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Abstract. Cryptographic computations are often carried out on inse-
cure devices for which the threat of key exposure represents a serious
and realistic concern. In an effort to mitigate the damage caused by ex-
posure of secret data (e.g., keys) stored on such devices, the paradigm of
forward security was introduced. In a forward-secure scheme, secret keys
are updated at regular periods of time; furthermore, exposure of a secret
key corresponding to a given time period does not enable an adversary to
“break” the scheme (in the appropriate sense) for any prior time period.
A number of constructions of forward-secure digital signature schemes,
key-exchange protocols, and symmetric-key schemes are known.

We present the first constructions of a (non-interactive) forward-secure
public-key encryption scheme. Our main construction achieves security
against chosen plaintext attacks under the decisional bilinear Diffie-
Hellman assumption in the standard model. It is practical, and all com-
plexity parameters grow at most logarithmically with the total number
of time periods. The scheme can also be extended to achieve security
against chosen ciphertext attacks.

Key words: Bilinear Diffie-Hellman, Encryption, Forward security, Key expo-
sure.

1 Introduction

Exposure of secret keys can be a devastating attack on a cryptosystem since such
an attack typically implies that all security guarantees are lost. Indeed, standard
notions of security offer no protection whatsoever once the secret key of the
system has been compromised. With the threat of key exposure becoming more
acute as cryptographic computations are performed more frequently on small,
unprotected, and easily-stolen devices such as smart-cards or mobile phones, new
techniques are needed to deal with this concern.

A variety of methods (including secret sharing [33], threshold cryptography
[13], and proactive cryptography [30, 20]) have been introduced in an attempt
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to deal with this threat. One promising approach — which we focus on here —
is to construct cryptosystems which are forward secure. This notion was first
proposed in the context of key-exchange protocols by Günther [18] and Diffie,
et al. [14]: a forward-secure key-exchange protocol guarantees that exposure of
long-term secret information does not compromise the security of previously-
generated session keys. We remark that a forward-secure key-exchange protocol
naturally gives rise to a forward-secure interactive encryption scheme in which
the sender and receiver first generate a shared key K, the sender then encrypts
his message using K, and both parties promptly erase the shared key.

Subsequently, Anderson [3] suggested forward security for the more chal-
lenging non-interactive setting. Here, as in the case of forward-secure signature
schemes (formalized by Bellare and Miner [6] and constructed there and in [26,
1, 22, 27, 25]), the lifetime of the system is divided into N intervals (or time peri-
ods) labeled 0, . . . , N − 1. The decryptor initially stores secret key SK0 and this
secret key “evolves” with time. At the beginning of time period i, the decryp-
tor applies some function to the “previous” key SKi−1 to derive the “current”
key SKi; key SKi−1 is then erased and SKi is used for all secret cryptographic
operations during period i. The public encryption key remains fixed throughout
the lifetime of the system; this is crucial for making such a scheme viable. A
forward-secure encryption scheme guarantees that even if an adversary learns
SKi (for some i), messages encrypted during all time periods prior to i remain
secret. (Note that since the adversary obtains all secrets existing at time i, the
model inherently cannot protect the secrecy of messages encrypted at time i and
at all subsequent time periods.)

Forward security for non-interactive, symmetric-key encryption has also been
studied [7]. However, no forward-secure (non-interactive) public-key encryption
(PKE) schemes were previously known. Forward-secure PKE has the obvious
practical advantage that a break-in to the system does not compromise the
secrecy of previously-encrypted information; it is thus appropriate for use in
devices with low security guarantees, such as mobile devices. In particular, it
provides a practical encryption mechanism that is secure against adaptive ad-
versaries.

1.1 Our Contributions

Forward secure encryption. We rigorously define a notion of security for
forward-secure public-key encryption and also give efficient constructions of
schemes satisfying this notion. We prove semantic security of one scheme in the
standard model based on the decisional version of the bilinear Diffie-Hellman
assumption (cf. [24, 9]). All salient parameters of this scheme are logarithmic in
N , the number of time periods. We also sketch a variant of this scheme with bet-
ter complexity; in particular, the public-key size and key-generation/key-update
times are all independent of N . This variant is proven semantically-secure in the
random oracle model under the computational bilinear Diffie-Hellman assump-
tion. Either of our schemes may be extended so as to achieve security against
adaptive chosen-ciphertext attacks. (Recall that a proof in the random oracle
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Standard model Random oracle model

Key generation time O(logN) O(1)

Encryption/Decryption time Õ(logN) O(logN)
Key update time O(logN) O(1)
Ciphertext length O(logN) O(logN)
Public key size O(logN) O(1)
Secret key size O(logN) O(logN)

Table 1. Summary of dependencies on the total number of time periods N .

model provides no guarantee as to the security of the protocol once the random
oracle is instantiated with an efficiently computable function, such as a “crypto-
graphic hash function”, and thus can only be regarded as a heuristic argument.)

