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Abstract. This paper provides either security proofs or attacks for a large num-
ber of identity-based identification and signature schemes defined either explic-
itly or implicitly in existing literature. Underlying these are a framework that on
the one hand helps explain how these schemes are derived, and on the other hand
enables modular security analyses, thereby helping to understand, simplify and
unify previous work.

1 Introduction

CURRENT STATE OF THE AREA. The late eighties and early nineties saw the proposal
of many identity-based identification (IBI) and identity-based signature (IBS) schemes.
These include the Fiat-Shamir IBI and IBS schemes [11], the Guillou-Quisquater IBI
and IBS schemes [16], the IBS scheme in Shamir’s paper [29] introducing identity-
based cryptography, and others [21, 13, 6]. Now, new, pairing-based IBS schemes are
being proposed [26, 17, 23, 8, 32].

Prompted by the renewed interest in identity-based cryptography that has followed
identity-based encryption (IBE) [7], we decided to revisitthe IBI and IBS areas. An
examination of past work revealed the following.

Although there is a lot of work on proving security in the identification domain, it
pertains to standard rather than identity-based schemes. (For example, security proofs
have been provided for standard identification schemes related to the Fiat-Shamir and
Guillou-Quisquater IBI schemes [10, 4], but not for the IBI schemes themselves.) In
fact, a provable-security treatment of IBI schemes is entirely lacking: there are no secu-
rity definitions, and none of the existing schemes is proven secure. Given the practical
importance and usage of IBI schemes, this is an important (and somewhat surprising)
gap.

The situation for IBS is somewhat better. Cha and Cheon provide a definition of
security for IBS schemes and prove their scheme secure [8]. Dodis, Katz, Xu, and Yung
[9] define a class of standard signature (SS) schemes that they call trapdoor, and then



present a random-oracle-using transform (let us call ittSS-2-IBS) that turns any secure
trapdoor SS (tSS) scheme into a secure IBS scheme. Security proofs for several existing
IBS schemes, including those of [11, 16], are obtained by observing that these are the
result of applyingtSS-2-IBS to underlying tSS schemes already proven secure in the
literature [24, 20, 1]. However, as we will see, there are several IBS schemes not yet
proven secure (one example is Shamir’s IBS scheme [29]), either because they are not
the result of applyingtSS-2-IBS to a tSS scheme, or because, although they are, the tSS
scheme in question has not yet been analyzed.

The goal of this paper is to fill the above-mentioned gaps in the IBI and IBS areas.

PRELIMINARIES. The first step, naturally, is definitions. We extend to the IBI setting
the three notions of security for standard identification (SI) schemes, namely security
against impersonation under passive attacks (imp-pa), active attacks (imp-aa) [10], and
concurrent attacks (imp-ca) [4]. Our model allows the adversary to expose user (prover)
keys, and to mount either passive, active, or concurrent attacks on the provers, winning
if it succeeds in impersonating a prover of its choice. We remark that although existing
security definitions for other identity-based primitives [7–9] give us some guidance as
to what adversary capabilities to consider, there are some issues in the definition for IBI
that need thought, mainly related to what capabilities the adversary gets in what stage
of its two-stage attack. See Section 2.

The security notion for SS schemes is the standard unforgeability under chosen-
message attack (uf-cma) [15]. An appropriate extension of it for IBS schemes exists [8,
9] and we refer to it also as uf-cma. These definitions are recalled in the full version of
the paper [2].

CERTIFICATION-BASED IBI AND IBS. Before executing the main task of analyzing
practical IBI and IBS schemes, we pause to consider the following natural design of an
IBI scheme, based on any given SI scheme, via the certification paradigm. The authority
picks a public and secret key pair(pk, sk) for a SI scheme, and provides these to prover
I along with a certificatecert consisting of the authority’s signature onI,pk. The
prover can now flowpk, cert to the verifier and then identify itself via the SI scheme
underpk. The verifier needs to know onlyI and the public key of the authority in order
to authenticate the prover.

In [2], we prove that the above yields a secure IBI scheme. An analogous result
holds in the IBS case. We believe that this is worth noting because it highlights the fact
that, unlike IBE [7], IBI and IBS are trivial to achieve (and in particular do not require
random-oracles), and enables us to better understand what the practical schemes are
trying to do, namely to beat the trivial certification-basedschemes in performance.

MAIN CONTRIBUTIONS AND APPROACH. This paper delivers security proofs for a
large number of practical IBI and IBS schemes, including notonly the ones mentioned
above, but many more that we surface as having been, with hindsight, implicit in the
literature.

We do this in two steps. In the first step, we provide a framework that (in most cases)
reduces proving security of IBI or IBS schemes to proving security of an underlying SI
scheme. In a few cases, we found that the SI schemes in question were already analyzed
in the literature, but in many cases they were not. The secondstep, where lies the main
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Fig. 1. Family of schemes associated to a cSI schemeName-SI. If Name-SI is imp-atk se-
cure thenName-IBI is also imp-atk secure, for allatk ∈ {pa, aa, ca}. If Name-SI is imp-
pa secure thenName-IBS is uf-cma secure. Implicit in drawing the diagram this way is that
fs-I-2-S(cSI-2-IBI(Name-SI)) = cSS-2-IBS(fs-I-2-S(Name-SI)).

technical work of the paper, is to provide security proofs for those SI schemes not
already proven secure, and then provide direct security proofs for the few exceptional
IBI or IBS schemes that escape being captured by our framework.

The framework, we believe, is of value beyond its ability to reduce proving secu-
rity of IBI and IBS schemes to proving security of SI schemes.It helps understand
how schemes are being derived, and in the process surfaces the implicit schemes we
mentioned above. Overall, the framework contributes to simplifying and unifying our
picture of the area. We now explain the framework, which is based on a set of trans-
forms, and then summarize the results for specific schemes.

THE TRANSFORMS. We introduce (cf. Definition 2) a class of SI schemes that we call
convertible. The idea is that their key-generation processbe underlain by a primitive
called a trapdoor samplable relation that we introduce in Definition 1. We then present a
random-oracle-using transformcSI-2-IBI that transforms a convertible SI (cSI) scheme
into an IBI scheme (cf. Construction 1). Theorem 1 shows thatcSI-2-IBI is security-
preserving, meaning that if the starting cSI scheme is imp-atk secure then so is the
resulting IBI scheme (in the random oracle model), for eachatk ∈ {pa, aa, ca}. This
will be our main tool for proving security of IBI schemes.

