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Abstract. This paper provides either security proofs or attacks for a large num-
ber of identity-based identification and signature schemes defined exblar-e

itly or implicitly in existing literature. Underlying these are a framework that on
the one hand helps explain how these schemes are derived, and dinethieamd
enables modular security analyses, thereby helping to understandifysiamol
unify previous work.

1 Introduction

CURRENT STATE OF THE AREA The late eighties and early nineties saw the proposal
of many identity-based identification (IBI) and identitgd®ed signature (IBS) schemes.
These include the Fiat-Shamir IBl and IBS schemes [11], th#i@B-Quisquater IBI
and IBS schemes [16], the IBS scheme in Shamir's paper [28}dacing identity-
based cryptography, and others [21, 13, 6]. Now, new, pain@ised IBS schemes are
being proposed [26, 17, 23, 8, 32].

Prompted by the renewed interest in identity-based crypfity that has followed
identity-based encryption (IBE) [7], we decided to revisié 1Bl and IBS areas. An
examination of past work revealed the following.

Although there is a lot of work on proving security in the iti@oation domain, it
pertains to standard rather than identity-based schefResekample, security proofs
have been provided for standard identification schemeterkta the Fiat-Shamir and
Guillou-Quisquater 1Bl schemes [10, 4], but not for the IBhemes themselves.) In
fact, a provable-security treatment of IBI schemes is elytiacking: there are no secu-
rity definitions, and none of the existing schemes is prowsuie. Given the practical
importance and usage of IBI schemes, this is an importat gamewhat surprising)
gap.

The situation for IBS is somewhat better. Cha and Cheon geosi definition of
security for IBS schemes and prove their scheme secure @8lisDKatz, Xu, and Yung
[9] define a class of standard signature (SS) schemes that#tigrapdoor, and then



present a random-oracle-using transform (let us cafiSt2-IBS) that turns any secure
trapdoor SS (tSS) scheme into a secure IBS scheme. Seawritfgior several existing
IBS schemes, including those of [11, 16], are obtained bglisg that these are the
result of applyingtSS-2-IBS to underlying tSS schemes already proven secure in the
literature [24, 20, 1]. However, as we will see, there areesViIBS schemes not yet
proven secure (one example is Shamir's IBS scheme [29ereliecause they are not
the result of applyingSS-2-1BS to a tSS scheme, or because, although they are, the tSS
scheme in question has not yet been analyzed.

The goal of this paper is to fill the above-mentioned gapsén it and IBS areas.

PRELIMINARIES. The first step, naturally, is definitions. We extend to thé d8tting
the three notions of security for standard identificatiol) §8hemes, namely security
against impersonation under passive attacks (imp-payeaattacks (imp-aa) [10], and
concurrent attacks (imp-ca) [4]. Our model allows the aslagrto expose user (prover)
keys, and to mount either passive, active, or concurreatkgton the provers, winning
if it succeeds in impersonating a prover of its choice. Wearnthat although existing
security definitions for other identity-based primitivés-p] give us some guidance as
to what adversary capabilities to consider, there are sesues in the definition for IBI
that need thought, mainly related to what capabilities theeesary gets in what stage
of its two-stage attack. See Section 2.

The security notion for SS schemes is the standard unfoilggaimder chosen-
message attack (uf-cma) [15]. An appropriate extensionhfof iIBS schemes exists [8,
9] and we refer to it also as uf-cma. These definitions ardleztan the full version of
the paper [2].

CERTIFICATION-BASED IBI AND IBS. Before executing the main task of analyzing
practical IBl and IBS schemes, we pause to consider thedollpnatural design of an
IBI scheme, based on any given S| scheme, via the certifitpicadigm. The authority
picks a public and secret key péjsk, sk) for a SI scheme, and provides these to prover
I along with a certificatecert consisting of the authority’s signature dnpk. The
prover can now flowpk, cert to the verifier and then identify itself via the Sl scheme
underpk. The verifier needs to know onlyand the public key of the authority in order
to authenticate the prover.

In [2], we prove that the above yields a secure IBI scheme. dalagous result
holds in the IBS case. We believe that this is worth notingalise it highlights the fact
that, unlike IBE [7], 1Bl and IBS are trivial to achieve (anmdparticular do not require
random-oracles), and enables us to better understand wdgtractical schemes are
trying to do, namely to beat the trivial certification-basetiemes in performance.

MAIN CONTRIBUTIONS AND APPROACH This paper delivers security proofs for a
large number of practical IBI and IBS schemes, includingardy the ones mentioned
above, but many more that we surface as having been, wittsiginil implicit in the
literature.

We do this in two steps. In the first step, we provide a framé&wlat (in most cases)
reduces proving security of IBI or IBS schemes to provingusiggof an underlying Sl
scheme. In a few cases, we found that the S| schemes in questie already analyzed
in the literature, but in many cases they were not. The sestap] where lies the main



cSI-2-1BI
Name-SI ———— > Name-IBI

fs-1-2-S
fs-1-2-S

cSS-2-1BS
Name-SS ——— > Name-IBS

Fig. 1. Family of schemes associated to a cS| schéfaee-SI. If Name-SI is imp-atk se-
cure thenName-IBI is also imp-atk secure, for alitk € {pa,aa,ca}. If Name-SI is imp-

pa secure thelame-IBS is uf-cma secure. Implicit in drawing the diagram this way is that
fs-1-2-S(cSI-2-IBI(Name-SI)) = ¢SS-2-IBS(fs-1-2-S(Name-SI)).

technical work of the paper, is to provide security proofs thiitose SI schemes not
already proven secure, and then provide direct securitgfgrior the few exceptional
IBI or IBS schemes that escape being captured by our frankewor

The framework, we believe, is of value beyond its ability éoluce proving secu-
rity of IBI and IBS schemes to proving security of Sl schenleselps understand
how schemes are being derived, and in the process surfazémpticit schemes we
mentioned above. Overall, the framework contributes tgsfying and unifying our
picture of the area. We now explain the framework, which isdoaon a set of trans-
forms, and then summarize the results for specific schemes.

THE TRANSFORMS We introduce (cf. Definition 2) a class of SI schemes that alk ¢
convertible. The idea is that their key-generation prodessinderlain by a primitive
called a trapdoor samplable relation that we introduce ifiridon 1. We then present a
random-oracle-using transforeSi-2-1BI that transforms a convertible Sl (cSl) scheme
into an IBI scheme (cf. Construction 1). Theorem 1 shows ¢8&2-IBI is security-
preserving, meaning that if the starting ¢Sl scheme is ithpsacure then so is the
resulting IBI scheme (in the random oracle model), for eaghe {pa, aa,ca}. This
will be our main tool for proving security of IBI schemes.