The key parameters of the two schemes are summarized in Table 1. We stress
that both schemes are efficient not only in an asymptotic sense; indeed, they are
roughly as efficient as log2N invocations of the Boneh-Franklin identity-based
encryption scheme [9] and are therefore practical for reasonable values of N .
Using the techniques of Malkin, et al. [27], our schemes can be adapted to cases
where the number of time periods is not known in advance. This has the added
advantage that the efficiency and security of the schemes depend only on the
number of time periods elapsed thus far. We also sketch two ways to extend our
schemes to achieve security against adaptive chosen ciphertext attacks [31, 15, 8].
One method is based on Sahai’s construction [28, 32] and works in the standard
model. The other is based on the Fujisaki-Okamoto transformation [16] and is
analyzed in the random oracle model.

Other contributions and applications. Our constructions are based on the
Gentry and Silverberg [17] construction of a hierarchical identity-based encryp-
tion (HIBE) scheme [21, 17]. As a first step towards our construction, we define
a relaxed variant of HIBE which we call binary tree encryption (BTE). We show
how to modify the Gentry-Silverberg construction to yield a BTE scheme with-
out adding much complexity. Remarkably, the modified construction works in
the standard model and can handle trees of polynomial depth. (In contrast, the
main construction of Gentry and Silverberg is analyzed only in the random oracle
model, and only for trees of constant depth.) We then construct a forward-secure
encryption scheme from any BTE scheme. In addition, the BTE primitive may
prove interesting in its own right.

The technique that we use for achieving O(1) key generation and key update
time appears to be new, and can be used to improve the efficiency of the key
generation/key update steps from O(logN) to O(1) in all known tree-based
forward-secure signature schemes [6, 1, 27].

Forward-secure PKE may be used to drastically improve the efficiency of
non-interactive adaptively secure encryption in the context of secure multi-party
protocols. In such protocols, an adaptive adversary may choose to corrupt a
player at some point in the protocol, after that player had already received sev-
eral encrypted messages. Learning the player’s secret key will (in general) allow
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the adversary to read all past messages, thereby making it much harder to prove
any simulation-based notion of security. In all known adaptively secure non-
interactive encryption schemes (e.g., [4, 11, 5, 12]) the size of the decryption key
must exceed the total length of messages to be decrypted throughout the life-
time of the system. Furthermore, Nielsen has recently shown that this property
is essential for encryption schemes that are not key-evolving [29]. (This holds
even if the model allows data erasures.) Forward-secure encryption enables us to
circumvent this lower bound, by having each player update its (short) key after
every message. This way, an adversary who corrupts a player at some point in
the protocol will be unable to read past messages that were sent to this player,
thereby enabling a simulation-based proof of security.

Organization. In Section 2 we define and construct our underlying primitive,
BTE, and prove its security under the decisional bilinear Diffie-Hellman assump-
tion (also described in that section). Then in Section 3 we define forward secure
public key encryption and show how it can be constructed from any BTE scheme.
Putting these two results together, we get a construction with the advertised se-
curity and efficiency parameters.

2 A Binary Tree Encryption Scheme

This section defines binary tree encryption (BTE), and presents a construction
based on the bilinear Diffie-Hellman assumption. As discussed in the introduc-
tion, a BTE scheme is a relaxed version of hierarchical identity-based encryp-
tion (HIBE) [21, 17]. In addition to being an essential step in our construction
of forward-secure encryption, BTE may be an interesting primitive by itself. In
particular, we also show how to implement a full-blown HIBE from BTE, and
since we describe a BTE whose security can be proven in the standard model,
this also implies a secure HIBE in the standard model (albeit, with a somewhat
weaker notion of security than that considered in [17]).

As in HIBE, in BTE too we have a public key associated with a tree, and
each node in this tree has a corresponding secret key. To encrypt a message
destined for some node, one uses both the tree public key and the name of the
target node. The resulting ciphertext can then be decrypted using the secret
key of the target node. Moreover, just as in HIBE, the secret key of a node can
also be used to derive the secret keys of the children of that node. The only
difference between HIBE and BTE is that in the latter we insist that the tree
be a binary tree, where the children of a node w are labeled w0 and w1. (Recall
that in HIBE, the tree can have arbitrary degree, and a child of node w can be
labeled w.s for any arbitrary string s.) The formal functional definition follows.

Definition 1. A binary tree public-key encryption (BTE) scheme is a 4-tuple of
ppt algorithms (Gen,Der,Enc,Dec) such that:

– The key generation algorithm Gen takes as input a security parameter 1k,
and returns a public key PK and an initial (root) secret key SKε.
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– The key derivation algorithm Der takes the name of a node w ∈ {0, 1}∗ and
its associated secret key SKw, and returns the two secret keys SKw0, SKw1

for the two children of w.
– The encryption algorithm Enc takes a public key PK, the name w of a node,
and a message m. It returns a ciphertext c.

– The decryption algorithm Dec takes as input a public key PK, a node
name w, its secret key SKw, and a ciphertext c. It returns a message m.

We make the standard correctness requirement; namely, for any (PK,SKε) out-
put by Gen, any node w ∈ {0, 1}∗, and a secret key SKw correctly generated for
node w, and all m, we have m = Dec(PK,w, SKw,Enc(PK,w,m)).

