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Abstract. We provide methods for transforming an encryption scheme
susceptible to decryption errors into one that is immune to these errors.
Immunity to decryption errors is vital when constructing non-malleable
and chosen ciphertext secure encryption schemes via current techniques;
in addition, it may help defend against certain cryptanalytic techniques,
such as the attack of Proos [33] on the NTRU scheme.
When decryption errors are very infrequent, our transformation is ex-
tremely simple and efficient, almost free. To deal with significant error
probabilities, we apply amplification techniques translated from a re-
lated information theoretic setting. These techniques allow us to correct
even very weak encryption schemes where in addition to decryption er-
rors, an adversary has substantial probability of breaking the scheme by
decrypting random messages (without knowledge of the secret key). In
other words, under these weak encryption schemes, the only guaranteed
difference between the legitimate recipient and the adversary is in the
frequency of decryption errors. All the above transformations work in a
standard cryptographic model; specifically, they do not rely on a random
oracle.
We also consider the random oracle model, where we give a simple trans-
formation from a one-way encryption scheme which is error-prone into
one that is immune to errors.
We conclude that error-prone cryptosystems can be used in order to
create more secure cryptosystems.

1 Introduction

In their seminal paper on semantic security Goldwasser and Micali defined a
public key encryption scheme as one where the decryption is perfect, i.e., given
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a properly formed ciphertext the answer is always the unique corresponding
plaintext [20]. More formally, let the encryption algorithm be E and the corre-
sponding decryption algorithm be D. If E maps a message m with random coins
r to a ciphertext c = E(m, r), then it is always the case that D(E(m, r)) = m.
However, some cryptosystems do not satisfy this condition, two notable exam-
ples being the Ajtai-Dwork cryptosystem [1] and NTRU [21]. (In fact, sometimes
a cryptosystem is deliberately designed to have ambiguous decryption; see more
in Section 6.)

One might think that an encryption scheme with small probability of de-
cryption error is merely an aesthetic nuisance, since the event of a decryption
error can be compared to the event of an adversary guessing the secret key, which
should be rare. However, serious difficulties arise in trying to construct cryptosys-
tems secure under more stringent notions of security, such as non-malleability
and chosen-ciphertext immunity, based on systems with ambiguous decryption.
In fact, all known “bootstrapping” methods for constructing strong cryptosys-
tems fail when the underlying one is susceptible to errors3. Furthermore, Proos
was able to exploit decryption errors in his attack on the NTRU scheme [33]. Our
goal in this work is to discuss general methods for eliminating errors and con-
structing secure cryptosystems based on less than perfect underlying schemes.

1.1 Random Oracles and the Real World

The literature contains constructions for cryptographic primitives in two well
studied models: the random oracle world as described below, and the real world,
where the assumption of a random oracle may not be justified. In general it is
more difficult and involved to provide and prove correct constructions in the real
world model.

If one makes the simplifying assumption that a specific function behaves as
an idealized random function (random oracle), then it is possible to obtain sim-
ple and efficient constructions of public-key encryption schemes that are secure
against chosen ciphertext attacks in the post-processing mode (“cca-post”, also
known as CCA2); these include OAEP and its variants [5, 3, 32, 15, 6], Fujisaki-
Okamoto [14] and REACT [31]4. However, it is not known if any one of these
methods (or some other method) can be used to convert every public-key cryp-
tosystem – including systems with decryption errors – that is semantically secure
(or that satisfies even some weaker property such as one-wayness on the mes-
sages) against chosen plaintext attacks into one that is secure against stronger
attacks, such as cca-post attacks (see below for more information on attacks).
Among the problems in applying these approaches are that in the underlying
“input” cryptosystem (1) there can exist ciphertexts which are valid encryptions

3 One reason for the failure of those methods is that when the adversary chooses the
input to the decryption algorithm, this input can have a distribution completely
different from that of correctly encrypted messages and so the error probability may
be large instead of small

4 The meaning of such results is the subject of much debate (see e.g., [8, 13, 2]).



of two different plaintext messages; and (2) the decryption mechanism may some-
times fail to return “invalid” on an invalid ciphertext. As mentioned above, these
problems were exploited by Proos [33] to attack various paddings of NTRU [30].

