setting, we cannot hope to am-
plify the security of the “base” signature or encryption, unlike the symmetric setting,
where a proper use of a MAC allows one to increase the privacy from CPA to CCA2-
security (see [5, 22]). For example, in the Insider-security for encryption, the adversary
is acting as the sender and holds the signing key. Thus, it is obvious that the use of
this signing key cannot protect the receiver and increase the quality of the encryption.
Similar argument holds for signatures. Thus, the result of Theorem 1 is the most opti-
mistic we can hope for in that it at least preserves the security of the base signature and
encryption, while simultaneously achieving both functionalities.

Outsider-security. On the other hand, we show that in the weaker Outsider-security
model, it is possible to amplify the security of encryption using signatures, as well as
the security of signatures using encryption, exactly like in the symmetric setting [5, 22,
1]. This shows that Outsider-security model is quite similar to the symmetric setting:
namely, from the adversarial point of view the sender and the receiver “share” the secret
key (SDKS ,SDKR).

Theorem 2. If E is IND-CPA-secure, and S is UF-CMA-secure, then EtS is IND-
gCCA2-secure in the Outsider- and UF-CMA-secure in the Insider-security models.

We omit the proof due to space limitations. Intuitively, either the de-signcryption ora-
cle always returns ⊥ to the gCCA2-adversary, in which case it is “useless” and IND-
CPA-security of E is enough, or the adversary can submit a valid signcryption u =
Sig(Enc(·)) to this oracle, in which case it breaks the UF-CMA-security of the “out-
side” signature S.

Theorem 3. If E is IND-gCCA2-secure, and S is UF-NMA-secure, then StE is IND-
gCCA2-secure in the Insider- and UF-CMA-secure in the Outsider-security models.

We omit the proof due to space limitations. Intuitively, the IND-gCCA2-security of the
“outside” encryption E makes the CMA attack of UF-CMA-adversary A “useless”, by
effectively hiding the signatures corresponding toA’s queried messages, hence making
the attack reduced to NMA.

5 Parallel Encrypt and Sign
So far we concentrated on two basic sequential composition methods, “encrypt-then-
sign” and “sign-then-encrypt”. Another natural generic composition method would be
to both encrypt the message and sign the message, denoted E&S. This operation simply
outputs a pair (s, e), where s← SigS(m) and e← EncR(m). One should observe that
E&S preserves the authenticity property but obviously does not preserve the privacy of
the message as the signature s might reveal information about the message m. More-
over, if the adversary knows that m ∈ {m0,m1} (as is the case for IND-security), it can
see if s is a signature of m0 or m1, thus breaking IND-security. This simple observation
was also made by [5, 22]. However, we would like to stress that this scheme has a great
advantage: it allows one to parallelize the expensive public key operations, which could
imply signi£cant ef£ciency gains.

Thus, the question which arises is under which conditions can we design a secure
signcryption scheme which would also yield itself to ef£ciency improvements such as



parallelization of operations. More concretely, there is no reason why we should apply
EncR and SigS to m itself. What if we apply some ef£cient “pre-processing” trans-
formation T to the message m, which produces a pair (c, d), and then sign c and en-
crypt d in parallel? Under which conditions on T will this yield a secure signcryption?
Somewhat surprisingly, we show a very general result: instantiating T as a commitment
scheme would enable us to both achieve a signcryption scheme and parallelize the ex-
pensive public key operations. More precisely, relaxed commitment is necessary and
suf£cient! In the following we explain this result in more detail.

Syntax. Clearly, the values (c, d) produced by T (m) should be such that m is recover-
able from (c, d), But which exactly the syntax (but not yet the security) of a commitment
scheme, as de£ned in Section 2.3. Namely, T could be viewed as the message com-
mitment algorithm Commit, while the message recovery algorithm is the opening algo-
rithm Open, and we want Open(Commit(m)) = m. For a technical reason, we will also
assume there exists at most one valid c for every value of d. This is done without loss
of generally when commitment schemes are used. Indeed, essentially all commitment
schemes have, and can always be assumed to have, d = (m, r), where r is the random-
ness of Commit(m), and Open(c, (m, r)) just checks if Commit(m; r) = (c, (m, r))
before outputting m.

Now, given any such (possibly insecure) C = (Setup,Commit,Open), an encryp-
tion scheme E = (Enc-Gen,Enc,Dec) and a signature scheme S = (Sig-Gen,Sig,Ver),
we de£ne a new composition paradigm, which we call “commit-then-encrypt-and-sign”:
shortly, CtE&S = (Gen,SigEnc,VerDec). For simplicity, we assume for now that
all the participants share the same common commitment key CK (e.g., generated by
a trusted party). Gen(1k) is the same as for EtS and StE compositions: set VEK =
(VK,EK), SDK = (SK,DK). Now, to signcrypt a message m from S to R, the sender
S £rst runs (c, d) ← Commit(m), and outputs signcryption u = (s, e), where s ←
SigS(c) and e← EncR(d). Namely, we sign the commitment c and encrypt the decom-
mitment d. To de-signcrypt, the receiver R validates c = Msg(s) using VerS(s) and de-
crypts d = DecR(e) (outputting ⊥ if either fails). The £nal output is m̃ = Open(c, d).
Obviously, m̃ = m if everybody is honest.

