
Nearly One-Sided Tests and the Goldreich-Levin

Predicate

Gustav Hast

Department of Numerical Analysis and Computer Science
Royal Institute of Technology, 100 44 Stockholm, Sweden

ghast@nada.kth.se

Abstract. We study statistical tests with binary output that rarely out-
puts one, which we call nearly one-sided statistical tests. We provide an
efficient reduction establishing improved security for the Goldreich-Levin
hard-core bit against nearly one-sided tests. The analysis is extended to
prove the security of the Blum-Micali pseudo-random generator com-
bined with the Goldreich-Levin bit.
Furthermore, applications where nearly one-sided tests naturally occur
are discussed. This includes cryptographic constructions that replace real
randomness with pseudo-randomness and where the adversary’s success
easily can be verified. In particular, this applies to signature schemes
that utilize a pseudo-random generator as a provider of randomness.

Keywords: Nearly one-sided statistical test; Goldreich-Levin predicate; Pseudo-
random generator; Provable security; List decoding.

1 Introduction

Many algorithms are probabilistic and therefore require a source of randomness
to be implemented correctly. This is true in particular for most cryptographic
algorithms. Obtaining random material is often a hard and time consuming pro-
cess and therefore it is convenient to use a pseudo-random generator to generate
much random looking material from a short truly random seed. One would of
course like to have a guarantee that by exchanging random material for the
output of a generator, the performance of the algorithms are not changed in a
harmful way.

The pioneering works of Blum and Micali [6] and Yao [19] laid the foundation
of the theory of pseudo-randomness. Blum and Micali showed how to construct a
pseudo-random bit generator (PRBG) whose security is based on the hardness of
solving the discrete logarithm problem. More specifically, they proved and used
the fact that the most significant bit is a hard-core predicate for exponentiation.
A predicate b is a hard-core predicate for a function g if it is not feasible to
efficiently determine the boolean value of b(x) given the value of g(x). Goldreich
and Levin [11] showed how to construct such a hard-core predicate from any one-
way function. This construction can be applied on the above mentioned PRBG

196 Gustav Hast

so that the security can be based on the one-wayness of an arbitrary permutation
f . The proof of security provided by [6] was a polynomial reduction from solving
the discrete logarithm problem (or if we use the result from [11] inverting f), to
breaching the security of the bit generator.

In this work we analyze the security of the well-known pseudo-random gen-
erator obtained by combining the works of Blum and Micali [6] and Goldreich
and Levin [11]. We refer to this generator as BMGL. As noted in previous works
(e.g., [10], [11] and [16]) the exact efficiency of a reduction between two different
cryptographic primitives is of vital interest when determining the practical se-
curity consequences of the reduction. Examples of more recent works that deal
with the issue to bridge the gap between theoretical complexity based cryptog-
raphy and practical cryptography by improved reductions and analysis are [3]
and [7]. For a more extensive list see [2]. In the case of BMGL, the reduction re-
lates the one-wayness of a permutation to the pseudo-randomness of the output
from BMGL. A distribution is considered to be pseudo-random if there is no
statistical test, from a specific set of admissible tests, that more than negligibly
can distinguish between elements from that distribution and from the uniform
distribution. (A distribution is in fact not considered to be pseudo-random, but
instead an ensemble of distributions. For simplicity reasons we do not make this
distinction throughout the introduction.) Normally, the set of admissible tests
is specified by a maximum running time. Improvements to the security reduc-
tion of BMGL and its analysis have earlier been made by Rackoff (explained in
[8]), Levin [17] and H̊astad and Näslund [15]. Apart from BMGL, there have
been numerous other constructions of pseudo-random generators based on the
Blum-Micali paradigm, for example constructions exploiting the hardness of the
factoring problem starting with the work of Blum et al. [4].

Earlier analyses of reductions have characterized the efficiency of a statistical
test D, distinguishing the distributions X and Y , by using a measure δ such that

∣

∣

∣

∣

Pr
x∈X

[D(x) = 1]− Pr
y∈Y

[D(y) = 1]

∣

∣

∣

∣

≥ δ . (1)

In this paper we consider nearly one-sided statistical tests (this concept has been
investigated earlier by Blum and Goldreich [5]) which are tests that, on truly ran-
dom input, almost always output zero and rarely output one. The measure in (1)
does not capture whether or not a test is nearly one-sided and therefore we intro-
duce the notion of a parameterized distinguisher, which for a test and a certain
pair of input distributions impose two thresholds, separating the corresponding
output distributions of the test. We say that a test D (δ1, δ2)-distinguishes X
and Y if

Pr
x∈X

[D(x) = 1] ≤ δ1 < δ2 ≤ Pr
y∈Y

[D(y) = 1] .

Thus, if δ1 is small and X is the uniform distribution, the test is considered
to be nearly one-sided. (We do not formally define “small” but instead use the
parameterized distinguisher to express formal results in this paper.) The use of
this characterization of a distinguisher enables a more careful analysis of the

Nearly One-Sided Tests and the Goldreich-Levin Predicate 197

reduction from inverting a permutation to distinguishing between the output
of BMGL and the uniform distribution. The analysis shows that the success
probability of inverting the permutation is proportional to (δ2 − δ1)

2/δ2, to be
compared to previous results obtaining (δ2 − δ1)

2. If δ1 is small compared to δ2
(as is the case with nearly one-sided tests) the increase in reduction quality is
significant.

