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Abstract. Achieving secure communications in networks has been one
of the most important problems in information technology. Dolev, Dwork,
Waarts, and Yung have studied secure message transmission in one-way
or two-way channels. They only consider the case when all channels are
two-way or all channels are one-way. Goldreich, Goldwasser, and Linial,
Franklin and Yung, Franklin and Wright, and Wang and Desmedt have
studied secure communication and secure computation in multi-recipient
(multicast) models. In a “multicast channel” (such as Ethernet), one pro-
cessor can send the same message—simultaneously and privately—to a
fixed subset of processors. In this paper, we shall study necessary and
sufficient conditions for achieving secure communications against active
adversaries in mixed one-way and two-way channels. We also discuss
multicast channels and neighbor network channels.
Keywords: network security, privacy, reliability, network connectivity

1 Introduction

If there is a private and authenticated channel between two parties, then se-
cure communication between them is guaranteed. However, in most cases, many
parties are only indirectly connected, as elements of an incomplete network of
private and authenticated channels. In other words they need to use intermediate
or internal nodes. Achieving participants cooperation in the presence of faults
is a major problem in distributed networks. Original work on secure distributed
computation assumed a complete graph for secure and reliable communication.
Dolev, Dwork, Waarts, and Yung [4] were able to reduce the size of the network
graph by providing protocols that achieve private and reliable communication
without the need for the parties to start with secret keys. The interplay of net-
work connectivity and secure communication has been studied extensively (see,
e.g., [1–4, 10]). For example, Dolev [3] and Dolev et al. [4] showed that, in the
case of k Byzantine faults, reliable communication is achievable only if the sys-
tem’s network is 2k + 1 connected. They also showed that if all the paths are
one way, then 3k + 1 connectivity is necessary and sufficient for reliable and
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private communications. However they did not prove any results for the general
case when there are certain number of directed paths in one direction and an-
other number of directed paths in the other direction. While undirected graphs
correspond naturally to the case of pairwise two-way channels, directed graphs
do not correspond to the case of all-one-way or all-two-way channels considered
in [4], but to the mixed case where there are some paths in one direction and
some paths in the other direction. In this paper, we will initiate the study in
this direction by showing what can be done with a general directed graph. Note
that this scenario is important in practice, in particular, when the network is
not symmetric. For example, a channel from u to v is cheap and a channel from
v to u is expensive but not impossible. Another example is that u has access to
more resources than v does.
Goldreich, Goldwasser, and Linial [9], Franklin and Yung [7], Franklin and

Wright [6], and Wang and Desmedt [15] have studied secure communication
and secure computation in multi-recipient (multicast) models. In a “multicast
channel” (such as Ethernet), one participant can send the same message—
simultaneously and privately—to a fixed subset of participants. Franklin and
Yung [7] have given a necessary and sufficient condition for individuals to ex-
change private messages in multicast models in the presence of passive adver-
saries (passive gossipers). For the case of active Byzantine adversaries, many re-
sults have been presented by Franklin and Wright [6], and, Wang and Desmedt
[15]. Note that Goldreich, Goldwasser, and Linial [9] have also studied fault-
tolerant computation in the public multicast model (which can be thought of
as the largest possible multirecipient channels) in the presence of active Byzan-
tine adversaries. Specifically, Goldreich, et al. [9] have made an investigation of
general fault-tolerant distributed computation in the full-information model. In
the full information model no restrictions are made on the computational power
of the faulty parties or the information available to them. (Namely, the faulty
players may be infinitely powerful and there are no private channels connecting
pairs of honest players). In particular, they present efficient two-party protocols
for fault-tolerant computation of any bivariate function.
There are many examples of multicast channels (see, e.g. [6]), such as an

Ethernet bus or a token ring. Another example is a shared cryptographic key.
By publishing an encrypted message, a participant initiates a multicast to the
subset of participants that is able to decrypt it.
We present our model in Section 2. In Sections 3 and 4, we study secure

message transmission over directed graphs. Section 5 is devoted to reliable mes-
sage transmission over hypergraphs, and Section 6 is devoted to secure message
transmission over neighbor networks.