The security notion that we present here for BTE is somewhat weaker than
the standard notion for HIBE, in that we require that the an attacker commits
to the node to be attacked even before seeing the public key. We call this attack
scenario selective-node attack (cf. “selective forgery” of signatures [19]). For sim-
plicity, we formally define here only security against chosen plaintext attacks.
Security against adaptive chosen ciphertext attacks is defined analogously.

Definition 2 (SN-CPA security). Let W ⊂ {0, 1}∗ be a set that is closed
under prefix. A BTE scheme is secure against selective-node, chosen-plaintext
attacks (SN-CPA) with respect to W if any ppt adversary succeeds in the fol-
lowing game with probability at most negligibly over one half:

1. The adversary generates a name w∗ ∈W of a node in the tree.
2. Algorithm Gen(1k, N) is run, with output (PK,SKε), and the adversary is
given PK. In addition, the algorithm Der(· · ·) is run to generate the secret
keys of all the nodes on the path from the root to w∗, as well as the children
of w∗. The adversary gets the secret key SKw of any node w ∈W such that
– either w = w′b, where w′b is a prefix of w∗ (a sibling);
– or w = w∗0 or w = w∗1 (a child).
(Note that this allows the adversary to compute SKw′ for any node w′ ∈W
that is not a prefix of w∗.)

3. The adversary generates a request challenge(m0,m1). In response, a random
bit b is selected and the adversary is given c∗ = Enc(PK,w∗,mb).

4. The adversary outputs a guess b′ ∈ {0, 1}. It succeeds if b′ = b.

2.1 The Bilinear Diffie-Hellman Assumption

The security of our binary tree encryption scheme is based on the difficulty of the
bilinear Diffie-Hellman (BDH) problem as formalized by Boneh and Franklin [9]
(see also [24]). The computational version of this assumption has been used for a
number of cryptographic constructions (e.g., [23, 10, 34, 21, 17]); furthermore, as
noted in [9], the decisional version of the assumption (called the BDDH assump-
tion there) is also believed to hold. We review the relevant definitions as they
appear in [9, 17]. Let G1 and G2 be two cyclic groups of prime order q, where
G1 is represented additively and G2 is represented multiplicatively. We assume
a map ê : G1 ×G1 → G2 for which the following hold:
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1. The map ê is bilinear ; that is, for all P0, P1 ∈ G1 and all α, β ∈ Zq we have
ê(αP0, βP1) = ê(P0, P1)

αβ .
2. There is an efficient algorithm to compute ê(P0, P1) for any P0, P1 ∈ G1.

A BDH parameter generator IG is a randomized algorithm that takes a
security parameter 1k, runs in polynomial time, and outputs the description of
two groups G1,G2 and a map ê satisfying the above conditions. We define the
computational BDH problem with respect to IG as the following: given (G1,G2, ê)
output by IG along with random P, αP, βP, γP ∈ G1, compute ê(P, P )αβγ .
We say that IG satisfies the computational BDH assumption if the following is
negligible (in k) for all ppt algorithms A:

Pr

[
(G1,G2, ê)← IG(1

k);P ← G1;α, β, γ ← Zq :
A(G1,G2, ê, P, αP, βP, γP ) = ê(P, P )αβγ

]
.

Informally speaking, the decisional BDH problem is to distinguish between tuples
of the form (P, αP, βP, γP, αβγP ) and (P, αP, βP, γP, µP ) for random P, α, β, γ, µ.
More formally, we say that IG satisfies the decisional BDH assumption (BDDH)
if the following is negligible (in k) for all ppt algorithms A:

∣∣∣∣Pr
[
(G1,G2, ê)← IG(1

k);P ← G1;α, β, γ,← Zq :
A(G1,G2, ê, P, αP, βP, γP, αβγP ) = 1

]

− Pr

[
(G1,G2, ê)← IG(1

k);P ← G1;α, β, γ, µ← Zq :
A(G1,G2, ê, P, αP, βP, γP, µP ) = 1

]∣∣∣∣ .

The decisional BDH assumption immediately implies that it is computationally
infeasible to distinguish between tuples of the form (P, αP, βP, γP, ê(P, P )αβγ)
and (P, αP, βP, γP, r) for random P, α, β, γ, r.

BDH parameter generators believed to satisfy the above assumptions can
be constructed from Weil and Tate pairings associated with super-singular el-
liptic curves or Abelian varieties. As our results do not depend on any specific
instantiation, we refer the interested reader to [9] for details.

2.2 A construction

Theorem 1. There exists a BTE scheme that is secure in the sense of SN-CPA
under the BDDH assumption.

To prove Theorem 1 we describe such a BTE scheme. The starting point for
our construction is the hierarchical identity-based encryption scheme of Gentry
and Silverberg [17]. Our construction, unlike the original scheme, can be proven
secure in the standard model. (In fact, from our argument it follows that in the
random oracle model, the scheme of [17] is itself a secure BTE.) The HIBE of
Gentry and Silverberg (as well as the IBE scheme of Boneh and Franklin [9]) uses
two random oracles: one is used to derive random elements from the identities,
and the other is used to achieve CCA security of the encryption. The latter use
of the random oracle can be removed when one considers only CPA security.
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Below we show that in the context of selective node security, one can replace the
first random oracle by a fully specified “t-wise independent” hash function.