In the real world we have no idealized function, and we must do with what
nature gives us. An important idea used either explicitly or at least implicitly
in the construction of chosen ciphertext secure cryptosystem in the real world
is to add some redundancy to the encryption and provide a proof of consistency
of the ciphertext. The most general form of the proof of consistency is via a
non-interactive zero-knowledge proof system (NIZKs) [11, 27, 29, 34], but there
are also more specific methods [9, 10]. Here too a cryptosystem with possible
decryption errors may cause problems in the construction. Take for instance the
method that is based on a pair of keys together with a NIZK of consistency (this
is the one suggested by Naor and Yung [29] and also a subsystem of the Dolev,
Dwork, and Naor scheme [11]). A central idea in the proof of security is that
knowing any of several private keys is sufficient for the decryption, and which
one (of the several) is known is indistinguishable to the adversary. However, if
there is no unique decryption, then seeing which plaintext is returned may leak
which key is known, and the proof of security collapses.

Our Results:

We suggest methods for dealing with errors in both worlds described above:

In the land of random oracles: We provide a generic and efficient method for
converting any public-key cryptosystem where decryption errors may occur, but
where an adversary cannot retrieve the plaintext of a randomly chosen message
(sometimes known as one-way cryptosystem), into one that is secure against
chosen ciphertext attack in the post-processing mode. This is done in Section 5.
The real world: We show two transformations from cryptosystem with errors to
ones without. When decryption errors are very infrequent, our transformation
is extremely simple and efficient, almost free. The case of significant error prob-
abilities is technically more involved. Our transformation for this case corrects
even very weak encryption schemes where in addition to decryption errors, an
adversary has substantial probability of breaking the scheme by decrypting ran-
dom messages (without knowledge of the secret key). In other words, under these
weak encryption schemes, the only guaranteed difference between the legitimate
recipient (holder of the secret key) and the adversary is in the frequency of de-
cryption errors: the legitimate recipient experiences fewer errors than does the
adversary.

To demonstrate the subtleties of this task, consider the case where the legit-
imate recipient decrypts correctly with probability 9/10 (and let us assume for
simplicity that otherwise he gets an error message), but the adversary decrypts
correctly with probability 1/10. A natural approach is to use error correcting
codes, setting the parameters in such a way that the legitimate recipient will
have enough information to decode, whereas the adversary will get no informa-
tion. This approach indeed works in the information theoretic counterpart of a



channel where the receiver gets the piece of information with certain probability
and the eavesdropper with another. But it is not clear how to carry it through
in the computational setting. Therefore, the solutions given in this paper use a
different approach: we apply amplification techniques translated from the related
information theoretic setting of [35]. We note that here, too, the computational
setting introduces additional complications.

The conclusion we reach is that once provided with noninteractive zero knowl-
edge proof systems, one can convert essentially any public-key cryptosystem with
decryption errors into one that is secure against chosen ciphertext attack in the
postprocessing mode.

Related Work: In addition to the work mentioned above we should point
out two specific papers that converted an error-prone scheme into an error free
one. Goldreich, Goldwasser and Halevi [18] showed how to eliminate decryption
errors in the Ajtai-Dwork [1] cryptosystem. Our methods, especially those of
Section 3, can be seen as a general way of achieving that goal. In the papers
of Howgrave-Graham et al. [23, 24] the problem of constructing an CCA-post-
secure NTRU-based method in the random oracles world is considered.

2 Preliminaries

Notation and Conventions

We will abbreviate “probabilistic polynomial time Turing Machine” with PPTM.
We use the notation poly(·) to refer to some polynomially bounded function and
neg(·) to refer to some function that is smaller than 1/p(·) for any polynomial
p(·) (for all sufficiently large inputs). For any integer n, we let Un denote the
uniform distribution over {0, 1}n. We let the operation ⊕ on two bit-strings
denote their bit-wise XOR.

