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Abstract. We describe a short signature scheme which is existentially
unforgeable under a chosen message attack without using random ora-
cles. The security of our scheme depends on a new complexity assumption
we call the Strong Diffie-Hellman assumption. This assumption has sim-
ilar properties to the Strong RSA assumption, hence the name. Strong
RSA was previously used to construct signature schemes without ran-
dom oracles. However, signatures generated by our scheme are much
shorter and simpler than signatures from schemes based on Strong RSA.
Furthermore, our scheme provides a limited form of message recovery.

1 Introduction

Boneh, Lynn, and Shacham (BLS) [BLS01] recently proposed a short digital
signature scheme where signatures are about half the size of DSA signatures
with the same level of security. Security is based on the Computational Diffie-
Hellman (CDH) assumption on certain elliptic curves. The scheme is shown to
be existentially unforgeable under a chosen message attack in the random oracle
model.

In this paper we describe a signature scheme where signatures are almost as
short as BLS signatures, but whose security does not require random oracles.
We prove security of our scheme using a complexity assumption we call the
Strong Diffie-Hellman assumption, or SDH for short. Roughly speaking, the q-
SDH assumption in a group G of prime order p states that the following problem
is intractable: given g, gx, g(x2), . . . , g(xq) ∈ G as input, output a pair (c, g1/(x+c))
where c ∈ Z∗p. Precise definitions are given in Section 2.3. Using this assumption
we construct a signature scheme that is existentially unforgeable under a chosen
message attack without using random oracles.

Currently, the most practical signature schemes secure without random or-
acles [GHR99,CS00] are based on the Strong RSA assumption (given an RSA
modulusN and s ∈ Z∗N it is difficult to construct a non-trivial pair (c, s1/c) where
c ∈ Z). Roughly speaking, what makes Strong RSA so useful for constructing
secure signature schemes is the following property: given a Strong RSA problem
instance (N, s) it is possible to construct a new instance (N, s′) with q known
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solutions (ci, (s′)1/ci), where the construction of any other solution (c, (s′)1/c)
makes it possible to solve the original problem instance. This property provides
a way to prove security against a chosen message attack. In Section 3.1 we show
that the q-SDH problem has a similar property. Hence, q-SDH may be viewed as
a discrete logarithm analogue of the Strong RSA assumption. We believe that
the properties of q-SDH make it a useful tool for constructing cryptographic
systems and we expect to see many other systems based on it.

To gain some confidence in the q-SDH assumption we provide in Section 5 a
lower bound on the computational complexity of solving the q-SDH problem in
a generic group model. This shows that no generic attack on q-SDH is possible.
Mitsunari, Sakai, and Kasahara [MSK02] previously used a weaker variant of
the q-SDH assumption to construct a traitor tracing scheme. The ideas in their
paper are nice, and we use some of them here. Unfortunately, their application
to tracing traitors is insecure [TSNZ03].

We present our secure signature scheme in Section 3 and prove its security
against existential forgery under chosen message attack. The resulting signa-
tures are as short as DSA signatures, but are provably secure in the absence
of random oracles. Our signatures also support limited message recovery, which
makes it possible to further reduce the total length of a message/signature pair.
In Section 4 we show that with random oracles the q-SDH assumption gives even
shorter signatures. A related system using random oracles was recently described
by Zhang et al. [ZSNS04].

We refer to [BLS01] for applications of short signatures. We only mention that
short digital signatures are needed in environments with stringent bandwidth
constraints, such as bar-coded digital signatures on postage stamps [NS00,PV00].
We also note that Patarin et al. [PCG01,CDF03] construct short signatures
whose security depends on the Hidden Field Equation (HFE) problem.

2 Preliminaries

Before presenting our results we briefly review two notions of security for sig-
nature schemes, review the definition for groups equipped with a bilinear map,
and precisely state the q-SDH assumption.

2.1 Secure Signature Schemes

A signature scheme is made up of three algorithms, KeyGen, Sign, and Verify,
for generating keys, signing, and verifying signatures, respectively.

Strong Existential Unforgeability

The standard notion of security for a signature scheme is called existential un-
forgeability under a chosen message attack [GMR88]. We consider a slightly
stronger notion of security, called strong existential unforgeability [ADR02],
which is defined using the following game between a challenger and an adver-
sary A:



Setup: The challenger runs algorithm KeyGen to obtain a public key PK
and a private key SK. The adversary A is given PK.

Queries: Proceeding adaptively, A requests signatures on at most qS mes-
sages of his choice M1, . . . ,Mqs ∈ {0, 1}∗, under PK. The challenger
responds to each query with a signature σi = Sign(SK,Mi).

Output: Eventually, A outputs a pair (M,σ) and wins the game if
(1) (M,σ) is not any of (M1, σ1), . . . , (Mqs

, σqs
), and

(2) Verify(PK,M, σ) = valid.

We define Adv SigA to be the probability that A wins in the above game, taken
over the coin tosses made by A and the challenger.

Definition 1. A forger A (t, qS, ε)-breaks a signature scheme if A runs in time
at most t, A makes at most qS signature queries, and Adv SigA is at least ε. A
signature scheme is (t, qS, ε)-existentially unforgeable under an adaptive chosen
message attack if no forger (t, qS, ε)-breaks it.

When proving security in the random oracle model we add a fourth parameter
qH denoting an upper bound on the number of queries that the adversary A
makes to the random oracle.

We note that the definition above captures a stronger version of existential
unforgeability than the standard one: we require that the adversary cannot even
generate a new signature on a previously signed message. This property is re-
quired for some applications [ADR02,Sah99,CHK04]. All our signature schemes
satisfy this stronger security notion.