The heart of the improved analysis is in the analysis of the Goldreich-Levin
hard-core bit. Essentially, the classical proof shows that if the adversary can
predict the hard-core bit with advantage ε, then one can invert the one-way
function with probability proportional to ε2. This was shown by Adcock and
Cleve [1] to be optimal in the general case. In the case of nearly one-sided tests,
the distinguisher can be transformed to a predictor that most of the time has
almost no advantage against a random guess, but for a small fraction of the
inputs it has a significant advantage. In the classical proof this predictor had
to make a guess even though its confidence was low. This caused the produced
high quality predictions to be concealed by the big amounts of predictions of low
quality. In our reduction we therefore allow the predictor also to output ⊥, which
means that the confidence is too low to make a prediction. This enables us to
invert the one-way function with probability proportional to ε2/p, where p is the
probability that the predictor makes a prediction. (The seemingly contradiction
that the success probability increases when the probability of making a prediction
decreases is explained by the fact that this also implies that the confidence in
the prediction increases.)

The reduction that was used to show that the Goldreich-Levin bit is hard
to predict is essentially a list decoding algorithm of the Hadamard code. Using
this viewpoint, the possibility for the predictor to output ⊥ will correspond to
an erasure in the Hadamard code. After the work of Goldreich and Levin [11]
subsequent works in list decoding includes a generalization of the algorithm to
the non-binary and non-linear case [12]. Sudan et al. [18] showed how to trans-
form predicates, that are hard in the worst case, to become predicates that can
be predicted only negligibly better than by a random guess. The transformation
and proof was based on error-correcting codes and list decoding.

In cryptography the major application can be found in different types of
authentication schemes as nearly one-sided tests often occur there naturally. For
example, consider a signature scheme that is secure if given a source of random
bits. Suppose that one instead feeds this signature scheme with bits from a bit
generator (e.g. BMGL) and that it then no longer is secure. The attacker of this
schemes now serves as a nearly one-sided distinguisher between the two different
schemes because it has a negligible respectively non-negligible probability to
produce a valid signature when attacking the two different schemes. Thus, this
attacker can be combined with the signature scheme to build a nearly one-sided
test that distinguishes between the output distribution of the bit generator and
the uniform distribution. In Sect. 8, a more extensive discussion is made about
possible applications.

198 Gustav Hast

The outline of this paper is as follows: In Sect. 3 the Goldreich-Levin hard-
core bit is explained and we discuss why low rate predictors are more powerful
than ordinary predictors when list decoding the Hadamard code. In the next
section we prove a theorem about list decoding Hadamard codes with both era-
sures and errors and in Sect. 5 this theorem is used to establish the reduction
from inverting a function to predicting the Goldreich-Levin bit. Section 6 dis-
cusses statistical tests and their connection with predictors and in Sect. 7 the
security of the BMGL is shown. The paper is concluded with some applications
and open questions.

2 Notation

In this work we use the following notation:

1. By [m] we mean the set {1, . . . ,m} and 2[m] is the set of all subsets of [m].
2. The xor operation is denoted by ⊕.
3. The function b(r, x) is the inner product between r and x modulo 2.
4. The i’th unit vector ei is a bit string containing only zeros, except for the

i’th bit (which is 1). The dimension of ei is implicitly given by its use.
5. We let 〈J, L〉, where J and L are sets, denote the size of J ∩ L modulo 2.
6. If x is a bit string, the length of x is denoted by |x|.
7. When the logarithmic function log is used without the base having been

specified, it is implicit base 2.
8. The uniform distribution of bit strings of length n is denoted by Un.

3 The Goldreich-Levin Bit and List Decoding of

Hadamard Code

Goldreich and Levin [11] showed how to modify an arbitrary one-way function
to make it have a hard-core predicate: if f is a one-way function, then b(r, x)
(the inner product of r and x modulo 2) is a hard-core predicate for the one-way
function f ′(r, x) = (r, f(x)). This means that there is no efficient algorithm that
given (r, f(x)) as input (where r and x are drawn from the uniform distribution)
can guess the value of b(r, x) significantly better than a random guess. We do
not formally define hard-core predicate as the results in this paper are instead
expressed in terms of the advantage and rate of a predictor (see Definition 2).

The above result is shown using a reduction from inverting f to predicting
the value of b(r, x). The efficiency of the reduction depends on how well the
bit b(r, x) is guessed, which usually is measured by the advantage ε(n) of the
guessing algorithm P , often called the predictor:

ε(n) = Pr
r,x∈Un

[P (r, f(x)) = b(r, x)]− 1

2
.

The main part of the reduction consists of a list decoding algorithm for the
binary Hadamard code.

Nearly One-Sided Tests and the Goldreich-Levin Predicate 199

Definition 1. The (binary) Hadamard code of a bit string x of length n is
〈b(r, x)〉r∈{0,1}n .

The i’th bit of the Hadamard code of x is thus exactly b(i, x), where i is
interpreted in the natural way as a bit string of the same length as x. The task
for a list decoding algorithm is to produce a list of possible x, having oracle access
to a Hadamard code with a certain fraction of errors. The algorithm should come
with a lower bound on the probability that x appears in the list output and an
upper bound on the number of oracle queries made. Given the value of f(x), the
predictor P corresponds in a natural way to the oracle of the Hadamard code,
and the advantage of P (over a fix x) is closely related to the number of errors
of the oracle.