2.1 Public-Key Encryption - Correctness

A public-key encryption scheme consists of three probabilistic polynomial time
algorithms (G,E, D), for key generation, encryption and decryption respectively.
For simplicity we fix n to be both the security parameter and input length, and
assume that the message space is {0, 1}n. Algorithm G, for the key generation
is given 1n as input (as well as internal random coins), and outputs the public
key and secret key pair (pk, sk). We have that |pk| = |sk| = poly(n). E and D
are, respectively, the encryption and decryption algorithms. E takes as input a
public key pk, an n-bit plaintext message m, and uses internal random coins.
We refer to the output c ∈ Epk(m) as the ciphertext. When we want to refer to
E’s additional poly(n)-long random input r explicitly, we will use the notation
Epk(m; r). Finally, D takes as input a secret key sk and a ciphertext. The output
of D is either a message m′ (which may fail to equal the original message m) or
⊥ to indicate invalid (we are deliberately not attaching semantics to a response
of “invalid”). The standard definition of public-key encryption schemes requires



perfect correctness. Namely, that if the input c to Dsk is well constructed using
Esk, then the output Dsk(c) is supposed to retrieve the original plaintext. We
make this explicit in the next definition.

Definition 1. A public-key encryption scheme (G,E,D) is perfectly correct if
the following holds:

– For every message m of length n, for every pair (pk, sk) generated by G
on input 1n, and all possible coin tosses of E and D, it should hold that
Dsk(Epk(m)) = m.

Although we allowed D to output ⊥ we made no assumption on the probability
of ⊥ being the output in case the ciphertext is indeed invalid (where invalid
means that there do not exist m and r such that c = Epk(m; r)).

We now want to relax the notion of public key-encryption so as to allow
decryption errors. We define an encryption scheme to be α-correct, if the prob-
ability of decryption error is at most 1− α.

Definition 2. For any function α : IN 7→ [0, 1], a public-key (G,E, D) encryp-
tion scheme is α-correct if Pr[Dsk(Epk(m)) 6= m] ≤ 1− α(n), where the proba-
bility is taken over the random coins of G used to generate (pk, sk) on input 1n,
over the choice of m ∈ Un, and over the random coins of E and D.

In the above definition the error probability is taken over the random choice
of the message (uniformly at random), the randomness of the encryption and
decryption and the choice of the key. In particular, some keys may be completely
useless as they don’t allow decryption at all. We now consider the case that
the bound on the decryption error holds for all keys or for all but a negligible
fraction of the keys. These definitions are relevant here for two reasons: (1) Our
transformations will be a bit more efficient if we only try to immunize against
this kind of errors. (In the sense that the key of the revised scheme will only
include a single key of the original scheme.) (2) Our transformations will produce
schemes that are “almost-all-keys perfectly correct” rather than perfectly correct
encryptions. This means that decryption errors can only occur with a negligible
probability over the choice of the key. Note that such errors are usually much
less harmful, and in particular such schemes can be made non-malleable using
“standard” techniques (unlike the case where errors may occur for a substantial
fraction of the keys).

Definition 3. Let (G,E, D) be any public-key encryption scheme and α : IN 7→
[0, 1] an arbitrary function.

– (G,E, D) is all-keys α-correct if for every pair (pk, sk) generated by G on
input 1n, Pr[Dsk(Epk(m)) 6= m] ≤ 1 − α(n), where the probability is taken
over the choice of m ∈ Un, and over the random coins of E and D.

– (G,E, D) is almost-all-keys α-correct if with probability (1−neg(n)) over the
random coins of G used to generate (pk, sk) on input 1n, Pr[Dsk(Epk(m)) 6=
m] ≤ 1−α(n), where the probability is taken over the choice of m ∈ Un, and
over the random coins of E and D.



– (G,E, D) is almost-all-keys perfectly correct if with probability (1−neg(n))
over the random coins of G used to generate (pk, sk) on input 1n,
Pr[Dsk(Epk(m)) 6= m] = 0, where the probability is taken over the choice
of m ∈ Un, and over the random coins of E and D.

2.2 Public-Key Encryption - Security

Semantic security [20] has established itself as essentially the minimal desired
notion of security for encryption schemes. Intuitively, a public-key encryption
scheme is semantically secure if anything that a polynomial-time adversary can
compute about the plaintext m given the ciphertext c = Epk(m), it can also
compute without access to c. Semantic security was shown in [20] to be equiv-
alent to the indistinguishability of ciphertexts, which intuitively means that ci-
phertexts which correspond to different plaintexts are indistinguishable. Three
basic modes of attack for which semantic security was considered are: chosen
plaintext attack (which for public-key encryption essentially amounts to giving
the adversary the public-key pk and allowing the adversary to decide the chal-
lenge distribution), and chosen ciphertext attack in the preprocessing and the
postprocessing modes (in both the adversary also gets access to a decryption
oracle; in the preprocessing mode this access ends when the ciphertext challenge
is published). Semantic security under these attacks is denoted IND-CPA, IND-
CCA-Post and IND-CCA-Pre respectively. An even stronger notion of security
than semantic security is that of non-malleability [11]. Intuitively, here the adver-
sary should not even gain a (non-negligible) advantage in creating an encryption
of a message that relates to m. Non malleability with respect to the above at-
tacks is denoted NM-CPA, NM-CCA-Post and NM-CCA-Pre respectively. For
the formal definitions of the above notions we rely on [11].

Both semantic security and non-malleability were originally defined for per-
fectly correct encryption schemes. Nevertheless they are just as meaningful for
schemes with decryption errors. Section 3 gives a very simple way of eliminating
decryption errors (as long as they are very rare) while preserving each one of
the above six notions of security. Section 4 shows how to immunize much weaker
encryption schemes. Here decryption errors will be more likely (may even hap-
pen with probability 1− poly). In addition, we will make much weaker security
assumptions: we will only bound the success probability of the adversary in “in-
verting E” and completely retrieving the plaintext message m. (Therefore, the
only advantage the legitimate recipient has over the adversary is in the proba-
bility of decryption.) This notion of weak security is captured by the following
definition.

Definition 4. For any function β : IN 7→ [0, 1], a public-key encryption scheme
is β-one-way (β-OW) if for every PPTM A, Pr[A((Epk(m)) = m] ≤ β(n) +
neg(n), where the probability is taken over the random coins of G used to generate
(pk, sk) on input 1n, over the choice of m ∈ Un, and over the random coins of
E and A.

We note that unlike semantic security and non-malleability, this notion of secu-
rity allows the encryption scheme E to be deterministic.



Pseudorandom Generators One of the transformations of this paper uses pseu-
dorandom generators as a main tool. A pseudorandom generator is a function
prg : {0, 1}∗ 7→ {0, 1}∗ such that on n-bit input x, the output prg(x) is `(n) > n
bits long and such that prg(Un) is computationally indistinguishable from U`(n).
See [17, 16] for a formal definition.

3 The Case of Infrequent Errors

This section describes a very efficient way for eliminating decryption errors when
errors are very rare. If errors are too frequent to apply this technique directly,
then one can first apply the amplification methods described in Section 4.

Let E be an encryption scheme where for every message m, the probabil-
ity over the randomness r of E that Dsk(Epk(m; r)) 6= m is tiny. To correct
this scheme we use the “reverse randomization” trick from the construction of
Zaps [12] and commitment protocols [28] (which can be traced back to Laute-
mann’s proof that BPP is in the polynomial time hierarchy [26]). The idea is
very simple: by assumption, only a tiny fraction of “bad” random strings r lead
to ciphertexts with decryption errors. Thus, we will arrange that the cipher-
texts are constructed using only a rather small fraction of the possible values
for r; the particular set of values will depend on the choice of public key. Very
minimal independence in the selection of this subset will already assure that we
are avoiding the bad strings with very high probability. In addition, the subset
will be constructed to be pseudorandom, which will guarantee that the seman-
tic security of the original scheme is preserved. Finally, the construction will
ensure that the error probability is only on the choice of encryption key – if
the encryption key is good, no ciphertext created with this encryption key will
suffer a decryption error. The only significant computational cost incurred by
this transformation is a single invocation of a pseudorandom generator (and in
fact, this may already be performed to save on random bits, in which case the
transformation is essentially for free).

For simplicity we state the next construction (and the corresponding theo-
rem) under the assumption that the decryption algorithm D is deterministic.
In the case of chosen-plaintext attack (which is probably the most interesting
setting of the theorem), this can be obtained simply by fixing the randomness of
D as part of the key. The case of chosen-ciphertext attacks is a bit more delicate
but still the construction can be easily extended to randomized D.

Construction 31 Let (G,E,D) be any public-key encryption scheme. Let `(n)
be the (polynomially bounded) number of bits used by E to encrypt n-bit mes-
sages. Without loss of generality assume that `(n) > n (as E can always ignore
part of its random input). Let prg be a pseudorandom generator that expands n
bits to `(n) bits.

Define the public-key encryption scheme (G′, E′, D′) as follows: on input 1n,
the generation algorithm G′ outputs ((pk, r̄), sk) where (pk, sk) is obtained by
invoking G on the same input and r̄ ∈ U`(n). On an n-bit input m, the encryption



function E′ uses an n-bit random string s and outputs Epk(m; prg(s)⊕ r̄). The
decryption function D′ is identical to D.

Theorem 1. Let (G,E,D) be any (1−2−4n) correct public-key encryption scheme
with D being deterministic. Define (G′, E′, D′) as in Construction 31. Then
(G′, E′, D′) is an almost-all-key perfectly correct public-key encryption scheme.
Furthermore, if (G,E, D) is NN-AAA secure with NN-AAA ∈ {IND-CPA, IND-
CCA-Post, IND-CCA-Pre, NM-CPA, NM-CCA-Post, NM-CCA-Pre} then so is
(G′, E′, D′).

Proof. For any fixed value of r̄, the distribution prg(Un) ⊕ r̄ is pseudorandom.
Therefore, it easily follows that (G′, E′, D′) is NN-AAA secure (otherwise we
could construct a distinguisher that breaks the pseudorandom generator).

It remains to prove the correctness of (G′, E′, D′), i.e. that with high probabil-
ity over the choice of keys the scheme is perfectly correct. First, with probability
at least (1−2−n) over the choice of (pk, sk), the value Prm,r[Dsk(Epk(m; r)) 6= m]
is at most 2−3n. Assume that (pk, sk) satisfies this property. Since r̄ is uniformly
distributed we also have that Prm,s,r̄[Dsk(Epk(m; prg(s)⊕ r̄)) 6= m] ≤ 2−3n. As
m and s are only n-bit long, we get by a union bound that the probability over
r̄ that for some m and s a decryption error Dsk(Epk(m; prg(s) ⊕ r̄)) 6= m will
occur is at most 2−n. We can therefore conclude that for all but at most a 2−n+1

fraction of (G′, E′, D′) keys ((pk, r̄), sk) the scheme is perfectly correct.

Remark 1. The existence of the pseudorandom generator needed for Construc-
tion 31, follows from the security of (G, E, D) (under any one of the notions
considered by the theorem). This is because the security of (G,E,D) implies
the existence of one-way functions [25] which in turn imply the existence of
pseudorandom generators [22].

Consider the construction of [11] for NM-CCA-post secure public key cryp-
tosystems. This requires (i) a perfectly correct public-key cryptosystem which is
semantically secure against chosen plaintext attacks (ii) A non-interactive zero-
knowledge (NIZK) proof system for NP (that is for some specific language in NP)
(iii) other primitives that can be based on one-way functions. Furthermore, if
we replace in that construction the perfectly correct cryptosystem with one that
is almost-all-keys-perfectly-correct, then all that happens is that the resulting
construction is also of a similar nature. Therefore we can conclude

Corollary 2 If (1 − 2−4n)-correct public-key encryption schemes semantically
secure against chosen plaintext attacks exist and NIZK proof system for NP
exist, then almost-all-key perfectly correct public-key encryption schemes which
are NM-CCA-post secure public key cryptosystems exist.

4 Immunizing Very Weak Encryption Schemes

We now consider much weaker encryption schemes than in Section 3. Here the
encryption may only be α-correct and β-OW where α and β may be as small as



1/poly. Naturally, α has to be larger than β as otherwise the legitimate recipient
of a message will have no advantage over the adversary (and such a scheme is
useless and trivial to construct). The transformation given here works under the
assumption that β < α4/c for some fixed constant c. An interesting open problem
is to give a transformation that works for even smaller gaps. Nevertheless, as we
discuss below, having the transformation work for a gap β−α that is larger than
an arbitrary constant, may involve improving the corresponding transformation
in the related information-theoretic setting of [35].

4.1 Polarization in the statistical setting

Sahai and Vadhan [35], give an efficient transformation of a pair of distributions
(X0, X1) (encoded by the circuits that sample them) into a new pair of distribu-
tions (Y0, Y1). The transformation “polarizes” the statistical distance between
X0 and X1. If this distance is below some threshold β′ then the statistical dis-
tance between Y0 and Y1 is exponentially small. If on the other hand the distance
between X0 and X1 is larger than another threshold α′ then the statistical dis-
tance between Y0 and Y1 is exponentially close to 1. The condition for which
this transformation works is that β′ < α′2.

What is the relation between this problem and ours? Consider an α-correct
and β-OW encryption scheme, for one-bit messages. Let X0 be the distribu-
tion of encryptions of 0 and X1 the distribution of encryptions of 1. Intuitively
we have that the legitimate recipient can distinguish these distributions with
advantage α− (1− α) = 2α− 1 (recall that α > 1/2), while the adversary can-
not distinguish the distributions with advantage better than 2β − 1 < 2α − 1.
Our transformation produces a new encryption scheme; let Y0 and Y1 be the
corresponding distributions. We now have that the ability of the adversary to
distinguish between Y0 and Y1 shrinks (to negligible), whereas the legitimate
recipient distinguishes with probability that is exponentially close to 1. In fact,
this intuitive similarity can be formalized to show that any transformation in the
computational setting that is “sufficiently black box” implies a transformation
in the statistical setting. This in particular implies that for our transformations
to work for any constant gap α−β, we may need to improve the transformation
of [35] (or to use non black-box techniques).

What about the other direction? It seems much harder in general to translate
transformations from the statistical setting to the computational one. Neverthe-
less, the transformations given in this section are heavily influenced by [35].
However, the computational versions of the amplification tools used in [35] are
significantly weaker, which imposes additional complications and implies some-
what weaker bounds than those of [35].

4.2 Tools and basic transformations

To improve an α-correct and β-OW encryption scheme (G,E, D), we will use
three basic transformations:



Parallel Repetition The encryption Ek of a k-tuple of messages m1, . . . , mk

will be defined as Ek(m1, . . . ,mk) = E(m1), . . . , E(mk). A negative effect
of this transformation is that the probability of correct decryption of the
entire k-tuple is reduced to αk. The gain of the transformation is that the
probability of the adversary to break the one-wayness of Ek will also decrease
below β (usually in an exponential rate as well). To bound this probability
we apply a result of Bellare et al. [4] on the amplification of games in parallel
execution. To conclude, this transformation makes decryption harder both
for the legitimate recipient and for the adversary. As the adversary has a
weaker starting point (success probability β ¿ α), it will be hurt more by
the transformation.

Hard Core Bit Here we will transform an encryption scheme for strings to one
that encrypts single bits. This will employ a hard core predicate in a rather
standard fashion. The gain from this transformation is in turning the one-
wayness of an encryption scheme into indistinguishability (which is easier to
work with and is also our final goal).

Direct Product The encryption E⊗k of a message m will be the concatena-
tion of k independent encryptions of m under E. This transformation has the
reverse affect to Ek: Decryption becomes easier both for the legitimate recip-
ient and for the adversary. As the legitimate recipient has a better starting
point (success probability α À β), it will gain more by the transformation.

In the formal definition of Ek and E⊗k, we use independently generated keys
for each one of the invocations of E by these schemes. This is necessary as a large
fraction of the keys of E may be completely useless (i.e., do not allow decryption
at all or completely reveal the message). So in order to amplify the security and
correctness, we should use more than a single key. This can be avoided if we
assume that (G,E, D) is α-correct and β-OW even after we fix the key of E (for
all but negligible fraction of the keys). In such a case, the transformations of
this paper will become much more efficient (in terms of key size). We now turn
to the formal definition of the basic transformations.

Parallel Repetition

Definition 5. Let (G, E, D) be any public-key encryption scheme, and let k :
IN 7→ IN be any polynomially bounded function. Define (Gk, Ek, Dk) as follows:
On input 1n, the key-generating algorithm Gk invokes G, with input 1n, k = k(n)
times using independent random coins for each invocation. The output of Gk is
(p̄k, s̄k) where p̄k = pk1, . . . pkk, s̄k = sk1, . . . skk, and (pki, ski) is the output of
G in its ith invocation. On input m̄ = m1, . . . mk the output Ek

p̄k
(m̄) is defined

by Ek
p̄k

(m̄) = Epk1(m1), . . . Epkk
(mk), where the k encryptions are performed

with independent random coins. Finally, on input c̄ = c1, . . . ck, the decryption
algorithm Dk

s̄k
tries to decrypt each ci by applying Dski(ci). It outputs ⊥ if one

of these invocations of D returned ⊥ and otherwise Dk
s̄k

outputs the sequence
Dsk1(c1) . . . Dskk

(ck).



Lemma 1. Let (G,E,D) be any public-key encryption scheme, and let k : IN 7→
IN be any polynomially bounded function. If (G,E,D) is α-correct and β-OW
with β < 1 − 1/poly, then (Gk, Ek, Dk) is αk-correct and β′-OW for any β′ >

1/poly that satisfies β′ > 32/(1− β) · e−k(1−β)2/256.

Proof. The correctness of (Gk, Ek, Dk) follows immediately from the definition.
The security is much more delicate. Fortunately, it can be obtained as a simple
corollary of a theorem of Bellare, Impagliazzo, and Naor regarding error proba-
bility in parallel execution of protocols of up to three rounds ([4] Theorem 4.1).
Thus, we need to translate the breaking of (Gk, Ek, Dk) into winning the parallel
execution of a game that is composed of at most three messages. Specifically,
consider the following game between P and (an honest) V , where V invokes G
to select (pk, sk), it selects a uniform message m and sends pk and Epk(m) to
P . In return, P sends a message m′ and wins if m = m′. From the one-wayness
of (G,E, D) we get that the best efficient strategy of P can win with probabil-
ity at most β + neg. Note that the probability of winning the k-times parallel
repetition of this game is the same as breaking the one-wayness of (Gk, Ek, Dk).
The lemma now follows from Theorem 4.1 of [4].

Hard Core Bit

For concreteness we will use the Goldreich-Levin (inner product) bit [19]. This
could be replaced with hard-core bits implied by other error-correcting codes
that have strong list-decoding properties.

Definition 6. Let (G, E, D) be any public-key encryption scheme, where the en-
cryption function operates on plaintexts of length ` ