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Abstract. We construct two efficient Identity Based Encryption (IBE)
systems that are selective identity secure without the random oracle
model. Selective identity secure IBE is a slightly weaker security model
than the standard security model for IBE. In this model the adversary
must commit ahead of time to the identity that it intends to attack,
whereas in the standard model the adversary is allowed to choose this
identity adaptively. Our first secure IBE system extends to give a selec-
tive identity Hierarchical IBE secure without random oracles.

1 Introduction

Boneh and Franklin [BF01,BF03] recently defined a security model for Iden-
tity Based Encryption [Sha84] and gave a construction using bilinear maps.
Cocks [Coc01] describes another construction using quadratic residues. Proving
security for these systems requires the random oracle model [BR93]. A natural
open question is to construct a secure IBE system without random oracles. No
such system is currently known.

In the Boneh-Franklin security model the adversary can issue both adaptive
chosen ciphertext queries and adaptive chosen identity queries (i.e., the adversary
can request the private key for identities of its choice). Eventually, the adversary
adaptively chooses the identity it wishes to attack and asks for a semantic secu-
rity challenge for this identity. Canetti et al. [CHK03,CHK04] recently proposed
a slightly weaker security model, called selective identity IBE. In this model the
adversary must commit ahead of time (non-adaptively) to the identity it intends
to attack. The adversary can still issue adaptive chosen ciphertext and adaptive
chosen identity queries. Canetti et al. are able to construct a provably secure
IBE in this weaker model without the random oracle model. However, their con-
struction views identities as bit strings, causing their system to require a bilinear
map computation for every bit in the identity.

We construct two efficient IBE systems that are provably selective identity
secure without the random oracle model. In both systems, encryption requires
no bilinear map computation and decryption requires at most two. Our first
? Supported by NSF and the Packard Foundation.



construction is based on the Decision Bilinear Diffie-Hellman (Decision BDH)
assumption. This construction extends to give an efficient selective identity se-
cure Hierarchical IBE (HIBE) without random oracles. Hierarchical IBE was
defined in [HL02] and the first construction in the random oracle model was
given by Gentry and Silverberg [GS02]. Our efficient HIBE construction is sim-
ilar to the Gentry-Silverberg system, but we are able to prove security without
using random oracles. Our second IBE construction is even more efficient, but
is based on a new assumption we call Decision Bilinear Diffie-Hellman Inversion
(Decision BDHI). Roughly speaking, the assumption says that no efficient al-
gorithm can distinguish e(g, g)1/x from random, given g, gx, g(x2), . . . , g(xq) for
some q.

Canetti et al. [CHK04] recently showed that any selective identity, chosen
plaintext IBE gives a chosen ciphertext secure (CCA2) public key system. Con-
sequently, both our IBE systems give efficient CCA2-secure public key systems
without random oracles. In particular, using our second system we obtain a
CCA2-secure public key system that has comparable efficiency to the Cramer-
Shoup system based on DDH.

2 Preliminaries

Before presenting our results we briefly review the definition of security for an
IBE system. We also review the definition of groups equipped with a bilinear
map.

2.1 Selective Identity Secure IBE and HIBE Systems

Recall that an Identity Based Encryption system (IBE) consists of four algo-
rithms [Sha84,BF01]: Setup, KeyGen, Encrypt, Decrypt. The Setup algorithm
generates system parameters, denoted by params, and a master key master-key.
The KeyGen algorithm uses the master key to generate the private key corre-
sponding to a given identity. The encryption algorithm encrypts messages for
a given identity (using the system parameters) and the decryption algorithm
decrypts ciphertexts using the private key. In a Hierarchical IBE [HL02,GS02]
identities are vectors. A vector of dimension ` represents an identity at depth `.
Algorithm KeyGen takes as input an identity ID = (I1, . . . , I`) at depth ` and
the private key dID|`−1 of the parent identity ID|`−1 = (I1, . . . , I`−1) at depth
` − 1. It outputs the private key dID for identity ID. We refer to the master-key
as the private key at depth 0 and note that an IBE system is an HIBE where all
identities are at depth 1.

Boneh and Franklin [BF01,BF03] define chosen ciphertext security for IBE
systems under a chosen identity attack. In their model the adversary is allowed
to adaptively chose the public key it wishes to attack (the public key on which it
will be challenged). Canetti, Halevi, and Katz [CHK03,CHK04] define a weaker
notion of security in which the adversary commits ahead of time to the public
key it will attack. We refer to this notion as selective identity, chosen ciphertext



secure IBE (IND-sID-CCA). More precisely, selective identity IBE and HIBE
security is defined using the following game:

Init: The adversary outputs an identity ID∗ where it wishes to be challenged.
Setup: The challenger runs the Setup algorithm. It gives the adversary the

resulting system parameters params. It keeps the master-key to itself.
Phase 1: The adversary issues queries q1, . . . , qm where query qi is one of:

– Private key query 〈IDi〉 where IDi 6= ID∗ and IDi is not a prefix of ID∗.
The challenger responds by running algorithm KeyGen to generate
the private key di corresponding to the public key 〈IDi〉. It sends di

to the adversary.
– Decryption query 〈Ci〉 for identity ID∗ or any prefix of ID∗. The

challenger responds by running algorithm KeyGen to generate the
private key d corresponding to ID∗ (or the relevant prefix thereof as
requested). It then runs algorithm Decrypt to decrypt the ciphertext
Ci using the private key d. It sends the resulting plaintext to the
adversary.

These queries may be asked adaptively, that is, each query qi may depend
on the replies to q1, . . . , qi−1.

Challenge: Once the adversary decides that Phase 1 is over it outputs two
equal length plaintexts M0,M1 ∈M on which it wishes to be challenged.
The challenger picks a random bit b ∈ {0, 1} and sets the challenge
ciphertext to C = Encrypt(params, ID∗,Mb). It sends C as the challenge
to the adversary.

Phase 2: The adversary issues additional queries qm+1, . . . , qn where qi is
one of:

– Private key query 〈IDi〉 where IDi 6= ID∗ and IDi is not a prefix of
ID∗. The challenger responds as in Phase 1.

– Decryption query 〈Ci〉 6= 〈C〉 for ID∗ or any prefix of ID∗. The chal-
lenger responds as in Phase 1.

These queries may be asked adaptively as in Phase 1.
Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1}. The adversary

wins if b = b′.

We refer to such an adversary A as an IND-sID-CCA adversary. We define the
advantage of the adversary A in attacking the scheme E as

AdvE,A =
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣
The probability is over the random bits used by the challenger and the adversary.

Definition 1. We say that an IBE or HIBE system E is (t, qID, qC , ε)-selective
identity, adaptive chosen ciphertext secure if for any t-time IND-sID-CCA adver-
sary A that makes at most qID chosen private key queries and at most qC chosen
decryption queries we have that AdvE,A < ε. As shorthand, we say that E is
(t, qID, qC , ε) IND-sID-CCA secure.



Semantic Security. As usual, we define selective identity, chosen plaintext secu-
rity for an IBE system as in the preceding game, except that the adversary is not
allowed to issue any decryption queries. The adversary may still issue adaptive
private key queries.

Definition 2. We say that an IBE or HIBE system E is (t, qID, ε)-selective iden-
tity, chosen plaintext secure if E is (t, qID, 0, ε)-selective identity, chosen ciphertext
secure. As shorthand, we say that E is (t, qID, ε) IND-sID-CPA secure.

2.2 Bilinear Groups

We briefly review the necessary facts about bilinear maps and bilinear map
groups. We follow the notation in [BF01]:
1. G and G1 are two (multiplicative) cyclic groups of prime order p;
2. g is a generator of G.
3. e is a bilinear map e : G×G→ G1.

Let G and G1 be two groups as above. A bilinear map is a map e : G×G→ G1

with the following properties:
1. Bilinear: for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.
2. Non-degenerate: e(g, g) 6= 1.

We say that G is a bilinear group if the group action in G can be computed
efficiently and there exists a group G1 and an efficiently computable bilinear
map e : G × G → G1 as above. Note that e(, ) is symmetric since e(ga, gb) =
e(g, g)ab = e(gb, ga).

3 Complexity Assumptions

Let G be a bilinear group of prime order p and g be a generator of G. We review
the standard Bilinear Diffie-Hellman (BDH) assumption and define the Bilinear
Diffie-Hellman Inversion (BDHI) assumption.

3.1 Bilinear Diffie-Hellman Assumption

The BDH problem [Jou00,BF01] in G is as follows: given a tuple g, ga, gb, gc ∈ G
as input, output e(g, g)abc ∈ G1. An algorithm A has advantage ε in solving
BDH in G if

Pr
[
A(g, ga, gb, gc) = e(g, g)abc

]
≥ ε

where the probability is over the random choice of a, b, c in Z∗
p and the random

bits used by A. Similarly, we say that an algorithm B that outputs b ∈ {0, 1}
has advantage ε in solving the decision BDH problem in G if∣∣Pr

[
B(g, ga, gb, gc, e(g, g)abc) = 0

]
− Pr

[
B(g, ga, gb, gc, T ) = 0

]∣∣ ≥ ε

where the probability is over the random choice of a, b, c in Z∗
p, the random choice

of T ∈ G∗
1, and the random bits of B.



Definition 3. We say that the (Decision) (t, ε)-BDH assumption holds in G
if no t-time algorithm has advantage at least ε in solving the (Decision) BDH
problem in G.

Occasionally we drop the t and ε and refer to the BDH and Decision BDH
assumptions in G.

3.2 Bilinear Diffie-Hellman Inversion Assumption

The q-BDHI problem in the group G is defined as follows: given the (q + 1)-
tuple (g, gx, g(x2), . . . , g(xq)) ∈ (G∗)q+1 as input, compute e(g, g)1/x ∈ G∗

1. An
algorithm A has advantage ε in solving q-BDHI in G if

Pr
[
A(g, gx, . . . , g(xq)) = e(g, g)1/x

]
≥ ε

where the probability is over the random choice of x in Z∗
p and the random bits of

A. Similarly, we say that an algorithm B that outputs b ∈ {0, 1} has advantage
ε in solving the decision q-BDHI problem in G if∣∣∣Pr

[
B(g, gx, . . . , g(xq), e(g, g)1/x) = 0

]
− Pr

[
B(g, gx, . . . , g(xq), T ) = 0

]∣∣∣ ≥ ε

where the probability is over the random choice of x in Z∗
p, the random choice

of T ∈ G∗
1, and the random bits of B.

Definition 4. We say that the (Decision) (t, q, ε)-BDHI assumption holds in G
if no t-time algorithm has advantage at least ε in solving the (Decision) q-BDHI
problem in G.

Occasionally we drop the t and ε and refer to the q-BDHI and Decision q-
BDHI assumptions. It is easy to show that the 1-BDHI assumption is equivalent
to the standard Bilinear Diffie-Hellman assumption (BDH). It is not known if
the q-BDHI assumption, for q > 1, is equivalent to BDH.

4 Efficient Selective Identity HIBE Based on BDH
Without Random Oracles

We construct an efficient HIBE system that is selective identity secure with-
out random oracles based on the Decision BDH assumption. In particular, this
implies an efficient selective identity, chosen ciphertext secure IBE based on
Decision BDH without random oracles.

4.1 Construction

Let G be a bilinear group of prime order p and g be a generator of G (the security
parameter determines the size of G). Let e : G×G→ G1 be the bilinear map. For
now, we assume public keys (ID) of depth ` are vectors of elements in Zp

`. We



write ID = (I1, . . . , I`) ∈ Zp
`. The j-th component corresponds to the identity

at level j. We later extend the construction to public keys over {0, 1}∗ by first
hashing each component Ij using a collision resistant hash H : {0, 1}∗ → Zp.
We also assume messages to be encrypted are elements in G1. The HIBE system
works as follows:

Setup(`): To generate system parameters for an HIBE of maximum depth `,
select a random α ∈ Z∗

p and set g1 = gα. Next, pick random elements
h1, . . . , h` ∈ G and a generator g2 ∈ G∗. The public parameters params and
the secret master-key are given by

params = (g, g1, g2, h1, . . . , h`) , master-key = gα
2

For j = 1, . . . , `, we define Fj : Zp → G to be the function: Fj(x) = gx
1hj .

KeyGen(dID|j−1, ID): To generate the private key dID for an identity ID =
(I1, . . . , Ij) ∈ Zp

j of depth j ≤ `, pick random r1, . . . , rk ∈ Zp and output

dID =

(
gα
2 ·

j∏
k=1

Fk(Ik)rk , gr1 , . . . , grj

)
Note that the private key for ID can be generated just given a private
key for ID|j−1 = (I1, . . . , Ij−1) ∈ Zp

j−1, as required. Indeed, let dID|j−1 =
(d0, . . . , dj−1) be the private key for ID|j−1. To generate dID pick a random
rj ∈ Zp and output dID = (d0 · Fj(Ij)rj , d1, . . . , dj−1, grj ).

Encrypt(params, ID, M): To encrypt a message M ∈ G1 under the public
key ID = (I1, . . . , Ij) ∈ Zp

j , pick a random s ∈ Zp and output

C =
(

e(g1, g2)s ·M, gs, F1(I1)s, . . . , Fj(Ij)s

)
Note that e(g1, g2) can be precomputed once and for all so that encryption
does not require any pairing computations. Alternatively, e(g1, g2) can be
included in the system parameters.

Decrypt(dID, C): Let ID = (I1, . . . , Ij) be an identity. To decrypt a ciphertext
C = (A,B, C1, . . . , Cj) using the private key dID = (d0, d1, . . . , dj), output

A ·
∏j

k=1 e(Cj , dj)
e(B, d0)

= M

Indeed, for a valid ciphertext, we have∏j
k=1 e(Cj , dj)
e(B, d0)

=
∏j

k=1 e(Fk(Ik), g)srk

e(g, g2)sα
∏j

k=1 e(g, Fk(Ik))srk

=
1

e(g1, g2)s

4.2 Security

The HIBE system above is reminiscent of the Gentry-Silverberg HIBE which is
only known to be secure in the random oracle model. Surprisingly, our choice



of functions F1, . . . , F` enables us to prove security without random oracles. We
prove security of our HIBE system under the standard Decision BDH assumption
in G.

Theorem 1. Suppose the (t, ε)-Decision BDH assumption holds in G. Then the
previously defined `-HIBE system is (t′, qS , ε)-selective identity, chosen plaintext
(IND-sID-CPA) secure for arbitrary ` and qS and any t′ < t− o(t).

Proof. Suppose A has advantage ε in attacking the HIBE system. We build an al-
gorithm B that solves the Decision BDH problem in G. On input (g, ga, gb, gc, T )
algorithm B’s goal is to output 1 if T = e(g, g)abc and 0 otherwise. Let g1 =
ga, g2 = gb, g3 = gc. Algorithm B works by interacting with A in a selective
identity game as follows:

Initialization. The selective identity game begins with A first outputting an
identity ID∗ = (I∗1, . . . , I

∗
k) ∈ Zp

k of depth k ≤ ` that it intends to attack. If
necessary, B appends random elements in Zp to ID∗ so that ID∗ is a vector
of length `.

Setup. To generate the system parameters, algorithm B picks α1, . . . , α` ∈ Zp

at random and defines hj = g
−I∗j
1 gαj ∈ G for j = 1, . . . , `. It gives A the sys-

tem parameters params = (g, g1, g2, h1, . . . , h`). Note that the correspond-
ing master-key, which is unknown to B, is ga

2 = gab ∈ G∗. As before, for
j = 1, . . . , ` we define Fj : Zp → G to be the function

Fj(x) = gx
1hj = g

x−I∗j
1 gαj

Phase 1. A issues up to qS private key queries. Consider a query for the pri-
vate key corresponding to ID = (I1, . . . , Iu) ∈ Zp

u where u ≤ `. The only
restriction is that ID is not a prefix of ID∗. Let j be the smallest index such
that Ij 6= I∗j . Necessarily 1 ≤ j ≤ u. To respond to the query, algorithm
B first derives a private key for the identity (I1, . . . , Ij) from which it then
constructs a private key for the requested identity ID = (I1, . . . , Ij , . . . , Iu).
Algorithm B picks random elements r1, . . . , rj ∈ Zp and sets

d0 = g

−αj

Ij−I∗j
2

j∏
v=1

Fv(Iv)rv , d1 = gr1 , . . . , dj−1 = grj−1 , dj = g

−1
Ij−I∗j
2 grj

We claim that (d0, d1, . . . , dj) is a valid random private key for (I1, . . . , Ij).
To see this, let r̃j = rj − b/(Ij − I∗j ). Then we have that

g

−αj

(Ij−I∗j )

2 Fj(Ij)rj = g

−αj

(Ij−I∗j )

2 (g
Ij−I∗j
1 gαj )rj = ga

2 (g
Ij−I∗j
1 gαj )

rj− b
Ij−I∗j = ga

2Fj(Ij)r̃j

It follows that the private key (d0, d1, . . . , dj) defined above satisfies

d0 = ga
2 · (

j−1∏
v=1

Fv(Iv)rv ) · Fj(Ij)r̃j , d1 = gr1 , . . . , dj−1 = grj−1 , dj = gr̃j



where r1, . . . , rj−1, r̃j are uniform in Zp. This matches the definition for a
private key for (I1, . . . , Ij). Hence, (d0, d1, . . . , dj) is a valid private key for
(I1, . . . , Ij). Algorithm B derives a private key for the requested ID from the
private key (d0, d1, . . . , dj) and gives the result to A.

Challenge. When A decides that Phase 1 is over, it outputs two messages
M0,M1 ∈ G1. Algorithm B picks a random bit b ∈ {0, 1} and responds with
the ciphertext C = (Mb · T, g3, gα1

3 , . . . , gαk
3 ). Since Fi(I∗i ) = gαi for all i,

we have that

C = (Mb · T, gc, F1(I∗1)
c, . . . , Fk(I∗k)c)

Hence, if T = e(g, g)abc = e(g1, g2)c then C is a valid encryption of Mb under
the public key ID∗ = (I∗1, . . . , I

∗
k). Otherwise, C is independent of b in the

adversary’s view.
Phase 2. A issues its complement of private key queries not issued in Phase 1.

Algorithm B responds as before.
Guess. Finally, A outputs a guess b′ ∈ {0, 1}. Algorithm B concludes its own

game by outputting a guess as follows. If b = b′ then B outputs 1 meaning
T = e(g, g)abc. Otherwise, it outputs 0 meaning T 6= e(g, g)abc.

When T = e(g, g)abc then A must satisfy |Pr[b = b′] − 1/2| > ε. When T is
uniform in G∗

1 then Pr[b = b′] = 1/2. Therefore, when a, b, c are uniform in Z∗
p

and T is uniform in G∗
1 we have that∣∣Pr

[
B(g, ga, gb, gc, e(g, g)abc) = 0

]
− Pr

[
B(g, ga, gb, gc, T ) = 0

]∣∣
≥ |(1

2
± ε)− 1

2
| = ε

as required. This completes the proof of Theorem 1. ut

4.3 Chosen Ciphertext Security

A recent result of Canetti et al. [CHK04] gives an efficient way to build a selec-
tive identity, chosen ciphertext `-HIBE from a selective identity, chosen plaintext
(` + 1)-HIBE. In combination with the above construction, we obtain a selec-
tive identity, chosen ciphertext `-HIBE for any `. In particular, we can easily
construct an efficient selective identity, chosen ciphertext secure IBE without
random oracles.

4.4 Arbitrary Identities

We can extend our HIBE above to handle identities ID = (I1, . . . , I`) with Ij ∈
{0, 1}∗ (as opposed to Ij ∈ Zp) by first hashing each Ij using a collision resistant
hash function H : {0, 1}∗ → Zp prior to key generation and encryption. A
standard argument shows that if the scheme above is selective identity, chosen
ciphertext secure then so is the scheme with the additional hash function. We
note that there is no need for a full domain hash into Zp; for example, a collision
resistant hash function H : {0, 1}∗ → {1, . . . , 2b} where 2b < p is sufficient for
the security proof.



5 More Efficient Selective Identity IBE Based on BDHI
Without Random Oracles

We construct an efficient IBE system that is selective identity, chosen plaintext
secure without random oracles based on the Decision q-BDHI assumption (see
Section 3.2). The resulting IBE system is more efficient that the IBE construction
in the previous section.

5.1 Basic Construction

Let G be a bilinear group of prime order p and g be a generator of G. For now, we
assume that the public keys (ID) are elements in Z∗

p. We show later that arbitrary
identities in {0, 1}∗ can be used by first hashing ID using a collision resistant
hash H : {0, 1}∗ → Z∗

p. We also assume that the messages to be encrypted are
elements in G1. The IBE system works as follows:

Setup: To generate IBE parameters, select random elements x, y ∈ Z∗
p and

define X = gx and Y = gy. The public parameters params and the secret
master-key are given by

params = (g, gx, gy) , master-key = (x, y)

KeyGen(master-key,ID): To create a private key for the public key ID ∈ Z∗
p:

1. pick a random r ∈ Zp and compute K = g1/(ID+x+ry) ∈ G,
2. output the private key dID = (r, K).

In the unlikely event that x + ry + ID = 0 (mod p), try again with a new
random value for r.

Encrypt(params, ID, M): To encrypt a message M ∈ G1 under public key
ID ∈ Z∗

p, pick a random s ∈ Z∗
p and output the ciphertext

C =
(
gs·IDXs, Y s, e(g, g)s ·M

)
Note that e(g, g) can be precomputed once and for all so that encryption
does not require any pairing computations.

Decrypt(dID, C): To decrypt a ciphertext C = (A,B, C) using the private key
dID = (r, K), output C/e(ABr,K). Indeed, for a valid ciphertext we have

C

e(ABr,K)
=

C

e(gs(ID+x+ry), g1/(ID+x+ry))
=

C

e(g, g)s
= M

Performance. In terms of efficiency, we note that the ciphertext size and en-
cryption time are similar to the IBE system of the previous section. However,
decryption requires only one pairing computation, as opposed to two in the
previous section.



5.2 Proving Security

We prove security of the scheme under the Decision q-BDHI assumption from
Section 3.2.

Theorem 2. Suppose the (t, q, ε)-Decision BDHI assumption holds in G. Then
the previously defined IBE system is (t′, qS , ε)-selective identity, chosen plaintext
(IND-sID-CPA) secure for any qS < q and t′ < t− o(t).

Proof. Suppose A has advantage ε in attacking the IBE system. We build an
algorithm B that uses A to solve the decision q-BDHI problem in G. On input
(g, gα, gα2

, . . . , gαq

, T ) ∈ (G∗)q+1 ×G∗
1 for some unknown α ∈ Z∗

p, the goal of B
is to output 1 if T = e(g, g)1/α and 0 otherwise. It does so by interacting with
A in a selective identity game as follows:

Preparation. Algorithm B builds a generator h ∈ G∗ for which it knows q − 1
pairs of the form (wi, h

1/(α+wi)) for random w1, . . . , wq−1 ∈ Z∗
p. This is done

as follows:
1. Pick random w1, . . . , wq−1 ∈ Z∗

p and let f(z) be the polynomial f(z) =∏q−1
i=1 (z + wi). Expand the terms of f to get f(z) =

∑q−1
i=0 cix

i. The
constant term c0 is non-zero.

2. Compute h =
∏q−1

i=0 (g(αi))ci = gf(α) and u =
∏q

i=1(g
(αi))ci−1 = gαf(α).

Note that u = hα.
3. Check that h ∈ G∗. Indeed if we had h = 1 in G this would mean that

wj = −α for some easily identifiable wj , at which point B would be able
to solve the challenge directly. We thus assume that all wj 6= −α.

4. Observe that for any i = 1, . . . , q−1, it is easy for B to construct the pair(
wi, h

1/(α+wi)
)
. To see this, write fi(z) = f(z)/(z + wi) =

∑q−2
i=0 diz

i.
Then h1/(α+wi) = gfi(α) =

∏q−2
i=0 (g(αi))di .

5. Next, B computes

Th = T (c2
0) · T0 where T0 =

q−1∏
i=0

q−2∏
j=0

e
(
g(αi), g(αj)

)cicj+1

Observe that if T = e(g, g)1/α then Th = e
(
gf(α)/α, gf(α)

)
= e(h, h)1/α.

On the contrary, if T is uniform in G∗
1, then Th is uniform in G1 \ {T0}.

We will be using the values h, u, Th and the pairs (wi, h
1/(α+wi)) for i =

1, . . . , q − 1 throughout the simulation.
Initialization. The selective identity game begins with A first outputting an

identity ID∗ ∈ Z∗
p that it intends to attack.

Setup. To generate the system parameters params = (g,X, Y ), algorithm B
does the following:
1. Pick random a, b ∈ Z∗

p under the constraint that ab = ID∗.
2. Compute X = u−ah−ab = h−a(α+b) and Y = u = hα.
3. Publish params = (h, X, Y ) as the public parameters. Note that X, Y

are independent of ID∗ in the adversary’s view.



4. We implicitly define x = −a(α + b) and y = α so that X = hx and
Y = hy. Algorithm B does not know the value of x or y, but does know
the value of x + ay = −ab = −ID∗.

Phase 1. A issues up to qS < q private key queries. Consider the i-th query for
the private key corresponding to public key IDi 6= ID∗. We need to respond
with a private key (r, h1/(IDi+x+ry)) for a uniformly distributed r ∈ Zp.
Algorithm B responds to the query as follows:
1. Let

(
wi, h

1/(α+wi)
)

be the i-th pair constructed during the preparation
step. Define hi = h1/(α+wi).

2. B first constructs an r ∈ Zp satisfying (r − a)(α + wi) = IDi + x + ry.
Plugging in the values of x and y the equation becomes

(r − a)(α + wi) = IDi − a(α + b) + rα

We see that α cancels from the equation and we get r = a+ IDi−ab
wi

∈ Zp.

3. Now, (r, h
1/(r−a)
i ) is a valid private key for IDi for two reasons. First,

h
1/(r−a)
i = (h1/(α+wi))1/(r−a) = h1/(r−a)(α+wi) = h1/(IDi+x+ry)

as required. Second, r is uniformly distributed among all elements in Zp

for which IDi + x + ry 6= 0 and r 6= a. This is true since wi is uniform
in Zp \ {0,−α} and is currently independent of A’s view. Algorithm B
gives A the private key (r, h

1/(r−a)
i ).

We point out that this procedure will fail to produce the private key for ID∗

since in that case we get r − a = 0. Hence, B can generate private keys for
all public keys except for ID∗.

Challenge. A outputs two messages M0,M1 ∈ G1. Algorithm B picks a random
bit b ∈ {0, 1} and a random ` ∈ Z∗

p. It responds with the ciphertext CT =
(h−a`, h`, T `

h ·Mb). Define s = `/α. On the one hand, if Th = e(h, h)1/α

we have

h−a` = h−aα(`/α) = h(x+ab)(`/α) = h(x+ID∗)(`/α) = hsID∗ ·Xs

h` = Y `/α = Y s

T `
h = e(h, h)`/α = e(h, h)s

It follows that CT is a valid encryption of Mb under ID∗, with the uniformly
distributed randomization value s = `/α ∈ Z∗

p. On the other hand, when Th

is uniform in G1 \ {T0}, then, in the adversary’s view, CT is independent of
the bit b.

Phase 2. A issues more private key queries, for a total of at most qS < q.
Algorithm B responds as before.

Guess. Finally,A outputs a guess b′ ∈ {0, 1}. If b = b′ then B outputs 1 meaning
T = e(g, g)1/α. Otherwise, it outputs 0 meaning T 6= e(g, g)1/α.

We showed that when the input T satisfies T = e(g, g)1/α then Th = e(h, h)1/α

in which case A must satisfy |Pr[b = b′]−1/2| > ε. On the other hand, when T is



uniform and independent in G∗
1 then Th is uniform and independent in G1 \{T0}

in which case Pr[b = b′] = 1/2. Therefore, when x is uniform in Z∗
p and P is

uniform in G∗
1 we have that∣∣∣Pr

[
B(g, gx, . . . , g(xq), e(g, g)1/x) = 0

]
− Pr

[
B(g, gx, . . . , g(xq), P ) = 0

]∣∣∣
≥ |(1

2
± ε)− 1

2
| = ε

as required. This completes the proof of Theorem 2. ut

5.3 Chosen-Ciphertext Security and Arbitrary Identities

Canetti et al. [CHK03, Section 2.2] describe a general method for converting a
selective identity, chosen plaintext secure IBE into a selective identity, chosen
ciphertext secure IBE. The method is based on [NY90,Sah99,Lin03]. Since it
is generic, it applies to our system as well. In particular, the method can be
used to render the IBE system above secure against chosen ciphertext attacks.
The result is an IND-sID-CCA secure IBE without random oracles. However,
the resulting system is inefficient since it relies on generic non-interactive zero-
knowledge (NIZK) constructions.

As before, a standard argument shows that we can extend the IBE above
to handle arbitrary identities ID ∈ {0, 1}∗ by first hashing ID using a collision
resistant hash function H : {0, 1}∗ → Z∗

p prior to key generation and encryption.
If the underlying scheme is selective identity, chosen plaintext (resp. ciphertext)
secure, then so is the scheme with the additional hash function.

5.4 An Efficient CCA2-Secure Public-Key System

A recent result of Canetti et al. [CHK04] gives a general method for constructing
a CCA2 public key system from any selective identity, chosen plaintext IBE.
Essentially the same result was used in Section 4 to transform our first HIBE
construction into a chosen ciphertext secure HIBE of lesser depth.

When used on the construction of this section, we obtain a new efficient
CCA2 public key system. We briefly summarize its characteristics:

1. Encryption time: Dominated by three exponentiations in G.
2. Decryption time: Dominated by one pairing computation.
3. Ciphertext size: Composed of three elements of G plus a public key and

signature of a one-time signature scheme.

In terms of performance, this is comparable to, though not quite as efficient as,
the Cramer-Shoup [CS98] CCA2-secure public key system which is proven secure
in the standard model.

The ciphertext size can be further reduced by using the short signature
scheme recently proposed by Boneh and Boyen [BB04] instead of the one-time
signatures suggested by Canetti et al. [CHK04]. The Boneh-Boyen signature



scheme is existentially unforgeable in the strong sense (sUF-CMA) without ran-
dom oracle, and thus satisfies the requirements of the CCA2 construction. Here,
strong existential unforgeability means that it is infeasible for an adversary to
forge a new signature even on messages for which one or more valid signatures
are already known.

6 DHI and Generalized Diffie-Hellman

In Section 3.2 we defined the q-BDHI problem in a bilinear group. A closely
related problem is the q-Diffie-Hellman Inversion (q-DHI) problem: given a tuple
(g, gx, g(x2), . . . , g(xq)) ∈ Gq+1 as input, output g1/x ∈ G. Here, G need not be a
bilinear group. Loosely speaking, the q-DHI assumption states that the q-DHI
problem is intractable in G. This assumption was previously used in [MSK02]
where it was called weak Diffie-Hellman.

Many cryptographic constructions rely on the Generalized Diffie-Hellman
assumption (GenDH) for security [MSW96,NR97,BBR99,Lys02,BS03]. In this
section we show that the q-DHI assumption implies the (q + 1)-Generalized
Diffie-Hellman assumption. Thus, constructions that rely on Generalized Diffie-
Hellman could instead rely on q-DHI which appears to be a more natural com-
plexity assumption, and is easier to state since the problem description does not
require an oracle.

We first review the GenDH assumption. The assumption says that given
ga1 , . . . , gaq in G and given all the subset products g

∏
i∈S ai ∈ G for any strict

subset S ⊂ {1, . . . , q}, it is hard to compute ga1···aq ∈ G. Since the number
of subset products is exponential in q, access to all these subset products is
provided through an oracle. For a vector a = (a1, . . . , aq) ∈ Zp

q, define Og,a to
be an oracle that for any strict subset S ⊂ {1, . . . , q} responds with

Og,a(S) = g
∏

i∈S ai ∈ G.

Define the advantage of algorithm A in solving the generalized Diffie-Hellman
problem to be the probability that A is able to compute ga1···aq given access to
the oracle Og,a(S). In other words,

AdvA,q = Pr[AOg,a = ga1···aq : a = (a1, . . . , aq)← Zp
q]

Note that the oracle only answers queries for strict subsets of {1, . . . , q}.

Definition 5. We say that G satisfies the (t, q, ε)-Generalized Diffie-Hellman
assumption if for all t-time algorithms A we have AdvA,q < ε.

Theorem 3. Suppose the (t, q − 1, ε)-DHI assumption holds in G. Then the
(t, q, ε)-GenDH assumption also holds in G.

Proof. Suppose A is an algorithm that has advantage ε in solving the q-GenDH
problem. We construct an algorithm B that solves (q − 1)-DHI with the same
advantage ε. Algorithm B is given g, gx, g(x2), . . . , g(xq−1) ∈ G and its goal is



to compute g1/x ∈ G. Let h = g(xq−1) and y = x−1 ∈ Zp. Then the input to
B can be re-written as h, hy, h(y2), . . . , h(yq−1) ∈ G and B’s goal is to output
h(yq) = g1/x.

Algorithm B first picks q random values c1, . . . , cq ∈ Zp. It then runs algo-
rithm A and simulates the oracle Oh,a for A. The vector a that B will use is
a = (y + c1, . . . , y + cq). Note that B does not know a explicitly since B does not
have y. When A issues a query for Oh,a(S) for some strict subset S ⊂ {1, . . . , q}
algorithm B responds as follows:

1. Define the polynomial f(z) =
∏

i∈S(z + ci) and expand the terms to obtain
f(z) =

∑|S|
i=0 biz

i.
2. Compute t =

∏|S|
i=0(h

(yi))bi = hf(y). Since |S| < q all the values h(yi) in the
product are known to B.

3. By construction we know that t = h
∏

i∈S(y+ci). Algorithm B responds by
setting Oh,a(S) = t.

The responses to all of the adversary’s oracle queries are consistent with the
hidden vector a = (y + c1, . . . , y + cq). Therefore, eventually, A will output
T = h

∏q
i=1(y+ci). Define the polynomial f(z) =

∏q
i=1(z + ci) and expand the

terms to get f(z) = zq +
∑q−1

i=0 biz
i. To conclude, B outputs

T
/ q−1∏

i=0

(h(yi))bi = h(yq)

which is the required value. ut

The same property as in Theorem 3 also holds for the decision version of the
DHI and GenDH problems. The q-DHI assumption is easier to state than the
q-GenDH assumption since there is no need for an oracle. When appropriate,
constructions that depend on GenDH for security could instead use the DHI
assumption.

7 Conclusions

We constructed two IBE systems that are secure against selective identity attacks
in the standard model, i.e., without using random oracles. The first construc-
tion is based on the now classic BDH assumption. It extends readily to give a
selective identity HIBE without random oracles, that can efficiently be made
chosen ciphertext secure using a technique of [CHK04]. The second construction
is based on the Bilinear Diffie-Hellman Inversion assumption. The same tech-
nique of [CHK04] converts both our constructions into efficient CCA2-secure
public key systems without random oracles that are almost as efficient as the
Cramer-Shoup public key system.

Currently, the problem of constructing a fully secure IBE (against adaptive
identity attacks) without resorting to random oracles is still open. We hope to
see this question resolved soon.
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