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Abstract. We study Pseudorandom Number Generators (PRNGs) as
used in practice. We first give a general security framework for PRNGs,
incorporating the attacks that users are typically concerned about. We
then analyze the most popular ones, including the ANSI X9.17 PRNG
and the FIPS 186 PRNG. Our results also suggest ways in which these
PRNGs can be made more efficient and more secure.

1 Introduction

Random numbers or bits are essential for virtually every cryptographic applica-
tion. For example, seeds for key generation in both secret-key and public-key al-
gorithms, session keys used for encryption and authentication, salts to be hashed
with passwords, and challenges used in identification protocols are all assumed
to be “random” by system designers. However, since generating enough random-
ness is expensive, most applications rely on a cryptographic mechanism, known
as a Pseudorandom Number Generator (PRNG), to stretch a short string of
random bits to a longer string of “random-looking” bits.

Background and Motivation. Cryptographic theory provides us with a num-
ber of constructions for PRNGs, such as the Blum-Blum-Shub generator [14]
and the Blum-Micali generator [15], that are provably-secure under reasonable
number-theoretic assumptions. However, for practical reasons, the PRNGs, that
are in prevalent use today, are typically based on efficient cryptographic primi-
tives such as block ciphers and hash functions. The two most widely-used PRNGs
are the ANSI X9.17 PRNG [3] and the FIPS 186 PRNG [22]. The ANSI X9.17
PRNG is a part of a popular banking standard and was suggested (nearly the
same time as DES) as a mechanism to generate DES keys and nonces. The FIPS
186 PRNG was standardized for generating randomness in DSA. These two
constructions remain the only standardized PRNGs, despite there being many
subsequent security-related standards. As a result, both of them are now being
used as general-purpose PRNGs in various systems and applications.



There has been some analysis of the ANSI X9.17 PRNG and the FIPS 186
PRNG [29, 26], but it has been mostly ad hoc and based on heuristic argu-
ments. There have been several theory-oriented treatments of PRNGs [34, 15]
but these do not fully capture the way PRNGs are used in practice. Thus, de-
spite their being around for some time now and their wide-spread usage, these
PRNGs have yet to be validated in the tradition of provable security. Several
cryptographic toolkits, both in commercial products and in free libraries, include
general-purpose PRNG implementations that are different from the ANSI X9.17
and FIPS 186 PRNGs. None of these other PRNGs have been analyzed, in any
rigorous sense, either.

Our Contributions. Our main goal is to study PRNGs as used in practice. We
focus on the ANSI X9.17 and FIPS 186 PRNGs, not only because they are the
most widely-used ones, but also because they represent the two typical design
approaches for practical PRNGs– one is based on a keyed block cipher while the
other is based on a keyless hash function. We also suggest ways of enhancing
these PRNGs and look at some other practical ones.

A PRNG can be modeled as an iterative algorithm [1, 12]. Each iteration
takes a single input called state (initial seed or intermediate state) and produces
a random output of some fixed length and the next state. All the states are
assumed to be hidden at all times. Although such a model seems sufficient for
theoretical PRNGs, it does not capture all the nuances of a PRNG as used in
practice. Indeed, a PRNG used in practice are often more complicated: (1) There
are usually “auxilliary” inputs, such as time-stamps or counters, that the user
(or even the attacker) may be able to control. (2) Some state information may
be leaked out over time or modified by an attacker. (3) There is a wide range of
cryptographic primitives on which they can be based, some that are secret-key
based and others that are keyless.

We model a PRNG as an iterative algorithm, that in each iteration take three
inputs: a key, a current state, and an auxiliary input. It generates two outputs:
a PRNG output and a new state. “Pseudorandomness” roughly means that the
output sequence should be “indistinguishable from a truly random sequence” to
an attacker. To formalize the types of attacks on the above PRNG model, we
look at the model from an attacker’s point of view– the inputs can be hidden,
known or chosen, while the outputs can be hidden or known. This leads to several
different attacks, ranging from the “strongest” one where the attacker is allowed
to choose all three inputs and see both the outputs to the “weakest” one where
it does not see the key or the states and does not get to control the auxiliary
input. Each attack coupled with the notion of “pseudorandomness” gives rise
to a different definition of security. It is easy to see that there is not a strict
hierarchy in the strengths of the attacks. Most of the attacks, that practical
PRNGs resist, lie somewhere between the strongest and the weakest. We will be
interested in the strongest attacks that a PRNG can be secure against since this
gives us a complete picture of its security in our framework.