Now suppose that we have a predictor P that on some input answers with
high confidence and on other inputs just flips a coin. The informative answers
from P (when it does not just flip a coin) would then be somewhat clouded by the
random noise provided by the other answers. Let us therefore give the predictor
more freedom by also letting it output ⊥ in those cases where the confidence in
the prediction is low. Instead of characterizing this type of predictor with only
its advantage in the traditional sense, we also use its rate, which is how often
it outputs a prediction. The advantage is generalized in a natural way for this
different type of predictor.

Definition 2. A predictor P : {0, 1}∗ × {0, 1}∗ → {0, 1,⊥} is said to have rate
δ(n) and advantage ε(n) in predicting b(x, r) from f(x) and r, where

δ(n) = Pr
x,r∈Un

[P (f(x), r) 6= ⊥]

and

ε(n) = Pr
x,r∈Un

[P (f(x), r) = b(x, r)]− 1

2
Pr

x,r∈Un

[P (f(x), r) 6= ⊥] .

Going back to the list decoding algorithm for the Hadamard code, this new
type of predictor corresponds to a Hadamard code oracle with both errors and
erasures, where the fraction of erasures is 1−δ (where δ is the rate of the predic-
tor). The heart of the improved reduction is in the analysis of the list decoding
algorithm with an oracle that has a relatively large part of erasures (or in other
words a predictor with low rate). Let us briefly discuss why a predictor with low
rate is more powerful than one with a higher rate and the same advantage. With
more powerful we here mean that the predictor does not have to be called as
many times in the list decoding algorithm. Later we show how a nearly one-sided
test for the Goldreich-Levin bit easily can be turned into a predictor with low
rate.

Assume that P is a predictor with rate δ and advantage ε. Earlier analyses,
that only made use of the advantage, have shown (see [8], Sect. 2.5.2) that the
number of needed calls to P should be at least proportional to ε−2 for the list
decoding algorithm to succeed with probability one half. The probability that

200 Gustav Hast

P makes a correct prediction is 1
2δ + ε. Let us now ignore all the calls that

received ⊥-answers from P . The probability that P , on the remaining calls,
guesses correctly is then (1

2δ + ε)δ−1 = 1
2 + δ−1ε. In some sense this gives us

a not fully working predictor with advantage δ−1ε, the problem being that it
does not make predictions for all inputs and that it on the average only makes
one prediction per δ−1 calls. If the first problem mentioned can be dealt with
in the list decoding algorithm we can expect that the number of calls to P is
proportional to the inverted advantage squared times the extra factor of δ−1:
O((δ−1ε)−2δ−1) = O(δε−2). Note that if the advantage of P is at least a constant
fraction of the rate, we have that δ = O(ε) and thus the number of calls needed
would only be O(ε−1) compared to O(ε−2) before. In the proofs of Theorem 1
and 2 we show that this intuition really has merit.

4 List Decoding of Hadamard Code with Errors and

Erasures

The main part of the proof that the Goldreich-Levin bit is a hard-core predicate
consists of a list decoding algorithm of a binary Hadamard code with errors. To
ensure that the power of the low rate of the predictor does not vanish, we repeat
the analysis of the list decoding algorithm (not the original one [11], but one
due to Rackoff explained in [8]) while letting the Hadamard code also contain
erasures. As far as the author is aware of, no previous work has been done on
list decoding the Hadamard code in the presence of errors and erasures.

Theorem 1. There is an algorithm LD that, on input l and n and with oracle
access to a Hadamard code of x (where |x| = n) with an e-fraction of errors
and an s-fraction of erasures, can output a list of 2l elements in time O(nl2l)
asking n2l oracle queries such that the probability that x is contained in the list

is at least one half if l ≥ log2

(

8n(e+c)
(c−e)2 + 1

)

, where c
def
= 1− s− e (the fraction of

correct answers from the oracle).

Proof. Let C be an oracle that represents a Hadamard code of a fixed x with
an e-fraction of errors and s-fraction of erasures. In Fig. 1 the list decoding
algorithm LDC is defined. First we prove its correctness in respect to the claim
made in Theorem 1 that it outputs x with at least probability one half. We then
analyze its time complexity.
Correctness of LDC : We start by proving the following claim about the

value of C ′(ei ⊕ sJ) which is a principal component in the calculations made in
step 3 of our list decoder LDC .

Claim 1 Let sJ and C ′ be defined as in the description of LDC . Then for a
nonempty J ⊆ [l] and L0 = {i | i ∈ [l], b(si, x) = 1} the following equalities hold:

Pr[(−1)〈J,L0〉C ′(ei ⊕ sJ) = 0] = s

Pr[(−1)〈J,L0〉C ′(ei ⊕ sJ) = (−1)b(ei,x)] = c

Pr[(−1)〈J,L0〉C ′(ei ⊕ sJ) = −(−1)b(ei,x)] = e,

Nearly One-Sided Tests and the Goldreich-Levin Predicate 201

Implementation of list-decoder LDC : Let LD have oracle access to C :
{0, 1}n → {0, 1,⊥}. On input l and n, LDC proceeds as follows:

1. Choose s1,. . ., sl independently from Un.
2. Define a predictor C ′ that uses C so that

C′(r) =

1 if C(r) = 0
−1 if C(r) = 1
0 if C(r) = ⊥

3. Calculate diL =
∑

J(−1)
〈J,L〉C′(ei ⊕ sJ) for all L ⊆ [l] and i ∈ [n], where

sJ
def
= ⊕i∈J s

i for all nonempty J ⊆ [l].