2 Model

We will abstract away the concrete network structures and consider directed
graphs. A directed graph is a graph G(V,E) where all edges have directions. For
a directed graph G(V,E) and two nodes u, v ∈ V ,



Throughout this paper, n denotes the number of vertex disjoint paths be-
tween two nodes and k denotes the number of faults under the control of the
adversary. We write |S| to denote the number of elements in the set S. We write
x ∈R S to indicate that x is chosen with respect to the uniform distribution on S.
Let F be a finite field, and let a, b, c,M ∈ F. We define auth(M,a, b) := aM + b
(following [6, 8, 13, 14]) and auth(M,a, b, c) := aM 2 + bM + c (following [15]).
Note that each authentication key key = (a, b) can be used to authenticate one
message M without revealing any information about any component of the au-
thentication key and the each authentication key key = (a, b, c) can be used
to authenticate two messages M1 and M2 without revealing any information
about any component of the authentication key. Let k and n be two integers
such that 0 ≤ k < n ≤ 3k + 1. A (k + 1)-out-of-n secret sharing scheme is a
probabilistic function S: F → Fn with the property that for any m ∈ F and
(v1, . . . , vn) = S(m), no information of m can be inferred from any k entries
of (v1, . . . , vn), and m can be recovered from any k + 1 entries of (v1, . . . , vn).
The set of all possible (v1, . . . , vn) is called a code and its elements codewords.
We say that a (k + 1)-out-of-n secret sharing scheme can detect k′ errors if
given any codeword (v1, . . . , vn) and any tuple (u1, . . . , un) over F such that
0 < |{i : ui 6= vi, 1 ≤ i ≤ n}| ≤ k′ one can detect that (u1, . . . , un) is not a
codeword. If the code is Maximal Distance Separable, then the maximum value
of errors that can be detected is n − k − 1 [11]. We say that the (k + 1)-out-
of-n secret sharing scheme can correct k′ errors if from any (v1, . . . , vn) = S(m)
and any tuple (u1, . . . , un) over F with |{i : ui 6= vi, 1 ≤ i ≤ n}| ≤ k′ one
can recover the secret m. If the code is Maximal Distance Separable, then the
maximum value of errors that allows the recovery of the vector (v1, . . . , vn) is
(n−k− 1)/2 [11]. A (k+1)-out-of-n Maximal Distance Separable (MDS) secret
sharing scheme is a (k + 1)-out-of-n secret sharing scheme with the property
that for any k′ ≤ (n − k − 1)/2, one can correct k′ errors and simultaneously
detect n−k−k′−1 errors (as follows easily by generalizing [11, p. 10]). Maximal
Distance Separable (MDS) secret sharing schemes can be constructed from any
MDS codes, for example, from Reed-Solomon code [12].

In a message transmission protocol, the sender A starts with a message MA

drawn from a message spaceM with respect to a certain probability distribution.
At the end of the protocol, the receiver B outputs a messageMB . We consider a
synchronous system in which messages are sent via multicast in rounds. During
each round of the protocol, each node receives any messages that were multicast
for it at the end of the previous round, flips coins and perform local computations,
and then possibly multicasts a message. We will also assume that the message
spaceM is a subset of a finite field F.

We consider two kinds of adversaries. A passive adversary (or gossiper adver-
sary) is an adversary who can only observe the traffic through k internal nodes.
An active adversary (or Byzantine adversary) is an adversary with unlimited
computational power who can control k internal nodes. That is, an active ad-
versary will not only listen to the traffics through the controlled nodes, but also
control the message sent by those controlled nodes. Both kinds of adversaries



are assumed to know the complete protocol specification, message space, and the
complete structure of the graph. In this paper, we will not consider a dynamic
adversary who could change the nodes it controls from round to round, instead
we will only consider static adversaries. That is, at the start of the protocol, the
adversary chooses the k faulty nodes. (An alternative interpretation is that k
nodes are static collaborating adversaries.)
For any execution of the protocol, let adv be the adversary’s view of the entire

protocol. We write adv(M, r) to denote the adversary’s view whenMA =M and
when the sequence of coin flips used by the adversary is r.

Definition 1. (see Franklin and Wright [6])

1. Let δ < 1
2
. A message transmission protocol is δ-reliable if, with probability

at least 1 − δ, B terminates with MB = MA. The probability is over the
choices of MA and the coin flips of all nodes.

2. A message transmission protocol is reliable if it is 0-reliable.
3. A message transmission protocol is ε-private if, for every two messages

M0,M1 and every r,
∑

c |Pr[adv(M0, r) = c] − Pr[adv(M1, r) = c]| ≤ 2ε.
The probabilities are taken over the coin flips of the honest parties, and the
sum is over all possible values of the adversary’s view.

4. A message transmission protocol is perfectly private if it is 0-private.
5. A message transmission protocol is (ε, δ)-secure if it is ε-private and δ-
reliable.

6. An (ε, δ)-secure message transmission protocol is efficient if its round com-
plexity and bit complexity are polynomial in the size of the network, log 1

ε
(if

ε > 0) and log 1
δ
(if δ > 0).

For two nodes A and B in a directed graph such that there are 2k+1 node disjoint
paths from A to B, there is a straightforward reliable message transmission from
A to B against a k-active adversary: A sends the message m to B via all the
2k + 1 paths, and B recovers the message m by a majority vote.