Notations and conventions. In the description below we denote the i-bit
prefix of a word w1w2 . . . w` by w|i. Namely, w|i = w1 . . . wi. In defining our
scheme, we use a (2t + 1)-wise independent, efficiently sampleable family H of
functions H : {0, 1}≤t → G1. By efficiently sampleable we mean that, given
elements x1, . . . , xk ∈ {0, 1}

≤t and g1, . . . , gk ∈ G1 (with k ≤ 2t + 1), it is
possible to efficiently sample a random H ∈ H such that H(xi) = gi for i =
1, . . . , k.) One possible instantiation is to let H = {Hh0,...,h2t

(x)}h0,...,h2t∈G1
,

where Hh0,...,h2t
(x)

def
= h0 + x̃h1 + · · · + x̃2th2t and x̃ represents some standard

one-to-one encoding of x ∈ {0, 1}≤t as an element in Zq. Let IG be a BDH
parameter generator for which the decisional BDH assumption holds. For our
construction we need an upper bound on the height of the tree, and we denote
this bound by t. The construction is described below.

Gen(1k, t) does the following:

1. Run IG(1k) to generate groups G1,G2 of prime order q and bilinear map ê.
2. Select a random generator P ∈ G1 and a random α ∈ Zq. Set Q = αP .
3. Choose a random function H ∈ H. Note that this merely requires choosing

2t+ 1 random elements h0, . . . , h2t ∈ G1.
4. The public key is PK = (G1,G2, ê, P,Q, t,H) (where H is represented by

h0, . . . , h2t). The root secret key is Sε = αH(ε).

Der(PK,w, SKw) takes as input the tree public key and the secret key associated
with node w, and outputs the secret keys for nodes w0 and w1. In general, for
w = w1 . . . w`, the secret key of node w consists of `+1 group elements, SKw =
(Rw|1 , Rw|2 , . . . , Rw, Sw). The algorithm Der(PS,w, SKw) runs as follows:

1. Choose random ρw0, ρw1 ∈ Zq. Set Rw0 = ρw0P and Rw1 = ρw1P , and also
Sw0 = Sw + ρw0H(w0) and Sw1 = Sw + ρw1H(w1).

2. Output SKw0 = (Rw|1 , . . . , Rw, Rw0, Sw0) and SKw1 = (Rw|1 , . . . , Rw, Rw1, Sw1).

Enc(PK,w,m) (where m ∈ G2) does the following:

1. Let w = w1 . . . w`. Select random γ ∈ Zq.
2. Output C̄ = (γP, γH(w|1), γH(w|2), . . . , γH(w), m · d), where d = ê(Q,H(ε))γ .

Dec(PK,w, skw, C̄) does the following: Let w = w1 · · ·w`, skw = (Rw|1 , . . ., Rw,
Sw), and C̄ = (U0, U1, . . . , U`, v). Compute m = v/d, where

d =
ê(U0, Sw)∏`

i=1 ê(Rw|i , Ui)

We now verify that decryption is performed correctly. When encrypting, we
have d = ê(Q,H(ε))γ = ê(P,H(ε))αγ . When decrypting, we have U0 = γP , and
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Ui = γH(w|i) for i ≥ 1. Hence,

d =
ê(U0, Sw)∏`

i=1 ê(Rw|i , Ui)
=

ê
(
γP, αH(ε) +

∑`
i=1 ρw|iH(w|i)

)

∏`
i=1 ê

(
ρw|iP, γH(w|i)

)

=
ê(P,H(ε))αγ ·

∏`
i=1 ê (P,H(w|i))

γρw|i

∏`
i=1 ê (P,H(w|i))

γρw|i

= ê(P,H(ε))γα

and thus decryption succeeds in recovering m. The security of this scheme is
established below.

Proposition 1. If IG satisfies the decisional BDH assumption, the above BTE
scheme is secure against SN-CPA.

Proof. Assume a ppt adversary A attacking the above scheme in the SN-CPA
attack scenario, and denote the probability that A succeeds by PrA[Succ]. We
construct a new adversary B which attempts to solve the decisional BDH prob-
lem with respect to IG. Relating the advantage of B to the advantage of A will
give the desired result. In the description below we denote by w|i the sibling of
w|i, namely the string consisting of the (i − 1)-bit prefix of w, followed by the
negations of the i’th bit. (In other words, w|i and w|i agree on their first i − 1
bits, and differ only the last bit.)

B is given the bound t, the output (G1,G2, ê) of IG, and also (P, Q =
αP, Iε = βP, U0 = γP, V ′ = µP ), where P, α, β, γ are chosen at random,
and B’s goal is to determine if µ was also chosen at random, or was it set to
µ = αβγ. B attempts to simulate an instance of the encryption scheme for
A as follows: B initiates a run of A, waiting for A to commit to the target
node. Denote this target node by w∗ = w∗1w

∗
2 . . . w

∗
` (with ` ≤ t). Next, for

i = 1 . . .min(t, ` + 1), B randomly chooses χi, χ
′
i, ϕi, ϕ

′
i ∈ Zq. Now, B chooses

the function H : {0, 1}≤t → G1 at random from the family H, subject to the
following constraints:

H(ε) = Iε
H(w∗|i) = χiP, for i = 1, . . . , `
H(w∗|i) = χ′iP −

1
ϕi
Iε for i = 1, . . . , `, and

if ` < t then also H(w0) = χ`+1P −
1

ϕ`+1
Iε and H(w1) = χ′`+1P −

1
ϕ′

`+1

Iε

Since H was constructed to be efficiently sampleable, B can efficiently select a
(random) H ∈ H satisfying the above set of at most 2t+ 1 equations. Further-
more, from the point of view of A a random H chosen subject to the above
constraints is distributed identically to H chosen uniformly from H (as in the
real experiment). B sets PK = (G1,G2, ê, P,Q, t,H) and gives PK to A.

We show how B can generate the secret key skw for the sibling of any node
w on the path from the root to w∗, as well as for the two children of w∗ in the
tree if ` < t. (Recall that from these secret keys, A can derive the secret key skw
for any other node w which is not a prefix of w∗.)



A Forward-Secure Public-Key Encryption Scheme 263

For i = 1 . . . `, B sets Rw∗|i = ϕiQ, and Rw∗|i
= ϕ′iQ, and if ` < t then also

Rw∗0 = ϕ`+1Q and Rw∗1 = ϕ′`+1Q. Also, for w = w∗|i or w = w∗1, B sets

Sw = ϕ′iχ
′
iQ+

i−1∑

j=1

ϕjχjQ

where i = |w|. (For i = 1, the upper limit of the summation is less than the
lower limit; by convention, we let the sum in this case be 0.) For w = w∗0, B

sets Sw∗0 =
∑`+1

j=1 ϕjχjQ. The secret key skw for node w = w∗|i or w = w∗0 or
w = w∗1 is then just (Rw|1 , Rw|2 , . . . , Rw, Sw).

We now verify that these keys have the correct distribution. For i = 1 . . . `,

define ρw∗|i

def
= αϕi, and ρw∗|i

def
= αϕ′i, and if ` < t then also ρw∗0

def
= αϕ`+1

and ρw∗1
def
= αϕ′`+1. The ρw’s are all random and independent in Zq, and we

indeed have Rw = ρwP for any w = w∗|i or w = w∗|i or w = w∗0 or w = w∗1.
As for the Sw’s, recall that in the scheme we have for any w = w1 . . . wi Sw =
αH(ε) +

∑i
j=1 ρw|jH(w|j). For w = w∗|i or w = w∗1, substituting αϕ and αϕ′

for the ρ’s and the right expressions for the H(·)’s (and letting i = |w|), this
means

Sw = αH(ε) +
i∑

j=1

ρw|jH(w|j)

= αIε +

i−1∑

j=1

αϕj(χjP ) + αϕ′i

(
χ′iP −

1

ϕ′i
Iε

)
=

i−1∑

j=1

ϕjχjQ + ϕ′iχ
′
iQ

For w = w∗0 we have the same expression ,except that χ′i, ϕ
′
i are replaced by

χi, ϕi, respectively.

challenge query. B responds to the query challenge(m0,m1) by choosing ran-
dom bit b and returning

C̄ = (U0, χ1U0, . . . , χ`U0, ê(P, V
′) ·mb) = (γP, χ1γP, . . . , χ`γP, ê(P, µP ) ·mb)

= (γP, γH(w∗|1), . . . , γH(w∗), ê(P, P )µ ·mb)

Recalling that Q = αP and H(ε) = Iε = βP , we can re-write the last compo-

nent of C̄ as (e(Q,H(ε))γ)
µ/αβγ

· mb. If µ = αβγ then C̄ is indeed a random
encryption of mb, and µ is random then the last element is a random element in
G2, regardless of b, and therefore C̄ is independent of b.

Analysis of B. When µ = αβγ, A’s view in the simulated experiment is dis-
tributed identically to A’s view in the real experiment. Hence Pr[B outputs 1] =
PrA[Succ]. On the other hand, when µ is uniformly distributed in Zq, A has no
information about the value of b and hence it outputs b′ = b with probability
of at most 1/2. The advantage of B is therefore at least PrA[Succ]− 1/2. If IG
satisfies the decisional BDH assumption, then the advantage of B is negligible,
and therefore so is the advantage of A. This concludes the proofs of Proposition 1
and Theorem 1. ut
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Efficiency parameters. In the construction above, a secret key of node w at
level ` in the tree consists of ` + 1 elements of G2. However, only two of these
elements are “new” (i.e., Rw and Sw), all the others already appear in the secret
key of the parent of w. Thus, the secret keys of all the nodes on the path from
the root to w can be stored using only 2`+ 1 group elements.

The Gen algorithm takes time polynomial in the security parameter k (to
run IG) and linear in the height bound t (to choose a (2t + 1)-independent
hash function). The key derivation algorithm only takes a constant number of
multiplications in G1 and two applications of the hash function H(·). Encryption
for a node at level ` in the tree takes ` applications of the function H(·), `
multiplications in G1, one application of ê(·, ·) and one multiplication and one
exponentiation in G2. (Note that it is possible to evaluate H(·) on ` points
in time O(` log2 `), [2, Section 8.5].) Decryption at the same level takes ` + 1
applications of ê(·, ·), ` multiplications and one division in G2.

Applications to HIBE. We briefly note that one can construct a full-blown
HIBE from any BTE scheme, simply by encoding in binary all the identities
in the system (possibly using a collision-intractable hashing at every level, to
improve efficiency). The full version of this work will contain a definition of SN
security for HIBE, and a proof of the following theorem in the standard model :

Theorem 2. If there exists an SN-CPA secure BTE scheme, then there also
exists an SN-CPA secure HIBE scheme.

Corollary 1. There exists a HIBE scheme that is secure in the sense of SN-
CPA under the BDDH assumption.

Construction in the random oracle model. It can be seen that the above
scheme remains secure when the function H is modeled as a random oracle
(a proof of security is immediate since a random oracle, in particular, acts as a
(2t+1)-wise independent function). When the random oracle is instantiated with
a “cryptographic hash function” whose complexity is (essentially) independent of
N (as opposed to the O(t) = O(logN) complexity of a (2t+1)-wise independent
hash function), the complexity of several parameters of the scheme improves
from O(logN) to O(1).

Once we are working in the random oracle model, the scheme may be further
modified so that its security is based on the computational BDH assumption
rather than the decisional version: simply replace the componentM · ê(Q,H(ε))r

of the ciphertext by M ⊕ H ′(ê(Q,H(ε))r), where H ′ : G2 → {0, 1}
n is also

modeled as an independent random oracle.

Achieving chosen-ciphertext security. We sketch how our schemes may be
modified so as to achieve security against adaptive chosen-ciphertext attacks. In
the standard model, we may apply the technique of Sahai ([32], based on [28]) to
construct a new scheme as follows: The public key consists of two independently-
generated public keys PK1, PK2 for a BTE scheme secure in the sense of SN-
CPA, along with a random string r. To encrypt a message M for node w, the
sender computes C1 ← EncPK1

(w,M) and C2 ← EncPK2
(w,M), and sends
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〈w,C1, C2, π〉; here, π is a simulation-sound NIZK proof of consistency (i.e., a
proof that C1 and C2 are both encryptions of the same message M for node
w) with respect to string r (generic NIZK is typically implemented using trap-
door permutations; however, it is not hard to see that the BDDH assumption is
sufficient for NIZK as well). A proof that this scheme is secure against chosen
ciphertext attacks follows along the lines of [32].

In the random oracle model, we can achieve a more efficient scheme which is
secure in the sense of SN-CCA by applying, e.g., the Fujisaki-Okamoto transfor-
mation [16]. We note that small modifications of the Fujisaki-Okamoto transfor-
mation are necessary to achieve our goal (in particular, the node name w must
be included in the hash). Further details will appear in the final version.

3 Forward-Secure Public-Key Encryption

We define and construct forward-secure encryption schemes. After defining se-
curity against chosen plaintext attacks and chosen ciphertext attacks for such
schemes, we start by presenting two “trivial” schemes with linear complexity.
We then describe our main construction of a CPA-secure forward secure encryp-
tion scheme with logarithmic complexity, given any CPA-secure BTE scheme. If
the underlying BTE scheme is CCA-secure, then the same construction yields a
forward CCA secure encryption scheme.

3.1 Definitions

We define key-evolving public-key encryption schemes, and what it means for
such a scheme to be forward-secure. The former definition is a straightforward
adaptation of [6] and is reminiscent of the definition of binary tree encryption;
the latter, however, is new and requires some care.

Definition 3. A key-evolving public-key encryption scheme ke-PKE is a 4-tuple
of ppt algorithms (Gen,Upd,Enc,Dec) such that:

– The key generation algorithm Gen takes as input a security parameter 1k

and the total number of time periods N . It returns a public key PK and an
initial secret key SK0.

– The key update algorithm Upd takes a secret key SKi−1 as well as the index
i of the current time period. It returns a secret key SKi for period i.

– The encryption algorithm Enc takes a public key PK, the index i of the
current time period, and a message M . It returns a ciphertext C for period
i.

– The decryption algorithm Dec takes as input a secret key SKi and a cipher-
text 〈i, C〉. It returns a message M . We denote this by M := DecSKi

(〈i, C〉).

For correctness we require that for any (PK,SKε) output by Gen, any secret key
SKi correctly generated for time i, and allM , we haveM = DecSKi

(ENC(PK, i,M)).
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Our definitions of forward-secure public-key encryption generalize the stan-
dard notions of security for PKE, similar to the way in which the definitions of
[6] generalize the standard notion of security for signature schemes.

Definition 4. A key-evolving public-key encryption scheme is forward-secure
against chosen plaintext attacks (fs-CPA) if any ppt adversary succeeds in the
following game with probability at most negligibly over one half:

Setup: Gen(1k, N) is run, with output (PK,SK0). The adversary is given PK.

Attack: The adversary issues one breakin(i) query and one challenge(j,M0,M1)
query, in either order, subject to 0 ≤ j < i < N . These queries are answered as:

– On query breakin(i), key SKi is computed via Upd(· · ·Upd(SK0, 1), · · · , i).
This key is then given to the adversary.

– On query challenge(j,M0,M1) a random bit b is selected and the adversary
is given C∗ = EncPK(j,Mb).

Guess: The adversary outputs a guess b′ ∈ {0, 1}. It succeeds if b′ = b.

Definition 5. A key-evolving public-key encryption scheme is forward-secure
against chosen ciphertext attacks (fs-CCA) if any ppt adversary has only negli-
gible advantage in the following game:

Setup: Gen(1k, N) is run, yielding (PK,SK0). The adversary is given PK.

Attack: The adversary issues one breakin(i) query, one challenge(j,M0,M1)
query, and multiple decrypt(k,C) queries, in either order, subject to 0 ≤ j < i <
N and k ≤ N . These queries are answered as follows:

– On query breakin(i), key SKi is computed via Upd(· · ·Upd(SK0, 1), · · · , i).
This key is then given to the adversary.

– On query challenge(j,M0,M1) a random bit b is selected and the adversary
is given C∗ = EncPK(j,Mb).

– A query decrypt(k,C) is answered as follows. If a challenge query was already
made (at time unit j), C = C∗, and j = k, then the answer is ⊥. Otherwise,
the answer is DecSKk

(k,C).

Guess: The adversary outputs a guess b′ ∈ {0, 1}. It succeeds if b′ = b.

The advantage of the adversary is defined as the absolute value of the difference
between its success probability and 1/2.

Remark 1: On the order of the breakin and the challenge queries.

Definition 4 allows the adversary to make the breakin and the challenge queries in
any order. However, without loss of generality we may assume that the adversary
makes the breakin query first. (Specifically, given an adversary that makes the
challenge query before the breakin query, it is easy to construct an adversary that
makes the breakin query first and achieves exactly the same advantage.)

Interestingly, assuming that the adversary makes the challenge query first
seems to result in a slightly weaker concrete security. Specifically, transforming
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an adversary that first makes the breakin query into an adversary that first
makes the challenge query results in an N -fold loss in the advantage. (When N
is polynomial in the security parameter, this reduction in security is tolerable.
Still, it is better to avoid it.)

Remark 2: Relaxing chosen-ciphertext security. Note that Definition
5 allows the adversary to make decryption queries for various time periods in
arbitrary order (not necessarily chronological). Furthermore, the adversary is
allowed to obtain the decryption of the challenge ciphertext C∗, as long as the
decryption is for a different time period than the one in which the ciphertext was
generated. This extra power given to the adversary results in a definition that is
probably stronger than what is needed in most settings, and can potentially be
relaxed and still provide adequate security. Still, we present this notion since it
is the strongest natural interpretation of the CCA paradigm and our scheme in
the random oracle model achieves it.

Remark 3: The random oracle model. In order to adapt our definitions
to the random oracle model, we additionally allow the adversary to make a
polynomially-bounded number of queries to the random oracle. These queries
may be interleaved in any order with the other queries. The answers of these
oracles are computed based on the same instance of the random oracle.

3.2 Schemes with linear complexity

For completeness, we discuss some simple approaches to forward-secure PKE.
These approaches yield schemes with linear complexity in at least some param-
eters.

One trivial solution is to generate N independent public-/private- key pairs
{(ski, pki)} and to set PK = (pk0, . . . , pkN−1). In this scheme, the key SKi for
time period i will simply consist of (ski, . . . , skN−1). Algorithms for encryption,
decryption, and key update are immediate. The drawback of this trivial solution
is an N -fold increase in the sizes of the public and secret keys, as well as in the
key-generation time. Anderson [3] noted that a somewhat improved solution can
be built from an identity-based encryption scheme. Here, the public key is the
“master public key” of the identity-based scheme, and ski is computed as the
“personal secret key” of a user with identity i (the scheme is otherwise identical
to the above). This solution achieves O(1) public key size, but still has O(N)
secret key size and key-generation time.

In fact, one could improve this last solution even more: instead of a large
secret key, it is enough if the user keeps a large non-secret file containing one
record per period. The record for period i stores the secret key ski encrypted
(under the public key) for time period i − 1. At the beginning of period i, the
user obtains record i, uses key ski−1 to recover ski, and then erases ski−1. This
solution achieves essentially the same efficiency as the “simple forward secure
signatures” of Krawczyk [26] (and in particular requires O(N) non-secret storage
and key-generation time).
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3.3 A construction with logarithmic complexity

We construct a fs-CPA (resp., fs-CCA) encryption scheme from any SN-CPA
(resp., SN-CCA) BTE scheme. For this purpose, we use a BTE scheme with full
tree of depth logN , together with a tree-traversal technique to assign nodes to
time periods. This is somewhat similar to prior forward-secure signature schemes
[6, 1, 27], except that we utilize all the nodes in the tree, rather than only the
leaves. This results in complexity gain (from O(log n) to O(1)) in some of the
parameters. We remark that our tree traversal method can be applied also to [6,
1, 27], with similar complexity gain.