Main Result. We have de£ned the new composition paradigm CtE&S based purely on
the syntactic properties of C, E and S. Now we formulate which security properties of
C are necessary and suf£cient so that our signcryption CtE&S preserves the security of
E and S. As in Section 4, we concentrate on UF-CMA and IND-gCCA2 security. Our
main result is as follows:

Theorem 4. Assume that E is IND-gCCA2-secure, S is UF-CMA-secure and C sat-
is£es the syntactic properties of a commitment scheme. Then, in the Insider-security
model, we have:

– CtE&S is IND-gCCA2-secure ⇐⇒ C satis£es the hiding property.
– CtE&S is UF-CMA-secure ⇐⇒ C satis£es the relaxed binding property.

Thus, CtE&S preserves security of E and S iff C is a secure relaxed commitment. In
particular, any secure regular commitment C yields secure signcryption CtE&S.



We prove our theorem by proving two related lemmas of independent interest. De-
£ne auxiliary encryption scheme E ′ = (Enc-Gen′,Enc′,Dec′) where (1) Enc-Gen′ =
Enc-Gen, (2) Enc′(m) = (c,Enc(d)), where (c, d)← Commit(m), and (3)Dec′(c, e) =
Open(c,Dec(d)).

Lemma 1. Assume E is IND-gCCA2-secure encryption. Then E ′ is IND-gCCA2-secure
encryption iff C satis£es the hiding property.

Proof. For one direction, we show that if C does not satisfy the hiding property, then
E cannot even be IND-CPA-secure, let alone IND-gCCA2-secure. Indeed, if some ad-
versary A can £nd m0,m1 s.t. c(m0) 6≈ c(m1), then obviously Enc′(m0) ≡ (c(m0),
Enc(d(m0))) 6≈ (c(m1),Enc(d(m1))) ≡ Enc′(m1), contradicting IND-CPA-security.

Conversely, assume C satis£es the hiding property, and let R be the decryption-
respecting equivalence relation w.r.t. which E is IND-CCA2-secure. We let the equiv-
alence relation R′ for E ′ be R′((c1, e1), (c2, e2)) = true iff R(e1, e2) = true and
c1 = c2. It is easy to see that R′ is decryption-respecting, since if di = Dec(ei),
then R′((c1, e1), (c2, e2)) = true implies that (c1, d1) = (c2, d2), which implies that
m1 = Open(c1, d1) = Open(c2, d2) = m2.

We now show IND-CCA2-security of E ′ w.r.t. R′. For that, let Env1 denote the
usual environment where we place any adversary A′ for E ′. Namely, (1) in find Env1

honestly answers the decryption queries of A′; (2) after m0 and m1 are selected, Env1

picks a random b, sets (cb, db) ← Commit(mb), eb ← Enc(db) and returns ẽ =
Enc′(mb) = (cb, eb); (3) in guess, Env1 honestly answers decryption query e′ = (c, e)
provided R′(e′, ẽ) = false. We can assume that A′ never asks a query (c, e) where
R(e, eb) = true but c 6= cb. Indeed, by our assumption only the value c = cb will
check with db, so the answer to queries with c 6= cb is ⊥ (and A′ knows it). Hence, we
can assume that R′(e′, ẽ) = false implies that R′(e, eb) = false. We let Succ1(A′)
denote the probabilityA′ succeeds in predicting b. Then, we de£ne the following “fake”
environment Env2. It is identical to Env1 above, except for one aspect: in step (2) it
would return bogus encryption ẽ = (c(0), eb), i.e. puts the commitment to the zero
string 0 instead of the expected cb. In particular, step (3) is the same as before with the
understanding that R′(e′, ẽ) is evaluated with the fake challenge ẽ. We let Succ2(A′)
be the success probability of A in Env2.

We make two claims: (a) using the hiding property of C, no PPT adversary A′ can
distinguish Env1 from Env2, i.e. |Succ1(A′)− Succ2(A

′)| ≤ negl(k); (b) using IND-
gCCA2-security of E , Succ2(A′) < 1

2
+ negl(k), for any PPT A′. Combined, claims

(a) and (b) imply the lemma.