3 (0, δ)-Secure message transmission in directed graphs

Our discussion in this section will be concentrated on directed graphs. Dolev,
Dwork, Waarts, and Yung [4] addressed the problem of secure message transmis-
sions in a point-to-point network. In particular, they showed that if all channels
from A to B are one-way, then (3k + 1)-connectivity is necessary and sufficient
for (0,0)-secure message transmissions from A to B against a k-active adver-
sary. They also showed that if all channels between A and B are two-way, then
(2k + 1)-connectivity is necessary and sufficient for (0,0)-secure message trans-
missions between A and B against a k-active adversary. In this section we assume
that there are only 2(k−u)+1 directed node disjoint paths from A to B, where
1 ≤ u ≤ k. We wonder how many directed node disjoint paths from B to A are
necessary and sufficient to achieve (0, δ)-secure message transmissions from A to
B against a k-active adversary.



Franklin and Wright [6] showed that if there is no channel from B to A, then
2k + 1 channels from A to B is necessary for (1 − δ)-reliable (assuming that
δ < 1

2
) message transmission from A to B against a k-active adversary. In the

following, we first show that this condition is sufficient also.

Theorem 1. Let G(V,E) be a directed graph, A,B ∈ V , and 0 < δ < 1
2
. If there

is no directed paths from B to A, then the necessary and sufficient condition for
(0, δ)-secure message transmission from A to B against a k-active adversary is
that there are 2k + 1 directed node disjoint paths from A to B.

Proof. (Sketch) The necessity was proved in Franklin and Wright [6]. Let p1,
. . . , p2k+1 be the 2k + 1 directed node disjoint paths from A to B. Let sA ∈ F
be the secret that A wants to send to B. A constructs (k + 1)-out-of-(2k + 1)
secret shares v = (sA1 , . . . , s

A
2k+1) of s

A. The protocol proceeds from round 1

through round 2k+1. In round i, A chooses {(aAi,j , b
A
i,j) ∈R F2 : 1 ≤ j ≤ 2k+1},

sends (sAi , auth(s
A
i , a

A
i,1, b

A
i,1), . . . , auth(s

A
i , a

A
i,2k+1, b

A
i,2k+1)) to B via path pi, and

sends (aAi,j , b
A
i,j) to B via path pj for each 1 ≤ j ≤ 2k + 1. In round i, B

receives (sBi , c
B
1 , . . . , c

B
2k+1) via path pi, and receives (a

B
i,j , b

B
i,j) via path j for

each 1 ≤ j ≤ 2k+1. B computes t = |{j : cBj = auth(s
B
i , a

B
i,j , b

B
i,j)}|. If t ≥ k+1,

then B decides that sBj is a valid share. Otherwise B discards s
B
j . It is easy to

check that after the round 2k+1, with high probability, B will get at least k+1
valid shares to sA. Thus, with high probability, B will recover the secret sA. In
the full version of this paper, we will show that this protocol is a (0, δ)-secure
message transmission protocol from A to B. Q.E.D.

Theorem 2. Let G(V,E) be a directed graph, A,B ∈ V , and u ≥ 1. If there
are 2(k − u) + 1 ≥ k + 1 directed node disjoint paths from A to B, then a
necessary condition for private message transmission from A to B against a k-
active adversary is that there are u directed node disjoint paths (these u paths
are also node disjoint from the 2(k − u) + 1 paths from A to B) from B to A.

Proof. First assume that there are less than u directed node disjoint paths from
B to A. A strategy that will now be used by the adversary is that controlling
u−1 nodes to disconnect all directed paths from B to A and controlling k−u+1
directed paths from A to B. Thus the adversary could make sure that no feedback
message will be sent from B to A. This means that we are left with the same
situation as Theorem 1 using 2(k−u)+1 one-way channels. Since k−u+1 of these
paths are controlled by the adversary, by Theorem 1, we need 2(k−u+1)+1 >
2(k − u) + 1 directed paths from A to B. This is a contradiction.
Secondly we assume that there are u directed node disjoint paths qi from B

to A, 2(k − u) + 1 paths pi from A to B, and that p1 is not node disjoint from
q1. A strategy that will now be used by the adversary is that using one node to
control both paths p1 and q1, using other u− 1 nodes to disconnect all directed
paths from B to A, controlling k−u other directed paths from A to B. A similar
argument as above will show a contradiction. Q.E.D.

In the following we prove a simple sufficient condition.



Theorem 3. Let G(V,E) be a directed graph, A,B ∈ V . If there are two directed
node disjoint paths p0 and p1 from A to B, and one directed path q (which is
node disjoint from p1 and p2) from B to A, then for any 0 < δ < 1

2
, there

is a (0, δ)-secure message transmission protocol from A to B against a 1-active
adversary.