It is useful to analogously define convertible standard signature (cSS) schemes and
a transformcSS-2-IBS that turns a uf-cma secure cSS scheme into a uf-cma secure IBS
scheme. These extend [9] in the sense that any tSS scheme is also a cSS scheme, and
cSS-2-IBS coincides withtSS-2-IBS when the starting scheme is a tSS scheme, but the
class of cSS schemes is larger than the class of tSS schemes.

Now letfs-I-2-S denote the (random-oracle using) Fiat-Shamir transform [11] which
turns a SI scheme into a SS scheme. We know that if the former isimp-pa secure then
the latter is uf-cma secure [1]. (Application of the transform and this last result requires
that the starting SI scheme be a three-move public-coin protocol satisfying a certain
technical condition, but all this will always be true for theapplications we consider.)

Putting the above together yields Corollary 1, which says that, as long as a cSI
schemeX is imp-pa secure, the IBS schemecSS-2-IBS(fs-I-2-S(X)) is uf-cma secure.
This will be our main tool for proving security of IBS schemes.



We note thatfs-I-2-S also transforms a given IBI scheme into an IBS scheme. Fur-
thermore,cSS-2-IBS(fs-I-2-S(X)) = fs-I-2-S(cSI-2-IBI(X)) for any cSI schemeX. In
other words, the diagram of Figure 1 “commutes.”

As an aside, we remark that the analogue of the result of [1] does not hold for
fs-I-2-S as a transform of IBI schemes to IBS schemes: Proposition 1 shows that there
exists an imp-pa secure IBI schemeY which underfs-I-2-S yields an insecure IBS
scheme. This does not contradict the above since thisY is not the result ofcSI-2-IBI

applied to a cSI scheme, but it makes things more difficult in afew exception cases (that
we will see later) in which we need to consider an IBS schemeZ = fs-I-2-S(Y ) where
Y is an IBI scheme that is not equal tocSI-2-IBI(X) for any cSI schemeX. See the end
of Section 3 for more information.

SCHEME FAMILIES. We seek to explain any IBI schemeY in the literature by surfacing
a cSI schemeX such thatcSI-2-IBI(X) = Y . We seek to explain any IBS schemeZ in
the literature by surfacing a cSI schemeX such thatcSS-2-IBS(fs-I-2-S(X)) = Z. We
are able to do this for the schemes in [11, 16, 29, 13, 17, 8, 32,6] and for the RSA-based
IBI scheme in [21], which, by Theorem 1 and Corollary 1, reduces the task of showing
thatY,Z are secure to showing thatX is secure in these cases.

We remark that the above gives rise to numerous schemes that are “new” in the
sense that they were not provided explicitly in the literature. For example, Shamir [29]
defined an IBS scheme but no IBI scheme. (He even says providing an IBI scheme is an
open question.) Denoting Shamir’s IBS scheme bySh-IBS, we surface the cSI scheme
Sh-SI such thatcSS-2-IBS(fs-I-2-S(Sh-SI)) = fs-I-2-S(cSI-2-IBI(Sh-SI)) = Sh-IBS.
As a consequence, we surface the IBI schemeSh-IBI = cSI-2-IBI(Sh-SI) that is related
in a natural way toSh-IBS, namely by the fact thatfs-I-2-S(Sh-IBI) = Sh-IBS. In
an analogous way we surface IBI schemesHs-IBI andChCh-IBI underlying the IBS
schemes of [17] and [8, 32], respectively.

Beside explaining existing IBI or IBS schemes, we are able toderive some new
ones. We found papers in the literature [19, 22, 12] not defining IBI or IBS schemes, but
defining SI schemes that we can show are convertible. Our transforms then yield new
IBI and IBS schemes that we analyze.

We feel that this systematic surfacing of implicit schemes helps to homogenize,
unify, and simplify the area. Figure 1 summarizes the perspective that emerges. We
view schemes as occurring in families. Each family has a family nameName. At the
core of the family is a cSI schemeName-SI. The other schemes are related to it via
Name-IBI = cSI-2-IBI(Name-SI), Name-SS = fs-I-2-S(Name-SI), andName-IBS =
cSS-2-IBS(Name-SS). If Name-SI is secure, so are all other schemes in the family.

RESULTS FOR SPECIFIC SCHEMES. In order to complete the task of obtaining security
proofs for the existing and new IBI and IBS schemes we have discussed, it remains
to analyze the cSI schemes underlying the families in question. This turns out to be a
large task, for although in a few cases the cSI scheme is one already analyzed in the
literature, we found (perhaps surprisingly) that in many cases it is not. Additionally, we
need to directly analyze two IBI schemes not underlain by cSIschemes, namely the
DL-based scheme in [21], and a somewhat more efficient Schnorr-based [27] variant
that we introduce.



Name Origin Name-SI Name-IBI Name-SS Name-IBS
imp-pa imp-aa imp-caimp-pa imp-aa imp-ca uf-cma uf-cma

FS IBI,IBS [11, 10] [11] [10] I I I I [24] [9]
ItR SI, SS [19, 22] [28] [28] U I I U [24] [9]
FF SI,SS [12] [12] [12] [12] I I I [12] [9]
GQ IBI, IBS [16] [16] [4] [4] I I I [24] [9]
Sh IBS [29] P A A I A A I I
Sh

∗ SI P P P I I I I I
OkRSA SI, IBI, SS [21] [21] [21] I I I I [24] [9]
Gir SI, IBI [13, 25] A A A A A A A A
SOK IBS [26] P A A I A A I I
Hs IBS [17] P P P I I I [17] [9]
ChCh IBS [8, 32] P P P I I I [8] [8]
Beth IBI [6] P U U I U U I I
OkDL IBI [21] I I I P P P I I
BNN SI,IBI I I I P P P I I

Fig. 2. Summary of security results. Column 1 is the family name of a family of schemes. Col-
umn 2 indicates which of the four member-schemes of the family existed in the literature. (The
others we surface.) In the security columns, a known result is indicatedvia a reference to the
paper establishing it. The marksI , P, andA all indicate new results obtained in this paper. AnI
indicates a proof of security obtained by implication. (If underName-IBI it means we obtain it
via Theorem 1, if underName-IBS it means we obtain it either via Corollary 1 or via our mod-
ified fs-I-2-S transform, if elsewhere it means it follows easily from, or is an easy extension of,
existing work.) AP indicates a new security proof, such as a from-scratch analysis of some SI or
IBI scheme. AnA indicates an attack that we have found. AU indicates that the security status is
unknown. In all but the last two rows, the SI scheme is convertible. The first set of schemes are
factoring based, the next RSA based, the next pairing based, and the last DL based. For each of
the schemes above except for the last two,Name-IBS is obtained through thefs-I-2-S transform.
OkDL-IBS andBNN-IBS are obtained through a modified version of thefs-I-2-S transform.

A summary of our results is in Figure 2. Section 4 and the full version of the pa-
per [2] provide scheme descriptions and more precise resultstatements. Note all secu-
rity proofs for SS, IBI, and IBS schemes are in the random-oracle (RO) model of [5].
Proofs are in [2]. Here, we highlight some of the important elements of these results.

CASES CAPTURED BY OUR FRAMEWORK. Section 4 begins by surfacing SI schemes
underlying the first 12 (i.e. all but the last two) families ofFigure 2 and shows that they
are convertible, so that the picture of Figure 1 holds in all these cases and we need only
consider security of the cSI schemes. The analysis of these schemes follows.

Easy cases areFS, ItR (the iterated-root, also called2t-th root, family),FF, GQ, and
OkRSA (an RSA-based family from [21]) where the SI schemes are already present and
analyzed in the literature [10, 28, 12, 4, 21].

The Sh-SI scheme turns out to be a mirror-image ofGQ-SI, and is interesting
technically because we show that it is honest-verifier zero-knowledge (HVZK) even
though it might not at first appear to be so. Based on this, we prove that it is imp-pa
(cf. Theorem 3), but simple attacks show that imp-aa and imp-ca do not hold. A slight



modificationSh∗-SI of this scheme however is not only imp-pa but also proven imp-aa
and imp-ca secure under the one-more-RSA assumption of [3] (cf. Theorem 4), so that
its security is like that ofGQ-SI [4].

An attack and a fix for Girault’s IBI scheme [13] were proposedin [25], but we find
attacks on the fixed scheme as well, breaking all schemes in the family.

We prove imp-pa security of the pairing-basedSOK-SI, Hs-SI andChCh-SI schemes
under a computational DH assumption and imp-aa, imp-ca security under a one-more
computational DH assumption (cf. Theorems 5 and 6). We remark that theSOK-IBS
scheme defined via our transforms is not the one of [26], but isslightly different. This
suggests the value of our framework, for it is unclear whether the IBS scheme of [26]
can be proved uf-cma secure, whereas Corollary 1 implies that SOK-IBS is uf-cma
secure.

Since the discrete-log function has no known trapdoor it is not an obvious starting
point for IBI schemes, but some do exist. Beth’s (unproven) IBI scheme [6] is based on
ElGamal signatures. The proof of convertibility of theBeth-SI scheme we surface is in-
teresting in that it exploits the existential forgeabilityof ElGamal signatures. Theorem 7
says thatBeth-SI is imp-pa secure if the hashed-message ElGamal signature scheme is
universally unforgeable under no-message attack in the random-oracle model.

EXCEPTIONS. The last two rows of Figure 2 represent cases where our framework does
not apply and direct analyses are needed. The first such case is an unproven DL-based
IBI schemeOkDL-IBI due to Okamoto [21], which introduces an interesting SS-based
method for constructing IBI schemes and instantiates it with his own DL-based SS
scheme. We were unable to surface any cSI scheme which undercSI-2-IBI maps to
OkDL-IBI. (OkDL-IBI can be “dropped” in a natural way to a SI schemeOkDL-SI, but
the latter does not appear to be convertible.) However, we show in [2] thatOkDL-IBI
is nevertheless imp-pa, imp-aa, and imp-ca secure assuminghardness of the DL prob-
lem. This direct proof is probably the most technical in the paper and uses the security
of Okamoto’s DL-based SS scheme under a weakened notion of non-malleability [31],
which is established via an extension of the result of [1] combined with results from
[21]. We also present a new IBI schemeBNN-IBI that is based on the paradigm under-
lying OkDL-IBI but uses Schnorr signatures [27] instead of Okamoto signatures. It is
slightly more efficient thanOkDL-IBI. Security results are analogous to those above.
See [2] for descriptions of the schemes and our results.

Proposition 1 precludes proving security of the IBS schemesfs-I-2-S(OkDL-IBI)
and fs-I-2-S(BNN-IBI) based merely on the security properties of the IBI schemes.
However, we slightly modify the classicalfs-I-2-S transform and obtain a transform
that yields a secure uf-cma IBS scheme when applied to an imp-pa IBI scheme. We can
then apply this transform toOkDL-IBI or BNN-IBI to obtain uf-cma IBS schemes.

RELATED WORK. Independent of our work, Kurosawa and Heng [18] recently pre-
sented a transform from a certain class of “zero-knowledge”SS schemes to IBI schemes.
However, the IBI scheme resulting from their transform is only shown to be secure
against impersonation underpassiveattacks.



2 Security Notions for Identification Schemes

NOTATION.We letN = {1, 2, 3, . . .} denote the set of natural numbers. Ifk ∈ N, then
1k is the string ofk ones. The empty string is denotedε. If x, y are strings, then|x|
is the length ofx andx‖y is the concatenation ofx andy. If S is a set, then|S| is its
cardinality. If A is a randomized algorithm, thenA(x1, x2, . . . : O1,O2, . . .) means
thatA has inputsx1, x2, . . . and access to oraclesO1,O2, . . ., andy

$
← A(x1, x2, . . . :

O1,O2, . . .) means that the output ofA’s run is assigned toy. We denote the set of all
possible outputs by[A(x1, x2, . . . : O1,O2, . . .)], the running time ofA by TA, and
the number of timesA queried theOi oracle byQOi

A . We defineQA =
∑

i Q
Oi

A .
An interactive algorithm (modelling a party such as prover or verifier in a protocol)

is a stateful algorithm that on input an incoming messageMin (this isε if the party is
initiating the protocol) and state informationSt outputs an outgoing messageMout and
updated stateSt′. For an interactive algorithmA that has access to oraclesO1,O2, . . .,
this is written as(Mout,St′)

$
← A(Min,St : O1,O2, . . .). The initial state ofA con-

tains its inputs and optionally a random tapeρ; if no random tape is explicitly given in
the initial state,A is assumed to toss its own coins.

STANDARD IDENTIFICATION SCHEMES. A standard identification (SI) schemeis a tu-
pleSI = (Kg,P,V) whereKg is the randomized polynomial-time key generation al-
gorithm, andP andV are polynomial-time interactive algorithms called the prover and
verifier algorithms, respectively. In an initialization step, the prover runsKg(1k), where
k is a security parameter, to obtain a key pair(pk, sk), and publishes the public key
pk while keeping the secret keysk private. In the interactive identification protocol, the
prover runsP with initial statesk, and the verifier runsV with initial statepk. The first
and last messages of the protocol belong to the prover. The protocol ends whenV enters
either theacc or rej state. We require that for allk ∈ N and for all(pk, sk) ∈ [Kg(1k)],
the result of the interaction betweenP (initialized with sk) andV (initialized with pk)
is acc with probability one.