Proof of Claim (a). If for someA′, Succ1(A′)−Succ2(A
′) > ε for non-negligible ε, we

createA1 that will break the hiding property of C.A1 picks (EK,DK)← Enc-Gen(1k)
by itself, and runs A′ (answering its decryption queries using DK) until A′ outputs
m0 and m1. At this stage A1 picks a random b ← {0, 1}, and claims to be able to
distinguish c(0) from cb = c(mb). When presented with c̃ — a commitment to either 0
or mb —A1 will return toA′ the “ciphertext” ẽ = (c̃, e b).A1 will then again runA′ to
completion refusing to decrypt e′ such that R′(e′, ẽ) = true. When A′ outputs b̃, A1

says that the message was mb ifA′ succeeds (b̃ = b), and says 0 otherwise. It is easy to



check that in case c̃ = c(mb) = cb,A′ was run exactly in Env1, otherwise — in Env2,
which easily implies that Pr(A1 succeeds) ≥ 1

2
+ ε

2
, a contradiction.

Proof of Claim (b). If for some A′, Succ2(A′) > 1
2

+ ε, we create A2 which will
break IND-gCCA2-security of E . Speci£cally, A2 can simulate the decryption query
e′ = (c, e) of A′ by asking its own decryption oracle to decrypt d = Dec(e), and
returning Open(c, d). When A′ outputs m0 and m1, A2 sets (ci, di) ← Commit(mi)
and claims to distinguish d0 and d1. When given challenge eb ← Enc(db) for unknown
b, A2 gives A′ the challenge ẽ = (c(0), eb). Then, again, A2 uses its own decryption
oracle to answer all queries e′ = (c, e) as long asR′(e′, ẽ) = false. From the de£nition
of R′ and our assumption earlier, we see that R(e, eb) = false as well, so all such
queries are legal. SinceA2 exactly recreates the environment Env2 forA′,A2 succeeds
with probability Succ2(A

′) > 1
2

+ ε.

We note that the £rst part of Theorem 4 follows using exactly the same proof as
Lemma 1. Only few small changes (omitted) are needed due to the fact that the com-
mitment is now signed. We remark only that IND-gCCA2 security is again important
here. Informally, IND-gCCA2-security is robust to easily recognizable and invertible
changes of the ciphertext. Thus, signing the commitment part — which is polynomially
veri£able — does not spoil IND-gCCA2-security.

We now move to the second lemma. We de£ne auxiliary signature scheme S ′ =
(Sig-Gen′,Sig′,Ver′) as follows: (1) Sig-Gen′ = Sig-Gen, (2) Sig′(m) = (Sig(c), d),
where, (c, d) ← Commit(m)), (3) Ver′(s, d) = succeed iff Ver(s) = succeed and
Open(Msg(s), d) 6= ⊥.

Lemma 2. Assume S is UF-CMA-secure signature. Then S ′ is UF-CMA-secure sig-
nature iff C satis£es the relaxed binding property.

Proof. For one direction, we show that if C does not satisfy the relaxed binding property,
then S ′ cannot be UF-CMA-secure. Indeed, assume for some adversary A can produce
m such that when (c, d) ← Commit(m) is generated and given to A, A can £nd (with
non-negligible probability ε) a value d′ such that Open(c, d′) = m′ and m′ 6= m.
We build a forger A′ for S ′ using A. A′ gets m from A, and asks its signing oracle
to sign m. A′ gets back (s, d), where s is a valid signature of c, and (c, d) is a random
commitment pair form.A′ gives (c, d) toA, and gets back (with probability ε) the value
d′ such that Open(c, d′) = m′ different from m. But then (s, d′) is a valid signature
(w.r.t. S ′) of a “new” message m ′, contradicting the UF-CMA-security of S.

Conversely, assume some forger A′ breaks the UF-CMA-security of S ′ with non-
negligible probability ε. Assume A′ made (wlog exactly) t = t(k) oracle queries to
Sig′ for some polynomial t(k). For 1 ≤ i ≤ t, we let mi be the i-th message A′ asked
to sign, and (si, di) be its signature (where (ci, di)← Commit(mi) and si ← Sig(ci)).
We also let m, s, d, c have similar meaning for the message that A′ forged. Finally, let
Forged denote the event that c 6∈ {c1, . . . , ct}. Notice,

ε < Pr(A′ succeeds) = Pr(A′ succeeds ∧ Forged) + Pr(A′ succeeds ∧ Forged)

Thus, at least one of the probabilities above is ≥ ε/2. We show that the £rst case
contradicts the UF-CMA-security of S, while the second case contradicts the relaxed
binding property of C.



Case 1: Pr(A′ succeeds ∧Forged) ≥ ε/2. We construct a forgerA1 for S. It simulates
the run of A′ by generating a commitment key CK by itself, and using its own signing
oracle to answer the signing queries of A′: set (ci, di) ← Commit(mi), get si ←
Sig′(ci) from the oracle, and return (si, di). When A′ forges a signature (s, d) of m
w.r.t. S ′, A1 forges a signature s of c w.r.t. S. Notice, c is a “new forgery” in S iff
Forged happens. Hence, A1 succeeds with probability at least ε/2, a contradiction to
UF-CMA-security of S.