Weak Chosen Message Attacks

We will also use a weaker notion of security which we call existential unforge-
ability under a weak chosen message attack. Here we require that the adversary
submit all signature queries before seeing the public key. This notion is defined
using the following game between a challenger and an adversary A:

Query: A sends the challenger a list of qS messages M1, . . . ,Mqs ∈ {0, 1}∗.
Response: The challenger runs algorithm KeyGen to generate a public

key PK and private key SK. Next, the challenger generates signatures
σi = Sign(SK,Mi) for i = 1, . . . , qS. The challenger then gives A the
public key PK and the qS signatures σ1, . . . , σqs

.
Output: Algorithm A outputs a pair (M,σ) and wins the game if

(1) M is not any of M1, . . . ,Mqs , and
(2) Verify(PK,M, σ) = valid.

We define Adv W-SigA to be the probability that A wins in the above game,
taken over the coin tosses of A and the challenger.

Definition 2. A forger A (t, qS, ε)-weakly breaks a signature scheme if A runs
in time at most t, A makes at most qS signature queries, and Adv W-SigA is
at least ε. A signature scheme is (t, qS, ε)-existentially unforgeable under a weak
chosen message attack if no forger (t, qS, ε)-weakly breaks it.



2.2 Bilinear Groups

Signature verification in our scheme requires a bilinear map. We briefly review
the necessary facts about bilinear maps and bilinear map groups. We follow the
notation in [BLS01]:

1. G1 and G2 are two (multiplicative) cyclic groups of prime order p;
2. g1 is a generator of G1 and g2 is a generator of G2;
3. ψ is an isomorphism from G2 to G1, with ψ(g2) = g1; and
4. e is a bilinear map e : G1 ×G2 → GT .

For simplicity one can set G1 = G2. However, as in [BLS01], we allow for
the more general case where G1 6= G2 so that we can take advantage of certain
families of elliptic curves to obtain short signatures. Specifically, elements of
G1 have a short representation whereas elements of G2 may not. The proofs
of security require an efficiently computable isomorphism ψ : G2 → G1. When
G1 = G2 and g1 = g2 one could take ψ to be the identity map. On elliptic curves
we can use the trace map as ψ.

Let thus G1 and G2 be two groups as above, with an additional group GT

such that |G1| = |G2| = |GT |. A bilinear map is a map e : G1 ×G2 → GT with
the following properties:

1. Bilinear: for all u ∈ G1, v ∈ G2 and a, b ∈ Z, e(ua, vb) = e(u, v)ab.
2. Non-degenerate: e(g1, g2) 6= 1.

We say that (G1,G2) are bilinear groups if there exists a group GT , an
isomorphism ψ : G2 → G1, and a bilinear map e : G1 ×G2 → GT as above, and
e, ψ, and the group action in G1, G2, and GT can be computed efficiently.

Joux and Nguyen [JN01] showed that an efficiently computable bilinear map e
provides an algorithm for solving the Decision Diffie-Hellman problem (DDH).
Our results can be stated using a generic algorithm for DDH. Nevertheless, for
the sake of concreteness we instead describe our results by directly referring to
the bilinear map.

2.3 The Strong Diffie-Hellman Assumption

Before describing the new signature schemes, we first state precisely the hardness
assumption on which they are based. Let G1,G2 be two cyclic groups of prime
order p, where possibly G1 = G2. Let g1 be a generator of G1 and g2 a generator
of G2.

q-Strong Diffie-Hellman Problem. The q-SDH problem in (G1,G2) is defined as
follows: given a (q + 2)-tuple (g1, g2, gx

2 , g
(x2)
2 , . . . , g

(xq)
2 ) as input, output a pair

(c, g1/(x+c)
1 ) where c ∈ Z∗p. An algorithm A has advantage ε in solving q-SDH in

(G1,G2) if

Pr
[
A(g1, g2, gx

2 , . . . , g
(xq)
2 ) = (c, g

1
x+c

1 )
]
≥ ε

where the probability is over the random choice of x in Z∗p and the random bits
consumed by A.



Definition 3. We say that the (q, t, ε)-SDH assumption holds in (G1,G2) if
no t-time algorithm has advantage at least ε in solving the q-SDH problem in
(G1,G2).

Occasionally we drop the t and ε and refer to the q-SDH assumption rather
than the (q, t, ε)-SDH assumption. As we will see in the next section the q-SDH
assumption has similar properties to the Strong RSA problem and we therefore
view q-SDH as a discrete logarithm analogue of the Strong RSA assumption.

To provide some confidence in the q-SDH assumption, we prove in Section 5
a lower bound on the complexity of solving the q-SDH problem in a generic
group. Furthermore, we note that the Strong Diffie-Hellman problem has a simple
random self-reduction in (G1,G2).

A weaker version of the q-SDH assumption was previously used by Mit-
sunari, Sakai, and Kasahara [MSK02] to construct a traitor tracing system
(see [TSNZ03] for an analysis). Using our notation, their version of the assump-
tion requires Algorithm A to output g1/(x+c)

1 for a given input value c. In the
assumption above we allow A to choose c. When c is pre-specified the q-SDH
problem is equivalent to the following problem: given (g1, g2, gx

2 , g
x2

2 , . . . , gxq

2 )
output g1/x

1 . We note that when A is allowed to choose c no such equivalence is
known. The weaker variant of the assumption was recently used to construct an
efficient selective identity secure identity based encryption (IBE) system without
random oracles [BB04a].

3 Short Signatures Without Random Oracles

We now construct a fully secure short signature scheme in the standard model
using the q-SDH assumption. We consider this to be the main result of the paper.