It is useful to analogously define convertible standardaigre (cSS) schemes and
a transformcSS-2-IBS that turns a uf-cma secure ¢SS scheme into a uf-cma secure IBS
scheme. These extend [9] in the sense that any tSS schense is @6S scheme, and
¢SS-2-1BS coincides withtSS-2-IBS when the starting scheme is a tSS scheme, but the
class of ¢SS schemes is larger than the class of tSS schemes.

Now letfs-1-2-S denote the (random-oracle using) Fiat-Shamir transfodhyhich
turns a Sl scheme into a SS scheme. We know that if the forniempigpa secure then
the latter is uf-cma secure [1]. (Application of the tramafiand this last result requires
that the starting SI scheme be a three-move public-coiropobtsatisfying a certain
technical condition, but all this will always be true for thpplications we consider.)

Putting the above together yields Corollary 1, which says,ths long as a cSl
schemeX is imp-pa secure, the IBS schers-2-1BS(fs-1-2-S(X)) is uf-cma secure.
This will be our main tool for proving security of IBS schemes



We note thafts-1-2-S also transforms a given 1Bl scheme into an IBS scheme. Fur-
thermorecSS-2-IBS(fs-1-2-S(X)) = fs-1-2-S(cSI-2-IBI( X)) for any ¢Sl schem&.. In
other words, the diagram of Figure 1 “commutes.”

As an aside, we remark that the analogue of the result of [#kdot hold for
fs-1-2-S as a transform of IBI schemes to IBS schemes: Propositiom#/sthat there
exists an imp-pa secure IBI scheriiewhich underfs-I-2-S yields an insecure IBS
scheme. This does not contradict the above sincelthis not the result otSI-2-1BI
applied to a ¢Sl scheme, but it makes things more difficultfawaexception cases (that
we will see later) in which we need to consider an IBS schéme fs-1-2-S(Y') where
Y is an IBI scheme that is not equaldbl-2-I1BI(X) for any cSI schemé& . See the end
of Section 3 for more information.

SCHEME FAMILIES. We seek to explain any IBI scheriein the literature by surfacing
a cSl schemeX such thatSI-2-1BI(X) = Y. We seek to explain any IBS scherfign
the literature by surfacing a cSl schetiesuch thatSS-2-IBS(fs-1-2-S(X)) = Z. We
are able to do this for the schemes in [11, 16, 29, 13, 17, &]2hd for the RSA-based
IBI scheme in [21], which, by Theorem 1 and Corollary 1, reskithe task of showing
thatY, Z are secure to showing that is secure in these cases.

We remark that the above gives rise to numerous schemesrthéahew” in the
sense that they were not provided explicitly in the literatéor example, Shamir [29]
defined an IBS scheme but no IBI scheme. (He even says prgwdifBl scheme is an
open question.) Denoting Shamir’s IBS schemé&hyIBS, we surface the ¢Sl scheme
Sh-ST such thatcSS-2-1BS(fs-1-2-S(Sh-SI)) = fs-1-2-S(cSI-2-IBI(Sh-SI)) = Sh-IBS.
As a consequence, we surface the IBl sch€mé&BI = cSI-2-1BI(Sh-SI) that is related
in a natural way tcSh-IBS, namely by the fact thafs-1-2-S(Sh-IBI) = Sh-IBS. In
an analogous way we surface IBI schemissIBI and ChCh-IBI underlying the IBS
schemes of [17] and [8, 32], respectively.

Beside explaining existing IBI or IBS schemes, we are abldadve some new
ones. We found papers in the literature [19, 22, 12] not dgjifB| or IBS schemes, but
defining SI schemes that we can show are convertible. Ousftrans then yield new
IBI and IBS schemes that we analyze.

We feel that this systematic surfacing of implicit schemefpf to homogenize,
unify, and simplify the area. Figure 1 summarizes the petsmethat emerges. We
view schemes as occurring in families. Each family has alfanameName. At the
core of the family is a ¢Sl schem¢ame-SI. The other schemes are related to it via
Name-IBI = cSI-2-I1BI(Name-SI), Name-SS = fs-I-2-S(Name-SI), andName-IBS =
cSS-2-IBS(Name-SS). If Name-SI is secure, so are all other schemes in the family.

RESULTS FOR SPECIFIC SCHEMEYn order to complete the task of obtaining security
proofs for the existing and new IBI and IBS schemes we haveudied, it remains
to analyze the ¢Sl schemes underlying the families in qoesTihis turns out to be a
large task, for although in a few cases the cSl scheme is oeadyl analyzed in the
literature, we found (perhaps surprisingly) that in manyesait is not. Additionally, we
need to directly analyze two IBI schemes not underlain byst®lemes, namely the
DL-based scheme in [21], and a somewhat more efficient Schwased [27] variant
that we introduce.



Name |Origin Name-SI | Name-IBI Name-SS|Name-IBS
imp-pa imp-aa imp-qémp-pa imp-aa imp-cauf-cma | uf-cma

FS IBI,IBS [11,10]| [11] [10] I I I I [24] [9]
ItR S|, SS[19,22] || [28] [28] U | I U [24] [9]
FF SI,SS [12] [12] [12] [12] | I I [12] [9]
GQ IBI, IBS [16] [16] [4] [4] | I I [24] [9]
Sh IBS [29] P A A | A A I |
Sh* Sl P P P I I I I |
OkRSA|SI, IBI, SS [21]|| [21] [21] I | I I [24] [9]
Gir Sl, I1BI [13, 25] A A A A A A A A
SOK |IBS [26] P A A | A A I |

Hs IBS [17] P P P | I I [17] [9]
ChCh |IBS[8,32] P P P | I I [8] [8]
Beth |IBI [6] P u u | u u I |
OkDL |IBI[21] I | I P P P I |
BNN [SI,IBI I | I P P P I |

Fig. 2. Summary of security results. Column 1 is the family name of a family ofeese Col-
umn 2 indicates which of the four member-schemes of the family existetiliténature. (The
others we surface.) In the security columns, a known result is indicased reference to the
paper establishing it. The marksP, andA all indicate new results obtained in this paper.lAn
indicates a proof of security obtained by implication. (If unflieme-IBI it means we obtain it
via Theorem 1, if undeName-IBS it means we obtain it either via Corollary 1 or via our mod-
ified fs-1-2-S transform, if elsewhere it means it follows easily from, or is an easynsida of,
existing work.) AP indicates a new security proof, such as a from-scratch analysis & Sbor
IBI scheme. A indicates an attack that we have foundUAndicates that the security status is
unknown. In all but the last two rows, the S| scheme is convertible. Thest of schemes are
factoring based, the next RSA based, the next pairing based, andth Idased. For each of
the schemes above except for the last tiéame-IBS is obtained through th&-I-2-S transform.
OkDL-IBS andBNN-IBS are obtained through a modified version of fé-2-S transform.

A summary of our results is in Figure 2. Section 4 and the falision of the pa-
per [2] provide scheme descriptions and more precise regitments. Note all secu-
rity proofs for SS, IBI, and IBS schemes are in the randonelerRO) model of [5].
Proofs are in [2]. Here, we highlight some of the importaenatnts of these results.

CASES CAPTURED BY OUR FRAMEWORK Section 4 begins by surfacing SI schemes
underlying the first 12 (i.e. all but the last two) familiesFagure 2 and shows that they
are convertible, so that the picture of Figure 1 holds intedbe cases and we need only
consider security of the ¢Sl schemes. The analysis of ttetsares follows.

Easy cases aifs, ItR (the iterated-root, also called-th root, family),FF, GQ, and
OkRSA (an RSA-based family from [21]) where the S| schemes aradyrpresent and
analyzed in the literature [10, 28, 12, 4, 21].

The Sh-SI scheme turns out to be a mirror-image @R-SI, and is interesting
technically because we show that it is honest-verifier kgmwvledge (HVZK) even
though it might not at first appear to be so. Based on this, weepthat it is imp-pa
(cf. Theorem 3), but simple attacks show that imp-aa andémpe not hold. A slight



modificationSh*-ST of this scheme however is not only imp-pa but also proven &ap-
and imp-ca secure under the one-more-RSA assumption afff3[ljeorem 4), so that
its security is like that oGQ-SI [4].

An attack and a fix for Girault’s IBI scheme [13] were proposgefP5], but we find
attacks on the fixed scheme as well, breaking all schemeg ifathily.

We prove imp-pa security of the pairing-basgoK-SI, Hs-SI andChCh-SI schemes
under a computational DH assumption and imp-aa, imp-cariggcunder a one-more
computational DH assumption (cf. Theorems 5 and 6). We rerfeat theSOK-IBS
scheme defined via our transforms is not the one of [26], bsligbtly different. This
suggests the value of our framework, for it is unclear whethe IBS scheme of [26]
can be proved uf-cma secure, whereas Corollary 1 impliesSO&-1BS is uf-cma
secure.

Since the discrete-log function has no known trapdoor iisam obvious starting
point for IBI schemes, but some do exist. Beth’s (unprov&hscheme [6] is based on
ElGamal signatures. The proof of convertibility of tBeth-SI scheme we surface is in-
teresting in that it exploits the existential forgeabilifyE|Gamal signatures. Theorem 7
says thaBeth-SI is imp-pa secure if the hashed-message ElGamal signatueenscis
universally unforgeable under no-message attack in thdoraroracle model.

EXCEPTIONS The last two rows of Figure 2 represent cases where our frankedoes
not apply and direct analyses are needed. The first suchsaseunproven DL-based
IBI schemeOkDL-IBI due to Okamoto [21], which introduces an interesting S®tas
method for constructing IBlI schemes and instantiates ih it own DL-based SS
scheme. We were unable to surface any ¢Sl scheme which aftefIBl maps to
OkDL-IBI. (OkDL-IBI can be “dropped” in a natural way to a S| sche@ieL-SI, but
the latter does not appear to be convertible.) However, we sh [2] that OkDL-IBI

is nevertheless imp-pa, imp-aa, and imp-ca secure assurandgess of the DL prob-
lem. This direct proof is probably the most technical in tlapgr and uses the security
of Okamoto’s DL-based SS scheme under a weakened notiomefadieability [31],
which is established via an extension of the result of [1] birad with results from
[21]. We also present a new IBI sche®BN-IBI that is based on the paradigm under-
lying OkDL-IBI but uses Schnorr signatures [27] instead of Okamoto sigemtit is
slightly more efficient thar©OkDL-IBI. Security results are analogous to those above.
See [2] for descriptions of the schemes and our results.

Proposition 1 precludes proving security of the IBS schefsg2-S(OkDL-IBI)
and fs-1-2-S(BNN-IBI) based merely on the security properties of the IBl schemes.
However, we slightly modify the classicéd-1-2-S transform and obtain a transform
that yields a secure uf-cma IBS scheme when applied to arparip! scheme. We can
then apply this transform tokDL-IBI or BNN-IBI to obtain uf-cma IBS schemes.

RELATED WORK. Independent of our work, Kurosawa and Heng [18] recentbr pr
sented a transform from a certain class of “zero-knowle&f5chemes to IBl schemes.
However, the IBI scheme resulting from their transform isyoshown to be secure
against impersonation undeassiveattacks.



2 Security Notions for Identification Schemes

NoTaTION.We letN = {1, 2,3, ...} denote the set of natural numbersklE N, then
1* is the string ofk ones. The empty string is denotedIf z,y are strings, thefs|
is the length ofr andz||y is the concatenation af andy. If S is a set, thenS]| is its
cardinality. If A is a randomized algorithm, the#(z1, z2,... : O1,02,...) means
that A has inputsey, zo, . .. and access to oracl€y;, Oo, .. ., andy & Az, z9,. ..
01, Oa,...) means that the output of’s run is assigned tg. We denote the set of all
possible outputs byA(z1, xa,... : O1,Os,...)], the running time ofd by T 4, and
the number of times! queried theD, oracle byQ$’. We defineQ, = 3, Q%'

An interactive algorithm (modelling a party such as proveverifier in a protocol)
is a stateful algorithm that on input an incoming mess&fg (this ise if the party is
initiating the protocol) and state informatiSm outputs an outgoing messageg,,,; and
updated stat8t’. For an interactive algorithmd that has access to orack@s, O, ... .,
this is written ag M., St’) & A(M;y, St : O1,04,...). The initial state of4 con-
tains its inputs and optionally a random tgpef no random tape is explicitly given in
the initial state A is assumed to toss its own coins.