4. Output the list {zL}L⊆[l] where the i’th bit of zL is defined as
1−sgn(di

L)

2
.

Fig. 1. The List-Decoder LDC

where the probabilities are taken over the choices of si in step 1 of LDC .

Proof. We observe that

b(sJ , x) = ⊕j∈Jb(s
j , x) = ⊕j∈J∩L0

b(sj , x) = 〈J, L0〉 ,

and

C ′(ei ⊕ sJ) =

(−1)b(ei,x)⊕b(sJ ,x) if C answers correctly

−(−1)b(ei,x)⊕b(sJ ,x) if C answers incorrectly
0 if C answers ⊥ .

As J is non-empty, the value of ei ⊕ sJ will be uniformly distributed and thus
the probability that C answers ’⊥’ is s, incorrectly is e and correctly is c. As
b(sJ , x) = 〈J, L0〉 the claim follows from

(−1)b(sJ ,x)C ′(ei ⊕ sJ) =

(−1)b(ei,x) if C answers correctly

−(−1)b(ei,x) if C answers incorrectly
0 if C answers ⊥ .

ut

As a consequence of their construction, the values of sJ , for nonempty J ⊆
[l], are pairwise independent and uniformly distributed. Let L0 be defined as
{i | i ∈ [l], b(si, x) = 1} and study for a fixed i the value of diL0

calculated in

step 3 of LDC . It is a sum of expressions on the form that is analyzed in Claim
1. The probability of different results (expressed in terms of the i’th bit of x) of
each term in this sum is specified in the claim. Using the value (sign) of the sum
we can thereby guess the i’th bit of x and by knowing the different probabilities
we can calculate an upper bound for the probability that the guess is incorrect.

For our guess to be correct we would like to have more terms that equal
(−1)b(ei,x) than −(−1)b(ei,x). As we know the probability for each outcome we

202 Gustav Hast

can, by using Chebyschev’s inequality, give an upper bound on the probability
that the guess is incorrect. For every non-empty J ⊆ [l], define ζJc to be the

indicator variable for the event that (−1)〈J,L0〉C ′(ei⊕sJ) = (−1)b(ei,x) and let ζJe
be the indicator variable for the event that (−1)〈J,L0〉C ′(ei⊕sJ) = −(−1)b(ei,x).
We would like to be able to state that

∑

J ζ
J
c >

∑

J ζ
J
e with high probability.

Chebyschev’s inequality states that for any positive t

Pr[|Y − µ| ≥ tσ] ≤ t−2 ,

where σ is the standard deviation and µ is the expectation of the variable Y .
This inequality is to be applied on the number of incorrect answers Y =

∑

J ζ
J
e which has the expected value of µ = Ne (where N

def
= 2l−1 is the number

of terms in the sum) and the standard deviation σ is less than
√
Ne (using the

fact of pairwise independency). We set t =
√
N(c−e)
2
√
e

which gives us

Pr

[

|
∑

J

ζJe −Ne | > N(c− e)

2

]

≤ 4e

N(c− e)2
.

Applying the same inequality on the number of correct answers Y =
∑

J ζ
J
c with

µ = Nc, σ <
√
Nc and t =

√
N(c−e)
2
√
c

gives

Pr

[

|
∑

J

ζJc −Nc | > N(c− e)

2

]

≤ 4c

N(c− e)2
.

If none of the sums
∑

J ζ
J
c and

∑

J ζ
J
e deviate more than N(c−e)

2 from their
expected values we can conclude that the number of correct answers outnumbers
the number of incorrect answers. Thus, the probability that this is not the case

and we thereby are not able to make a correct prediction is at most 4(e+c)
N(c−e)2 .

For the algorithm to succeed (in the supposed fashion) each of the n different
bits of x has to be predicted correctly. In other words diL0

has to have the correct

sign for each i ∈ [n]. An upper bound for this not occurring is 4n(e+c)
N(c−e)2 which is

the sum of the upper bounds for each bit prediction failure. If N ≥ 8n(e+c)
(c−e)2 then

this bound is less than one half. As N equals 2l−1 we conclude that if the input
l satisfy

l ≥ log

(

8n(e+ c)

(c− e)2
+ 1

)

then the probability that x appears in the output list is at least one half.
Efficiency of LDC : The first step of LDC takes time O(nl) and the last step

takes time O(n2l). The time consuming step of the algorithm is the calculation
of the different values of diL. The naive way to do this would be by calculating
each diL-value independently for each L. This would make the algorithm work
in time O(n222l) making O(n2l) calls to C, as there are n2l different diL-values

Nearly One-Sided Tests and the Goldreich-Levin Predicate 203

Description of inverter Inv: P is a predictor with rate δP (n) and advantage
εP (n). On input y = f(x) and n Inv proceeds as follows:

1. Select j from {−1, . . . , h − 2}, where h = bh(n)c = blog δP (n)

εP (n)2
c, with proba-

bility 2j−h and set l = dlog(nδP (n)/εP (n)
2)e − j + 2. If no j is chosen, stop

and output ⊥.

