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Abstract. Denoting by P = [k]G the elliptic-curve double-and-add
multiplication of a public base point G by a secret k, we show that allow-
ing an adversary access to the projective representation of P , obtained
using a particular double and add method, may result in information
being revealed about k.

Such access might be granted to an adversary by a poor software im-
plementation that does not erase the Z coordinate of P from the com-
puter's memory or by a computationally-constrained secure token that
sub-contracts the a�ne conversion of P to the external world.

From a wider perspective, our result proves that the choice of representa-
tion of elliptic curve points can reveal information about their underlying
discrete logarithms, hence casting potential doubt on the appropriateness
of blindly modelling elliptic-curves as generic groups.

As a conclusion, our result underlines the necessity to sanitize Z after
the a�ne conversion or, alternatively, randomize P before releasing it
out.

1 Introduction

There are various systems of projective coordinates that are used in conjunction
with elliptic curves: the usual (classical) system replaces the a�ne coordinates



(x; y) by any triple (X;Y; Z) = (�x; �y; �), where � 6= 0 is an element of the
base �eld.

From such a (X;Y; Z), the a�ne coordinates are computed back as

�
x =

X

Z
; y =

Y

Z

�
= A�ne(X;Y; Z)

A variant of the above, often called Jacobian Projective coordinates, replaces
the a�ne coordinates (x; y) by any triple (�2x; �3y; �), where � is a non zero
element of the base �eld. From (X;Y; Z), the a�ne coordinates are computed as

�
x =

X

Z2
; y =

Y

Z3

�
= A�ne(X;Y; Z)

These coordinates are widely used in practice, see for example [1] and [4].

This paper explores the following question:

Denoting by P = [k]G the elliptic-curve multiplication of a public base point

G by a secret k, does the projective representation of P result in information

being revealed about k?

From a practical perspective access to P 's Z coordinate might stem from a
poor software implementation that does not erase the Z coordinate of P from
the computer's memory or caused by a computationally-constrained secure token
that sub-contracts the a�ne conversion of P to the external world.

We show that information may leaks-out and analyse the leakage in two
di�erent settings: Di�e-Hellman key exchange and Schnorr signatures.

Moreover, our paper seems to indicate that point representation matters: The
generic group model is often used to model elliptic curve protocols, see [2], [10],
[11]. In this model one assumes that the representation of the group elements
gives no bene�t to an adversary. This approach allows cryptographic schemes
built from elliptic curves to be supported by some form of provable security.
However, it has some pitfalls. In [11], it was shown that using encodings which do
not adequately distinguish an elliptic curve from its opposite, as done in ECDSA,
open the way to potential aws in the security proofs. In this paper we show that
using projective coordinates to represent elliptic curve points rather than a�ne
coordinates may leak some information to an attacker. Thus, we can conclude
that modelling elliptic curves as generic groups is not appropriate in this case,
so that the generic model methodology only applies under the assumption that
a�ne points are made available to an external viewer/adversary of the protocol.

We note that our results imply that projective coordinates should be used
with care when they could be made available to an adversary. Our results do
not however imply that using projective coordinates for internal calculations has
any security implications.



2 Elliptic Curve Addition Formulae

In the following, we will restrict our attention to elliptic curves over �elds of
large prime characteristic. We will also focus on projective coordinates of the
second kind (the situation being quite similar mutatis mutandis, in the other
cases).

In our prime �eld case, the reduced equation of the curve C is:
y2 = x3 + ax+ b mod p

Jacobian projective coordinates yield the equation:

Y 2 = X3 + aXZ4 + bZ6 mod p

Projective coordinates allow a smooth representation of the in�nity point O on
the curve: (0; 1; 0) in the �rst system, (1; 1; 0) in the other. They also provide
division-free formulae for addition and doubling.