Proof. (Sketch) Let sA ∈ F be the secret message that A wants to send to B.
In the following we describe the protocol briefly without proof. The details and
a generalization will be given in the full version of this paper.

Step 1 A chooses sA0 ∈R F, (aA0 , b
A
0 ), (a

A
1 , b

A
1 ) ∈R F2, and let sA1 = sA − sA0 .

For each i ∈ {0, 1}, A sends (sAi , (a
A
i , b

A
i ), auth(s

A
i , a

A
1−i, b

A
1−i)) to B

via path pi.

Step 2 Assumes thatB receives (sBi , (a
B
i , b

B
i ), c

B
i ) via path pi.B checks whether

cBi = auth(s
B
i , a

B
1−i, b

B
1−i). If both equations hold, then B knows that

with high probability the adversary was either passive or not on the
paths from A to B. B can recover the secret message, sends “OK” to
A via the path q, and terminate the protocol. Otherwise, one of equa-
tions does not hold and B knows that the adversary was on one of the
paths from A to B. In this case, B chooses (aB , bB) ∈R F2, and sends
((aB , bB), (sB0 , (a

B
0 , b

B
0 ), c

B
0 ), (s

B
1 , (a

B
1 , b

B
1 ), c

B
1 )) to A via the path q.

Step 3 If A receives “OK”, then A terminates the protocol. Otherwise, from
the information A received via path q, A decides which path from A
to B is corrupted and recover B’s authentication key (aA, bA). A sends
(sA, auth(sA, aA, bA)) to B via the uncorrupted path from A to B.

Step 4 B recovers the message and checks that the authenticator is correct.

Q.E.D.

4 (0, 0)-Secure message transmission in directed graphs

In the previous section, we addressed probabilistic reliable message transmission
in directed graphs. In this section, we consider reliable message transmission in
directed graphs. We first start with necessary conditions.

Theorem 4. Replacing in Theorem 2: 2(k − u) + 1 by 3(k − u) + 1, provides
necessary conditions for (0, 0)-secure message transmission from A to B.

Proof. Use an argument as in the proof of Theorem 2, but use the 3k+1 bound
from [4] instead of the 2k + 1 one. Q.E.D.

We will show that if there are 3k+1−u paths from A to B and u paths from B
to A, then (0, 0)-secure message transmission from A to B is possible. We first
show the simple case for u = 1.

Theorem 5. Let G(V,E) be a directed graph, A,B ∈ V . If there are 3k ≥ 2k+1
directed node disjoint paths from A to B and one directed path from B to A (the



directed path from B to A is node disjoint from the paths from A to B) then there
is a (0, 0)-secure message transmission protocol from A to B against a k-active
adversary.

Proof. Let p1, . . . , p3k be the directed paths from A to B and q be the directed
path from B to A. The protocol π proceeds as follows:

Step 1 B sets A STOP = 0 and B STOP = 0.

Step 2 A chooses a keyA ∈R F and constructs (k + 1)-out-of-3k MDS secret
shares v = (sA1 , ..., s

A
3k) of key

A. For each 1 ≤ i ≤ 3k, A sends si to B
via the path pi.

Step 3 Let vB = (sB1 , ..., s
B
3k) be the shares B receives. If B finds that there are

at most k− 1 errors, B recovers keyB from the shares, sends “stop” to
A via the path q, and sets B STOP = 1. Otherwise there are k errors.
In this case B sends vB back to A via the path q (note that q is an
honest path in this case).

Step 4 A distinguishes the following two cases:

1. A receives vA = (sA1 , ..., s
A
3k) from the path q. A reliably sends

P = {i : sAi 6= si} to B.

2. A received “stop” or anything else via q. A reliably sends “stop”
to B.

Step 5 B distinguishes the following two cases:

1. B reliably receives “stop” from A. B sets A STOP = 1.

2. B reliably receives P from A. If B STOP = 0 then B recovers keyB

from the shares {sBi : i /∈ P} (note that |{s
B
i : i /∈ P}| = 2k).

Step 6 A reliably transmits keyA +mA to B, where mA is the message to be
transmitted.

Step 7 B reliably receives the ciphertext cB and decrypts the message mB =
cB − keyB .

Note that if B sends vB to A in Step 3 then k paths from A to B are corrupted
and the path q is honest. Thus the adversary will not learn vB and key. If
the adversary controls the path q, then it may change the message “stop” to
something else. In this case, A will not be able to identify the corrupted paths
from A to B. However, since B has already recovered the key, B will just ignore
the next received message. It is straightforward to show that the protocol is
(0, 0)-secure. Q.E.D.