Let (G1,G2) be bilinear groups where |G1| = |G2| = p for some prime p.
As usual, g1 is a generator of G1 and g2 a generator of G2. For the moment we
assume that the messages m to be signed are elements in Z∗p, but as we mention
in Section 3.5, the domain can be extended to all of {0, 1}∗ using a collision
resistant hash function H : {0, 1}∗ → Z∗p.

Key generation: Pick random x, y
R← Z∗p, and compute u ← gx

2 ∈ G2 and
v ← gy

2 ∈ G2. The public key is (g1, g2, u, v). The secret key is (x, y).
Signing: Given a secret key x, y ∈ Z∗p and a message m ∈ Z∗p, pick a random

r ∈ Z∗p and compute σ ← g
1/(x+m+yr)
1 ∈ G1. Here 1/(x+m+yr) is computed

modulo p. In the unlikely event that x + m + yr = 0 we try again with a
different random r. The signature is (σ, r).

Verification: Given a public key (g1, g2, u, v), a message m ∈ Z∗p, and a signa-
ture (σ, r), verify that

e(σ, u · gm
2 · vr) = e(g1, g2)

If the equality holds the result is valid; otherwise the result is invalid.



Signature length. A signature contains two elements (σ, r), each of length ap-
proximately log2(p) bits, therefore the total signature length is approximately
2 log2(p). When using the elliptic curves described in [BLS01] we obtain a signa-
ture whose length is approximately the same as a DSA signature with the same
security, but which is provably existentially unforgeable under a chosen message
attack without the random oracle model.

Performance. Key and signature generation times are comparable to BLS signa-
tures. Verification time is faster since verification requires only one pairing and
one multi-exponentiation. The value e(g1, g2) only needs to be computed at ini-
tialization time and cached. In comparison, BLS signature verification requires
two pairing computations. Since exponentiation tends to be significantly faster
than pairing, signature verification is faster than in the BLS system.

Security. The following theorem shows that the scheme above is existentially
unforgeable in the strong sense under chosen message attacks, provided that the
q-SDH assumption holds in (G1,G2).

Theorem 1. Suppose the (q, t′, ε′)-SDH assumption holds in (G1,G2). Then the
signature scheme above is (t, qS, ε)-secure against existential forgery under a cho-
sen message attack provided that

t ≤ t′ − o(t′) , qS < q and ε ≥ 2(ε′ + qS/p) ≈ 2ε′

Proof. We prove the theorem using two lemmas. In Lemma 1, we first describe a
simplified signature scheme and prove its existential unforgeability against weak
chosen message attacks under the q-SDH assumption. In Lemma 2, we then show
that the security of the weak scheme implies the security of the full scheme. From
these results (Lemmas 1 and 2), Theorem 1 follows easily. We present the proof
in two steps since the construction used to prove Lemma 1 will be used later on
in the paper. ut

3.1 A Weakly Secure Short Signature Scheme

We first show how the q-SDH assumption can be used to construct an existen-
tially unforgeable scheme under a weak chosen message attack. This construction
demonstrates the main properties of the q-SDH assumption. In the next section
we show that the security of this weak scheme implies the security of the full
scheme above.

The weakly secure short signature scheme is as follows. As before, let (G1,G2)
be bilinear groups where |G1| = |G2| = p for some prime p. As usual, g1 is a
generator of G1 and g2 a generator of G2. For the moment we assume that the
messages m to be signed are elements in Z∗p.

Key generation: Pick random x
R← Z∗p, and compute v ← gx

2 ∈ G2. The public
key is (g1, g2, v). The secret key is x.



Signing: Given a secret key x ∈ Z∗p and a message m ∈ Z∗p, output the signature

σ ← g
1/(x+m)
1 ∈ G1. Here 1/(x+m) is computed modulo p. By convention in

this context we define 1/0 to be 0 so that in the unlikely event that x+m = 0
we have σ ← 1.

Verification: Given a public key (g1, g2, v), a message m ∈ Z∗p, and a signature
σ ∈ G1, verify that

e(σ, v · gm
2 ) = e(g1, g2)

If equality holds output valid. If σ = 1 and v · gm
2 = 1 output valid.

Otherwise, output invalid.

We show that the basic signature scheme above is existentially unforgeable
under a weak chosen message attack. The proof of the following lemma uses a
similar method to the proof of Theorem 3.5 of Mitsunari et al. [MSK02].

Lemma 1. Suppose the (q, t′, ε)-SDH assumption holds in (G1,G2). Then the
basic signature scheme above is (t, qS, ε)-secure against existential forgery under
a weak chosen message attack provided that

t ≤ t′ −O(q2) and qS < q

Proof. Assume A is a forger that (t, qS, ε)-breaks the signature scheme. We con-
struct an algorithm B that, by interacting with A, solves the q-SDH problem in
time t′ with advantage ε. Algorithm B is given an instance (g1, g2, A1, . . . , Aq)

of the q-SDH problem, where Ai = g
(xi)
2 ∈ G2 for i = 1, . . . , q and for some

unknown x ∈ Z∗p. For convenience we set A0 = g2. Algorithm B’s goal is to

produce a pair (c, g1/(x+c)
1 ) for some c ∈ Z∗p. Algorithm B does so by interacting

with the forger A as follows:

Query: Algorithm A outputs a list of distinct qS messages m1, . . . ,mqs
∈ Z∗p,

where qS < q. Since A must reveal its queries up front, we may assume that
A outputs exactly q − 1 messages to be signed (if the actual number is less,
we can always virtually reduce the value of q so that q = qS + 1).

Response: B must respond with a public key and signatures on the q− 1 mes-
sages from A. Let f(y) be the polynomial f(y) =

∏q−1
i=1 (y+mi). Expand f(y)

and write f(y) =
∑q−1

i=0 αiy
i where α0, . . . , αq−1 ∈ Zp are the coefficients of

the polynomial f(y). Compute:

g′2 ←
q−1∏
i=0

(Ai)αi = g
f(x)
2 and h←

q∏
i=1

A
αi−1
i = g

xf(x)
2 = (g′2)

x

Also, let g′1 = ψ(g′2). The public key given to A is (g′1, g
′
2, h). Next, for each

i = 1, . . . q − 1, Algorithm B must generate a signature σi on mi. To do so,
let fi(y) be the polynomial fi(y) = f(y)/(y +mi) =

∏q−1
j=1,j 6=i(y +mj). As

before, we expand fi and write fi(y) =
∑q−2

j=0 βjy
j . Compute

Si ←
q−2∏
j=0

A
βj

j = g
fi(x)
2 = (g′2)

1/(x+mi) ∈ G2



Observe that σi = ψ(Si) ∈ G1 is a valid signature on m under the public
key (g′1, g

′
2, h). Algorithm B gives A the q − 1 signatures σ1, . . . , σq−1.

Output: Algorithm A returns a forgery (m∗, σ∗) such that σ∗ ∈ G1 is a valid
signature on m∗ ∈ Z∗p and m∗ 6∈ {m1 . . . ,mq−1} since there is only one valid
signature per message. In other words, e(σ∗, h · (g′2)m∗) = e(g′1, g

′
2). Since

h = (g′2)
x we have that e(σ∗, (g′2)

x+m∗) = e(g′1, g
′
2) and therefore

σ∗ = (g′1)
1/(x+m∗) = (g1)f(x)/(x+m∗) (1)

Using long division we write the polynomial f as f(y) = γ(y)(y+m∗) + γ−1

for some polynomial γ(y) =
∑q−2

i=0 γiy
i and some γ−1 ∈ Zp. Then the rational

fraction f(y)/(y+m∗) in the exponent on the right side of Equation (1) can
be written as

f(y)/(y +m∗) =
γ−1

y +m∗
+

q−2∑
i=0

γiy
i

Note that γ−1 6= 0, since f(y) =
∏q−1

i=1 (y + mi) and m∗ 6∈ {m1, . . . ,mq−1},
as thus (y +m∗) does not divide f(y). Then algorithm B computes

w ←

(
σ∗ ·

q−1∏
i=0

ψ(Ai)−γi

)1/γ−1

= g
1/(x+m∗)
1

and returns (m∗, w) as the solution to the q-SDH instance.

The claimed bounds are obvious by construction of the reduction. ut

3.2 From Weak Security To Full Security

We now present a reduction from the security of the basic scheme of Lemma 1
to the security of the full signature scheme described at the onset of Section 3.
This will complete the proof of Theorem 1.

Lemma 2. Suppose that the basic signature scheme of Lemma 1 is (t′, qS, ε
′)-

weakly secure. Then the full signature scheme is (t, qS, ε)-secure against existen-
tial forgery under a chosen message attack provided that

t ≤ t′ −O(qS) and ε ≥ 2(ε′ + qS/p) ≈ 2ε′

Proof. Assume A is a forger that (t, qS, ε)-breaks the full signature scheme. We
construct an algorithm B that (t+O(qS), qS, ε/2−qS/p)-weakly breaks the basic
signature scheme of Lemma 1.

Before describing Algorithm B we distinguish between two types of forgers
that A can emulate. Let (h1, h2, u, v) be the public key given to forger A where
u = gx

2 and v = gy
2 . Suppose A asks for signatures on messages m1, . . . ,mqs

∈ Z∗p
and is given signatures (σi, ri) for i = 1, . . . , qS on these messages. Let wi =
mi + yri and let (m∗, σ∗, r∗) be the forgery produced by A. We distinguish
between two types of forgers:



Type-1 forger: a forger that either (i) makes a signature query for the message
m = −x, or (ii) outputs a forgery where m∗ + yr∗ 6∈ {w1, . . . , wqs}.

Type-2 forger: a forger that (i) never makes a signature query for the message
m = −x, and (ii) outputs a forgery where m∗ + yr∗ = wi for some i ∈
{1, . . . , qS}.

We show that either forger can be used to forge signatures for the weak signature
scheme of Lemma 1. However, the reduction works differently for each forger
type. Therefore, initially B will choose a random bit cmode ∈ {1, 2} that indicates
its guess for the type of forger that A will emulate. The simulation proceeds
differently for each mode.

We are now ready to describe Algorithm B. It produces a forgery for the
signature scheme of Lemma 1 as follows:

Setup: Algorithm B first picks a random bit cmode ∈ {1, 2}. Next, B sends
to its own challenger a list of qS random messages w1, . . . , wqs ∈ Z∗p for
which it requests a signature. The challenger responds with a public key
(g1, g2, u) and signatures σ1, . . . , σqs

∈ G1 on these messages. We know that
e(σi, g

wi
2 u) = e(g1, g2) for all i = 1, . . . , qS. Then:

• (If cmode = 1). B picks a random y ∈ Z∗p and gives A the public key
PK1 = (g1, g2, u, g

y
2 ).

• (If cmode = 2). B picks a random x ∈ Z∗p and gives A the public key
PK2 = (g1, g2, gx

2 , u).

In either case, we note that B provides the adversary A with a valid public
key (g1, g2, U, V ).

Signature queries: The forger A can issue up to qS signature queries in an
adaptive fashion. In order to respond, B maintains a list H-list of tuples
(mi, ri,Wi) and a query counter ` which is initially set to 0. Upon receiving
a signature query for m, Algorithm B increments ` by one. Then:

• (If cmode = 1). Check if g−m
2 = u. If so, then B just obtained the private

key for the public key (g1, g2, u) it was given, which allows it to forge the
signature on any message of its choice. At this point B successfully terminates
the simulation.
Otherwise, set r` = (w`−m)/y ∈ Z∗p. In the very unlikely event that r` = 0,
Algorithm B reports failure and aborts. Otherwise, Algorithm B gives A
the signature (σ`, r`). This is a valid signature on m under PK1 since r` is
uniform in Z∗p and

e(σ`, U · gm
2 · V r`) = e(σ`, u · gm

2 · g
yr`

2 ) = e(σ`, u · gw`
2 ) = e(g1, g2)

• (If cmode = 2). Set r` = (x +m)/w` ∈ Z∗p. If r` = 0, Algorithm B reports

failure and aborts. Otherwise, give A the signature (σ1/r`

` , r`). This is a valid
signature on m under PK2 since r` is uniform in Z∗p and

e(σ1/r`

` , U · gm
2 · V r`) = e(σ1/r`

` , gx
2 · gm

2 · ur`) = e(σ`, g
w`
2 u) = e(g1, g2)



In either case if B does not stop it responds with a valid signature on m.
In either case Algorithm B adds the tuple (m, r`, gm

2 V
r`) to the H-list.

Output: Eventually, A returns a forgery (m∗, σ∗, r∗), where (σ∗, r∗) is a valid
forgery distinct from any previously given signature on message m∗. Note
that by adding dummy queries as necessary, we may assume that A made
exactly qS signature queries. Let W∗ ← gm∗

2 V r∗ . Algorithm B searches the
H-list for a tuple whose rightmost component is equal to W∗. There are two
possibilities:
Type-1 forgery: No tuple of the form (·, ·,W∗) appears on the H-list.
Type-2 forgery: The H-list contains at least one tuple (mj , rj ,Wj) such

that Wj = W∗.
Let btype ← 1 if A produced a type-1 forgery, or A made a signature query
for a message m such that g−m

2 = U . In all other cases, set btype ← 2. If
btype 6= cmode then B reports failure and aborts. Otherwise, B outputs an
existential forgery on the basic signature scheme as follows:

• (If cmode = btype = 1). If A made a signature query for a message m such
that g−m

2 = U then B is already done. Therefore, we assume A produced a
type-1 forgery. Since the forgery is valid, we have

e(g1, g2) = e(σ∗, U · gm∗
2 · V r∗) = e(σ∗, u · gm∗+yr∗

2 )

Let w∗ = m∗+yr∗. It follows that (w∗, σ∗) is a valid message/signature pair
in the basic signature scheme. Furthermore, it is a valid existential forgery
for the basic scheme since in a type-1 forgery Algorithm B did not request
a signature on the message w∗ ∈ Z∗p. Indeed, B only requested signatures on
messages wj = mj + yrj where (mj , rj , g

wj

2 ) is a tuple in the H-list, but gw∗
2

is not equal to any gwj

2 on the H-list. Algorithm B outputs (w∗, σ∗) as the
required existential forgery.
• (If cmode = btype = 2). Let (mj , rj ,Wj) be a tuple on the H-list where
Wj = W∗. Since V = u we know that gmj

2 urj = gm∗
2 ur∗ . Write u = gz

2 for
some z ∈ Z∗p so that mj +zrj = m∗+zr∗. We know that (mj , rj) 6= (m∗, r∗),
otherwise the forgery would be identical to a previously given signature on
the query message mj . Since gmj

2 urj = gm∗
2 ur∗ it follows that mj 6= m∗ and

rj 6= r∗. Therefore, z = (m∗ −mj)/(rj − r∗) ∈ Z∗p. Hence, B just recovered
the private key for the public key (g1, g2, u) it was given. Algorithm B can
now forge a signature on any message of its choice.

This completes the description of Algorithm B.
A standard argument shows that if B does not abort, then, from the view-

point of A, the simulation provided by B is indistinguishable from a real attack
scenario. In particular, (i) the view from A is independent of the value of cmode,
(ii) the public keys are uniformly distributed, and (iii) the signatures are correct.
Therefore, A produces a valid forgery in time t with probability at least ε.

It remains to bound the probability that B does not abort. We argue as
follows:



– Conditionally on the event cmode = btype = 1, Algorithm B aborts if A issued
a signature query m` = w`. This happens with probability at most qS/p.

– Conditionally on the event cmode = btype = 2, Algorithm B does not abort.

Since cmode is independent of btype we have that Pr[cmode = btype] = 1/2. It now
follows that B produces a valid forgery with probability at least ε/2 − qS/p, as
required. ut

Since in the full scheme a single message has many valid signatures, it is
worth repeating that the full signature scheme is existentially unforgeable in the
strong sense: the adversary cannot make any forgery, even on messages which
are already signed.

3.3 Relation to Chameleon Hash Signatures

It is instructive to consider the relation between the full signature scheme above
and a signature construction based on the Strong RSA assumption due to Gen-
naro, Halevi, and Rabin (GHR) [GHR99]. GHR signatures are pairs (r, s1/H(m,r))
where H is a Chameleon hash [KR00], r is random in some range, and arithmetic
is done modulo an RSA modulus N . Looking closely, one can see some paral-
lels between the proof of security in Lemma 2 above and the proof of security
in [GHR99]. There are three interesting points to make:

– The m + yr component in our signature scheme provides us with the func-
tionality of a Chameleon hash: given m, we can choose r so that m + yr
maps to some predefined value of our choice. This makes it possible to han-
dle the chosen message attack. Embedding the hash m + yr directly in the
signature scheme results in a much more efficient construction than using an
explicit Chameleon hash (which requires additional exponentiations). This
is not known to be possible with Strong RSA signatures.

– One difficulty with GHR signatures is that given a solution (6, s1/6) to the
Strong RSA problem one can deduce another solution, e.g. (3, s1/3). Thus,
given a GHR signature on one message it possible to deduce a GHR signature
on another message (see [GHR99,CN00] for details). Gennaro et al. solve this
problem by ensuring that H(m, r) always maps to a prime; However, that
makes it difficult to compute the hash (a different solution is given in [CS00]).
This issue does not come up at all in our signature scheme above.

– We obtain short signatures since, unlike Strong RSA, the q-SDH assumption
applies to groups with a short representation.

Thus, we see that Strong Diffie-Hellman leads to signatures that are simpler,
more efficient, and shorter than their Strong RSA counterparts.

3.4 Limited Message Recovery

We now describe another useful property of the signature schemes whereby the
total size of signed messages can be further reduced at the cost of increasing the



verification time. The technique applies equally well to the fully secure signature
scheme as to the weakly secure one.

A standard technique for shortening the total length of message/signature
pairs is to encode a part of the message in the signature [MVV97]. Signatures
based on trapdoor permutations support very efficient message recovery.

At the other end of the spectrum, a trivial signature compression mechanism
that applies to any signature scheme is as follows: Rather than transmit a mes-
sage/signature pair (M,σ), the sender transmits (M̂, σ) where M̂ is the same as
M except that the last t bits are truncated. In other words, M̂ is t bits shorter
than M . To verify (M̂, σ) the verifier tries all 2t possible values for the truncated
bits and accepts the signature if one of them verifies. To reconstruct the original
signed message M , the verifier appends to M̂ the t bits for which the signature
verified.

This trivial method shows that the pair (M,σ) can be shortened by t-bits
at the cost of increasing verification time by a factor of 2t. For our signature
scheme we obtain a better tradeoff: the pair (M,σ) can be shortened by t bits
at the cost of increasing verification time by a factor of 2t/2 only. We refer to
this property as limited message recovery.

Limited Message Recovery. Limited message recovery applies to both the full
signature scheme and the weakly secure signature scheme of Lemma 1. For sim-
plicity, we only show how limited message recovery applies to the full signature
scheme. Assume messages are k-bit strings represented as integers in Z∗p. Let
(g1, g2, u, v) be a public key in the full scheme. Suppose we are given the signed
message (m̂, σ, r) where m̂ is a truncation of the last t bits of m ∈ Z∗p. Thus
m = m̂ · 2t + δ for some integer 0 ≤ δ < 2t. Our goal is to verify the signed
message (m̂, σ, r) and to reconstruct the missing bits δ in time 2t/2. To do so,
we first rewrite the verification equation e(σ, u · vr · gm

2 ) = e(g1, g2) as

e(σ, g2)m =
e(g1, g2)
e(σ, u · vr)

Substituting m = m̂ · 2t + δ we obtain

e(σ, g2)δ =
e(g1, g2)

e(σ, u · vr · gm̂2t

2 )
(2)

Now, we say that (m̂, σ, r) is valid if there exists an integer δ ∈ [0, 2t) satisfying
equation (2). Finding such a δ takes time approximately 2t/2 using Pollard’s
Lambda method [MVV97, p.128] for computing discrete logarithms. Thus, we
can verify the signature and recover the t missing message bits in time 2t/2, as
required.

Ultra Short Weakly Secure Signatures. Obvious applications of limited message
recovery are situations where bandwidth is extremely limited, such as when the
signature is an authenticator that is to be typed-in by a human. The messages in
such applications are typically chosen and signed by a central authority, so that



adaptive chosen message attacks are typically not a concern. It is safe in those
cases to use the weakly secure signature scheme of Lemma 1, and apply limited
message recovery to further shrink the already compact signatures it produces.
Specifically, using t-bit truncation as above we obtain a total signature overhead
of (160 − t) bits for common security parameters, at the cost of requiring 2t/2

pairing computations for signature verification. We emphasize that the security
of this system does not rely on random oracles.

3.5 Arbitrary Message Signing

We can extend our signature schemes to sign arbitrary messages in {0, 1}∗, as
opposed to merely messages in Z∗p, by first hashing the message using a collision-
resistant hash function H : {0, 1}∗ → Z∗p prior to both signing and verifying. A
standard argument shows that if the scheme above is secure against existential
forgery under a chosen message attack (in the strong sense) then so is the scheme
with the hash. The result is a signature scheme for arbitrary messages in {0, 1}∗.
We note that there is no need for a full domain hash into Z∗p; a collision resistant
hash function H : {0, 1}∗ → {1, . . . , 2b} for 2b < p is sufficient for the secu-
rity proof. This transformation applies to both the fully and the weakly secure
signature schemes described above.

4 Shorter Signatures With Random Oracles

For completeness we show that the weakly secure signature scheme of Lemma 1
gives rise to very efficient and fully secure short signatures in the random or-
acle model. To do so, we show a general transformation from any existentially
unforgeable signature scheme under a weak chosen message attack into an exis-
tentially unforgeable signature scheme under a standard chosen message attack
(in the strong sense), in the random oracle model. This gives a very efficient short
signature scheme based on q-SDH in the random oracle model. We analyze our
construction using a method of Katz and Wang [KW03] which gives a very tight
reduction to the security of the underlying signature. We note that a closely
related system with a weaker security analysis was independently discovered by
Zhang et al. [ZSNS04].

Let (KeyGen, Sign, Verify) be an existentially unforgeable signature under
a weak chosen message attack. We assume that the scheme signs messages in
some finite set Σ and that the private keys are in some set Π. We need two hash
functions H1 : Π × {0, 1}∗ → {0, 1} and H2 : {0, 1} × {0, 1}∗ → Σ that will be
viewed as random oracles in the security analysis. The hash-signature scheme is
as follows:

Key generation: Same as KeyGen. The public key is PK; The secret key is
SK ∈ Π.

Signing: Given a secret key SK, and given a message M ∈ {0, 1}∗, compute
b ← H1(SK,M) ∈ {0, 1} and m ← H2(b,M) ∈ Σ. Output the signature



(b,Sign(m)). Note that signatures are one bit longer than in the underlying
signature scheme.

Verification: Given a public key PK, a message M ∈ {0, 1}∗, and a signature
(b, σ), output valid if Verify(PK,H2(b,M), σ) = valid.

Theorem 2 below proves security of the scheme. Note that the security re-
duction in Theorem 2 is tight, namely, an attacker on the hash-signature scheme
with success probability ε is converted to an attacker on the underlying signa-
ture with success probability approximately ε/2. Proofs of signature schemes in
the random oracle model are often far less tight. The proof is given in the full
version of the paper [BB04b].

Theorem 2. Suppose (KeyGen,Sign,Verify) is (t′, q′S, ε
′)-existentially unforge-

able under a weak chosen message attack. Then the corresponding hash-signature
scheme is (t, qS, qH , ε)-secure against existential forgery under an adaptive cho-
sen message attack, in the random oracle model, whenever qS + qH < q′S, and for
all all t and ε satisfying

t ≤ t′ − o(t′) and ε ≥ 2ε′/(1− q′S
|Σ|

) ≈ 2ε′

Applying Theorem 2 to the weakly secure scheme of Lemma 1 gives an effi-
cient short signature existentially unforgeable under a standard chosen message
attack in the random oracle model assuming (qS + qH + 1)-SDH. For a public
key (g1, g2, v = gx

2 ) and a hash function H : {0, 1}∗ → Z∗p a signature on a

message m is defined as the value σ ← g
1/(x+H(b,m))
1 ∈ G1 concatenated with

the bit b ∈ {0, 1}. To verify the signature, check that e(σ, v ·gH(b,m)
2 ) = e(g1, g2).

We see that signature length is essentially the same as in BLS signatures, but
verification time is approximately half that of BLS. During verification, expo-
nentiation is always base g2 which enables a further speed-up by pre-computing
certain powers of g2.

Full Domain Hash. Another method for converting a signature scheme secure
under a weak chosen message attack into a scheme secure under a standard
chosen message attack is to simply apply Sign and Verify to H(M) rather than
M . In other words, we hash M ∈ {0, 1}∗ using a full domain hash H prior
to signing and verifying. Security in the random oracle model is shown using a
similar argument to Coron’s analysis of the Full Domain Hash [Cor00]. However,
the resulting reduction is not tight: an attacker on this hash-then-sign signature
with success probability ε yields an attacker on the underlying signature with
success probability approximately ε/qS. We note, however, that these proofs are
set in the random oracle model and therefore it is not clear whether the efficiency
of the security reduction is relevant to actual security in the real world. Therefore,
since this full domain hash signature scheme is slightly simpler that the system in
Theorem 2 it might be preferable to use it rather than the system of Theorem 2.
When we apply the full domain hash to the weakly secure scheme of Lemma 1,
we obtain a secure signature under a standard chosen message attack assuming



(qS +qH +1)-SDH. A signature is one element, namely σ ← g
1/(x+H(m))
1 ∈ G1. As

before, signature verification is twice as fast as in BLS signatures. As mentioned
above, a similar scheme was independently proposed by Zhang et al. [ZSNS04].
We also note that, in the random oracle model, security of this full domain hash
scheme can be proven under a slightly weaker complexity assumption than q-
SDH, namely that the value c in the q-SDH assumption is pre-specified rather
than chosen by the adversary. However, the resulting security reduction is far
less efficient.

5 Generic Security of the q-SDH Assumption

To provide more confidence in the q-SDH assumption we prove a lower bound
on the computational complexity of the q-SDH problem for generic groups in
the sense of Shoup [Sho97].

In the generic group model, elements of G1, G2, and GT appear to be encoded
as unique random strings, so that no property other than equality can be directly
tested by the adversary. Five oracles are assumed to perform operations between
group elements, such as computing the group action in each of the three groups
G1, G2, GT , as well as the isomorphism ψ : G2 → G1, and the bilinear pairing
e : G1×G2 → GT . The opaque encoding of the elements of G1 is modeled as an
injective function ξ1 : Zp → Ξ1, where Ξ1 ⊂ {0, 1}∗, which maps all a ∈ Zp to
the string representation ξ1(ga) of ga ∈ G1. We similarly define ξ2 : Zp → Ξ2 for
G2 and ξT : Zp → ΞT for GT . The attacker A communicates with the oracles
using the ξ-representations of the group elements only.

Theorem 3. Let A be an algorithm that solves the q-SDH problem in the generic
group model, making a total of at most qG queries to the oracles computing the
group action in G1,G2,GT , the oracle computing the isomorphism ψ, and the
oracle computing the bilinear pairing e. If x ∈ Z∗p and ξ1, ξ2, ξT are chosen
at random, then the probability ε that A(p, ξ1(1), ξ2(1), ξ2(x), . . . , ξ2(xq)) outputs
(c, ξ1( 1

x+c )) with c ∈ Z∗p, is bounded by

ε ≤ (qG + q + 2)2q
p

= O

(
(qG)2q + q3

p

)
Proof. Consider an algorithm B that plays the following game with A.
B maintains three lists of pairs L1 = {(F1,i, ξ1,i) : i = 0, . . . , τ1 − 1}, L2 =

{(F2,i, ξ2,i) : i = 0, . . . , τ2 − 1}, LT = {(FT,i, ξT,i) : i = 0, . . . , τT − 1}, such
that, at step τ in the game, τ1 + τ2 + τT = τ + q + 2. The F1,i and F2,i are
polynomials of degree ≤ q in Zp[x], and the FT,i are polynomials of degree ≤ 2q
in Zp[x]. The ξ1,i, ξ2,i, ξT,i are strings in {0, 1}∗. The lists are initialized at step
τ = 0 by taking τ1 = 1, τ2 = q + 1, τT = 0, and posing F1,0 = 1, and F2,i = xi

for i ∈ {0, . . . , q}. The corresponding ξ1,0 and ξ2,i are set to arbitrary distinct
strings in {0, 1}∗.

We may assume that A only makes oracle queries on strings previously ob-
tained form B, since B can make them arbitrarily hard to guess. We note that B



can determine the index i of any given string ξ1,i in L1 (resp. ξ2,i in L2, or ξT,i

in LT ), breaking ties between multiple matches arbitrarily.
B starts the game by providing A with the q + 2 strings ξ1,0, ξ2,0, . . . , ξ2,q.

Queries go as follows.

Group action: Given a multiply/divide selection bit and two operands ξ1,i,
ξ1,j with 0 ≤ i, j < τ1, we compute F1,τ1 ← F1,i ± F1,j ∈ Zp[x] depending
on whether a multiplication or a division is requested. If F1,τ1 = F1,l for
some l < τ1, we set ξ1,τ1 ← ξ1,l; otherwise, we set ξ1,τ1 to a string in {0, 1}∗
distinct from ξ1,0, . . . , ξ1,τ1−1. We add (F1,τ1 , ξ1,τ1) to L1 and give ξ1,τ1 to A,
then increment τ1 by one. Group action queries in G2 and GT are treated
similarly.

Isomorphism: Given a string ξ2,i with 0 ≤ i < τ2, we let F1,τ1 ← F2,i ∈ Zp[x].
If F1,τ1 = F1,l for some l < τ1, we set ξ1,τ1 ← ξ1,l; otherwise, we set ξ1,τ1 to
a string in {0, 1}∗ \ {ξ1,0, . . . , ξ1,τ1−1}. We add (F1,τ1 , ξ1,τ1) to L1, give ξ1,τ1

to A, and increment τ1 by one.
Pairing: Given two operands ξ1,i and ξ2,j with 0 ≤ i < τ1 and 0 ≤ j < τ2,

we compute the product FT,τT
← F1,iF2,j ∈ Zp[x]. If FT,τT

= FT,l for
some l < τT , we set ξT,τT

← ξT,l; otherwise, we set ξT,τT
to a string in

{0, 1}∗ \ {ξT,0, . . . , ξT,τT−1}. We add (FT,τT
, ξT,τT

) to LT , give ξT,τT
to A,

and increment τT by one.

A terminates and returns a pair (c, ξ2,`) where 0 ≤ ` < τ2. At this point B
chooses a random x∗ ∈ Zp. The simulation provided by B is perfect unless the
choice of x creates an equality relation between the simulated group elements
that was not revealed to A. Thus, the success probability of A is bounded by
the probability that any of the following holds:

1. F1,i(x∗)− F1,j(x∗) = 0 for some i, j such that F1,i 6= F1,j ,
2. F2,i(x∗)− F2,j(x∗) = 0 for some i, j such that F2,i 6= F2,j ,
3. FT,i(x∗)− FT,j(x∗) = 0 for some i, j such that FT,i 6= FT,j ,
4. (x∗ + c)F2,`(x∗) = 0.

Since F1,i−F1,j for fixed i and j is a polynomial of degree at most q, it vanishes
at a random x∗ ∈ Zp with probability at most q/p. Similarly, for fixed i and
j, the second case occurs with probability ≤ q/p, the third with probability
≤ 2q/p (since FT,i−FT,j has degree at most 2q), and the fourth with probability
≤ (q + 1)/p. By summing over all valid pairs (i, j) in each case, we find that
A wins the game with probability ε ≤

(
τ1
2

)
q
p +

(
τ2
2

)
q
p +

(
τT

2

)
2q
p + q+1

p . Since
τ1 + τ2 + τT ≤ qG + q + 2, the required bound follows: ε ≤ (qG + q + 2)2(q/p) =
O((qG)2(q/p) + q3/p). ut

Corollary 1. Any adversary that solves the q-SDH problem with constant prob-
ability ε > 0 in generic groups of order p such that q < o( 3

√
p) requires Ω(

√
εp/q)

generic group operations.



6 Conclusions

We presented a number of short signature schemes based on the q-SDH assump-
tion. Our main result is a short signature which is fully secure without using
the random oracle model. The signature is as short as DSA signatures, but is
provably secure in the standard model. We also showed that the scheme supports
limited message recovery, for even greater compactness.

These constructions are possible thanks to properties of the q-SDH assump-
tion. The assumption can be viewed as a discrete logarithm analogue of the
Strong RSA assumption. We believe the q-SDH assumption is a useful tool for
constructing cryptographic systems and we expect to see many other schemes
based on it. For example, we mention a new group signature scheme of Boneh
et al. [BBS04].
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