Standard (a�ne) addition of two distinct elliptic curve points, (x0; y0) and
(x1; y1) yields (x2; y2), with:

x2 =

�
y1 � y0
x1 � x0

�2

� x0 � x1

Note that x1 � x0 equals:

X1

Z2
1

� X0

Z2
0

=
W

(Z0Z1)2

where W is X1Z
2
0 � X0Z

2
1 . From this it readily follows, that (WZ0Z1)

2x2 is a
polynomial in X0; Y0; Z0; X1; Y1; Z1, since the further factors coming from Z0

and Z1 cancel the denominators for x0 and x1.

The a�ne coordinate y2 is given by:

y2 = �y0 +
�
y1 � y0
x1 � x0

�
(x0 � x2)

Expanding in projective coordinates yields a denominator equal to W 3Z3
0Z

3
1 .

Thus, (WZ0Z1)
3y2 is a polynomial in X0; Y0; Z0; X1; Z1. Finally, we see that

setting:
Z2 =WZ0Z1

we can obtain division-free formulae. Such formulae are given in [4] and [1], and
we simply reproduce them here:

U0  X0Z
2
1 ; S0  Y0Z

3
1 ; U1  X1Z

2
0 ; S1  Y1Z

3
0 ;

W  U0 � U1; R S0 � S1; T  U0 + U1; M  S0 + S1;
Z2  WZ0Z1; X2  R2 � TW 2; V  TW 2 � 2X2; 2Y2  V R�MW 3:

There is a similar analysis for doubling; again, we simply provide the correspond-
ing formulae:

M  3X2
1 + aZ4

1 ; Z2  2Y1Z1; S  4X1Y
2
1 ;

X2  M2 � 2S; T  8Y 4
1 ; Y2  M(S �X2)� T:



3 The Attack

Throughout this section we let G be an element of prime order r on an elliptic
curve C over a prime �eld, given by its regular coordinates (xG; yG). Let k be
a secret scalar and de�ne P = [k]G. Let (X;Y; Z) be Jacobian projective co-
ordinates for P , computed by the formulae introduced in Section 2, when the
standard double-and-add algorithm is used.

3.1 Grabbing a few bits of k

Let t be a small integer and guess the last t bits of k. Once this is done, it is
possible to compute a set of candidates for the coordinates of the sequence of
intermediate values handled by the double-and-add algorithm while processing
k's t trailing bits (appearing at the end of the algorithm). This is achieved
by `reversing' computations: reversing doubling is halving, i.e. by reversing the
formulae for doubling ; reversing an addition amounts to subtracting G. Thus,
we obtain a set of sequences,

fs1; s2; : : : ; smg where sj = fM (j)
0 9 9 KM

(j)
1 9 9 K� � � 9 9 KM (j)

` g

of intermediate points, with M
(j)
` = P . Let Mi = (xi; yi) in a�ne coordinates.

The corresponding projective coordinates which occur we denote by (Xi; Yi; Zi).
There are two cases:

{ When the step Mi 9 9 KMi+1 is an addition, we have

Zi+1 = (Xi � xGZ2
i )Zi which yields

Zi+1

Z3
i

= (xi � xG)

Here, we need to compute a cubic root to get Zi from Zi+1. This is impossible
in some cases when p � 1 mod 3, and when possible, it leads to one of
three possible Zi values. When p � 2 mod 3 taking the cubic root is always
possible and leads to a unique value of Zi. In either case once a set of possible
values of Zi are determined from Zi+1 we can obtain Xi and Yi.

{ When the step Mi 9 9 KMi+1 is a doubling, we have

Zi+1 = 2YiZi which yields
Zi+1

Z4
i

= 2yi

Here, we need to compute a fourth root to get Zi from Zi+1, which is impos-
sible in some cases. Assume for example that p � 3 mod 4. Then extracting
a fourth root is possible for one half of the inputs and, when possible, yields
two values. When p � 1 mod 4 then this is possible in around one quarter
of all cases and yields four values.

We can now take advantage of the above observation to learn a few bits of k.