Case 2: Pr(A′ succeeds ∧ Forged) ≥ ε/2. We construct an adversary A2 contradict-
ing the relaxed binding property of C. A2 will generate its own key pair (SK,VK) ←
Sig-Gen(1k), and will also pick a random index 1 ≤ i ≤ t. It simulates the run of A′

in a standard manner (same way as A1 above) up to the point where A′ asks its i-th
query mi. At this stage A2 outputs mi as its output to the find stage. When receiving
back random (ci, di) ← Commit(mi), it uses them to sign mi as before (i.e., returns
(Sig(ci), di) to A′), and keeps simulating the run of A′ in the usual manner. When A
outputs the forgery (s, d) of a message m, A2 checks if ci = c (Msg(s)) and mi 6= m.
If this fails, it fails as well. Otherwise, it outputs d as its £nal output to the collide stage.
We note that when Forged does not happen, i.e. c ∈ {c1 . . . ct}, we have c = ci with
probability at least 1/t. Thus, with overall non-negligible probability ε/(2t) we have
that: (1) m 6= mi (A′ outputs a new message m); (2) ci = c (Forged did not happen and
A2 correctly guessed i such that ci = c); (3) Open(c, d) = m and Open(c, di) = mi.
But this exactly means thatA2 broke the relaxed binding property of C, a contradiction.

We note that the second part of Theorem 4 follows using exactly the same proof as
Lemma 2. Only few small changes are needed due to the fact that the decommitment
is now encrypted (e.g., the adversary chooses its own encryption keys and performs
decryptions on its own). This completes the proof of Theorem 4.

Remark 2. We note that CtE&S achieves non-repudiation by Lemma 2. Also note that
the necessity of relaxed commitments holds in the weaker Outsider-security model as
well. Finally, we note that CtE&S paradigm successfully applies to the symmetric set-
ting as well.

Remark 3. We remark that in practice, CtE&S could be faster or slower than the se-
quential EtS and StE compositions, depending on the speci£cs C, E and S. For most
ef£ciency on the commitment side, however, one can use the simple commitment c =
H(m, r), d = (m, r), where r is a short random string and H is a cryptographic hash
function (analyzed as a random oracle). For provable security, one can use an almost
equally ef£cient commitment scheme of [11, 18] based on CRHF’s.

6 On-line/Off-line Signcryption

Public-key operations are expensive. Therefore, we examine the possibility of design-
ing signcryption schemes which could be run in two phases: (1) the off-line phase,
performed before the messages to be signcrypted is known; and (2) the on-line phase,
which uses the message and the pre-computation of the off-line stage, to ef£ciently pro-
duce the required signcryption. We show that the CtE&S paradigm is ideally suited for
such a task, but £rst we recall a similar notion for ordinary signatures.



On-line/Off-line Signatures. On-line/Off-line signatures where introduced by Even et
al. [14] who presented a general methodology to transform any signature scheme into
a more ef£cient on-line/off-line signature (by using so called “one-time” signatures).
Their construction, however, is mainly of theoretical interest. Recently, Shamir and
Tauman [30] introduced the following much more ef£cient method to generate on-
line/off-line signatures, which they called “hash-sign-switch”. The idea is to use trap-
door commitments (see Section 2.3) in the following way. The signer S chooses two
pairs of keys: regular signing keys (SK,VK) ← Sig-Gen(1k), and trapdoor commit-
ment keys (TK,CK)← Setup(1k). S keeps (SK,TK) secret, and publishes (VK,CK).
In the off-line phase, S prepares (c, d0) ← CommitCK(0), and s ← SigSK(c). In the
on-line phase, when the message m arrives, S creates “fake” decommitment (c, d) ←
SwitchTK((c, d0),m) to m, and outputs (s, d) as the signature. To verify, the receiver
R checks that s is a valid signature of c = Msg(s), and OpenCK(c, d) = m.

Notice, this is very similar to the auxiliary signature scheme S ′ we used in Lemma 2.
The only difference is that the “fake” pair (c, d) is used instead of Commit(m). How-
ever, by the trapdoor collisions property of trapdoor commitments, we get that (c, d) ≈
Commit(m), and hence Lemma 2 — true for any commitment scheme — implies that
this modi£ed signature scheme is indeed secure (more detailed proof is given in [30]).
Thus, the resulting signature S ′′ essentially returns the same (Sig(c), d) as S ′, except
that the expensive signature Sig is computed in the off-line phase.