2. Call the list-decoder LDPy with input l and n, where Py(·)
def
= P (y, ·).

3. Apply f on each element x′ of the output from the list-decoder. If f(x′) = y,
then output x′ and stop.

4. Output ⊥.

Fig. 2. The inverter Inv

and each value is a sum of 2l − 1 terms and each term can be calculated in time
O(n).

Using Fourier-analysis of functions g : 2[l] → R, the expression for diL,
∑

J (−1)〈J,L〉C ′(ei ⊕ sJ), can be identified as the L’th Fourier coefficient of the
function gi(J) = C ′(ei ⊕ sJ). Using the fast Fourier-transform algorithm all 2l

Fourier coefficients can be calculated in time O(l2l). Therefore, for each i we can
calculate all the values {diL}L⊆[l] in time O(l2l) using 2l oracle queries. There

are n different values of i making the total time O(nl2l) and the total number
of oracle queries n2l. ut

5 Goldreich-Levin Hard-Core Bit

In this section we make an efficient reduction from inverting a function f to
predicting the Goldreich-Levin bit of f . The list decoding algorithm from the
previous section is the main component of the algorithm that performs the re-
duction.

Theorem 2. Let P be a probabilistic algorithm with running time tP : N → N,
and rate δP : N → [0, 1] and advantage εP : N → [0, 1

2] in predicting b(x, r)
from f(x) and r. Define h(n) to be log2(δP (n)/εP (n)

2). Then there exists an
algorithm Inv that runs in expected time (tP (n) + h(n) log2(n)) · h(n) · O(n2)
and satisfies

Pr
x∈Un

[f(Inv(f(x), n)) = f(x)] = Ω

(

εP (n)
2

δP (n)

)

.

Theorem 2 states that if there is an algorithm P that predicts the Goldreich-
Levin bit of f , then there also exists an algorithm Inv (depicted in Fig. 2) that
inverts f . If P , for all possible values of x, would have approximately the same
advantage (and rate) in predicting b(r, x) from f(x) and r, this can be shown by
directly applying the list-decoding algorithm LD with the appropriate value of
l. But as this is not true in general we need to make an averaging argument. This

204 Gustav Hast

is done by calling LD with small values on l with high probability (to cope with
values of x giving P a high advantage), and calling LD with big values on l with
low probability (to cope with values of x giving P an intermediate advantage).
A proof of the theorem can be found in the journal version of this work [14].

Compared to previous analyses the inverting probability improves with ap-
proximately a factor of δ−1

P (see Proposition 2.5.4 in [8]). In some applications
we know that the advantage εP (n) will be a constant fraction of the rate δP (n)
and then the improvement will be considerable as the inverting probability will
increase from Ω(εP (n)

2) to Ω(εP (n)).

Knowledge about the value of εP (n)2

δP (n) is required if we would like to implement

Inv. Therefore we define a new algorithm Inv′, with oracle access to a predictor
P , that takes an additional input h and behaves exactly as Inv but uses h instead

of log δP (n)
εP (n)2 in the first step of the algorithm. From the proof of Theorem 2 we

can conclude that as long as h ≥ log δP (n)
εP (n)2 the probability of success will not

decrease and the running time and the number of queries to P will be the same

as in Theorem 2 except for that we substitute log δP (n)
εP (n)2 with h. We thus have

the following corollary which is useful when proving Theorem 3.

Corollary 1. Let P be an arbitrary algorithm predicting b(x, r) from f(x) and
r. There exists an algorithm Inv′ with oracle access to P such that on input y,
n and h it runs in expected time h2 log2(n) ·O(n2) and makes h ·O(n2) number
of expected calls and satisfies

Pr
x∈Un

[

f(Inv′
P
(f(x), n, h)) = f(x)

]

= Ω
(

2−h
)

if h ≥ log2(δP (n)/εP (n)
2), where P has rate δP : N → [0, 1] and advantage

εP : N → [0, 1
2] in predicting b(x, r) from f(x) and r.

6 Nearly One-Sided Statistical Tests

A statistical test is a probabilistic algorithm that takes an input and outputs a
bit. The purpose of a statistical test is to distinguish between different distri-
butions. This is done by having different output distributions when the input is
drawn from different distributions. The output distribution is characterized by
the probability that the output is equal to 1 respectively 0. If the test rarely
outputs 1 we consider the test to be nearly one-sided with respect to the input
distribution. The classical way to measure how well a statistical test distinguishes
between two distributions (or in fact two ensembles of distributions) is through
the following definition.

Definition 3. An algorithm D : {0, 1}∗ → {0, 1} δ(n)-distinguishes the ensem-
bles X = {Xn} and Y = {Yn} if for infinitely many values of n

∣

∣

∣

∣

Pr
x∈Xn

[D(x) = 1]− Pr
y∈Yn

[D(y) = 1]

∣

∣

∣

∣

≥ δ(n) .

Nearly One-Sided Tests and the Goldreich-Levin Predicate 205

The characterization of a statistical test in terms of this definition is rather
coarse. In particular whether the test is one-sided or not does not show. This is
remedied by the following definition which explicitly provides absolute bounds
on the probability of outputting 1.

Definition 4. An algorithm D : {0, 1}∗ → {0, 1} (δ1(n), δ2(n))-distinguishes
the ensembles X = {Xn} and Y = {Yn} if for infinitely many values of n

Pr[D(Xn) = 1] ≤ δ1(n) < δ2(n) ≤ Pr[D(Yn) = 1] .