Our analysis of the ANSI X9.17 and the FIPS 186 PRNGs characterize the
conditions on the inputs, states, and the underlying primitive that would ensure



the security of the construction. They are also instructive as to what would or
would not constitute secure-usage of these PRNGs. For the ANSI X9.17 we show
that the construction is secure as long as the key is kept secret from the attacker
and it is not allowed to control both the input and the state (though, neither
needs to be kept secret from it). For the FIPS 186 PRNG we show that the
construction is secure if the attacker cannot control the input. Unlike with the
ANSI X9.17 PRNG, the key in this case is known to all, including the attacker.
The states, however, must be kept secret. Besides validating the security of
the PRNGs, our results have several useful practical implications. First, they
suggest guidelines on how the PRNGs should be properly used to achieve their
security objectives. Second, they suggest how to obtain some efficiency gains.
For example, our results on the ANSI X9.17 PRNG imply that the construction
can be made twice as efficient, by outputting intermediate states along with
the output, without comprising security. Third, they suggest where the use of
“good” randomness is critical and where it is not. For example, our results on
the ANSI X9.17 PRNG, suggest that it is better to put all the randomness in the
key rather than in the initial state. Finally, the analysis provides some insight on
what security properties the underlying primitives should possess. This allows
implementers to choose the appropriate primitives and to examine whether any
newly-discovered weakness on the primitive can have a potential impact on the
security of the PRNG.

A Closer Look. One important aspect of our framework is to allow for an
auxiliary input to model things like time-stamps and counters. Auxiliary inputs
are a common feature in practical PRNGs since they are a means of injecting
something “random” into the PRNG at regular intervals and to prevent repeated
seeds from causing repeated outputs. It is tempting to think that if a PRNG is
secure without any auxiliary input then it must also be secure with it present.
This, however, is not the case, particularly if this input can be controlled by
the attacker. Indeed, in practice the auxiliary input may be supplied by a timer
that an attacker may have some control over. Another aspect in which our model
differs from most others is in making a distinction between the key and the state.
When such a distinction is not made (and the key is simply understood to be
a part of the state) then we miss out on being able to exactly characterize the
security of the PRNG. The key and what we call as state play very different
roles in a PRNG and moreover, they may have significantly different impacts
on the overall security. Understanding this allows the user to make better use of
the short seed it possesses.

A critical part of our analysis is to formalize reasonable security assumptions
on the underlying primitives for the manner they are used in the ANSI X9.17
and the FIPS 186 PRNGs. There are no assumptions stated on the underlying
primitive in the original ANSI X9.17 standard [3] or in the updated version
(ANSI X9.31) [4]. In the FIPS 186 standard [22], it stated that the underlying
primitive should be a “one-way” function. However, it is easy to see the one-way
property itself is not enough to ensure the security of the construction. Going
to an extreme, one may model the underlying primitive as a Random Oracle.



The proof of security, in this case, would indeed be straightforward, but there
are some results [16] that cast doubt on whether this would be a reasonable
assumption. Our assumption for both the constructions is that the underlying
primitives are (finite) pseudorandom functions (PRFs). This is quite a natural
assumption for the block-cipher-based ANSI X9.17 PRNG, following the work
of Bellare, Kilian and Rogaway [10]. It is less so for the hash-function-based
FIPS 186 PRNG, since there are no “secret keys” as such associated with the
underlying function in this PRNG. However, we propose a different “view” of
the PRNG under which it can be seen as based on a secret-keyed hash function.
Under this view it seems reasonable to model the underlying function as a PRF.
We note here that similar assumptions have been made before [9, 7, 6, 2] and that
none of the known attacks on hash functions [18, 21, 32] suggest any weakness of
their being used in this manner.

Starting with the strongest attacks in our framework, we look at the ability
of the ANSI X9.17 and the FIPS 186 PRNGs to withstand them. For every
attack stronger than the ones we eventually proved these PRNGS secure against,
we identify the attack. Our approach helps us identify the criticality of each
feature in these PRNGs. The superfluous ones can be eliminated leading to an
improvement in the overall efficiency. It turns out that the designers of both these
PRNGs anticipated many of the attacks in our framework and factored these into
their designs– but not necessarily in the most efficient manner. We also suggest
ways of making these PRNGs secure against attacks that, in their present form,
they are insecure against. We remark that although the PRNGs we consider
seem to incorporate many of the design features of better-known constructions,
most notably of the CBC and Counter Mode constructs, their security analyses
are quite different. This is partly due to the goal of the attacker being different
and since the attacks we must consider are unlike any of those considered before.
We show that if the primitives underlying the PRNGs are secure as PRFs then
the PRNGs must be secure as well. Our analysis is exact rather than asymptotic.