More precisely, we observe that, with probability at least 1=2, one can spot
values of k for which the least signi�cant trailing bit is one. Suppose we consider



such a k and make the wrong guess that the last bit is zero. This means that
the �nal operation M`�1 9 9 KM` is a doubling. The error can be spotted when
the value

Z`
2y`�1

is not a fourth power, which happens with probability at most 1=2. We can then
iterate this to (potentially) obtain a few further bits of k. In the case of the least
signi�cant bit being zero a similar analysis can be performed.

3.2 Applicability to Di�erent Coordinate Systems

Consider Jacobian projective coordinates:

(X;Y ) 7! (�2X;�3Y; �Z);

over a �eld Fq of characteristic q > 3. For a point P = (x; y) 2 C(Fq ) let SP
denote the set of all equivalent projective representations

SP = f(�2x; �3y; �) : � 2 F�q g:

The standard addition formulae for computing P + Q, for a �xed value of Q
(by �xed we mean a �xed projective representation of Q, including an a�ne
representation of Q) gives a map

	P;P+Q : SP �! SP+Q:

The doubling formulae for Jacobian projective coordinates also gives us a map

	P;[2]P : SP �! S[2]P :

The crucial observations from the previous subsection are summarized in the
following Lemma

Lemma 1. The following holds, for Jacobian projective coordinates in large
prime characteristics:

If q � 1 mod 3 then 	P;P+Q is a 3 1 map.
If q � 2 mod 3 then 	P;P+Q is a 1 1 map.
If q � 1 mod 4 then 	P;[2]P is a 4 1 map.
If q � 3 mod 4 then 	P;[2]P is a 2 1 map.

Note: It is easy given an element in the image of either 	P;P+Q or 	P;[2]P to
determine whether it has pre-images, and if so to compute all of them.

The attack is then simply to consider when a point could have arisen from
an application of 	P;P+Q or 	P;[2]P and if so to compute all the pre-images and
then recurse. The precise tests one applies at di�erent points will depend on the
precise exponentiation algorithm implemented by the attacked device, a subject
we shall return to in a moment.



For the sake of completeness we present in the following lemmata similar
results for other characteristics and other forms of projective representation. We
concentrate on the most common and the most used coordinate systems and
keep the same conventions and notation as above:

Lemma 2. The following holds, for classical projective coordinates on elliptic
curves over �elds of large prime characteristic:

If q � 1 mod 4 then 	P;P+Q is a 4 1 map.
If q � 3 mod 4 then 	P;P+Q is a 2 1 map.
If q � 1 mod 3 then 	P;[2]P is a 6 1 map.
If q � 2 mod 3 then 	P;[2]P is a 2 1 map.

Lemma 3. The following holds, for Jacobian projective coordinates on elliptic
curves over �elds of characteristic two:

If q � 1 mod 3 then 	P;P+Q is a 3 1 map.
If q � 2 mod 3 then 	P;P+Q is a 1 1 map.

8q 	P;[2]P is a 1 1 map.

Lemma 4. The following holds, for L�opez-Dahab projective coordinates [6] on
elliptic curves over �elds of characteristic two:

If q � 1 mod 3 then 	P;[2]P is a 3 1 map.
If q � 2 mod 3 then 	P;[2]P is a 1 1 map.

8q 	P;P+Q is a 1 1 map.

4 Application: Breaking Projective Schnorr Signatures

Assume now that one wishes to use the protocol described in Figure 1, mim-
icking Schnorr's basic construction [12]. The algorithm is a natural division-free
version of Schnorr's original scheme, and might hence appear both safe and
computationally attractive.

It should be stressed that while we are not aware of any suggestion to use
this variant in practice it is still not evident, at a �rst glance, why this algorithm
could be insecure.

We show how to attack this scheme using the observations from the previ-
ous subsection. This is based on recent work by Howgrave-Graham, Smart [3],
Nguyen and Shparlinski [7].