STANDARD IDENTIFICATION SCHEMES. A standard identification (Sl) schereea tu-
ple ST = (Kg, P, V) whereKg is the randomized polynomial-time key generation al-
gorithm, andP andV are polynomial-time interactive algorithms called thevamoand
verifier algorithms, respectively. In an initializatiorept the prover run&g(1%), where

k is a security parameter, to obtain a key paik, sk), and publishes the public key
pk while keeping the secret ke private. In the interactive identification protocol, the
prover runs? with initial statesk, and the verifier run¥ with initial statepk. The first
and last messages of the protocol belong to the prover. Tdieqml ends whekl enters
either theacc or rej state. We require that for all € N and for all(pk, sk) € [Kg(1*)],
the result of the interaction betweén(initialized with sk) andV (initialized with pk)

is acc with probability one.

SECURITY OF S| SCHEMES An adversaryA is a pair of algorithmgC'V, C' P) called
thecheating verifietland thecheating provef10]. We briefly recall the notions of imp-
pa, imp-aa [10], and imp-ca [4]. The experiment first chod®ss (pk, sk) via Kg(1%)

and then rung”V on pk. For a passive attack (pa);V gets a conversation oracle,
which, upon a query, returns a transcript of the conversdietweenP (with initial
statesk) andV (with initial statepk), each time generated under fresh coins for both
parties. For an active attack (aa) or concurrent attack (C&) gets a prover oracle
prOV. Upon a query(M, s) where M is a message andis a session number, the
PROV oOracle runs the prover algorithm usidg as an incoming message and returns
the prover’s outgoing message while maintaining the prewtate associated with the
sessiors across the invocations. (For each new sessiany uses fresh random coins
to start the prover, initializing it witkk.) The difference between active and concurrent
attacks is that the former allows only a single prover to vaat a time. Eventually,
CV halts with some output that is given €oP, and A wins if the interaction between
CP andV (initialized with pk) leads the latter to accept. Fetk € {pa, aa, ca}, the
imp-atk advantagef A in attackingSZ is written asAdvfé“I‘f}tk(k) and is defined to



be the probability ofA winning in the above experiment. We say ti¥dt is animp-atk-
secure S scheméAdvgnz“’}tk(‘) is negligible for every polynomial-timé.
IDENTITY-BASED IDENTIFICATION SCHEMES An identity-based identification (IBI)
schemés a four-tupleZBZ = (MKg, UKg, P, V) of polynomial-time algorithms. The
trusted, key-issuing authority runs tiheaster-key generatioalgorithm MKg on in-
put 1¥, wherek is a security parameter, to obtain a master public and skeyepair
(mpk, msk). It can then run theiser-key generatioalgorithm UKg on msk and the
identity I € {0,1}* of a user to generate for this user a secret &gy which is then
assumed to be securely communicated to the user in quektitime interactive iden-
tification protocol, the prover with identity runs interactive algorithn® with initial
stateusk, and the verifier run¥ with initial statempk, I. The first and last messages
of the protocol belong to the prover. The protocol ends wiesnters either thacc

or rej state. In the random oracle modélKg, P,V additionally have oracle access
to a functionH whose range may depend ampk. We require that for alk € N,

I € {0,1}*, (mpk, msk) € [MKg(1¥)], functionsH with appropriate domain and
range, andisk € [UKg(msk, I : H)|, the interaction betweeh (initialized with usk)
andV (initialized with mpk, I) is acc with probability one.

SECURITY OF IBl sCHEMES The security definition for IBI schemes is similar to that
of SI schemes. We highlight only the differences here. Aneasiry A is a pair of a
cheating verifieC'V and a cheating prover'P. It is given a conversation oracle for
passive attacks or a prover oracle for active and concuattantks as before except that
here it can ask for transcripts or for interactions with exgo identities of its choice.
For all three types of attacks, it is additionally given a&scéo an initialization oracle
and a corrupt oracle with which it can initialize and corraptidentity, respectively.
The former causes the new identity to receive a newly geegnager secret key while
the latter exposes the identity’s user secret keyltthen marks the identity as cor-
rupted. As beforeC'V is run first. At its completion, it returns an uncorruptedritity

J to be impersonated (along with other state informationer;’ P attempts the im-
personation for/. Throughout,A is not allowed to submit queries involving corrupted
identities (other than the original corrupting queriesiidionally, C P is not allowed
to submit queries involving. Foratk € {pa, aa,ca}, theimp-atk advantagef A in

attackingZBZ is written asAdviI“ng'aZtk(k) and is defined to be the probability df

winning in the above experiment. We say ti#7 is animp-atk-secure 1Bl schemié

AdviI“l;pI'a%k() is negligible for every polynomial-timél. Details are in [2].

3 Convertible Schemes and our Transforms

In analogy with the definition of trapdoor signature scheffgswve define the concept
of convertible identification schemard show how to transform these into IBl schemes.
We use a slightly more general concept than the trapdoom@yepermutations used
by [9] that we will calltrapdoor samplable relationdA relationR is a set of ordered
pairs(z,y) € Dom(R) x Ran(R). We write the set of images of € Dom(R) as
R(z) = {y | (x,y) € R} and the set of inverses of € Ran(R) asR~!(y) =

{z|(z,y) € R}.



Definition 1. A family of trapdoor samplable relatioi$is a triplet of polynomial-time
algorithms(TDG, Sample, Inv) such that the following properties hold: (1Efficient

generationOn input1*, wherek € N is the security parametef,DG outputs the de-
scription (R) of a relationR in the family together with its trapdoor informatian

(2) Samplability: The output of the algorithrSample on an input(R) is uniformly

distributed ovelR; (3) Inversion:On input a relation descriptiokR), the correspond-
ing trapdoort¢, and an elemeny € Ran(R), the randomized algorithrimv outputs a
random element dR~!(y); (4) Regularity:Every relationR. in the family is regular,
meaning that the number of invers@& ! (y)| is the same for alj € Ran(R). 1

Note that this definition does not ask that any computatignablem relating to the
family be hard. (For example, there is no “one-wayness” ireguent.) We do not need
any such assumption.

Definition 2. A Sl schem&Z = (Kg, P, V) is said to beconvertibleif there exists a
family of trapdoor samplable relations = (TDG, Sample, Inv) such that for alk € N
the output of the following is distributed identically teetbutput ofkg(1%):

((R), ) < TDG(1¥) ; (z,y) < Sample((R));
pk — ((R),y); sk — ((R),z); Return(pk,sk) 1

The following describes theSI-2-1BI transform of a convertible Sl (cSI) scheme into
an IBl scheme. The idea is that to each idenfityve can associate a value that is
derivable from the master public key afid This value plays the role of a public key
for the underlying cSlI scheme. This “pseudo-public-key({R) , H(I)), whereH is a
random oracle.

Construction 1. Let ST = (Kg, P, V) be a ¢Sl scheme, and |18t = (TDG, Sample,

Inv) be the family of trapdoor samplable relations that undsili@s per Definition 2.
ThecSI-2-IBI transform associates & the random-oracle model IBl schem&Z =
(MKg, UKg, P, V) whose components we now describe. The master and user key gen
eration algorithms are defined as

Algorithm MKg(1¥) Algorithm UKg(msk, I : H)
((R),t) & TDG(1F) Parsemsk as((R) ,t)
mpk — (R) ; msk — ((R),t) T & Inv((R),t,H(I)) ; usk — ((R), z)

Return(mpk, msk) Returnusk

whereH : {0,1}* — Ran(R) is a random oracle. The prover algorittiris identical
to P. The verifier algorithmV/ (-, - : H) parses its initial state &$R.) , ) and runsv on
initial state((R) , H(I)). 1

The following theorem, proved in [2], says th&ll-2-1Bl is security-preserving.

Theorem 1. LetSZ be a cSl scheme and [EBZ = cSI-2-IBI(SZ) be the associated
IBI scheme as per Construction 1. For aagk € {pa, aa, ca}, if ST is imp-atk secure
thenZBZ is imp-atk secure.



Convertibility of a standard signature (SS) schesfite = (Kg, Sign, V) is defined by
analogy to Definition 2. (The condition is only on the key-getion algorithm.) The
cSS-2-1BS transform is defined analogously to th&l-2-1BI transform: given a con-
vertible SS (cSS) schem®&S = (Kg, Sign, Vf), the transform yields an IBS scheme
IBS = (MKg, UKg, Sign, Vf) where the master and the user key generators are ex-
actly as in Construction 1, arign(usk, -) and Vf(mpk, I,-,- : H) are identical to
Sign(usk, -) and Vf((mpk, H(I)), -, -), respectively. The proof of the following ana-
logue of Theorem 1 is similar to the proof of Theorem 1 and isthmitted.

Theorem 2. LetSS be a ¢SS scheme andT88S = ¢SS-2-I1BS(SS) be the associated
IBS scheme as defined aboveS# is uf-cma secure theh5S is also uf-cma secure.

One can check that any trapdoor SS (tSS) scheme as definddsa [€5S scheme, and
their tSS-2-IBS transform coincides withSS-2-IBS in case the starting ¢SS scheme is
trapdoor. Thus, Theorem 2 represents a (slight) extenditmed result. However, the
extension is important, for we will see cases of ¢SS schehasate not trapdoor and
where the extension is needed.

We know that, ifSZ is an imp-pa secure S| scheme, thei-2-S(SZ) is a uf-cma
secure SS scheme [1]. It is also easy to see thabthe-S transform of a ¢Sl scheme
is a ¢SS scheme. Combining this with Theorem 2 yields thewatlg, which will be
our main tool to prove security of IBS schemes.

Corollary 1. LetSZ be a ¢Sl scheme, and [E8S = ¢SS-2-I1BS(fs-1-2-S(S7)). If ST
is imp-pa secure thehBS is uf-cma secure.

Above, it is assumed thaZ is a three-move, public coin protocol (so that one can
apply fs-1-2-S to it) and also that the commitment (first move of the proverjiiawn
from a space of super-polynomial size (so that the resultpépplies). An Sl or IBI
scheme having these properties is cattadonical

One can also apply tHe-1-2-S transform to a canonical IBI scheme to obtain an IBS
scheme, and one can check th&8-2-I1BS(fs-1-2-S(S7)) = fs-I-2-S(cSI-2-IBI(SZ))
for any canonical ¢Sl schen#®Z. It follows thatfs-1-2-S yields a uf-cma secure IBS
scheme if it is applied to eonverted Bl scheme, meaning one that is obtained as the
result of applyingcSI-2-IBI to some (canonical) ¢Sl scheme. However, one can also
applyfs-1-2-S to a canonical IBI scheme that is not converted and get an tB8rse,
and there will be instances later where we would like to ds.ttinfortunately, the IBS
scheme so obtained need not be secure, in the sense thaatbguenof the result of
[1] does not hold, as stated below and proved in [2].

Proposition 1. Assume there exists an imp-pa secure canonical 1Bl schdma, There
exists an imp-pa secure canonical IBl schefi#Z such thatfs-1-2-S(ZBZ) is not uf-
cma secure.

We now provide a remedy for the above. We consider a modifiesioreof thefs-1-2-S
transform that hashes the identity of the signer (provem@kith the commitment and
message, rather than merely hashing the commitment andageeas irfs-1-2-S. We
can show (by an extension of the proof of [1] that we omit) tlifathis transform is
applied to a canonical imp-pa secure IBI scheme, then treomé is a uf-cma secure



IBS scheme. We apply this in [2] to obtain uf-cma secure IB&stes from the two
unconverted 1Bl schemes we consider, nant@pL-IBI andBNN-IBI.

4 Applying the Framework

We now apply the above transform-based framework to prowerig of existing and
new IBI and IBS schemes. To do this, we consider numeroust&nses. (Some are
known. Some are new.) We show that they are convertible,lmrddnalyze their secu-
rity. The implications for corresponding IBI and IBS schespebtained via the trans-
forms discussed above, follow from Theorem 1 and Corollafyigure 3 presents the
key generation algorithms of the SI schemes we considerfFande 4 presents the
corresponding identification protocols.

GENERATORS The key generation algorithms shown in Figure 3 make useuatp-
eter generation algorithmgCe,., for factoring-based schemeg,,, for RSA-based
schemes/Cqiog for DL-based schemes arid,,;, for pairing based schemes. These
are randomized polynomial-time algorithms that on inptitproduce the following
outputs: e, generates tuple@V, p, ¢) such thatp, ¢ are primes andV = pq; K,sa
outputs(N, e, d) such thatN is the product of two primes anel = 1 mod ¢(N);
Kaiog OUtputs the description of a multiplicative groGpits prime order; and a gener-
atorg; Kp.ir generates the description of an additive gréupand a multiplicativeG,

of the same prime ordes;, a generatoP of G, and a non-degenerate, polynomial-time
computable bilinear map: G; x G; — Go. We say thatC,, is a prime-exponent
generator ife is always a prime. Security results will make various asdionp about
the computational problems underlying these generators.

HASH FUNCTION RANGES In applyingcSI-2-IBI to FS-SI, we assume the hash func-
tion in Construction 1 has range the set of quadratic residueduloN whereN is
the modulus in the public key. This is a convenient abstpacin the random-oracle
model, but note that implementing such a hash function ficdif since the range is
not decidable in polynomial-time. However, this is a staddaroblem in this domain
and various standard changes to the scheme take care okisdrhe problem arises
for several other schemes below as well, and also ariseg.ilV®will not mention it
again, but instead assume our random-oracle hash fundtareswhatever ranges we
need. Those usually being obvious from the scheme are rmistisd explicitly.

FS AND ItR. SinceFS-SI is the special case d¢fR-SI in whichm = 1, it suffices to
show that the latter is convertible. This is easily seen siering the relatiolR =
{((x1,. ., 20), (X1, ..., X0)) | Xi = 272" mod N fori = 1,...,t} with description
(R) = N and trapdoo(p, ¢). Pair sampling involves selecting random elements from
Z}y, raising them to the™-th power, and inverting them modulg.

We note thatFS-IBI = cSI-2-IBI(FS-SI) is exactly the IBI scheme in [11] and
FS-IBS = cSS-2-1BS(fs-1-2-S(FS-SI)) is exactly the IBS scheme in [11]. We know
thatFS-ST is imp-pa and imp-aa secure assuming factoring is hard §t@] this easily
extends to imp-ca. Theorem 1 implies the8-IBI inherits these security attributes.
(Corollary 1 implies uf-cma security dfS-IBS assuming factoring is hard, but this
was known [9].)



FS

(N7p7 Q) & K:faCt(lk)
Fori=1...tdo

ItR

(N7pa q) i KfﬂCt(lk)
Fori=1...tdo

GQ, Sh, Sh*
(N, e,d) & Kisa(1%)

$ *
T — 2Ly

xiiZ}‘\, xliZ}‘V X «— 2*mod N
X; «— x;"? mod N X; —2; 2" mod N | pk — ((N,e), X)
pk<—(N7(X17"'7Xt)) pk‘*(Ny(Xlwqut)) Sk<—((N,€),x)
sk — (N, (x1,...,x¢)) | sk — (N,(z1,...,7¢))
FF Gir OkRSA

(va: q) & ICf'dCt(lk)

Chooser > n(p,q) — 1
g < HQRy

X1 <iZQm 3 wziZ}k\]
X g”1x§m+T mod N

pk — ((N,7,9),X)

sk ((Nv T, 9)7 (:L'17£L‘2))

(N, e,d, f) < Krea(1%)
Choosgy € Z} of order f
h < ¢g° mod N ; sﬁZf
x &7y

S «— g *mod N

P — X~%S mod N

pk — ((N,e, h, f), X)

(N, e,d) & Keea(1¥)

9< Iy

T & ZLe ; T2 & VAS

X — g "tz;“mod N
pk — ((N,e,g),X)

sk — ((Nvevg)7(x17x2))

sk — ((N,e,h, f),(P,s))
Beth

(G, q,9) < Kaog(1")

rE Ly R—g s ah & 25 X —g°
s+ (h— Rz)r ! mod ¢

pk — ((G,q,9,X), h)

sk — ((G,q,9,X), (R, s))

SOK, Hs, ChCh

(61,62,q, P, &) Kpair (1¥)
S, U & Zq; S «— sP
U—uP;V «— suP

pk — ((le(G?vq’P7 é7 S)aU)
sk «— ((G1:G2,Q7P, é, S)7V)

Fig. 3. Key generation algorithms of the 12 ¢Sl schemes that we csider. Each takes input
1% and returngpk, sk). The integersn,t > 1 where used are scheme parameters. See the text
for notation used above.

We know thatltR-ST is imp-pa and imp-aa secure assuming factoring is hard [30,
28]. Theorem 1 implies thdtR-IBI = cSI-2-IBI(ItR-SI) is imp-pa and imp-aa secure
assuming factoring is hard. (Corollary 1 implies th#&-IBS = cSS-2-1BS(fs-1-2-S(
ItR-SI)) is uf-cma assuming factoring is hard, but this was known {@hetherltR-SI
is imp-ca secure, and hence wheth®-1BI is imp-ca secure, remains open.

FF. The FF-SI scheme was introduced by [12] as a fix to an attack they found on
scheme in [21]. In the key-generation algorithm of Figure @) denotes the largest
integer such tha”®) dividesp — 1 andn(p, ¢) = max(n(p),n(q)). FF-SI is shown in
[12] to be imp-pa, imp-aa, and imp-ca secure assuming facgtés hard. The authors
defined no IBI or IBS schemes. We can show tRB#SI is convertible, and we thus
obtain FF-IBI = cSI-2-IBI(FF-SI) and FF-IBS = c¢SS-2-1BS(fs-1-2-S(FF-SI)), and
these are secure if factoring moduli generateddy; is hard.

Let HQRy = {22"""” mod N |z € Z%} denote the set of higher quadratic
residues moduldV, which is also the subset of elementsZi§ of odd order. To show
convertibility of FF-SI we consider the relatioR C (Zam x Z%) x HQR y described



Scheme Cmt Rsp

Ch Accept condition
FS y & Zh;Y —y?mod N z —y[[, 2" mod N

c=(c1,...,ct) & Zb Acceptiff Y = 2* [, X mod N
ItR y & 75Y — 32" mod N z — y[[, ;" mod N

c=(c1,...,c1) & Zhm Accept iff Y = 22" 1, X;* mod N
FF Y1 & Lom+r 21« 41 + cx1 mod 217

y2 <& L a— [(yn + cxr) /2777

Y «— gy1y§m+T mod N 22 — g%yoxs mod N ; z «— z1, 22

¢ Zom Accept iff g** z§m+T =YX mod N
Sh y <& Z5:Y — y® mod N z «— zy° mod N

ceqo,...,2"™ —1} Accept iff 2° = XY mod N
Sh* y & Zh;Y — y° mod N z «— xy° mod N

c&{1,... 2!y Accept iff 2 = XY mod N
GQ in};YhyemodN z «— z°y mod N

c & {0,1}® Accept iff 2° = X°Y mod N
OkRSA 41 & Z, z1 < Y1 + cx1 mod e

y2 & Ly o — |(y1 + cx1)/e]