The scheme is very simple: For a forward-secure scheme with N = 2n+1 time
periods, use a BTE with full binary tree of N nodes and depth n. (That is, use
the set W = {0, 1}≤n.) At time i, the “active node”, denoted wi, is the ith node
in a pre-order traversal of the BTE tree. (Pre-order traversal can be defined as
follows: w1 = ε. For i > 1, if wi is an internal node (|wi| < n), then wi+1 = wi0.
If wi is a leaf (|wi| = n), then wi+1 = w1, where w is the longest string such
that w0 is a prefix of wi.) Encryption in time period i uses the tree public key
and the name of node wi. Ciphertexts for time unit i are decrypted using the
secret key of node wi. In addition, in time unit i we also keep in memory the
secret keys of the “right siblings” of the nodes on the path from the root to wi.
That is, whenever w′0 is a prefix of wi, we keep in memory the secret key of
node w′1. At the end of period i, we compute the secret key of wi+1 and erase
the secret key of wi. Note that wi+1 is either the left child of wi, or one of the
nodes whose secret keys were stored in memory. Hence, we need at most one
application of the Der function to compute the new secret key.

Formally, given a BTE scheme (Gen,Der,Enc,Dec), construct a key-evolving
scheme (Gen′,Upd,Enc′,Dec′) as follows.

– Algorithm Gen′(1k, N) runs Gen(1k), and obtains PK,SKε. It then outputs
PK ′ = PK, and SK ′0 = SKε.

– Algorithm Upd(i+1, SK ′i): The secret key SK
′
i is organized as a stack of node

keys, with the secret key SKwi on top. We first pop the current secret key,
SKwi , off the stack. If wi is a leaf (|wi| = n) then we are done; the next key
on top of the stack is SKwi+1 . Otherwise (wi is an internal node, |wi| < n),
we set (SKwi0, SKwi1) ← Der(PK,wi, SKwi), and push SKwi1 and then
SKi

w0 onto the stack. The new top is SKwi0 (and indeed wi+1 = wi0). In
either case, Upd erases the key SKwi .

– Algorithm Enc′(PK ′, i,M) runs Enc(PK,wi,M).
– Algorithm Dec′(SK ′i, i,M) runs Dec(SKwi , wi,M).

Theorem 3. The scheme (Gen′,Upd,Enc′,Dec′) is fs-CPA secure (resp., fs-
CCA secure), assuming that the underlying scheme (Gen,Der,Enc,Dec) is a
CPA-secure (resp., CCA-secure) BTE scheme.

Proof. The proof proceeds via straightforward reduction. Assume we have an
adversary A′ that has advantage ε in a CPA (resp., CCA) attack against the
forward-secure scheme (Gen′,Upd,Enc′,Dec′). We construct an adversary A that
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obtains advantage ε/N in the corresponding attack against the underlying BTE
scheme (Gen,Der,Enc,Dec). Adversary A proceeds as follows.

1. A chooses at random a time period i∗ ∈r {1..N}, and declares that the BTE
node to be attacked is wi∗ . Next, A obtains the public key PK and the
appropriate secret keys for the BTE scheme.

2. A runs A′, giving it public key PK.

3. When A′ generates a challenge (i,M0,M1), if i 6= i∗ then A outputs a random
bit and halts. If i = i∗ then A generates a challenge (M0,M1), obtains the
ciphertext C∗ = Enc(PK,wi∗ ,Mb) and hands it over to A′.

4. When A′ generates a breakin query for time unit i, if i ≤ i∗ then A outputs a
random bit and halts. If i > i∗ then A hands A′ the secret key SK ′i. (Observe
that SK ′i can be computed from the secret keys known to A.)

5. (This activity is only relevant to the case of CCA security.) When A′ gener-
ates a decryption request for a ciphertext C 6= C∗ at time unit i′ for which A
has the corresponding decryption key SKwi′ , then A decrypts C and hands
the answer to A′. If A does not have the corresponding decryption key then
it hands (C,wi′) to its own decryption oracle, and forwards the answer to
A′.

6. When A′ outputs a prediction bit b′, A outputs b′ and halts.

Analyzing A, it is straightforward to see that, conditioned on the event that
i = i∗, the copy of A′ running within A has exactly the same view as in a real
CPA (resp., CCA) interaction with a BTE scheme. Consequently, A predicts the
bit b with advantage ε/N .

Extension to an unbounded number of time periods. In our description
of the various schemes thus far, the number of time periods N was assumed to
be known at the time of key generation. As in [27], we can modify our schemes
to support an “unbounded” number of time periods (i.e., the number of time
periods need not be known in advance). This has the added advantage that
the efficiency and security of the scheme depend only on the number of periods
elapsed thus far.

A proof of security for the “unbounded” scheme in the random oracle model
is immediate, but in the standard model we must have an a priori upper-bound
N∗ on the total number of time periods so that (setting t = logN ∗) a 2t-wise
independent family H is used. However, this restriction is not very serious since
we may set t = ω(log k) (where k is the security parameter) and thus obtain a
super-polynomial bound on the number of time periods while all parameters of
the scheme remain polynomial in k.

Analysis of complexity parameters. Each of the four operations (key gen-
eration, update, encryption, decryption) requires at most one operation of the
underlying BTE scheme. Thus, the complexity of our scheme is essentially the
same as that of our BTE construction, as discussed in Section 2. This justifies
the claims given in Table 1.
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