From a sample of N signatures, the attacker obtains around N
22t signatures

for which he knows that the t low order bits of the hidden nonce k are ones.
Next, for each such k, he considers the relation:

d+ xH(m;PX ; PY ; PZ) = k mod r

Using the information he has, the attacker rewrites the above as:

d� (2t � 1) + xH(m;PX ; PY ; PZ) = k � (2t � 1) mod r



parameters and keys

An elliptic-curve C
G 2R C of order r
A collision-resistant hash-function H : f0; 1g� �! Z

?
r

Private x 2R Z
?
r

Public Q [x]G

signature generation

Pick k 2R Z
?
r

Compute (PX ; PY ; PZ) [k]G = DoubleAdd(k;G)

d k � x�H(m;PX ; PY ; PZ) mod r

If d = 0 or H(m;PX ; PY ; PZ) = 0 resume signature generation

Output fPX ; PY ; PZ ; dg as the signature of m
signature verification

P  [d]G+ [H(m;PX ; PY ; PZ)]Q

If P 6= A�ne((PX ; PY ; PZ)) or d 62 Z?r output invalid

else output valid

Fig. 1. Division-Free Projective Schnorr Signatures

Dividing by 2t, he gets a �nal relation:

a+ bx = u mod r

where a, b are known but x is unknown as well as u. Still the attacker knows
that u is small (� r

2t ). When the attacker has n � N
22t such relations, he writes

a+ bx = u mod r

and considers the lattice L = (b)?, consisting of all integer vectors orthogonal to
b and applies lattice reduction. Let � be an element of L with small Euclidean
norm. We have:

�(a) = �(u) mod r

Now, the norm of the right-hand side is bounded by jj�jjjjujj, which is �
jj�jj r2t

p
n. The order of jj�jj is r 1

n and, for n large enough and t not too small,
this estimate provides a bound for the right-hand side < r=2. Thus, the modular
equations are actual equations over the integers:

�(a) mod r = �(u)

The attacker can hope for at most n � 1 such relations, since L has dimension
n � 1. This de�nes u up to the addition of an element from a one-dimensional
lattice. The correct value is presumably the element in this set closest to the
origin. Once u has been found, the value of x follows.



parameters

Input k 2 Z?r; G 2 C
Output P  [k]G

algorithm DoubleAdd(k;G)
P  O
for j = `� 1 downto 0:

P  [2]P

if kj = 1 then P  P +G

return(P )

Fig. 2. Double-and-Add Exponentiation

Lattice reduction experiments reported in [7] show that, with elliptic curves
of standard dimensions, the attack will succeed as soon as t reaches 5 digits. The
deep analysis of Nguyen and Shparlinski, shows that the signi�cant theoretical
bound is related to

p
log r.

5 Practical Experiments

The double-and-add exponentiation's case is the simplest to analyse: given the
projective representation of the result P , we can try and `unwind' the algorithm
with respect to the �xed point G.

In other words, we can check whether there is a value P 0 such that

	P 0;P 0+G(P
0) = P

and if so compute all the pre-images P 0. Then for all pre-images P 0 we can check
whether this was the result of a point doubling. We also need to check whether
P itself was the output of a point doubling. This results in a backtracking style
algorithm which investigates all possible execution paths through the algorithm.

There are two factors at work here. For each testing of whether 	P;P+G (resp.
	P;[2]P ) was applied we have a representation-dependent probability of p (from
the above lemmata), this acts in the attacker's favour. However, each success
for this test yields 1=p pre-images, which increases the attacker's workload. The
result is that, while practical, the attack against the double-and-add algorithm
is not as e�cient as one might initially hope.

We ran one thousand experiments in each prime characteristic modulo 12.
Table 1 presents the success of determining the parity of the secret exponent.
One should interpret the entries in the table as follows: For example with q � 5
(mod 12), we found that in 71 percent of all cases in which k was even we where
able to determine this using the above backtracking algorithm. This means that



parameters

Input k 2 Z?r; G 2 C
Output P  [k]G

precomputation

G1 G

G2 [2]G

for j = 1 to 2r�2 � 1:

G2j+1 G2j�1 +G2

P  Gk`�1

exponent encoding

set k =
P`�1

i=0 ki2
ei

with ei+1 � ei � r and ki 2 f�1;�3; : : : ;�2r�1 � 1g
algorithm SlidingWindow(k;G)

for j = `� 2 downto 0:

P  [2ej+1�ej ]P

if `j > 0 then P  P +Gkj else P  P +G�kj

P  [2e0 ]P

return(P )

Fig. 3. Signed Sliding Window Exponentiation

in these cases the execution path which started with assuming P was the output
of a point addition was eventually determined to be invalid.