Y « ¢Y'y5 mod N 22 +— g%y225 mod N

c < {0,1}® Accept iff Y = g*1 25X mod N
Gir inf;YW—hymodN z+—y+ scmod f

Cmt «— (P,Y)

¢ < {0, 1}!® Accept iff h*(P°X)¢ = Y mod N
SOK yﬁZq;YHyP z—yc+V

e Gy Accept iff é(z, P) = é(U, S)é(c, Y)
Hs y & 7y Y — é(P,P)? z—yP+cV

¢ Z, Acceptiffé(z, P) =Y - é(U, S)°
ChCh YLy Y —yU z=(y+oV

cs 7, Accept iff é(z, P) = é(Y 4 U, S)
Beth Yy Ze; Y —RY z «—y+csmod g

Cmt «— (R,Y)

c & {0,1}®

Accept iff g°h = R*Y X°F

Fig. 4. Identification protocols of the 12 cSI schemes that we coiger. We show the first
commitment messagémt sent by the prover, the challengé sent by the verifier, the response
Rsp returned by the prover, and the condition under which the verifier &&caf schemes use
Cmt = Y, Ch = ¢ andRsp = z unless explicitly defined otherwise. The prover is initialized
with sk and the verifier withpk. The integersn,¢ > 1, and the challenge length N — N,
where used, are scheme parametersSHfSI, Sh*-SI, GQ-SI, and Gir-SI, it is assumed that
2/F) < ¢ for all e output byK,<. (1%). All security results assunids super-logarithmickC,. is

a prime-exponent generator $h-SI, Sh*-SI, andGQ-SI.




27+m

by (N, g,7) and containing tuple§(x;,z2), X) such thatg® z3 = X mod N.
The trapdoor is the factorization of. Regularity holds since squaring is a permutation
over HQR  and since each higher quadratic residue has exaéthy™"(@) different
27+t™_th roots modulaV. Pair sampling involves choosing, z» at random and com-
g7 +m

puting X = g*'z;

GQ. TheGQ-SI scheme defined via Figures 3 and 4 is the standard one coeidehe
literature. Convertibility is easily seen by considerihg telationR = {(z, X) | 2° =
X mod N}, relation descriptionR) = (N, e), and trapdoord. Pair sampling in-
volves choosing: <- Z3%; and computingX «— 2° mod N. We note thalGQ-IBI =
cSI-2-IBI(GQ-SI) is exactly the IBl scheme in [16], ar@Q-IBS = cSS-2-IBS(fs-1-2-S(
GQ-SI)) is exactly the IBS scheme in [16]. We know th@Q-SI is imp-pa secure
assuming RSA is one-way, and imp-aa and imp-ca secure aggurardness of the
one-more-RSA problem [4]. Theorem 1 says that these ressxtitsid toGQ-IBI. (Also
Corollary 1 says thaEQ-IBS is uf-cma assuming RSA is one-way, but this was known
(91,

Sh AND Sh*. Shamir [29] defined an IBS scheme, but no Sl or IBI schemegdde
no security proof for his IBS scheme, and none has been pdvidtil now.

We surface the Sl schen$h-SI defined via Figures 3 and 4. One can check that
Sh-IBS = ¢SS-2-IBS(fs-1-2-S(Sh-SI)) is exactly the IBS scheme in [299h-SI is in-
teresting both historically and technically. It turns cube a “mirror-image” olGQ-SI
that closely resembles the latter. ConvertibilityShi-SI follows from the convertibil-
ity of GQ-SI since the two schemes have the same key-generation algo@bming
to consider security, the first question to ask is whefiteBI is honest-verifier zero-
knowledge (HVZK). While this was obvious f@Q-SI (and in fact, if true for an Sl
scheme, is usually obvious), it is in fact not apparent at gi@nce forSh-SI, and one
might suspect that the scheme is not HVZK. However, usingh itnvolving gcds, we
show thatSh-SI is statistical (not perfect) HVZK. We also show, in [2], tliais a proof
of knowledge and thereby obtain the following:

Theorem 3. TheSh-SI is imp-pa secure assuming one-wayness of the underlying RSA
key generatoiC,s.,.

Corollary 1 now implies tha$h-IBS is uf-cma secure under the same assumptions.

However,Sh-SI scheme is trivially insecure under active attacks, sineectieating
verifier can learn the secret key by sending a zero challdgehis minor weakness is
easily fixed by “removing” the zero challenge. We define vigufes 3 and 4 a modified
scheme we denoteh*-SI. This scheme turns out to have security attributes anakbgou
to those ofGQ-SI in that we can show the following:

Theorem 4. TheSh*-SI scheme is imp-pa secure assuming one-wayness of the under-
lying RSA key generatdt,s,, and imp-aa and imp-ca secure assuming the one-more-
RSA problem relative th ., is hard.

The proof of this theorem is in [2]. We obtain the usual conseges folSh*-IBI =
cSI-2-1BI(Sh*-SI) andSh*-IBS = ¢SS-2-IBS(fs-1-2-S(Sh*-SI)).

OkRSA. Okamoto [21] presented an RSA-based S| scheme and a r&i&adased
IBI scheme. He proved the former imp-pa and imp-aa secuterdang factoring is hard,



and the proofs extend to establish imp-ca as well. Howeediti not prove the IBI
scheme secure, a gap we fill.

The OkRSA-SI scheme defined via Figures 3 and 4 is the above-mentioned Sl
scheme. Notice thaDkRSA-IBI = cSI-2-IBI(OkRSA-SI) is exactly the RSA-based
IBI scheme in [21]. To show security @#kRSA-IBI and OkRSA-IBS = cSS-2-IBS(
fs-1-2-S(OkRSA-SI)), it suffices to show tha®OkRSA-SI is convertible. For this, the
relation has descriptiofR) = (N, e, g), and contains tuple§z;,x2), X) € (Z. x
Zy) x Z% such thatX = ¢g®™*z§ mod N. The trapdoor is! such thated = 1 mod
©(N). Pair sampling involves choosing, x> at random and computing = g 5.

Gir. In [13], Girault proposed an S| scheme that we have definedrigures 3 and 4
and namedsir-SI. He also proposed a related 1Bl scheme. (These schemespieth
by the Schnorr identification scheme [27] but use a moddus pg wherep, ¢ are of
the special formp = 2fp’ + 1 andq = 2fq¢’ + 1 such thatf, p’, ¢, p, ¢ are all primes.)
This 1Bl scheme did not use hash functions, which lead to atlatnd later a fix [25].
The fixed IBl scheme turns out to be exadBir-IBI = cSI-2-IBI(Gir-SI).

Gir-SI is convertible with relatiolR = {((P,s),X) | P* = X 'h~* mod N}
described by N, e, h, f). The trapdoor igl = e~! mod ¢(V). Pair sampling involves
choosingP ands at random and computing asP~—¢h~* mod N. However, this does
not help here because we found that all schemes in the famsiipsecure. In particular,
Gir-SI is not even imp-pa secure, and neither is the fixed IBI schéméBI. The
signature schem@ir-IBS = ¢SS-2-1BS(fs-1-2-S(Gir-IBI)) is not uf-cma secure either.

We attack only theGir-IBS scheme, since the insecurity of the SI, IBI, and SS

schemes then follows. In their-IBS scheme, a signature of a udeon a messagé/
under the master public keyipk = (N, e, h, f) is a tuple(P,Y, z) such thaty” =
h*(Pe - Hy(I))H2(PIVIM) mod N. Given a valid signaturéP;, Y1, z;) for message
M, and identityl, an adversary can forgés signature for any messagé, as follows.
If first computesdy < e~! mod f, g «+ h% mod N, andS « (P¢ - H;(I))% mod
N. Then, it chooses, from Z; and computes® « P;S~'g~%2 mod N. To obtain
the forgery, it chooseg, from Z,, letsY, «— h¥> mod N, computesz, «— yo +
SQHQ(PQ”YQHMQ) mod f The forgery iS(PQ, Y, 22).

It is natural to consider counteracting the above attackdmoving f from the
public key. While this might work for the SI scheme, it does fastthe IBI (or IBS)
scheme. The reason is that, sincstill has to be included in each user’s secret key, an
adversary can easily extract it by corrupting one identity.

We stress that the scheme broken hermoigthe (perhaps better-known) Sl scheme
by Girault based on discrete logarithms [14].

PAIRING-BASED SCHEMES Many recent papers propose pairing-based IBS schemes
[26,8,32,23,17] (the schemes independently publishedBbwifid [32] are actually
equivalent). Barring [8], none of these papers prove thaieme secure. (Some proofs
in weak models were however provided in [17, 32].) Howeuss, scheme of [17] was
proven secure in [9].

None of these papers define Sl or IBI schemes. We suS&de-SI (from [26]),
ChCh-SI (from [8, 32]) andHs-SI (from [17]), as defined by Figures 3 and 4. The
ChCh-IBS =¢SS-2-1BS(fs-1-2-S(ChCh-ST)) andHs-1BS = ¢SS-2-1BS(fs-1-2-S(Hs-SI) )



schemes are exactly the original IBS schemes, WBI&-IBS = c¢SS-2-IBS(fs-1-2-S(
SOK-SI)) is slightly different from the scheme of [26].

We now show that all these pairing-based Sl schemes arertitsweSince they all
have the same key-generation algorithm, a common argurpglies. The relation is
{(V,U) € G1 x Gy | &é(V,P) = é(U,S)}, described byR) = (G1,Ga,q, P,¢,5).
The trapdoor iss such thatS = sP. Pair sampling involves choosing <- Z4 and
computing the paifr P, S). The following is proved in [2].

Theorem 5. SOK-SI and ChCh-SI are imp-pa secure assuming that the computational
Diffie-Hellman problem in the grou@; associated tdCy.;, is hard.

Corollary 1 implies tha€ChCh-IBS, SOK-IBS andHs-IBS are uf-cma secure IBS sche-
mes, but of these only the result ab8@K-IBS is new. However, we prove the follow-
ing in [2]:

Theorem 6. ChCh-ST andHs-SI are imp-aa and imp-ca secure assuming that the one-
more computational Diffie-Hellman problem in the groGp associated toCp,;, is
hard.

Theorem 1 implies that th€hCh-IBI andHs-IBI schemes are imp-aa and imp-ca se-
cure assuming that the one-more computational Diffie-Hatimproblem in the group
G, associated t@C,,;, is hard. Thus, we obtain new, pairing-based IBI schemes with
proofs of security.

SOK-SI and SOK-IBI are insecure under active or concurrent attacks: upon re-
ceiving a commitment’, an adversary can choose - Zg4, submitc <« ¢'P as the
challenge, and compute the prover’s secret key from theresp asV «— z — ¢Y'.

Beth. TheBeth-SI scheme defined via Figures 3 and 4 was surfaced fronBf&h-1BI
= cSI-2-IBI(Beth-SI) is a more efficient version of the IBI scheme actually presgnt
in [6]. In these schemes, the prover proves knowledge of &@aelal signature of his
identity. Beth [6] gives no security proofs, but here we dbtme forBeth-1BI.
The Beth-SI scheme is convertible with the relatidif(R, s), h) € (G x Z,)
Z, | XER® = g"} described byR) = (G, ¢, g, X). The trapdoor is such thay®
X. Pair sampling involves choosing b at random fronZ, and lettingR «— X“g°,
s + a~ 'R mod q andh «+ bs mod q. In [2],we prove the following:

= Il X

Theorem 7. Beth-SI is imp-pa secure assuming that the hashed-message ElGamal s
nature scheme associatediq,., is universally unforgeable under no-message attacks
in the random oracle model.

While the hashed-message ElGamal signhature scheme haseeveformally proven
secure, we note thaniversalforgery undemo-messagattacks is a very weak security
notion for signhature schemes and that a close variant ofdtbstessage ElGamal was
proven uf-cma secure under the discrete log assumptiordin [®w, Theorem 1 im-
plies thatBeth-IBI inherits the above security attributes, and Corollary 1liespthat
Beth-IBS = ¢SS-2-IBS(fs-1-2-S(Beth-SI)) is uf-cma secure under the same assump-
tions. The imp-aa and imp-ca security®dth-SI remains open.
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