In addition, D is said to be a (δ1(n), δ2(n))-distinguisher for the ensembles X
and Y if D (δ1(n), δ2(n))-distinguishes X and Y .

We now discuss the connection between statistical tests and predictors, and
in particular how a nearly one-sided statistical test for the Goldreich-Levin bit
easily can be turned into a low rate predictor that predicts the Goldreich-Levin
bit.

Assume that a distinguisher D satisfies

p1 = Pr
r,x∈Un,σ∈U1

[D(f(x), r, σ) = 1]

and
p2 = Pr

r,x∈Un

[D(f(x), r, b(r, x)) = 1] .

It is easy to transform this distinguisher into a predictor P guessing b(r, x) with
advantage p2 − p1. On input (f(x), r) the predictor P samples a uniform bit
σ, queries for D(f(x), r, σ) and outputs σ iff D(f(x), r, σ) = 1 and otherwise
outputs 1 − σ. However, if the probability p1 is very small, then the truly in-
formative answers from D are when it returns 1. In those cases the probability
that the prediction is correct is

Prr,x∈Un
[D(f(x), r, σ) = 1 |σ = b(r, x)] · Prσ∈U1

[σ = b(r, x)]

Prr,x∈Un,σ∈U1
[D(f(x), r, σ) = 1]

=
p2

2p1
,

giving an advantage of
p2

2p1
− 1

2
=

p2 − p1

2p1
.

This should be compared to the success probability when D outputs 0

Prr,x∈Un
[D(f(x), r, σ) = 0 | 1− σ = b(r, x)] · Prσ∈U1

[1− σ = b(r, x)]

Prr,x∈Un,σ∈U1
[D(f(x), r, σ) = 0]

=
1
2 · Prr,x∈Un

[D(f(x), r, 1− b(r, x)) = 0]

1− Prr,x∈Un,σ∈U1
[D(f(x), r, σ) = 1]

=
1
2 · (1− Prr,x∈Un

[D(f(x), r, 1− b(r, x)) = 1])

1− p1

=
1− (2 · Prr,x∈Un,σ∈U1

[D(f(x), r, σ) = 1]− Prr,x∈Un
[D(f(x), r, b(r, x)) = 1])

2(1− p1)

=
1− (2p1 − p2)

2(1− p1)
,

206 Gustav Hast

giving an advantage of

1− (2p1 − p2)

2(1− p1)
− 1

2
=

1− (2p1 − p2)− (1− p1)

2(1− p1)
=

p2 − p1

2(1− p1)
.

(Note that we have implicitly extended the notion of advantage to also apply
when conditioned on the output of D.)

Assume that the test is nearly one-sided and thereby the value of p1 is close
to zero. In this case the advantage of the prediction when D outputs 1 is a factor
p−1
1 better than if it outputs 0. This is why it is better to somewhat change P

so that it still returns σ iff D(f(x), r, σ) = 1 but otherwise outputs ⊥. This
new predictor has rate p1 and advantage (p2− p1)/2. Thus we have transformed
a nearly one-sided statistical test for the Goldreich-Levin bit into a low rate
predictor that predicts the Goldreich-Levin bit.

7 Blum-Micali Pseudo Random Generator

Blum and Micali [6] constructed a pseudo-random bit generator based on a one-
way permutation and a hard-core predicate associated with the permutation. As
an example they used exponentiation modulo a prime as a one-way permutation
and the most significant bit as its hard-core predicate. By using an arbitrary
one-way permutation and the hard-core predicate of Goldreich-Levin [11] the
following construction, referred to as BMGL, is obtained:

Construction 1 Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time-computable
length-preserving permutation and l : N → N where n < l(n). Given the input
x0 and r such that |x0| = |r| = n, define

Gf,l(x0, r) = b(r, x1)b(r, x2) . . . b(r, xl(n)) ,

where xi = f(xi−1) for i = 1,. . .,l(n). With Gf,l
n we denote the output distribution

of Gf,l(x0, r), where r and x0 are chosen uniformly and independently from
{0, 1}n.

The security of the BMGL is described by our next theorem.

Theorem 3. Let D be a (p1(n), p2(n))-distinguisher for {Ul(n)} and {Gf,l
n } with

running time tD : N → N. Then there exists an algorithm Inv′′ that runs in
expected time [(tf (n)·l(n)+tD(n))+m(n) log2(n)]·m(n)·O(n2), where tf (n) is the

time to calculate the function f on a n-bit input and m(n)
def
= log2

p2(n)l(n)2

(p2(n)−p1(n))2 ,

and satisfies

Pr
x∈Un

[Inv′′(f(x)) = x] = Ω
(

2−m(n)
)

for infinitely many values of n.

Nearly One-Sided Tests and the Goldreich-Levin Predicate 207

Implementation of predictor P i: The predictor has access to a distinguisher
D : {0, 1}l(n) → {0, 1}. On input y and r, P i proceeds as follows:

1. Set xi+1 = y and calculate xj for j ∈ {i+2, . . . , l(n)} where xj = f(xj−1) and
n = |y|.

2. Toss i unbiased coins c1, c2, . . . , ci−1 and σ.
3. Create the bit string z = c1 . . . ci−1σb(xi+1, r) . . . b(xl(n), r). If D(z) = 1 then

return σ, otherwise return ⊥.