“Hash-Sign-Switch” for Signcryption. Now, we could use the on-line/off-line signa-
ture S ′′ above with any of our composition paradigms: EtS,StE or CtE&S. In all
cases this would move the actual signing operation into the off-line phase. For exam-
ple, EtS will (essentially) return (Sig(c(e)), d(e)), where e← Enc(m); while StE will
return Enc(Sig(c(m)), d(m)). We could also apply it “directly” to the CtE&S scheme.
However, CtE&S scheme already uses commitments! So let us see what happens when
we use a trapdoor commitment C instead of any general commitment. We see that we
still return (Sig(c),Enc(d)) (where (c, d) ← Switch(Commit(0),m) ≈ Commit(m)),
except the expensive signature part is performed off-line, exactly as we wish. Thus,
CtE&S yields a more ef£cient (and provably secure by Theorem 4) on-line/off-line im-
plementation than the one we get by blindly applying the “hash-sign-switch” technique
to the EtS or StE schemes.

We remark that in this scheme the trapdoor key TK has to be known to the sender,
but not to the receiver. Hence, each user P has to generate its own pair (TK,CK) dur-
ing key generation, keeping TK as part of SDKP . Also, P should use its own CKP

when sending messages, and the sender’s CK when receiving messages. Notice, since
trapdoor commitments are information-theoretically hiding, there is no danger for the
receiver that the sender chooses a “bad” commitment key (the hiding property is sat-
is£ed for all CK’s, and it is in sender’s interest to choose CK so that the binding is
satis£ed as well).

Adding On-line/Off-line Encryption. We have successfully moved the expensive public-
key signature to the off-line phase. What about public-key encryption? We can use
the folklore technique of integrating public- and secret-key encryptions: Enc′EK(m) =
(EncEK(r), Er(m)). Namely, we encrypt a random secret-key r for symmetric encryp-
tion E, and then encrypt the actual message m using E with the key r. Clearly, we can



do the (much more expensive) public-key encryption EncEK(r) in the off-line stage.
Surprisingly, this folklore technique, which is being extensively used in practice, has
only recently been formally analyzed in the CCA2-setting by [12]. Translated to our ter-
minology, IND-gCCA2-secure Enc and E yield IND-gCCA2-secure Enc′ above ([12]
showed this for regular IND-CCA2-security). As a side remark, in the random oracle
model, clever integration of public- and secret-key encryption allows us to get IND-
CCA2-secure Enc′ starting from much less secure base encryption Enc (e.g., see [15,
25]). Thus, making encryption off-line can also amplify its security in this setting.

Final Scheme. To summarize, we get the following very ef£cient on-line/off-line sign-
cryption scheme from any signature S, public-key encryption E , trapdoor commit-
ment C, and symmetric encryption E: (1) in the off-line stage generate (c, d0) ←
CommitCKS

(0), and prepare e1 ← EncEKR
(r), and s ← SigSKS

(c); (2) in the on-line
stage, create (c, d) ← SwitchTKS

((c, d0),m), e2 ← Er(d), and return (s, (e1, e2)). In
essence, we ef£ciently compute and return (Sig(c), (Enc(r), Er(d))), where (c, d) ≈
Commit(m). Since the switching operation and the symmetric encryption are usually
very fast, we get signi£cant ef£ciency gain. Decryption and veri£cation are obvious.

7 Multi-User Setting

Syntax. So far we have concentrated on the network of two users: the sender S and the
receiver R. Once we move to the full-¤edged multi-user network, several new concerns
arise. First, users must now have identities. We denote by IDP the identity of user P .
We do not impose any constraints on the identities, other than they should be easily
recognizable by everyone in the network, and that users can easily obtain the public
key VEKP from IDP (e.g., IDP could be VEKP ). Next, we change the syntax of the
signcryption algorithm SigEnc to both take and output the identity of the sender and the
receiver. Speci£cally, (1) the signcryption for user S, on input, (m, IDS′ , IDR′), uses
VEKR′ and generates (u, IDS , IDR′) provided IDS = IDS′ ; (2) the de-signcryption for
user R, on input (u, IDS′ , IDR′), uses VEKS′ and outputs m̃ provided IDR = IDR′ . It
must be clear from which S′ the message m̃ came from. Otherwise this will not be able
to satisfy the security property described below.

Security. To break the Outsider-security between a pair of designated users S and R,
A is assumed to have all the secret keys beside SDKS and SDKR, and has access to
the signcryption oracle of S (which it can call with any IDR′ and not just IDR) and
the de-signcryption oracle for R (which it can call with any IDS′ and not just IDS).
Naturally, to break the UF-CMA-security, A has to come up with a valid signcryption
(u, IDS , IDR) of the message m such that (m, IDS , IDR) was not queried earlier to the
signcryption oracle of S. Similarly, to break IND-gCCA2-security of encryption,A has
to come up with m0 and m1 such that it can distinguish SigEnc(m0, IDS , IDR) from
SigEnc(m1, IDS , IDR). Of course, given a challenge (u, IDS , IDR), A is disallowed to
ask the de-signcryption oracle for R a query (u′, IDS , IDR) whereR(u, u′) = true.