Related Work. There have been numerous works on the theory of PRNGs,
such as, Blum, Blum and Shub [14], Blum and Micali [15] and Hastad, Impagli-
azzo, Levin and Luby [27], to name just a few. However there have been compar-
atively few analyses of PRNGs of the type we study here, namely those based
on efficient cryptographic primitives, such as block ciphers and hash functions.

Aeillo, Rajagopalan and Venkatesan [2] give a provably-secure design based
on block ciphers. Bellare and Yee [12] and Abdalla and Bellare [1] also studied
such PRNGs from the point of bringing forward-security to bear on them. They
give generic methods of converting any PRNG into one that is forward-secure.
We build on their security model to get a more general one.

While the above works did look at PRNGs from a provable-security view-
point, there has not been anything similar done for the two most prevalent ones,
namely the ANSI X9.17 and the FIPS 186 PRNGs. Kelsey, Schneier, Wagner
and Hall [29] have, however, analysed these PRNGs, from an attackers viewpoint.
That is, they give several different types of attacks and investigate the ability of
these PRNGs to withstand them. While such analyses do not give the same level



of guarantees as those we get, they are useful in identifying weaknesses. Indeed,
many of the attacks on the PRNGs that become obvious in our framework were
identified there as well. The only other work that we are aware of, which looks
at one of these PRNGs, is the recent work of Bleichenbacher [13]. A weakness in
the FIPS 186 PRNG, as used to generate DSA parameters, is identified. It does
not apply to the general-purpose FIPS 186 PRNG we consider. The standard
has anyway subsequently been revised [23] to function like the general-purpose
one we consider.
There have been analyses of constructions bearing some similarity to the

PRNGs we consider, namely the CBC MAC [10] and CBC and Counter Mode
Encryption [8]. As mentioned earlier, the security of the PRNGs we consider do
not follow from these analyses but the general provable-security techniques used
therein are, however, applicable.

2 Security framework and definitions

PRNG Model. A PRNG GE = (K,G) consists of two algorithms. The seed
generation algorithm K takes as input a security parameter k ∈ N and returns
a key K and an initial state s0. For i ≥ 1, the generation algorithm G takes as
input the key K, the current state si−1 and an auxiliary input ti and returns
a PRNG output yi and the next state si. We refer to the length of the PRNG
output in each iteration n = |yi| as the block length of the PRNG. Note that
syntax requires the PRNG to have the “online” property. That is, it should
be possible to generate yi, si before ti+1 is known. We will sometimes refer to
the auxiliary input simply as the “input” and the PRNG-output simply as the
“output”, when it is unambiguous from context.
We assume that there is a “good” source of randomness that accumulates in

an entropy pool and that K has access to it. The process by which randomness
is collected into the pool can be considered as orthogonal to the above-defined
pseudorandom number generation process, and will not be considered further in
our analysis. A couple of practical PRNGs [31, 28] do specify both processes as
part of the PRNG definition. It is quite easy, however, to separate the two and
analyze them independently.

Attack Models. Consider the normative operation of a PRNG as described
above. At the start, a seed consisting of a key K and an initial state s0 is gener-
ated from the entropy pool. After seed generation, the operation of the PRNG
can be viewed as an application-controlled process— outputs are generated only
as many as are required, using the current state and an auxiliary input. The
auxiliary input may be a time-stamp, a counter or samples from a low entropy
source. When the application stops the PRNG, the last state is usually com-
puted and saved for use as the initial-state in the next invocation of the PRNG.
The application may also choose to “re-seed” the PRNG at any time, if enough
entropy has accumulated in the pool.
¿From an attacker’s point of view, each of the three inputs to G can be

hidden, known or chosen, while each of the two outputs from G can be hidden



or known. Given the nature of a PRNG, it is not necessary to consider all the
cases. We allow the key to be hidden or known, but not chosen. We view a
key as defining the PRNG and hence a “chosen-key” attack would not help in
“breaking” the PRNG being attacked as such. The state needs to be maintained
between invocations of the PRNG. There is thus an increased probability that
an attacker may learn of it. Moreover it may be able to “change” the value of
the stored state. For these reasons we model attacks that allow the state to be
hidden, known, or even chosen. The auxiliary inputs may not always be known
a priori, even to a legitimate user. However, it is reasonable to assume that
they are quite “predictable” by an attacker due to their low entropy. (Otherwise
the generation of pseudorandom outputs would be trivial). Also, it is possible
that the auxiliary inputs may be supplied by a timer or source over which an
attacker may exercise some control. So we model the auxiliary inputs to be
known or chosen. The PRNG output could conceivably be hidden, particularly if
the PRNG is being used as a key-derivation function. However, since our focus
is on general-purpose PRNGs, we will assume that the outputs become known.
We further note that the choice of the primitive to realize the PRNG often rules
out additional cases. For example, for PRNGs based on unkeyed hash functions
the “key” is understood to be known. For PRNGs based on block ciphers the
key is typically required to be hidden, though it is also be possible that it is
known. Given the above, one can see why it is advantageous to consider the
state and key separately in a practical setting. In most PRNGs the role played
by the key and what we call the state are quite different. The key typically has
a much longer lifetime and may be repeatedly used for different invocations of
the PRNG. The part that we call the state has a more transient nature, since it
is usually updated during every iteration of the generation algorithm.