Before proving our main theorem, we describe a variant π′ of the protocol π in the
proof of Theorem 5. We call B STOP during the i-th execution of π B STOP(i)
and similar for A STOP(i). The new protocol π′ proceeds as follows:

Step 1 Instead of sending the secret keyA, A first sends R1 ∈R F using π.

Step 2 A,B execute Steps 1 and 2 of π for the message R2 where R1 +R2 =
keyA.



Step 3 If B STOP(2) = 1 (B STOP(1) = 1 or 0), then B computes the secret
keyB .

Step 4 If B STOP(1) = 1 and B STOP(2) = 0, then B and A continue with
the rest of π for R2, and B will be able to compute the secret key

B .

Step 5 If B STOP(1) = 0 and B STOP(2) = 0 then A STOP(2) = 0. In this
case, k corrupted paths should have already been identified by both
A and B in the second run of π (though A does not know whether it
has correctly identified the corrupted paths). A “restarts” the protocol
by sending keyA using a (k+1)-out-of-2k secret sharing scheme along
the 2k non-corrupted paths. B excludes the known k bad paths and
computes the secret from the secret sharing scheme.

Note that due to the malicious information A received, A may restart the proto-
col even though B may have already computed the correct secret. In this case,
B can just ignore these messages.

Theorem 6. Let G(V,E) be a directed graph, A,B ∈ V . If there are 3k+1−u ≥
2k + 1 (which implies k ≥ u) directed node disjoint paths from A to B and u
directed paths from B to A (the directed paths from B to A are node disjoint
from the paths from A to B) then there is a (0, 0)-secure message transmission
protocol from A to B against a k-active adversary.

Proof. Let p1, . . . , p3k+1−u be the directed paths from A to B, and q1, . . . , qu
be the directed paths from B to A. The protocol will be based on the variant
protocol π′ of Theorem 5. Before we begin, we note that a (k+1)-out-of-(3k+1−
u) MDS secret sharing scheme can detect k errors and simultaneously correct
k − u errors. In the following, we informally describe the protocol. The full
protocol will be presented in the full version of this paper.

Step 1 A chooses R0 ∈R F and sends R0 to B via the 3k + 1− u paths using
a (k + 1)-out-of-(3k + 1− u) MDS secret sharing scheme.

Step 2 If B can correct the errors (i.e. there were at most k − u errors in the
received shares), B finds R0. Otherwise B needs help from A (that is,
B will send the received shares back to A via all B to A paths). The
problems are that:
– B may receive help even ifB has never asked. HoweverB can detect
this. Therefore B will always work with A on such a protocol.

– A may receive u different versions of “asking for help”.
For each of the u paths from B to A, B and A will keep track of the
“dishonest” paths from A to B according to the information A received
on this path.

Step 3 A now sends R1 using a (k+1)-out-of-(3k+1−u) MDS secret sharing
scheme where key = R0 +R1.

Step 4 If B can correct the errors, B has found the secret. However, B may
need to play with A prolonging the protocol due to incorrect paths
from B to A. B distinguishes the following two cases:



1. B has not asked help in Step 2. B can ask help now and B will
then recover the secret key.

2. B has asked help in Step 2. In this case B cannot ask for help
again (otherwise the enemy may learn the secret). The protocol
needs to be restarted from Step 1 on. We know that in this case
there is at least one honest path from B to A. (Indeed, if B asked
for help in Step 2, then the number of dishonest paths from A
to B is at least k′ ≥ k − u + 1. Assume that all paths from B
to A were dishonest then the total number of dishonest parties is
k′ + u ≥ k+1, which is a contradiction.) Since A and B identified
(correctly or incorrectly) dishonest parties on the paths from A to
B (the version corresponding to the honestB toA path should have
correctly identified the dishonest paths), they will only use these
paths that were not identified as dishonest. If k′ dishonest paths
fromA toB have been (correctly or incorrectly) identified, a (k+1)-
out-of-(3k+1−u−k′) MDS secret sharing scheme will be used. This
MDS secret sharing scheme will only be used for error detection
(or message recovery in the case that no error occurs), thus it can
be used to detect 3k + 1 − u − k′ − k − 1 = 2k − u − k′ ≥ k − k′

errors. Due to the fact that this MDS secret sharing scheme cannot
detect k errors we need to organize ourselves that B will never use
incorrectly identified paths from A to B since otherwise B could
compute the incorrect “secret”. This is easy to be addressed by
having B detect whether a path from B to A is dishonest or not.
This is done by having A reliably sends to B what A received via
the path qi from B to A. During each run of the protocol, B will
either recover the secret message (when no error occurs) or detect
one corrupted path from A to B (A could also detect the corrupted
path from A to B according to the information A received on the
honest B to A path—though A may not know which path from
B to A is honest). Thus the protocol will be restarted at most u
times.