We de£ne Insider-security in an analogous manner, except now the adversary has
all the secret keys except SDKS when attacking authenticity or SDKR when attack-
ing privacy. Also, for UF-CMA-security, a forgery (u, IDS , IDR′) of a message m is
“new” as long as (m, ID S , IDR′) was not queried (even though (m, IDS , IDR′′) could



be queried). Similarly, A could choose to distinguish signcryptions (m0, IDS′ , IDR)
from (m1, IDS′ , IDR) (for any S′), and only has the natural restriction on asking de-
signcryption queries of the form (u, IDS′ , IDR), but has no restrictions on using IDS′′ 6=
IDS′ .

Extending Signcryption. We can see that the signcryption algorithms that we use so far
have to be upgraded, so that they use the new inputs IDS and IDR in non-trivial manner.
For example, if the EtS method is used in the multi-user setting, the adversary A can
easily break the gCCA2-security, even in the Outsider-model. Indeed, given the chal-
lenge u = (SigS(e), IDS , IDR), where e = EncR(mb), A can replace the sender’s sig-
nature with its own by computing u′ = (SigA(e), IDA, IDR) and ask R to de-signcrypt
it. SinceA has no restrictions on using IDA 6= IDS in its de-signcryption oracle queries,
A can effectively obtain the decryption of e (i.e.mb). Similar attack on encryption holds
for the StE scheme, while in CtE&S both the encryption and the signature suffer from
these trivial attacks.

It turns out there is a general simple solution to this problem. For any signcryp-
tion scheme SC = (Gen,SigEnc,VerDec) designed for the two-user setting (like EtS,
StE , CtE&S), we can transform it into a multi-user signcryption scheme SC ′ = (Gen,
SigEnc′,VerDec′) as follows: SigEnc′S(m, IDS , IDR) = (SigEncS(m, IDS , IDR), IDS ,
IDR), and VerDec′R(u, IDS , IDR) gets (m,α, β) = VerDecR(u) and outputs m only if
α = IDS and β = IDR. It is easy to see that the security properties of the two-user sign-
cryption scheme is preserved in the multi-user setting by the transformation; namely,
whatever properties SC has in the two-user setting, SC ′ will have in the multi-user
setting. (The proof is simple and is omitted. Intuitively, however, the transformation
effectively binds the signcryption output to the users, by computing signcryption as a
function of the users’ identities.)

Moreover, one can check quite easily that we can be a little more ef£cient in our
compositions schemes. Namely, whatever security was proven in the two-user setting
remains unchanged for the multi-user setting as long as we follow these simple changes:

1. Whenever encrypting something, include the identity of the sender IDS together
with the encrypted message.

2. Whenever signing something, include the identity of the receiver IDR together with
the signed message .

3. On the receiving side, whenever either the identity of the sender or of the receiver
do not match what is expected, output ⊥.

Hence, we get the following new analogs for EtS, StE and CtE&S:

– EtS returns (SigS(EncR(m, IDS), IDR), IDS , IDR).
– StE returns (EncR(SigS(m, IDR), IDS), IDS , IDR).
– CtE&S returns (SigS(c, IDR),EncR(d, IDS), IDS , IDR), where (c, d)← Commit(m).

8 On CCA2 Security and Strong Unforgeability
This section will be mainly dedicated to the conventional notion of CCA2-attack for
encryption. Much of the discussion also applies to a related notion of strong unforge-
ability, sUF, for signatures. Despite the fact that one speci£es the attack model, and the
other — the adversary’s goal, we will see that the relation between gCCA2/CCA2, and



UF/sUF notions is quite similar. We will argue that: (1) gCCA2-attack and UF-security
are better suited for a “good” de£nition than their stronger but syntactically ill CCA2
and sUF counterparts; (2) it is unlikely that the extra strength of CCA2 w.r.t. gCCA2
and sUF w.r.t. UF will £nd any useful applications.

Of course, what is stated above is a subjective opinion. Therefore, we brie¤y remark
which of our previous results for signcryption (stated for gCCA2/UF notions) extend
to the CCA2/sUF notions. Roughly, half of the implications still hold, while the other
half fails to do so. As one representative example, EtS is no longer CCA2-secure even
if E is CCA2-secure. A “counter-example” comes when we use a perfectly possible
UF-CMA-secure signature scheme S which always appends a useless bit during sign-
ing. By simply ¤ipping this bit on the challenge ciphertext, CCA2-adversary is now
“allowed” to use the decryption oracle and recover the plaintext. The arti£cial nature
of this “counter-example” is perfectly highlighted by Theorem 1, which shows that the
IND-gCCA2-security of EtS is preserved.

De£nitional Necessity. Even more explicitly, appending a useless (but harmless) bit to a
CCA2-secure encryption no longer leaves it CCA2-secure. It seems a little disturbing
that this clearly harmless (albeit useless) modi£cation does not satisfy the de£nition of
“secure encryption”. The common answer to the above criticism is that there is nothing
wrong if we became overly strict with our de£nitions, as long as (1) the de£nitions do
not allow for “insecure” schemes; and (2) we can meet them. In other words, the fact
that some secure, but “useless” constructions are ruled out can be tolerated. However,
as we illustrated for the £rst time, the conventional CCA2 notion does rule out some
secure “useful” constructions as well. For example, it might have led one to believe that
the EtS scheme is generically insecure and should be avoided, while we showed that
this is not the case.