Security Definitions. We adopt a standard notation with respect to prob-
abilistic algorithms and sets. If A(·, ·, . . .) is any probabilistic algorithm then
a← A(x1, x2, . . .) denotes the experiment of running A on inputs x1, x2, . . . and
letting a be the outcome, the probability being over the coins of A. Similarly,

if A is a set then a
R
← A denotes the experiment of selecting a point uniformly

from A and assigning a this value.

“Pseudorandomness” roughly means that the outputs should be “indistin-
guishable from random” to an attacker. Each attack in our framework coupled
with the notion of “pseudorandomness” gives rise to a different security defini-
tion. Here we give more precise definitions for three of the attacks. We denote
these attacks as CIA, for Chosen-Input Attack, CSA, for Chosen-State Attack
and KKA, for Known-Key Attack. Under CIA, the key is hidden, the states are
known, but not chosen, and the auxiliary input may be chosen by the attacker.
CSA is similar, except that the auxiliary inputs are not allowed to be chosen
while the states may now be chosen. KKA is different in that it allows the key to
be known. However, under KKA, the states are hidden and the auxiliary inputs
are not allowed to be chosen.

We imagine a distinguisher D running in two stages, an iterated find stage
and a guess stage. In each iteration of the find stage D may get to choose some of



the inputs (depending on the attack being modeled) that will be used to generate
the PRNG output. In cases modeling a “chosen” input D’s choice “overwrites”
the existing value of that input. Depending on the bit b, D either gets the true
PRNG output from the previous iteration or a random string. The find stage
is iterated i times until i = m or until D sets a flag pi, indicating that it is
ready to move on to the next stage. In the guess stage D receives some state
information ci gathered in the find stage and outputs its guess for b.

Definition 1. [PRG-CIA,PRG-CSA,PRG-KKA] Let GE = (K,G) be a
PRNG with block-length n. (For simplicity, assume that the security parame-
ter k = n.) Let b ∈ {0, 1}. Let D be a distinguisher that runs in two stages. For
atk ∈ {cia, csa, kka}, we consider the following experiment:

Experiment Expprg-atk-b
GE,m,D (k)

(K, s0)
R
← K(k) // A key and an initial state are generated

c0 ← {t1, t2, . . . , tm} // D is initialized with auxiliary input values

for i = 1 to m : y0
i

R
← {0, 1}n // A random mn-bit string is chosen

i← 0; y0
0 ← ε; y1

0 ← ε

repeat
i← i+ 1
if atk = cia : (pi, ti, ci)← D(find, yb

i−1, si−1, ci−1)
if atk = csa : (pi, si−1, ci)← D(find, yb

i−1, si−1, ci−1)
if atk = kka : (pi, ci)← D(find,K, yb

i−1, ci−1)
(y1

i , si)← GK(si−1, ti) // PRNG output and next state are generated
until (pi = guess) or (i = m)
d← D(guess, ci)
return d

We define the advantage of the distinguisher via

Advprg-atk
GE,m,D = Pr[Exp

prg-atk-1
GE,m,D = 1 ]− Pr[Expprg-atk-0

GE,m,D = 1 ] .

We define the advantage function of GE as follows. For any integer t,

Advprg-atk
GE,m (t) = max

D
{Advprg-atk

GE,m,D}

where the maximum is over all D with “time complexity” t.

The “time complexity” is the worst case total execution time of the experiment,
plus the size of the code of the distinguisher, in some fixed RAM model of
computation.
Note that the notions of security captured here are very strong but not the

strongest in our framework. The reason for explicitly defining these and not
the other possible ones was to give only as many definitions as were needed to
give the complete picture about the security of PRNGs we will consider in this
work. However, using the above as examples, it should be easy to come up with
definitions modeling any attack in our framework.