After the initial run, B will first use the path q1 to send the “asking for help”
message. Then it will use the path q2, and then q3, etc. These steps can be run
in parallel. Q.E.D.

Theorem 6 can be strengthened as follows.

Theorem 7. Let G(V,E) be a directed graph, A,B ∈ V . Assume that there are
3k+1−u ≥ 2k+1 (which implies k ≥ u) directed node disjoint paths from A to
B and u directed paths from B to A. If 3k+1−2u paths among these 3k+1−u
paths from A to B are node disjoint from the u paths from B to A, then there
is a (0, 0)-secure message transmission protocol from A to B against a k-active
adversary.

Proof. The protocol proceeds in the same way as the protocol in the proof of
Theorem 6. In addition, at the end of the protocol, A constructs a (k + 1)-out-



of-(3k + 1 − 2u) MDS shares (s1, . . . , s3k+1−2u) of the secret key
A and sends

these shares to B via the 3k + 1 − 2u paths which are node disjoint from the
paths from the u paths from B to A. If B has determined that all these u paths
from B to A have been corrupted, then B will recover the secret keyA from the
received shares (sB1 , . . . , s

B
3k+1−2u) since a (k+1)-out-of-(3k+1−2u) MDS secret

sharing scheme can be used to detect and correct k − u errors simultaneously.
Note that if at least one path from B to A is honest, then B has recovered the
secret already and can just ignore this last message. Q.E.D.

We close our discussion on secure message transmission in directed graphs with
an application of Theorem 7. Up to now, we have concentrated on the situation
that there are more paths from A to B than paths from B to A. The following
theorem address the situation that there are more paths from B to A.

Theorem 8. Let G(V,E) be a directed graph, A,B ∈ V . Assume that there are
k+ 1 directed node disjoint paths from A to B and 2k+ 1 directed node disjoint
paths from B to A. If k+1 paths among these 2k+1 paths from B to A are node
disjoint from the k + 1 paths from A to B, then there is a (0, δ)-secure message
transmission protocol from A to B against a k-active adversary.

Proof. See the full version of this paper. Q.E.D

5 Secure message transmissions in hypergraphs

Hypergraphs have been studied by Franklin and Yung in [7]. A hypergraph H is
a pair (V,E) where V is the node set and E is the hyperedge set. Each hyperedge
e ∈ E is a pair (v, v∗) where v ∈ V and v∗ is a subset of V . In a hypergraph,
we assume that any message sent by a node v will be received identically by all
nodes in v∗, whether or not v is faulty, and all parties outside of v∗ learn nothing
about the content of the message.
Let v, u ∈ V be two nodes of the hypergraph H(V,E). We say that there is a

“direct link” from node v to node u if there exists a hyperedge (v, v∗) such that
u ∈ v∗. We say that there is an “undirected link” from v to u if there is a directed
link from v to u or a directed link from u to v. If there is a directed (undirected)
link from vi to vi+1 for every i, 0 ≤ i < k, then we say that there is a “directed
path” (“undirected path”) from v0 to vk. v and u are “strongly k-connected”
(“weakly k-connected”) in the hypergraph H(V,E) if for all S ⊂ V − {v, u},
|S| < k, there remains a directed (undirected) path from v to u after the removal
of S and all hyperedges (x, x∗) such that S∩(x∗∪{x}) 6= ∅. Franklin and Yung [7]
showed that reliable and private communication from v to u is possible against
a k-passive adversary if and only if v and u are strongly 1-connected and weakly
k + 1-connected. It should be noted that u and v are strongly k-connected does
not necessarily mean that v and u are strongly k-connected.
Following Franklin and Yung [7], and, Franklin and Wright [6], we consider

multicast as our only communication primitive in this section. A message that is
multicast by any node v in a hypergraph is received by all nodes v∗ with privacy



(that is, nodes not in v∗ learn nothing about what was sent) and authentica-
tion (that is, nodes in v∗ are guaranteed to receive the value that was multicast
and to know which node multicast it). We assume that all nodes in the hyper-
graph know the complete protocol specification and the complete structure of
the hypergraph.

Definition 2. Let H(V,E) be a hypergraph, A,B ∈ V be distinct nodes of H,
and k ≥ 0. A, B are k-separable in H if there is a node set W ⊂ V with at most
k nodes such that any directed path from A to B goes through at least one node
in W . We say that W separates A,B.

Remark. Note that there is no straightforward relationship between strong
connectivity and separability in hypergraphs.

Theorem 9. The nodes A,B of a hypergraph H is not 2k-separable if and only
if there are 2k + 1 directed node disjoint paths from A to B in H.

Proof. This follows directly from the maximum-flow minimum-cut theorem in
classical graph theory. For details, see, e.g., [5]. Q.E.D.