SECURITY OF SI SCHEMES. An adversaryA is a pair of algorithms(CV ,CP ) called
thecheating verifierand thecheating prover[10]. We briefly recall the notions of imp-
pa, imp-aa [10], and imp-ca [4]. The experiment first chooseskeys(pk, sk) via Kg(1k)
and then runsCV on pk. For a passive attack (pa),CV gets a conversation oracle,
which, upon a query, returns a transcript of the conversation betweenP (with initial
statesk) andV (with initial statepk), each time generated under fresh coins for both
parties. For an active attack (aa) or concurrent attack (ca), CV gets a prover oracle
prov. Upon a query(M, s) whereM is a message ands is a session number, the
prov oracle runs the prover algorithm usingM as an incoming message and returns
the prover’s outgoing message while maintaining the prover’s state associated with the
sessions across the invocations. (For each new session,prov uses fresh random coins
to start the prover, initializing it withsk.) The difference between active and concurrent
attacks is that the former allows only a single prover to be active at a time. Eventually,
CV halts with some output that is given toCP , andA wins if the interaction between
CP andV (initialized with pk) leads the latter to accept. Foratk ∈ {pa, aa, ca}, the
imp-atk advantageof A in attackingSI is written asAdv

imp-atk
SI,A (k) and is defined to



be the probability ofA winning in the above experiment. We say thatSI is animp-atk-
secure SI schemeif Adv

imp-atk
SI,A (·) is negligible for every polynomial-timeA.

IDENTITY-BASED IDENTIFICATION SCHEMES. An identity-based identification (IBI)
schemeis a four-tupleIBI = (MKg,UKg,P,V) of polynomial-time algorithms. The
trusted, key-issuing authority runs themaster-key generationalgorithm MKg on in-
put 1k, wherek is a security parameter, to obtain a master public and secretkey pair
(mpk,msk). It can then run theuser-key generationalgorithmUKg on msk and the
identity I ∈ {0, 1}∗ of a user to generate for this user a secret keyusk which is then
assumed to be securely communicated to the user in question.In the interactive iden-
tification protocol, the prover with identityI runs interactive algorithmP with initial
stateusk, and the verifier runsV with initial statempk, I. The first and last messages
of the protocol belong to the prover. The protocol ends whenV enters either theacc
or rej state. In the random oracle model,UKg,P,V additionally have oracle access
to a functionH whose range may depend onmpk. We require that for allk ∈ N,
I ∈ {0, 1}∗, (mpk,msk) ∈ [MKg(1k)], functionsH with appropriate domain and
range, andusk ∈ [UKg(msk, I : H)], the interaction betweenP (initialized with usk)
andV (initialized withmpk, I) is acc with probability one.

SECURITY OF IBI SCHEMES. The security definition for IBI schemes is similar to that
of SI schemes. We highlight only the differences here. An adversaryA is a pair of a
cheating verifierCV and a cheating proverCP . It is given a conversation oracle for
passive attacks or a prover oracle for active and concurrentattacks as before except that
here it can ask for transcripts or for interactions with respect to identities of its choice.
For all three types of attacks, it is additionally given access to an initialization oracle
and a corrupt oracle with which it can initialize and corruptan identity, respectively.
The former causes the new identity to receive a newly generated user secret key while
the latter exposes the identity’s user secret key toA then marks the identity as cor-
rupted. As before,CV is run first. At its completion, it returns an uncorrupted identity
J to be impersonated (along with other state information). Then,CP attempts the im-
personation forJ . Throughout,A is not allowed to submit queries involving corrupted
identities (other than the original corrupting queries). Additionally,CP is not allowed
to submit queries involvingJ . For atk ∈ {pa, aa, ca}, the imp-atk advantageof A in
attackingIBI is written asAdv

imp-atk
IBI,A

(k) and is defined to be the probability ofA

winning in the above experiment. We say thatIBI is animp-atk-secure IBI schemeif
Adv

imp-atk
IBI,A

(·) is negligible for every polynomial-timeA. Details are in [2].

3 Convertible Schemes and our Transforms

In analogy with the definition of trapdoor signature schemes[9], we define the concept
of convertible identification schemesand show how to transform these into IBI schemes.
We use a slightly more general concept than the trapdoor one-way permutations used
by [9] that we will call trapdoor samplable relations. A relationR is a set of ordered
pairs(x, y) ∈ Dom(R) × Ran(R). We write the set of images ofx ∈ Dom(R) as
R(x) = {y | (x, y) ∈ R} and the set of inverses ofy ∈ Ran(R) as R−1(y) =
{x | (x, y) ∈ R}.



Definition 1. A family of trapdoor samplable relationsF is a triplet of polynomial-time
algorithms(TDG,Sample, Inv) such that the following properties hold: (1)Efficient
generation:On input1k, wherek ∈ N is the security parameter,TDG outputs the de-
scription 〈R〉 of a relationR in the family together with its trapdoor informationt;
(2) Samplability:The output of the algorithmSample on an input〈R〉 is uniformly
distributed overR; (3) Inversion:On input a relation description〈R〉, the correspond-
ing trapdoort, and an elementy ∈ Ran(R), the randomized algorithmInv outputs a
random element ofR−1(y); (4) Regularity:Every relationR in the family is regular,
meaning that the number of inverses|R−1(y)| is the same for ally ∈ Ran(R).

Note that this definition does not ask that any computationalproblem relating to the
family be hard. (For example, there is no “one-wayness” requirement.) We do not need
any such assumption.

Definition 2. A SI schemeSI = (Kg,P,V) is said to beconvertibleif there exists a
family of trapdoor samplable relationsF = (TDG,Sample, Inv) such that for allk ∈ N

the output of the following is distributed identically to the output ofKg(1k):

(〈R〉 , t)
$
← TDG(1k) ; (x, y)

$
← Sample(〈R〉) ;

pk ← (〈R〉 , y) ; sk ← (〈R〉 , x) ; Return(pk, sk)

The following describes thecSI-2-IBI transform of a convertible SI (cSI) scheme into
an IBI scheme. The idea is that to each identityI we can associate a value that is
derivable from the master public key andI. This value plays the role of a public key
for the underlying cSI scheme. This “pseudo-public-key” is(〈R〉 ,H(I)), whereH is a
random oracle.