It is instructive to see where these notions stand in our framework. When
the key is hidden, the strongest notion would be one against a chosen-state,
chosen-input and known-next-state attack. The next strongest notions, when
the key is hidden, are PRG-CIA and PRG-CSA. When the key is known, the
states must be hidden (otherwise there is no secret). This leaves us with only
two notions: one allowing the input to be chosen and the other only allowing it
to be known. PRG-KKA is the latter notion (which is the weaker of the two).
Note that these three notions are mutually incomparable (ie. they are neither
stronger nor weaker than one another).

3 Analysis of the ANSI X9.17 PRNG

Specifications. The ANSI X9.17 PRNG GEF
ANSI = (KANSI,GANSI), for a block

cipher F , is described as in Figure 1. The key K, output by the key-generation
algorithm, is used to key the block cipher, thereby specifying a function FK that
maps n bits to n bits.

KANSI(n) GANSI(si−1, ti)

K
R
← {0, 1}n yi ← FK(si−1⊕FK(ti))

s0
R
← {0, 1}n si ← FK(yi⊕FK(ti))

return (K, s0) return (yi, si)

FK

FK FK

yi

si−1

ti

si

Fig. 1. Specifications of the ANSI X9.17 PRNG. The picture depicts the function
GANSI(·, ·).

Attacks. The PRNG is insecure under any attack in which the key is known.
An attacker, knowing the key and a single output, can completely determine
subsequent outputs and states. The PRNG is also not secure under any attack
where both the state and the inputs may be chosen. It is easy to see that an
attacker can cause outputs to repeat by simply repeating the same combination
of the state and input. Given this, we focus on the setting where the key is
hidden and where either the states or the inputs are not under the control of the
attacker.

Finite PRF families.We model block ciphers as finite pseudorandom function
families [10], a concrete security version of the original notion of pseudorandom
functions [25]. A finite function family F is pseudorandom if, for a random
K, the input-output behavior of FK is indistinguishable from that of a random



function of the same domain and range. Following [10], we associate an advantage

function Advprf
F (t, q) with F which denotes the maximum advantage of any

distinguisher, with time complexity t and query complexity q. The (standard)
formalization of this can be found in the full version of this paper [19].

Security Results. The following theorem implies that, if F is a PRF, then
the ANSI X9.17 PRNG based on it is secure in the PRG-CSA sense and also
in the PRG-CIA sense. Note that the two notions are mutually incomparable
and thus proving the PRNG secure under one does not imply security under the
other.

Theorem 1. Let GE be the ANSI X9.17 PRNG based on a function family F =
{FK}K∈Keys(F ) where FK maps n bits to n bits. Then

Advprg-csa
GE,m (t) ≤ 2 ·Advprf

F (t, 3m) +
m(2m− 1)

2n

Advprg-cia
GE,m (t) ≤ 2 ·Advprf

F (t, 3m) +
(2m− 1)2

2n

A proof of the theorem is given in the full version of this paper [19]. If we
model F as a PRP (a more suitable model for a block cipher) then an additional
term (3m)2 · 2−n−1 would appear in the bounds above. The proofs of security
under the two notions share much in common. We first analyze the PRNG,
under each notion, assuming that the underlying function is truly random. In
both cases we show that, with overwhelming probability, an attacker cannot
cause collisions in the inputs to the functions computing the outputs or the next
states. Under CSA it is the inputs, which essentially function as a counter, that
make it infeasible to cause these collisions. Under CIA, it is the unpredictability
of the states that makes it infeasible. It is easy to see that, if there are no such
collisions, then the attacker has no advantage in distinguishing between PRNG
outputs and random ones. The next part of the analysis is a reduction argument
that shows that, if the random function in the above analysis were replaced by
a PRF, then the PRNG must remain secure.

Remarks. Our results suggest how the PRNG could be used more efficiently
without compromising security. Notice that in the analysis, under either of the
notions, we assume that the attacker learns of the states. Moreover, the states
themselves are indistinguishable from random to the attacker. (In fact, there
is complete symmetry in the way the outputs and the states are computed.)
This means that the states could be used as “outputs”, effectively doubling the
throughput of the PRNG, without any loss in security. Our analysis also offers
some insights into how the PRNG can be extended to counter the attacks that
it does not in its present form. We discuss this further in Section 5.

4 Analysis of the FIPS 186 PRNG

Specifications. The FIPS 186 PRNG GEH
FIPS = (KFIPS,GFIPS), for a func-

tion H, is described as in Figure 2.