Fig. 3. The predictor P i

Implementation of inverter Inv′′: The inverter has access to a distinguisher
D : {0, 1}l(n) → {0, 1}. On input y, Inv′′ proceeds as follows:

1. Choose i ∈ [l(n)] uniformly, where n = |y|.
2. Choose j from {−2,−1, . . . , blog l(n)c} with probability 2−(3+j).

3. Call Inv′ from Corollary 1 with input y, n and h = dlog p2(n)l(n)2

22j(p2(n)−p1(n))2
e

providing P i as the predictor. Return the output from Inv′
Pi .

Fig. 4. The inverter Inv′′

For nearly one-sided tests the reduction is an improvement with approxi-
mately a factor of p2(n)

−1 over the previous most efficient reduction. The im-
provement is obtained by transforming nearly one-sided tests to low rate predic-
tors and applying Theorem 2 that works well for that type of predictors.

Note that the running time of Inv′′ only depends upon p1(n) and p2(n)
logarithmically. Assuming tf (n) · l(n) ≤ tD(n) and ignoring logarithmic factors
the time-success ratio is p2(n)l(n)

2tD(n)(p2(n)− p1(n))
−2 ·O(n2). Furthermore,

if we assume that p1(n) ≤ c · p2(n) for some constant c < 1 the time-success
ratio is l(n)2tD(n)p2(n)

−1 ·O(n2), still ignoring logarithmic factors.

The correctness of the theorem is shown by defining a number of hybrid
distributions H i

n, connecting the uniform distribution Ul(n) with the generator

output Gf,l
n . In Fig. 3 a predictor is defined for each such hybrid. The inverter

Inv′′ uniformly selects between these predictors and calls Inv′ from Corollary
1 providing the selected predictor as an oracle. A proof of the theorem can be
found in the journal version of this work [14].

8 Applications

Using pseudo-random material instead of real random material in probabilistic
algorithms may be convenient for many reasons. A system can have problems
obtaining enough random material or the results perhaps need to be reproducible
without storing all random material used.

208 Gustav Hast

An important use of pseudo-random material can be found in many imple-
mentations of cryptographic primitives. The security definitions of these prim-
itives often express either the need of authentication or that of confidentiality.
In the case of authentication there is often a natural nearly one-sided test cor-
responding to an attacker of the protocol, but in the case of confidentiality this
is not always so.

Here we consider the security consequences of using pseudo-random material
from a PRBG instead of true random bits in a cryptographic system. We assume
that the system that uses true randomness is secure and want to establish that
the corresponding system is also secure. The standard method for showing this is
done by assuming that there is a successful attacker, when using pseudo-random
material in the system, and transforming this attacker into a statistical test dis-
tinguishing between output from the PRBG and the uniform distribution. This
statistical test will become nearly one-sided if the successful attacker produces
a certain type of breakings which we call verifiable breakings. If the PRBG is
BMGL then the proof of security can prosper by our more efficient reduction
established in Theorem 3. With a verifiable breaking of a cryptographic system
we mean that a successful breaking can be verified, possibly with the help of
secrets lying in the system such as secret keys.

8.1 Signature schemes

As an example of how natural nearly one-sided tests come up in the case of
authentication, we take a closer look at signature schemes. Using the standard
definition of security in an adaptive chosen message attack environment [13], an
attacker may query an oracle for signatures of any messages of its choice. The
attacker is considered successful if it, on a verification key as input, can output a
valid signature on any message. Furthermore, the signature should of course not
be identical to a signature returned by the oracle. If there is an attacker (from a
certain group of attackers) that has more than a negligible probability to break
the signature scheme, then the signature scheme is considered to be insecure
against that group of attackers. Now assume that S is a secure signature scheme
but SG is not, where the only difference between SG and S is that SG uses
bits from a pseudo-random generator G when S uses true random bits. Then
there is an adversary A that can break the signature scheme SG, but not S,
with a non-negligible probability. This adversary can easily be transformed into
a nearly one-sided statistical test D, distinguishing between the output of G and
the uniform distribution, by first simulating S, using its input as the source of
randomness, and then attacking S using A.

8.2 Encryption schemes

A natural way to define the security of an encryption system is to say that, given
a ciphertext, it should be infeasible to produce the corresponding plaintext. If we
would adopt this as our security definition, an attacker A could easily be turned
into a natural nearly one-sided test that would distinguish between encryptions

Nearly One-Sided Tests and the Goldreich-Levin Predicate 209

made by a secure encryption scheme and encryptions made by an encryption
scheme that A attacks successfully. In particular this means that if we exchange
the true random material that is used in a secure encryption scheme against
bits produced by a generator, then a successful attacker on the resulting scheme
can be turned into a nearly one-sided test distinguishing between the uniform
distribution and the generator output.

Unfortunately, this natural way of defining security is not strict enough for
all situations. In general we do not permit an attacker to be able to conclude
anything at all about the plaintext, by looking at the ciphertext. This notion
was captured by the definition of semantic security in [13]. Using this definition
there is no natural way to transform an attacker into a nearly one-sided test. For
example, if an adversary could predict, by looking at a ciphertext, the i’th bit of
the plaintext (that was drawn from the uniform distribution) with probability
1
2 + ε, where ε is non-negligible, this would render the system insecure. But this
adversary corresponds with a predictor with rate one, and thus not to a nearly
one-sided test.

8.3 Other applications

In many algorithms, pseudo-randomness is provided by a pseudo-random func-
tion. A well-known construction of pseudo-random functions is the GGM con-
struction [9] which uses a pseudo-random generator as a building block. We note
that a nearly one-sided statistical test, distinguishing between the use of real
random functions and a family of GGM-functions, can be transformed into a
nearly one-sided statistical test distinguishing the uniform distribution and the
underlying generator output. Briefly, this is so because the hybrid arguments
used in the security proof of GGM will uphold the one-sidedness in distinguish-
ing between real random functions and GGM-functions.

For some applications in simulations, nearly one-sided tests will occur nat-
urally. Consider a probabilistic algorithm for a decision problem that errs with
very small probability. Assume that this algorithm uses the output from a PRBG
as its source of randomness and that this causes the algorithm to err with sub-
stantially higher probability. Then this algorithm can be used to produce a nearly
one-sided test distinguishing the PRBG output and the uniform distribution.

9 Open Problems

In this work we have studied nearly one-sided test for the Goldreich-Levin hard-
core bit. A natural extension would be to consider what impact nearly one-sided
tests have on other hard-core predicates. Additional applications where nearly
one-sided tests occur could also be investigated.

Acknowledgments

I am very grateful to Johan H̊astad for providing me with good ideas and con-
tinuous support. I am also grateful to the referee of Journal of Cryptology for

210 Gustav Hast

valuable advice about the presentation as well as for suggesting interesting exten-
sions. Finally, I would like to thank Yevgeniy Dodis, Mikael Goldmann, Oded
Goldreich, Jonas Holmerin, Åsa Karsberg, Mats Näslund and the anonymous
referees for much appreciated help and comments.

References

1. M. Adcock and R. Cleve: A Quantum Goldreich-Levin Theorem with Cryptographic

Applications. Proceedings, STACS 2002, LNCS 2285, 2002, pp. 323-334, Springer-
Verlag.

2. M. Bellare: Practice-oriented provable-security. Proceedings, ISW ’97, LNCS 1396,
1997, pp. 221-231, Springer-Verlag.

3. M. Bellare and P. Rogaway: The exact security of digital signatures: How to sign

with RSA and Rabin. Proceedings, EUROCRYPT ’96, LNCS 1070, 1996, pp. 399–
416, Springer-Verlag.

4. L. Blum, M. Blum and M. Shub: A Simple Unpredictable Pseudo-Random Genera-

tor. SIAM Journal on Computing, 15, no. 2, 1986, pp. 364–383.
5. M. Blum and O. Goldreich: Towards a Computational Theory of Statistical Tests.

Proceedings, 33rd IEEE FOCS, 1992, pp. 406–416.
6. M. Blum and S. Micali: How to Generate Cryptographically Strong Sequences of

Pseudo-random Bits. SIAM Journal on Computing, 13, no. 4, 1984, pp. 850–864.
7. R. Fischlin and C. P. Schnorr: Stronger Security Proofs for RSA and Rabin Bits.

Journal of Cryptology, 13, no. 2, 2000, pp. 221–244.
8. O. Goldreich: Foundations of Cryptography: Basic Tools. Cambridge U. Press, 2001.
9. O. Goldreich, S. Goldwasser and S. Micali: How to Construct Random Functions.

JACM, 33. no. 4, 1986, pp. 792-807.
10. O. Goldreich, R. Impagliazzo, L. A. Levin, R. Venkatesan and D. Zuckerman:
Security Preserving Amplification of Hardness. Proceedings, 31st IEEE FOCS, 1990,
pp. 318-326.

11. O. Goldreich and L. A. Levin: A Hard Core Predicate for any One Way Function.

Proceedings, 21st ACM STOC, 1989, pp. 25–32.
12. O. Goldreich, R. Rubinfeld, and M. Sudan: Learning polynomials with queries:

The highly noisy case. SIAM Journal on Discrete Mathematics, 13, no. 4, 2000,
pp. 535-570.

13. S. Goldwasser, S. Micali and R. Rivest: A Digital Signature Scheme Secure Against

Adaptive Chosen-Message Attacks. SIAM Journal on Computing, 17, no. 2, 1988,
pp. 281–308.

14. G. Hast: Nearly One-Sided Tests and the Goldreich-Levin Predicate. Journal of
Cryptology, to appear.

15. J. H̊astad and M. Näslund: Practical Construction and Analysis of Pseudo-

Randomness Primitives. Proceedings, ASIACRYPT 2001, LNCS 2248, 2001, pp. 442–
459, Springer-Verlag.

16. A. Herzberg and M. Luby: Public Randomness in Cryptography. Proceedings,
CRYPTO ’92, LNCS 0740, 1992, pp. 421–432, Springer-Verlag.

17. L. A. Levin: Randomness and Non-determinism. Journal of Symbolic Logic, 58,
no. 3, 1993, pp. 1102–1103.

18. M. Sudan, L. Trevisan and S. Vadhan: Pseudorandom generators without the XOR

Lemma. Journal of Computer and System Sciences, 62, no. 2, 2001, pp. 236–266.
19. A. C. Yao: Theory and application of trapdoor functions. Proceedings, 23rd IEEE
FOCS, 1982, pp. 80–91.