Construction 1. Let SI = (Kg,P,V) be a cSI scheme, and letF = (TDG,Sample,

Inv) be the family of trapdoor samplable relations that underlies it as per Definition 2.
ThecSI-2-IBI transform associates toSI the random-oracle model IBI schemeIBI =
(MKg,UKg,P,V) whose components we now describe. The master and user key gen-
eration algorithms are defined as

Algorithm MKg(1k)

(〈R〉 , t)
$
← TDG(1k)

mpk ← 〈R〉 ; msk ← (〈R〉 , t)
Return(mpk,msk)

Algorithm UKg(msk, I : H)
Parsemsk as(〈R〉 , t)

x
$
← Inv(〈R〉 , t,H(I)) ; usk ← (〈R〉 , x)

Returnusk

whereH : {0, 1}∗ → Ran(R) is a random oracle. The prover algorithmP is identical
to P. The verifier algorithmV(·, · : H) parses its initial state as(〈R〉 , I) and runsV on
initial state(〈R〉 ,H(I)).

The following theorem, proved in [2], says thatcSI-2-IBI is security-preserving.

Theorem 1. LetSI be a cSI scheme and letIBI = cSI-2-IBI(SI) be the associated
IBI scheme as per Construction 1. For anyatk ∈ {pa, aa, ca}, if SI is imp-atk secure
thenIBI is imp-atk secure.



Convertibility of a standard signature (SS) schemeSS = (Kg,Sign,Vf) is defined by
analogy to Definition 2. (The condition is only on the key-generation algorithm.) The
cSS-2-IBS transform is defined analogously to thecSI-2-IBI transform: given a con-
vertible SS (cSS) schemeSS = (Kg,Sign,Vf), the transform yields an IBS scheme
IBS = (MKg,UKg,Sign,Vf) where the master and the user key generators are ex-
actly as in Construction 1, andSign(usk, ·) andVf(mpk, I, ·, · : H) are identical to
Sign(usk, ·) andVf((mpk,H(I)), ·, ·), respectively. The proof of the following ana-
logue of Theorem 1 is similar to the proof of Theorem 1 and is thus omitted.

Theorem 2. LetSS be a cSS scheme and letIBS = cSS-2-IBS(SS) be the associated
IBS scheme as defined above. IfSS is uf-cma secure thenIBS is also uf-cma secure.

One can check that any trapdoor SS (tSS) scheme as defined in [9] is a cSS scheme, and
their tSS-2-IBS transform coincides withcSS-2-IBS in case the starting cSS scheme is
trapdoor. Thus, Theorem 2 represents a (slight) extension of their result. However, the
extension is important, for we will see cases of cSS schemes that are not trapdoor and
where the extension is needed.

We know that, ifSI is an imp-pa secure SI scheme, thenfs-I-2-S(SI) is a uf-cma
secure SS scheme [1]. It is also easy to see that thefs-I-2-S transform of a cSI scheme
is a cSS scheme. Combining this with Theorem 2 yields the following, which will be
our main tool to prove security of IBS schemes.

Corollary 1. LetSI be a cSI scheme, and letIBS = cSS-2-IBS(fs-I-2-S(SI)). If SI
is imp-pa secure thenIBS is uf-cma secure.

Above, it is assumed thatSI is a three-move, public coin protocol (so that one can
apply fs-I-2-S to it) and also that the commitment (first move of the prover) is drawn
from a space of super-polynomial size (so that the result of [1] applies). An SI or IBI
scheme having these properties is calledcanonical.

One can also apply thefs-I-2-S transform to a canonical IBI scheme to obtain an IBS
scheme, and one can check thatcSS-2-IBS(fs-I-2-S(SI)) = fs-I-2-S(cSI-2-IBI(SI))
for any canonical cSI schemeSI. It follows that fs-I-2-S yields a uf-cma secure IBS
scheme if it is applied to aconvertedIBI scheme, meaning one that is obtained as the
result of applyingcSI-2-IBI to some (canonical) cSI scheme. However, one can also
apply fs-I-2-S to a canonical IBI scheme that is not converted and get an IBS scheme,
and there will be instances later where we would like to do this. Unfortunately, the IBS
scheme so obtained need not be secure, in the sense that the analogue of the result of
[1] does not hold, as stated below and proved in [2].

Proposition 1. Assume there exists an imp-pa secure canonical IBI scheme. Then, there
exists an imp-pa secure canonical IBI schemeIBI such thatfs-I-2-S(IBI) is not uf-
cma secure.

We now provide a remedy for the above. We consider a modified version of thefs-I-2-S
transform that hashes the identity of the signer (prover) along with the commitment and
message, rather than merely hashing the commitment and message as infs-I-2-S. We
can show (by an extension of the proof of [1] that we omit) that, if this transform is
applied to a canonical imp-pa secure IBI scheme, then the outcome is a uf-cma secure



IBS scheme. We apply this in [2] to obtain uf-cma secure IBS schemes from the two
unconverted IBI schemes we consider, namelyOkDL-IBI andBNN-IBI.

4 Applying the Framework

We now apply the above transform-based framework to prove security of existing and
new IBI and IBS schemes. To do this, we consider numerous SI schemes. (Some are
known. Some are new.) We show that they are convertible, and then analyze their secu-
rity. The implications for corresponding IBI and IBS schemes, obtained via the trans-
forms discussed above, follow from Theorem 1 and Corollary 1. Figure 3 presents the
key generation algorithms of the SI schemes we consider, andFigure 4 presents the
corresponding identification protocols.

GENERATORS. The key generation algorithms shown in Figure 3 make use of param-
eter generation algorithms:Kfact for factoring-based schemes,Krsa for RSA-based
schemes,Kdlog for DL-based schemes andKpair for pairing based schemes. These
are randomized polynomial-time algorithms that on input1k produce the following
outputs:Kfact generates tuples(N, p, q) such thatp, q are primes andN = pq; Krsa

outputs(N, e, d) such thatN is the product of two primes anded ≡ 1 mod ϕ(N);
Kdlog outputs the description of a multiplicative groupG, its prime orderq and a gener-
atorg; Kpair generates the description of an additive groupG1 and a multiplicativeG2

of the same prime orderq, a generatorP of G1 and a non-degenerate, polynomial-time
computable bilinear map̂e: G1 × G1 → G2. We say thatKrsa is a prime-exponent
generator ife is always a prime. Security results will make various assumptions about
the computational problems underlying these generators.

HASH FUNCTION RANGES. In applyingcSI-2-IBI to FS-SI, we assume the hash func-
tion in Construction 1 has range the set of quadratic residues moduloN whereN is
the modulus in the public key. This is a convenient abstraction in the random-oracle
model, but note that implementing such a hash function is difficult since the range is
not decidable in polynomial-time. However, this is a standard problem in this domain
and various standard changes to the scheme take care of it. The same problem arises
for several other schemes below as well, and also arises in [9]. We will not mention it
again, but instead assume our random-oracle hash functionshave whatever ranges we
need. Those usually being obvious from the scheme are not discussed explicitly.

FS AND ItR. SinceFS-SI is the special case ofItR-SI in which m = 1, it suffices to
show that the latter is convertible. This is easily seen by considering the relationR =
{((x1, . . . , xt), (X1, . . . ,Xt)) |Xi ≡ x−2m

i mod N for i = 1, . . . , t} with description
〈R〉 = N and trapdoor(p, q). Pair sampling involves selecting random elements from
Z
∗
N , raising them to the2m-th power, and inverting them moduloN .

We note thatFS-IBI = cSI-2-IBI(FS-SI) is exactly the IBI scheme in [11] and
FS-IBS = cSS-2-IBS(fs-I-2-S(FS-SI)) is exactly the IBS scheme in [11]. We know
thatFS-SI is imp-pa and imp-aa secure assuming factoring is hard [10],and this easily
extends to imp-ca. Theorem 1 implies thatFS-IBI inherits these security attributes.
(Corollary 1 implies uf-cma security ofFS-IBS assuming factoring is hard, but this
was known [9].)



FS

(N, p, q)
$
← Kfact(1

k)
For i = 1 . . . t do

xi
$
← Z

∗

N

Xi ← xi
−2 mod N

pk ← (N, (X1, . . . , Xt))
sk ← (N, (x1, . . . , xt))

ItR

(N, p, q)
$
← Kfact(1

k)
For i = 1 . . . t do

xi
$
← Z

∗

N

Xi ← xi
−2m

mod N
pk ← (N, (X1, . . . , Xt))
sk ← (N, (x1, . . . , xt))

GQ, Sh, Sh
∗

(N, e, d)
$
← Krsa(1

k)

x
$
← Z

∗

N

X ← xe mod N
pk ← ((N, e), X)
sk ← ((N, e), x)

FF

(N, p, q)
$
← Kfact(1

k)
Chooseτ ≥ η(p, q)− 1

g
$
← HQRN

x1
$
← Z2m ; x2

$
← Z

∗

N

X ← gx1x2m+τ

2 mod N
pk ← ((N, τ, g), X)
sk ← ((N, τ, g), (x1, x2))

Gir

(N, e, d, f)
$
← Krsa(1

k)
Chooseg ∈ Z

∗

N of orderf

h← ge mod N ; s
$
← Zf

X
$
← Z

∗

N

S ← g−s mod N

P ← X−dS mod N
pk ← ((N, e, h, f), X)
sk ← ((N, e, h, f), (P, s))

OkRSA

(N, e, d)
$
← Krsa(1

k)

g
$
← Z

∗

N

x1
$
← Ze ; x2

$
← Z

∗

N

X ← g−x1x−e
2 mod N

pk ← ((N, e, g), X)
sk ← ((N, e, g), (x1, x2))

SOK, Hs, ChCh

(G1,G2,q, P, ê)←Kpair(1
k)

s, u
$
← Zq ; S ← sP

U ← uP ; V ← suP
pk ← ((G1, G2, q, P, ê, S), U)
sk ← ((G1, G2, q, P, ê, S), V )

Beth

(G, q, g)
$
← Kdlog(1

k)

r
$
← Zq ; R← gr ; x, h

$
← Zq ; X ← gx

s← (h−Rx)r−1 mod q
pk ← ((G, q, g, X), h)
sk ← ((G, q, g, X), (R, s))

Fig. 3. Key generation algorithms of the 12 cSI schemes that we consider. Each takes input
1k and returns(pk, sk). The integersm, t ≥ 1 where used are scheme parameters. See the text
for notation used above.

We know thatItR-SI is imp-pa and imp-aa secure assuming factoring is hard [30,
28]. Theorem 1 implies thatItR-IBI = cSI-2-IBI(ItR-SI) is imp-pa and imp-aa secure
assuming factoring is hard. (Corollary 1 implies thatItR-IBS = cSS-2-IBS(fs-I-2-S(
ItR-SI)) is uf-cma assuming factoring is hard, but this was known [9].) WhetherItR-SI
is imp-ca secure, and hence whetherItR-IBI is imp-ca secure, remains open.

FF. TheFF-SI scheme was introduced by [12] as a fix to an attack they found ona
scheme in [21]. In the key-generation algorithm of Figure 3,η(p) denotes the largest
integer such that2η(p) dividesp− 1 andη(p, q) = max(η(p), η(q)). FF-SI is shown in
[12] to be imp-pa, imp-aa, and imp-ca secure assuming factoring is hard. The authors
defined no IBI or IBS schemes. We can show thatFF-SI is convertible, and we thus
obtainFF-IBI = cSI-2-IBI(FF-SI) andFF-IBS = cSS-2-IBS(fs-I-2-S(FF-SI)), and
these are secure if factoring moduli generated byKfact is hard.

Let HQRN = {x2η(p,q)

mod N | x ∈ Z
∗
N} denote the set of higher quadratic

residues moduloN , which is also the subset of elements ofZ
∗
N of odd order. To show

convertibility ofFF-SI we consider the relationR ⊆ (Z2m ×Z
∗
N )×HQRN described



Scheme Cmt Rsp
Ch Accept condition

FS y
$
← Z

∗

N ; Y ← y2 mod N z ← y
∏

i
xci

i mod N

c = (c1, . . . , ct)
$
← Z

t
2 Accept iff Y ≡ z2 ∏

i
Xci

i mod N

ItR y
$
← Z

∗

N ; Y ← y2m

mod N z ← y
∏

i
xci

i mod N

c = (c1, . . . , ct)
$
← Z

t
2m Accept iff Y ≡ z2m ∏

i
Xci

i mod N

FF y1
$
← Z2m+τ z1 ← y1 + cx1 mod 2m+τ

y2
$
← Z

∗

N α← b(y1 + cx1)/2m+τc

Y ← gy1y2m+τ

2 mod N z2 ← gαy2x
c
2 mod N ; z ← z1, z2

c
$
← Z2m Accept iff gz1z2m+τ

2 ≡ Y Xc mod N

Sh y
$
← Z

∗

N ; Y ← ye mod N z ← xyc mod N

c
$
← {0, . . . , 2l(k) − 1} Accept iff ze ≡ XY c mod N

Sh
∗ y

$
← Z

∗

N ; Y ← ye mod N z ← xyc mod N

c
$
← {1, . . . , 2l(k)} Accept iff ze ≡ XY c mod N

GQ y
$
← Z

∗

N ; Y ← ye mod N z ← xcy mod N

c
$
← {0, 1}l(k) Accept iff ze ≡ XcY mod N

OkRSA y1
$
← Ze z1 ← y1 + cx1 mod e

y2
$
← Z

∗

N α← b(y1 + cx1)/ec
Y ← gy1ye

2 mod N z2 ← gαy2x
c
2 mod N

c
$
← {0, 1}l(k) Accept iff Y ≡ gz1ze

2Xc mod N

Gir y
$
← Zf ; Y ← hy mod N z ← y + sc mod f

Cmt← (P, Y )

c
$
← {0, 1}l(k) Accept iff hz(P eX)c ≡ Y mod N

SOK y
$
← Zq ; Y ← yP z ← yc + V

c
$
← G1 Accept iff ê(z, P ) = ê(U, S)ê(c, Y )

Hs y
$
← Zq; Y ← ê(P, P )y z ← yP + cV

c
$
← Zq Accept iff ê(z, P ) = Y · ê(U, S)c

ChCh y
$
← Zq ; Y ← yU z ← (y + c)V

c
$
← Zq Accept iff ê(z, P ) = ê(Y + cU, S)

Beth y
$
← Zq ; Y ← R−y z ← y + cs mod q

Cmt← (R, Y )

c
$
← {0, 1}l(k) Accept iff gch ≡ RzY XcR

Fig. 4. Identification protocols of the 12 cSI schemes that we consider. We show the first
commitment messageCmt sent by the prover, the challengeCh sent by the verifier, the response
Rsp returned by the prover, and the condition under which the verifier accepts. All schemes use
Cmt = Y , Ch = c andRsp = z unless explicitly defined otherwise. The prover is initialized
with sk and the verifier withpk. The integersm, t ≥ 1, and the challenge lengthl: N → N,
where used, are scheme parameters. InSh-SI, Sh

∗-SI, GQ-SI, andGir-SI, it is assumed that
2l(k) < e for all e output byKrsa(1

k). All security results assumel is super-logarithmic.Krsa is
a prime-exponent generator inSh-SI, Sh

∗-SI, andGQ-SI.



by (N, g, τ) and containing tuples((x1, x2),X) such thatgx1x2τ+m

2 ≡ X mod N .
The trapdoor is the factorization ofN . Regularity holds since squaring is a permutation
over HQRN and since each higher quadratic residue has exactly2η(p)+η(q) different
2τ+m-th roots moduloN . Pair sampling involves choosingx1, x2 at random and com-
putingX = gx1x2τ+m

2 .

GQ. TheGQ-SI scheme defined via Figures 3 and 4 is the standard one considered in the
literature. Convertibility is easily seen by considering the relationR = {(x,X) | xe ≡
X mod N}, relation description〈R〉 = (N, e), and trapdoord. Pair sampling in-
volves choosingx

$
← Z∗

N and computingX ← xe mod N . We note thatGQ-IBI =
cSI-2-IBI(GQ-SI) is exactly the IBI scheme in [16], andGQ-IBS = cSS-2-IBS(fs-I-2-S(
GQ-SI)) is exactly the IBS scheme in [16]. We know thatGQ-SI is imp-pa secure
assuming RSA is one-way, and imp-aa and imp-ca secure assuming hardness of the
one-more-RSA problem [4]. Theorem 1 says that these resultsextend toGQ-IBI. (Also
Corollary 1 says thatGQ-IBS is uf-cma assuming RSA is one-way, but this was known
[9].)

Sh AND Sh∗. Shamir [29] defined an IBS scheme, but no SI or IBI schemes. Hegave
no security proof for his IBS scheme, and none has been provided until now.

We surface the SI schemeSh-SI defined via Figures 3 and 4. One can check that
Sh-IBS = cSS-2-IBS(fs-I-2-S(Sh-SI)) is exactly the IBS scheme in [29].Sh-SI is in-
teresting both historically and technically. It turns out to be a “mirror-image” ofGQ-SI
that closely resembles the latter. Convertibility ofSh-SI follows from the convertibil-
ity of GQ-SI since the two schemes have the same key-generation algorithm. Coming
to consider security, the first question to ask is whetherSh-SI is honest-verifier zero-
knowledge (HVZK). While this was obvious forGQ-SI (and in fact, if true for an SI
scheme, is usually obvious), it is in fact not apparent at first glance forSh-SI, and one
might suspect that the scheme is not HVZK. However, using a trick involving gcds, we
show thatSh-SI is statistical (not perfect) HVZK. We also show, in [2], thatit is a proof
of knowledge and thereby obtain the following:

Theorem 3. TheSh-SI is imp-pa secure assuming one-wayness of the underlying RSA
key generatorKrsa.

Corollary 1 now implies thatSh-IBS is uf-cma secure under the same assumptions.
However,Sh-SI scheme is trivially insecure under active attacks, since the cheating

verifier can learn the secret key by sending a zero challenge.But this minor weakness is
easily fixed by “removing” the zero challenge. We define via Figures 3 and 4 a modified
scheme we denoteSh∗-SI. This scheme turns out to have security attributes analogous
to those ofGQ-SI in that we can show the following:

Theorem 4. TheSh∗-SI scheme is imp-pa secure assuming one-wayness of the under-
lying RSA key generatorKrsa, and imp-aa and imp-ca secure assuming the one-more-
RSA problem relative toKrsa is hard.

The proof of this theorem is in [2]. We obtain the usual consequences forSh∗-IBI =
cSI-2-IBI(Sh∗-SI) andSh∗-IBS = cSS-2-IBS(fs-I-2-S(Sh∗-SI)).

OkRSA. Okamoto [21] presented an RSA-based SI scheme and a relatedRSA-based
IBI scheme. He proved the former imp-pa and imp-aa secure assuming factoring is hard,



and the proofs extend to establish imp-ca as well. However, he did not prove the IBI
scheme secure, a gap we fill.

The OkRSA-SI scheme defined via Figures 3 and 4 is the above-mentioned SI
scheme. Notice thatOkRSA-IBI = cSI-2-IBI(OkRSA-SI) is exactly the RSA-based
IBI scheme in [21]. To show security ofOkRSA-IBI andOkRSA-IBS = cSS-2-IBS(
fs-I-2-S(OkRSA-SI)), it suffices to show thatOkRSA-SI is convertible. For this, the
relation has description〈R〉 = (N, e, g), and contains tuples((x1, x2),X) ∈ (Ze ×
Z
∗
N ) × Z

∗
N such thatX ≡ gx1xe

2 mod N . The trapdoor isd such thated ≡ 1 mod
ϕ(N). Pair sampling involves choosingx1, x2 at random and computingX ≡ gx1xe

2.