Relation to Non-malleability. We recall that the concept of indistinguishability is very
useful in terms of proving schemes secure, but it is not really “natural”. It is generally
believed that a more useful security notion — and the one really important in applica-
tions — is that of non-malleability [13] (denoted NM), which we explain in a second.
Luckily, it is known [13, 4] that IND-CCA2 is equivalent to NM-CCA2, which “justi-
£es” the use of IND-CCA2 as a simpler notion to work with. And now that we relaxed
IND-CCA2 to IND-gCCA2, a valid concern arises that we loose the above equivalence,
and therefore the justi£cation for using indistinguishability as our security notion. A
closer look, however, reveals that this concern is merely a syntactic triviality. Let us
explain.

In essence, NM-security roughly states the following: upon seeing some unknown
ciphertext e, the only thing the adversary can extract — which bears any relevance to the
corresponding plaintext m — is the encryption of this plaintext (which the adversary
has anyway). The current formalization of non-malleability additionally requires that
the only such encryption e′ that A can get is e itself. However, unlike the £rst property,
the last requirement does not seem crucial, provided that anybody can tell that the
ciphertext e′ encrypts the same message as e, by only looking at e and e′. In other
words, there could possibly be no harm even if A can generate e′ 6= e: anyone can tell
that Dec(e) = Dec(e′), so there is no point to even change e to e′. Indeed, we can relax
the formalization of non-malleability (call if gNM) by using a decryption-respecting



relationR, just like we did for the CCA2 attack: namely,A is not considered successful
if it outputs e′ s.t. R(e, e′) = true. Once this is done, the equivalence between “gNM-
CCA2” and IND-gCCA2 holds again.

Applicational Necessity. The above argument also indicates that gCCA2-security is suf-
£cient for all applications where chosen ciphertext security matters (e.g., those in [31,
9, 8]). Moreover, it is probably still a slight overkill in terms of a necessary and suf£-
cient formalization of “secure encryption” from the applicational point of view. Indeed,
we tried to relax the notion of CCA2-security to the minimum extent possible, just to
avoid the syntactic problems of CCA2-security. In particular, we are not aware of any
“natural” encryption scheme in the gap between gCCA2 and CCA2-security. The only
thing we are saying is that the notion of gCCA2 security is more robust to syntactic
issues, seems more applicable for studying generic properties of “secure encryption”,
while also being suf£cient for its applications.

Strong Unforgeability. Finally, we brie¤y remark on the concept of sUF-security for
signatures. To the best of our knowledge, the extra guarantees of this concept have
no realistic applications (while suffering similar syntactic problems as CCA2-security
does). Indeed, once the message m is signed, there is no use to produce a different sig-
nature of the same message: the adversary already has a valid signature of m. The only
“application” we are aware of is building CCA2-secure encryption from a CPA-secure
encryption, via the EtS method. As we demonstrated in Theorem 2, sUF-security is no
longer necessarily once we accept the concept of gCCA2-security.

References

1. J. An and M. Bellare, “Does encryption with redundancy provide authenticity?,” In Euro-
crypt ’01, pp. 512–528, LNCS Vol. 2045.

2. J. An and Y. Dodis, “Secure integration of symmetric- and public-key authenticated encryp-
tion.” Manuscript, 2002.

3. J. Baek, R. Steinfeld, and Y. Zheng, “Formal proofs for the security of signcryption,” In
PKC ’02, 2002.

4. M. Bellare, A. Desai, D. Pointcheval and P. Rogaway, “Relations among notions of security
for public-key encryption schemes,” In Crypto ’98, LNCS Vol. 1462.

5. M. Bellare and C. Namprempre, “Authenticated Encryption: Relations among Notions and
Analysis of the Generic Composition Paradigm,” In Asiacrypt ’00, LNCS Vol. 1976.

6. M. Bellare, P. Rogaway, “Encode-Then-Encipher Encryption: How to Exploit Nonces or
Redundancy in Plaintexts for Ef£cient Cryptography,” In Asiacrypt ’00, LNCS Vol 1976.

7. G. Brassard, D. Chaum, and C. Crépeau, “Minimum disclosure proofs of knowledge,” JCSS,
37(2):156–189, 1988.

8. R. Canetti, “Universally Composable Security: A New Paradigm for Cryptographic Proto-
cols,” In Proc. 42st FOCS, pp. 136–145. IEEE, 2001.

9. R. Canetti and H. Krawczyk, “Analysis of Key-Exchange Protocols and Their Use for Build-
ing Secure Channels,” In Eurocrypt ’01, pp. 453–474, LNCS Vol. 2045.

10. D. Chaum and H. Van Antwerpen, “Undeniable signatures,” In Crypto ’89, pp. 212–217,
LNCS Vol. 435.

11. I. Damgªard, T. Pedersen, and B. P£tzmann, “On the existence of statistically hiding bit
commitment schemes and fail-stop signatures,” In Crypto ’93, LNCS Vol. 773.



12. G. Di Crescenzo, J. Katz, R. Ostrovsky, and A. Smith, “Ef£cient and Non-interactive Non-
malleable Commitment,” In Eurocrypt ’01, pp. 40–59, LNCS Vol. 2045.

13. D. Dolev, C. Dwork and M. Naor, “Non-malleable cryptography,” In Proc. 23rd STOC,
ACM, 1991.

14. S. Even, O. Goldreich, and S. Micali, “On-Line/Off-Line Digital Schemes,” In Crypto ’89,
pp. 263–275, LNCS Vol. 435.

15. E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and symmetric encryption
schemes,” In Crypto ’99, pp. 537–554, 1999, LNCS Vol. 1666.

16. S. Goldwasser and S. Micali, “Probabilistic encryption,” JCSS, 28(2):270–299, April 1984.
17. S. Goldwasser, S. Micali, and R. Rivest, “A digital signature scheme secure against adaptive

chosen-message attacks,” SIAM J. Computing, 17(2):281–308, April 1988.
18. S. Halevi and S. Micali, “Practical and provably-secure commitment schemes from

collision-free hashing,” In Crypto ’96, pp. 201–215, 1996, LNCS Vol. 1109.
19. W. He and T. Wu, “Cryptanalysis and Improvement of Petersen-Michels Signcryption

Schemes,” IEE Computers and Digital Communications, 146(2):123–124, 1999.
20. C. Jutla, “Encryption modes with almost free message integrity,” In Eurocrypt ’01, pp. 529–

544, LNCS Vol. 2045.
21. J. Katz and M. Yung, “Unforgeable Encryption and Chosen Ciphertext Secure Modes of

Operation,” In FSE ’00, pp. 284–299, LNCS Vol. 1978.
22. H. Krawczyk, “The Order of Encryption and Authentication for Protecting Communications

(or: How Secure Is SSL?),” In Crypto ’01, pp. 310–331, LNCS Vol. 2139.
23. H. Krawczyk and T. Rabin, “Chameleon Signatures,” In NDSS ’00, pp. 143–154, 2000.
24. M. Naor and M. Yung, “Universal One-Way Hash Functions and their Cryptographic Ap-

plications,” In Proc. 21st STOC, pp. 33–43, ACM, 1989.
25. T. Okamoto and D. Pointcheval, “React: Rapid enhanced-security asymmetric cryptosystem

transform,” In CT-RSA ’01, pp. 159–175, 2001, LNCS Vol. 2020.
26. H. Petersen and M. Michels, “Cryptanalysis and Improvement of Signcryption Schemes,”

IEE Computers and Digital Communications, 145(2):149–151, 1998.
27. C. Rackoff and D. Simon, “Non-Interactive zero-knowledge proof of knowledge and chosen

ciphertext attack,” In Crypto ’91, LNCS Vol. 576.
28. P. Rogaway, M. Bellare, J. Black, and T. Krovetz, “OCB: A Block-Cipher Mode of Opera-

tion for Ef£cient Authenticated Encryption,” In Proc. 8th CCS, ACM, 2001.
29. C. Schnorr and M. Jakobsson, “Security of Signed ElGamal Encryption,” In Asiacrypt ’00,

pp. 73–89, LNCS Vol. 1976.
30. A. Shamir and Y. Tauman, “Improved Online/Of¤ine Signature Schemes,” In Crypto ’01,

pp. 355–367, LNCS Vol. 2139.
31. V. Shoup, “On Formal Models for Secure Key Exchange,” Technical Report RZ 3120, IBM

Research, 1999.
32. V. Shoup, “A proposal for an ISO standard for public key encryption (version 2.1),”

Manuscript, Dec. 20, 2001.
33. D. Simon, “Finding Collisions on a One-Way Street: Can Secure Hash Functions Be Based

on General Assumptions?,” In Eurocrypt ’98, pp. 334–345, LNCS Vol. 1403.
34. Y. Tsiounis and M. Yung, “On the Security of ElGamal Based Encryption,” In PKC ’98,

pp. 117–134, LNCS Vol. 1431.
35. Y. Zheng, “Digital Signcryption or How to Achieve Cost(Signature & Encryption) ¿

Cost(Signature) + Cost(Encryption),” In Crypto ’97, pp. 165–179, 1997, LNCS Vol. 1294.
36. Y. Zheng and H. Imai, “Ef£cient Signcryption Schemes on Elliptic Curves,” Information

Processing Letters, 68(5):227–233, December 1998.