KFIPS(n) GFIPS(si−1, ti)

K ← {0, 1}n yi ← HK((si−1 + ti) mod 2
n)

s0
R
← {0, 1}n si ← (si−1 + yi + 1) mod 2

n

return (K, s0) return (yi, si)

1

HK

yi

ti

sisi−1

Fig. 2. Specifications of the FIPS PRNG. The picture depicts the function GFIPS(·, ·).

Note that in this PRNG, unlike in the ANSI X9.17 one, the key K is known, and
the values for K are fixed in the original specifications [22]. 1 To fully specify
this PRNG, we must describe the underlying primitive HK . However, for the
sake of simplicity of exposition, we defer this to the end of this section, viewing
HK , for now, simply as a function mapping n bits to n bits.

Attacks. Since the key K is known, the only secret in the PRNG is the ini-
tial state s0. Clearly, if s0 is known to the attacker then the outputs become
completely predictable. In general, such a PRNG cannot be secure in any attack
where the state is known. It also turns out that this PRNG is not secure under
any attack where the inputs are chosen since otherwise it becomes possible for
an attacker to cause outputs to repeat. Given this, we focus on the setting where
the states are hidden and the inputs are not under the control of an attacker.

An Alternative View.We first need to formalize a security assumption on the
underlying primitive HK that is reasonable for the manner in which it is realized
and used in the specifications. Towards this, we will consider an alternative view
of FIPS. We start with some notation. Let

Ĥs0
(x)

def
= HK((s0 + x) mod 2n).

For simplicity of notation we do not have an explicit reference to K in the
definiton of Ĥs0

. Nevertheless, one should keep in mind that K is a part of the
definition of Ĥs0

. Now, we can rewrite the specifications of the FIPS 186 PRNG
as in Figure 3.

1 In the original FIPS specifications [22], the underlying primitive is denoted by
G(K,x), where K is a constant and x is the input. It specifies two 160-bit val-
ues for the constant K, with each constant instantiating a different PRNG process
for different use in DSA. Although the specifications do not interpret K as a key, the
construction fits naturally into our PRNG model if we view K as a known key. The
FIPS 186 construction can be generalized to have an arbitrary 160-bit value (even
secret) for K.



KFIPS(n) ĜFIPS(si−1, ti)

K ← {0, 1}n ∆si−1 ← (si−1 − s0) mod 2
n

s0
R
← {0, 1}n yi ← Ĥs0

((∆si−1 + ti) mod 2
n)

si ← (si−1 + yi + 1) mod 2
n

return (K, s0) return (yi, si)

Ĥs0

yi

ti

1

sisi−1

(−s0)

Fig. 3. Alternative specifications of the FIPS 186 PRNG. The picture depicts the
function ĜFIPS(·, ·), which is an equivalent view of GFIPS(·, ·).

Note that the alternative specifications are simply another way of viewing the
original FIPS 186 PRNG. The two specifications interpreted literally will have
different-looking implementations but they will, nevertheless, have exactly the
same input-output characteristics. We view it in our “secret-key” function-based
form for sake of analysis.

Security Results. The following theorem implies that, if Ĥ is a PRF family,
then the FIPS 186 PRNG based on it is secure in the PRG-KKA sense.

Theorem 2. Let GE be the FIPS 186 PRNG based on a function family Ĥ =
{Ĥs0

}s0∈{0,1}n . Then

Advprg-kka
GE,m (t) ≤ 2 ·Advprf

Ĥ
(t,m) +

m(m− 1)

2n−1

A proof of the theorem is given in the full version of this paper [19]. The approach
in the analysis is much like the one for the ANSI X9.17 PRNG, where we first
analyze the PRNG assuming the underlying function to be random and then
give a reduction argument to show that if the PRNG is secure with the random
function then it must also be secure with a PRF. The interesting part for this
particular analysis is in the reduction argument. Recall that for this argument,
we must construct a distinguisher A for the PRF that simulates the PRNG
experiment by calling its oracle f on the input (∆si−1+ ti) mod 2

n. It is easy to
see that ∆si = (∆si−1 + yi +1) mod 2

n can be computed without knowledge of
s0. This makes it possible for A to make the necessary queries and the argument
goes through.

The function HK and the function family Ĥ. It remains to give some
details about the function HK and to comment on the security of the func-
tion family Ĥ. The FIPS 186 specifications provides two constructions for the
function HK , one based on SHA1 and the other based on DES.
The SHA1-based construction is fairly simple— HK(x) is defined to be the

compression function of SHA1 where x is the input to the function and K is
the fixed IV in SHA1. Our assumption is that one can view Ĥs0

(x) = HK((s0+
x) mod 2n) for a known K and a secret random s0 of length n, as a PRF. As



mentioned earlier, this assumption is not entirely new. Bellare et al [9, 7, 6] make
an assumption that, in our context, amounts to viewing HK(s0, x) as a PRF. It
appears as though all existing attacks on hash functions need to either fix certain
bits of the input to the compression function or exploit the underlying iterative
structure of the functions. Since neither of these seem possible in our setting, we
believe that it is reasonable to view the compression function of SHA1, as used
in the FIPS 186 PRNG, as a PRF.

The DES-based construction is more involved— DES encryption is performed
five times with a different secret key and input each time. The secret keys and
the inputs are both derived from K and x. It is significantly more complicated
to gauge whether a DES-based Ĥ function family can be considered to be a PRF
family. Anyway, it appears that the DES-based construction is rarely, if at all,
used in practice.

5 Forward security for PRNGs

The notion of forward security has been applied to a range of cryptographic
problems. It is a particularly desirable goal for PRNGs. Indeed, the idea itself
seems to have originated in the PRNG context. Informally, a PRNG is said to
be forward secure if the compromise of the current state and key does not com-
promise the security of any previously generated PRNG-output. Two different
formulations of the notion of forward security in PRNGs have appeared in the
literature. We will look at each in turn.

The first, that we will refer to as weak forward security, assumes that the
PRNG-outputs, prior to the compromise, are hidden from the attacker. The goal
of the attacker is to derive information about the earlier outputs. This notion
seems to have been considered by Kelsey et al [29]. Although the term “forward
security” was not explicitly used, the “backtracking attack” introduced therein
is precisely the type of attack implicit in the notion of weak forward security.

A more comprehensive study of the notion of forward security in the context
of PRNGs was initiated in the works of Bellare and Yee [12] and Abdalla and
Bellare [1]. They considered a stronger formulation of the notion, that we will
refer to as strong forward security. In this notion it is assumed that the outputs
prior to the compromise are known to the attacker. The goal of the attacker is
to distinguish the earlier output sequence from a truly random one.

Bellare and Yee [12] suggest ways of making a strong forward-secure PRNG
out of any generic PRF-based PRNG. The main idea there is to keep part of
the PRNG output secret and use it to get a new state and key. The idea ap-
plied quite literally to the PRNGs we consider result in unnecessarily inefficient
constructions. Moreover, the fact that their analysis did not consider auxilliary
inputs or make a distinction between the key and the state, makes it somewhat
difficult to see if their method would be secure in our setting. Nevertheless, we
believe that one could use their basic idea involving re-keying to get forward
security for both the PRNGs we consider.



We now look at some alternate approaches to this problem, specifically for
the ANSI X9.17 and the FIPS 186 PRNGs. We want to avoid, as far as possi-
ble, necessitating major changes to the constructions (such as using a different
underlying primitive), so that our “fixes” can be applied to existing implemen-
tations of the PRNGs. For efficiency reasons we look for solutions that do not
involve re-keying the underlying functions.

The Case of the ANSI X9.17 PRNG. It is easy to see that this PRNG
is not forward secure, under even the weaker form, since revealing the (secret)
key would make the PRNG process completely reversible. As a first step to-
wards bringing forward security to bear upon this PRNG, we must transform
the underlying function FK into a non-invertible function (even when the key K

is known). While such a change may be sufficient for weak forward security, a
more subtle attack implies that the modified version will still be insecure under
the stronger notion. The attack is to check, using the last output, time-stamp
and key, if the state-update function does in fact give the current state.
The above attack suggests that a way to get strong forward security is to

require that the state-update function use a value which remains secret even
when the key and the current state are compromised (in addition to using a
non-invertible function). One possibility is to change the state-update function
from si ← FK(yi ⊕ FK(ti)) to si ← FK(yi ⊕ si−1). It remains to discuss how
we can get a non-invertible function. What we need specifically is a function F ′,
such that given F ′K(x) andK, it is infeasible to get information about x. One can
build such a function using ideas from converting PRPs to PRFs [11]. However
these require rekeying. One possible candidate that avoids this and may suffice
for our purposes is the function F ′ defined as F ′K(x) = FK(x)⊕x, where F is a
block cipher.

The Case of the FIPS 186 PRNG. Observe that the “feedback” structure
(ie. using output yi as an input to the state-update function) in this PRNG does
not really play a role in preventing against any of the attacks considered in our
framework. However, it is precisely this feature that makes this PRNG weak
forward-secure. The PRNG, however, is completely insecure under the stronger
notion. Given the current state and the outputs, every previous state, going back
to the initial state can be determined. Note that the standard attacks on this
PRNG anyway make it necessary for the output-computation function to be
“perfectly” one-way. Thus if we want to make it strong forward secure, then we
only need to modify the state-update function. One possibility is to use a hash
function in the state update. (The function HK used in the PRNG may be used
as this hash function.)