Gir. In [13], Girault proposed an SI scheme that we have defined via Figures 3 and 4
and namedGir-SI. He also proposed a related IBI scheme. (These schemes are inspired
by the Schnorr identification scheme [27] but use a modulusN = pq wherep, q are of
the special formp = 2fp′ + 1 andq = 2fq′ + 1 such thatf, p′, q′, p, q are all primes.)
This IBI scheme did not use hash functions, which lead to an attack and later a fix [25].
The fixed IBI scheme turns out to be exactlyGir-IBI = cSI-2-IBI(Gir-SI).

Gir-SI is convertible with relationR = {((P, s),X) | P e ≡ X−1h−s mod N}
described by(N, e, h, f). The trapdoor isd ≡ e−1 mod ϕ(N). Pair sampling involves
choosingP ands at random and computingX asP−eh−s mod N . However, this does
not help here because we found that all schemes in the family are insecure. In particular,
Gir-SI is not even imp-pa secure, and neither is the fixed IBI schemeGir-IBI. The
signature schemeGir-IBS = cSS-2-IBS(fs-I-2-S(Gir-IBI)) is not uf-cma secure either.

We attack only theGir-IBS scheme, since the insecurity of the SI, IBI, and SS
schemes then follows. In theGir-IBS scheme, a signature of a userI on a messageM
under the master public keympk = (N, e, h, f) is a tuple(P, Y, z) such thatY ≡
hz(P e · H1(I))H2(P‖Y ‖M) mod N . Given a valid signature(P1, Y1, z1) for message
M1 and identityI, an adversary can forgeI ’s signature for any messageM2 as follows.
If first computesd2 ← e−1 mod f , g ← hd2 mod N , andS ← (P e · H1(I))d2 mod
N . Then, it choosess2 from Zf and computesP2 ← P1S

−1g−s2 mod N . To obtain
the forgery, it choosesy2 from Zq, lets Y2 ← hy2 mod N , computesz2 ← y2 +
s2H2(P2‖Y2‖M2) mod f . The forgery is(P2, Y2, z2).

It is natural to consider counteracting the above attack by removingf from the
public key. While this might work for the SI scheme, it does notfor the IBI (or IBS)
scheme. The reason is that, sincef still has to be included in each user’s secret key, an
adversary can easily extract it by corrupting one identity.

We stress that the scheme broken here isnot the (perhaps better-known) SI scheme
by Girault based on discrete logarithms [14].

PAIRING-BASED SCHEMES. Many recent papers propose pairing-based IBS schemes
[26, 8, 32, 23, 17] (the schemes independently published by [8] and [32] are actually
equivalent). Barring [8], none of these papers prove their scheme secure. (Some proofs
in weak models were however provided in [17, 32].) However, the scheme of [17] was
proven secure in [9].

None of these papers define SI or IBI schemes. We surfaceSOK-SI (from [26]),
ChCh-SI (from [8, 32]) andHs-SI (from [17]), as defined by Figures 3 and 4. The
ChCh-IBS=cSS-2-IBS(fs-I-2-S(ChCh-SI)) andHs-IBS=cSS-2-IBS(fs-I-2-S(Hs-SI))



schemes are exactly the original IBS schemes, whileSOK-IBS = cSS-2-IBS(fs-I-2-S(
SOK-SI)) is slightly different from the scheme of [26].

We now show that all these pairing-based SI schemes are convertible. Since they all
have the same key-generation algorithm, a common argument applies. The relation is
{(V,U) ∈ G1 × G1 | ê(V, P ) = ê(U, S)}, described by〈R〉 = (G1, G2, q, P, ê, S).
The trapdoor iss such thatS = sP . Pair sampling involves choosingr

$
← Zq and

computing the pair(rP, rS). The following is proved in [2].

Theorem 5. SOK-SI andChCh-SI are imp-pa secure assuming that the computational
Diffie-Hellman problem in the groupG1 associated toKpair is hard.

Corollary 1 implies thatChCh-IBS, SOK-IBS andHs-IBS are uf-cma secure IBS sche-
mes, but of these only the result aboutSOK-IBS is new. However, we prove the follow-
ing in [2]:

Theorem 6. ChCh-SI andHs-SI are imp-aa and imp-ca secure assuming that the one-
more computational Diffie-Hellman problem in the groupG1 associated toKpair is
hard.

Theorem 1 implies that theChCh-IBI andHs-IBI schemes are imp-aa and imp-ca se-
cure assuming that the one-more computational Diffie-Hellman problem in the group
G1 associated toKpair is hard. Thus, we obtain new, pairing-based IBI schemes with
proofs of security.

SOK-SI and SOK-IBI are insecure under active or concurrent attacks: upon re-
ceiving a commitmentY , an adversary can choosec′

$
← Zq, submitc ← c′P as the

challenge, and compute the prover’s secret key from the responsez asV ← z − cY .

Beth. TheBeth-SI scheme defined via Figures 3 and 4 was surfaced from [6].Beth-IBI
= cSI-2-IBI(Beth-SI) is a more efficient version of the IBI scheme actually presented
in [6]. In these schemes, the prover proves knowledge of an ElGamal signature of his
identity. Beth [6] gives no security proofs, but here we obtain one forBeth-IBI.

The Beth-SI scheme is convertible with the relation{((R, s), h) ∈ (G × Zq) ×
Zq | X

RRs ≡ gh} described by〈R〉 = (G, q, g,X). The trapdoor isx such thatgx ≡
X. Pair sampling involves choosinga, b at random fromZq and lettingR ← Xagb,
s← a−1R mod q andh← bs mod q. In [2],we prove the following:

Theorem 7. Beth-SI is imp-pa secure assuming that the hashed-message ElGamal sig-
nature scheme associated toKdlog is universally unforgeable under no-message attacks
in the random oracle model.

While the hashed-message ElGamal signature scheme has neverbeen formally proven
secure, we note thatuniversalforgery underno-messageattacks is a very weak security
notion for signature schemes and that a close variant of hashed-message ElGamal was
proven uf-cma secure under the discrete log assumption in [24]. Now, Theorem 1 im-
plies thatBeth-IBI inherits the above security attributes, and Corollary 1 implies that
Beth-IBS = cSS-2-IBS(fs-I-2-S(Beth-SI)) is uf-cma secure under the same assump-
tions. The imp-aa and imp-ca security ofBeth-SI remains open.
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