Theorem 10. A necessary and sufficient condition for reliable message trans-
mission from A to B against a k-active adversary is that A and B are not
2k-separable in H.

Proof. First assume that A and B cannot be separated by a 2k-node set. By
Theorem 9, there are 2k + 1 directed node disjoint paths from A to B in H.
Thus reliable message transmission from A to B is possible.
Next assume that A,B can be separated by a 2k-node set W in H. We

shall show that reliable message transmission is impossible. Suppose that π is
a message transmission protocol from A to B and let W = W0 ∪W1 be a 2k-
node separation of A and B with W0 and W1 each having at most k nodes. Let
m0 be the message that A transmits. The adversary will attempt to maintain
a simulation of the possible behavior of A by executing π for message m1 6=
m0. The strategy of the adversary is to flip a coin and then, depending on the
outcome, decide which set of W0 or W1 to control. Let Wb be the chosen set.
In each execution step of the transmission protocol, the adversary causes each
node in Wb to follow the protocol π as if the protocol were transmitting the
message m1. This simulation will succeeds with nonzero probability. Since B
does not know whether b = 0 or b = 1, at the end of the protocol B cannot
decide whether A has transmitted m0 or m1 if the adversary succeeds. Thus
with nonzero probability, the reliability is not achieved. Q.E.D.

Theorem 10 gives a sufficient and necessary condition for achieving reliable mes-
sage transmission against a k-active adversary over hypergraphs. In the follow-
ing example, we show that this condition is not sufficient for achieving privacy
against a k-active adversary (indeed, even not for a k-passive adversary).

Example 1 Let H(V,Eh) be the hypergraph in Figure 1 where V = {A, B, v1,
v2, v, u1, u2} and Eh = {(A, {v1, v2}), (v1, {v,B}), (v2, {v,B}), (A, {u1, u2}),



(u1, {v,B}), (u2, {v,B})}. Then the nodes A and B are not 2-separable in H.
Theorem 10 shows that reliable message transmission from A to B is possi-
ble against a 1-active adversary. However, the hypergraph H is not weakly 2-
connected (the removal of the node v and the removal of the corresponding hy-
peredges will disconnect A and B). Thus, the result by Franklin and Yung [7]
shows that private message transmission from A to B is not possible against a
1-passive adversary.
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Fig. 1. The hypergraph H(V, Eh) in Example 1

Theorem 11. Let δ > 0 and A and B be two nodes in a hypergraph H(V,E)
satisfying the following conditions:

1. A and B are not 2k-separable in H.
2. B and A are not 2k-separable in H.
3. A and B are strongly k-connected in H.

Then there is a (0, δ)-secure message transmission protocol from A to B against
a k-active adversary.

Proof. See the full version of this paper. Q.E.D.

The results in Sections 3 and 4 show that the condition in Theorem 11 is not
necessary.

6 Secure message transmission over neighbor networks

6.1 Definitions

A special case of the hypergraph is the neighbor networks. A neighbor network
is a graph G(V,E). In a neighbor network, a node v ∈ V is called a neighbor



of another node u ∈ V if there is an edge (v, u) ∈ E. In a neighbor network,
we assume that any message sent by a node v will be received identically by all
its neighbors, whether or not v is faulty, and all parties outside of v’s neighbor
learn nothing about the content of the message.
For a neighbor network G(V,E) and two nodes v, u in it, Franklin and Wright

[6], and, Wang and Desmedt [15] showed that if there are n multicast lines (that
is, n paths with disjoint neighborhoods) between v and u and there are at most
k malicious (Byzantine style) processors, then the condition n > k is necessary
and sufficient for achieving efficient probabilistically reliable and perfect private
communication.
For each neighbor network G(V,E), there is a hypergraph HG(V,Eh) which

is equivalent to G(V,E) in function. HG(V,Eh) is defined by letting Eh be the
set of hyperedges (v, v∗) where v ∈ V and v∗ is the set of neighbors of v.
Let v and u be two nodes in a neighbor network G(V,E). We have the

following definitions:

1. v and u are k-connected in G(V,E) if there are k node disjoint paths between
v and u in G(V,E).

2. v and u are weakly k-hyper-connected in G(V,E) if v and u are weakly k-
connected in HG(V,Eh).

3. v and u are k-neighbor-connected in G(V,E) if for any set V1 ⊆ V \{v, u} with
|V1| < k, the removal of neighbor(V1) and all incident edges from G(V,E)
does not disconnect v and u, where neighbor(V1) = V1 ∪ {v ∈ V : ∃u ∈
V1(u, v) such that ∈ E} \ {v, u}.

4. v and u are weakly (n, k)-connected if there are n node disjoint paths p1, . . . ,
pn between v and u and, for any node set T ⊆ (V \ {v, u}) with |T | ≤ k,
there exists an i (1 ≤ i ≤ n) such that all nodes on pi have no neighbor in
T .

It is easy to check that the following relations hold.

weak (n, k − 1)-connectivity (n ≥ k) ⇒ k-neighbor-connectivity ⇒ weak
k-hyper-connectivity ⇒ k-connectivity

In the following examples, we will show that these implications are strict.

Example 2 Let G(V,E) be the graph in Figure 2 where V = {A,B,C,D} and
E = {(A,C), (C,B), (A,D), (D,B), (C,D)}. Then it is straightforward to check
that G(V,E) is 2-connected but not weakly 2-hyper-connected.

Example 3 Let G(V,E) be the graph in Figure 3 where V = {A,B,C,D, F}
and E = {(A,C), (A,D), (C,B), (D,B), (C,F ), (F,D)}. Then it is straight-
forward to check that A and B are weakly 2-hyper-connected but not 2-neighbor-
connected.

Example 4 Let G(V,E) be the graph in Figure 4 where V = {A, B, C, D,
E, F , G, H} and E = {(A,C), (C,D), (D,E) (E,B), (A,F ), (F,G), (G,H)
(H,B), (C,H), (E,F )}. Then it is straightforward to check that A and B are
2-neighbor-connected but not weakly (2, 1)-connected.
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Fig. 2. The graph G(V, E) in Example 2
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Fig. 3. The graph G(V, E) in Example 3

Example 2 shows that k-connectivity does not necessarily imply weak k-
hyper-connectivity. Example 3 shows that weak k-hyper-connectivity does not
necessarily imply k-neighbor-connectivity. Example 4 shows that k-neighbor con-
nectivity does not necessarily imply weak (n, k−1)-connectivity for some n ≥ k.

6.2 (0, δ)-Secure message transmission over neighbor networks

Wang and Desmedt [15] have given a sufficient condition for achieving (0, δ)-
security message transmission against a k-active adversary over neighbor net-
works. In this section, we first show that their condition is not necessary.

Theorem 12. (Wang and Desmedt [15]) If A and B are weakly (n, k)-connected
for some k < n, then there is an efficient (0, δ)-secure message transmission
between A and B.

The condition in Theorem 12 is not necessary. For example, the neighbor network
G in Example 3 is not 2-neighbor-connected, thus not weakly (2, 1)-connected. In
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Fig. 4. The graph G(V, E) in Example 4



the full version of this paper, we will present a (0, δ)-secure message transmission
protocol against a 1-active adversary from A to B.
Example 1 shows that for a general hypergraph, the existence of a reliable

message transmission protocol does not imply the existence of a private message
transmission protocol. We show that this is true for probabilistic reliability and
perfect privacy in neighbor networks also.

Example 5 Let G(V,E) be the neighbor network in Figure 5 where V = {A,
B,C,D,E, F,G} and E = {(A,C), (C,D), (D,B), (A,E), (E,F ), (F,B), (G,C),
(G,D), (G,E), (G,F )}. Then there is a probabilistic reliable message transmis-
sion protocol from A to B against a 1-active adversary in G. But there is no
private message transmission from A to B against a 1-passive (or 1-active) ad-
versary in G.
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Fig. 5. The graph G(V, E) in Example 5

Proof. It is straightforward to check thatG(V,E) is not weakly 2-hyper-connected.
Indeed, in the hypergraph HG(V,Eh) of G(V,E), the removal of node G and the
removal of the corresponding hyperedges will disconnect A and B completely.
Thus Franklin and Yung’s result in [7] shows that there is no private message
transmission protocol against a 1-passive (or 1-active) adversary from A to B.
It is also straightforward to check that Franklin and Wright’s [6] reliable mes-
sage transmission protocol against a 1-active adversary works for the two paths
(A,C,D,B) and (A,E, F,B). Q.E.D.

Though weak k-hyper-connectivity is a necessary condition for achieving proba-
bilistically reliable and perfectly private message transmission against a (k− 1)-
active adversary, we do not know whether this condition is sufficient. We conjec-
ture that there is no probabilistically reliable and perfectly private message trans-
mission protocol against a 1-active adversary for the weakly 2-hyper-connected
neighbor network G(V,E) in Figure 6, where V = {A, B, C, D, E, F , G,
H} and E = {(A,C), (C,D), (D,E), (E,B), (A,F ), (F,G), (G,H), (H,B),
(D,G)}. Note that in order to prove or refute our conjecture, it is sufficient to
show whether there is a probabilistically reliable message transmission protocol
against a 1-active adversary for the neighbor network. For this specific neighbor



network, the trick in our previous protocol could be used to convert any proba-
bilistically reliable message transmission protocol to a probabilistically reliable
and perfectly private message transmission protocol against a 1-active adversary.
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