6 Other practical PRNGs

We have, so far, concentrated on just the ANSI X9.17 and the FIPS 186 PRNGs.
Other than being the two most popular PRNGs, they are also representative
of the two main types– secret-keyed block-cipher-based ones and keyless hash-
function-based ones. Most other practical PRNGs are similar to one of these and



it is relatively straightforward to analyze them using the same framework and
approach. We discuss some of these below.

PRNGs in Standards.We have reviewed the PRNGs in most security-related
standards of ANSI, FIPS, IETF, IEEE and ISO. Not surprisingly, the ANSI
X9.17 and FIPS 186 PRNGs have been chosen by subsequent ANSI and FIPS
standards. In addition, both PRNGs have been re-validated and cross-validated
by the two standards bodies (e.g., ANSI X9.31 [4] and FIPS 186-2 (change notice
1) [23]). Most other standards do not specify any concrete PRNG construction
but merely provide guidelines on how random numbers should be generated.
The ANSI X9.17 and FIPS 186 constructions are, as far as we know, the only
standardized PRNGs.
The only relevant PRNG-like construction that has appeared in standards is

the PRF(k, seed) function in the Transport Layer Security Protocol (TLS) [20]
(TLS is part of the IETF effort to standardize SSL [24].) Despite its name, PRF
is used for key derivation rather than generating random numbers needed in
the protocol. The latter was assumed to be generated by some “secure PRNG.”
Nevertheless, PRF is of interest to us since it does represent a standalone pseu-
dorandom number generating process. At a high level, PRF is a secret-key based
construction using HMAC [6] as the underlying primitive. The initial state is as-
sumed a “random” but public value, and there is no user-supplied input. HMAC
is used to both generate the output and update the state. Our preliminary anal-
ysis suggests that PRF is secure under known-state attacks, but not secure under
chosen-state attacks. We remark that this apparent weakness does not have any
immediate impact on the security of TLS itself.

PRNGs in Commercial Products and Free Libraries. There are sev-
eral cryptographic toolkits, both in commercial products and in free libraries,
which are likely to be used when implementing cryptographic solutions. Among
commercial products, NAI’s PGP [31] and RSA’s BSAFE [5] are perhaps the
two most widely-used ones. Among popular free libraries, we considered Cryp-
toLib [30], OpenSSL [35], Crypto++ [17], RSAREF [33] and Yarrow [28], all of
which include general-purpose PRNG implementations.
Recently NAI released the source code for PGPsdk [31] for peer review. This

version of PGP specifies the default PRNG to be ANSI X9.17 with the block
cipher CAST5. It also implements a quite complicated process for generating
the initial seed and time-stamps required by the ANSI X9.17 PRNG. There
seems to be some uncertainty as to whether the ANSI X9.17 PRNG can produce
pseudorandom output if the seed and time-stamps do not have enough entropy.
Our analysis, however, shows that the PRNG is secure as long as the key is
secret and random and the attacker does not have control over both the state
and time-stamps. Thus, it seems that the complication involved in generating
pseudorandom inputs in PGP may be unnecessary.
The PRNG included in the BSAFE toolkit [5] is a hash-function-based con-

struction with no secret key and with user-inputs processed as they become
available. The construction bears some resemblence to the forward-secure vari-
ant of the FIPS PRNG we suggest in Section 5, without the output feedback.



Our preliminary analysis shows that the BSAFE PRNG has similar security
properties as the FIPS PRNG. That is, it is secure under known-input attacks
but not secure under chosen-input attacks. The BSAFE PRNG also has the
additional feature of allowing multiple output-computation between two state
updates.
The Crypto++ library includes a PRNG based on a (less efficient) variant

of the ANSI X9.17 construction. The PRNG implemented in OpenSSL bears
some similarities with the FIPS 186 construction but is a lot more complicated
and is less efficient. The PRNGs in CryptoLib, RSAREF and Yarrow, on the
other hand, have a quite simple Counter-Mode structure. CryptoLib’s PRNG
implements a scheme that combines the encryption and hash of a counter. The
RSAREF PRNG uses a hash function to compute digests of the counter and
inputs. Poor handling of inputs, however, have raised concerns about its secu-
rity [29]. The Yarrow PRNG seems to be a carefully-designed secret-key-based
construction using Counter-Mode encryption. It provides some level of forward
security by performing frequent (hash-based) re-seeding and re-keying opera-
tions.
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