Table 1. Probability of Determining the Secret's Parity Using Double-and-Add Expo-
nentiation

q mod 12 1 5 7 11

Pr[parity determinedjk even] 0.98 0.71 0.80 0.50
Pr[parity determinedjk odd] 0.95 0.74 0.50 0.47

Pr[parity determined] 0.96 0.72 0.65 0.48

Only in the cases q � 1 mod 12 and q � 7 mod 12 did we have any success
in determining the value of the secret exponent modulo 8 precisely (around
50 percent of the time when q � 1 mod 12 and 8 percent of the time when
q � 7 mod 12).

We did a similar experiment using the signed sliding window method, with
a window width of 5 (see also Algorithm IV.7 of [1]) assuming that the pre-
computed table of multiples of the base point is known to the attacker. In this



case we had a much lower probability of determining the parity, but could still
determine the value of the exponent modulo 32 in a signi�cant number of cases
(Table 2).

Table 2. Probability of Determining the Secret's Parity Using Signed Sliding Window
Exponentiation

q mod 12 1 5 7 11

Pr[parity determinedjk even] 0.86 0.00 0.05 0.00
Pr[parity determinedjk odd] 0.81 0.75 0.49 0.53

Pr[parity determined] 0.81 0.37 0.27 0.26

Pr[k mod 32 determined] 0.42 0.01 0.01 0.00

Note that this means that if q � 1 mod 12 then we will be successful in de-
termining the full private key for the division free signature algorithm of Section
4 using lattice reduction.

6 Thwarting The Attack

There is a simple trick that avoids the attacks described in the previous sec-
tions. It consists in randomly replacing the output (X;Y; Z) of the computation
by (X; �Y; �Z), with � = �1. This makes it impossible for an attacker to spot
projective coordinates, which cannot be obtained by squaring. It should be un-
derlined that this countermeasure (that we regard as a challenge for the research
community) thwarts our speci�c attack but does not lend itself to a formal se-
curity proof. Note, such a defence only appears to need to be done at the end of
the computation as our attack model assume the attacker does not obtain any
intermediate points from the multiplication algorithm.

A more drastic method replaces (X;Y; Z) by (�2x; �3y; �), where � is ran-
domly chosen among the non zero elements of the base �eld (with ordinary
projective coordinates, one uses (�x; �y; �)). This method provides a randomly
chosen set of projective coordinates for the result and, therefore, cannot leak
additional information.

With this new protection, the division-free signature scheme of Section 4 can
be shown to be secure in the random oracle model, against adaptive attackers
trying to achieve existential forgery. We outline the proof. As usual (see [9]), one
uses the attacker to solve the discrete logarithm problem (here, on C). The public
key of the scheme is set to Q, the curve element for which we want to compute
the discrete logarithm in base G. Signature queries are answered by randomly
creating P = [d]G + [h]Q, picking random projective coordinates for P , say
(X;Y; Z) and setting the hash value of fm;X; Y; Zg as any element = h mod r.
Thus fed, the attacker should create a forged message signature pair, with sig-
ni�cant probability. We let m be the corresponding message and fX;Y; Z; dg



be the signature. With signi�cant probability, fm;X; Y; Zg is queried from the
random oracle. Replaying the attack with a di�erent answer modulo r to this
question, one gets, with signi�cant probability, another forgery fm;X; Y; Z; d0g,
with h replaced by h0. From the relation

[d]G+ [h]Q = [d0]G+ [h0]Q

one �nally derives the discrete logarithm of Q.
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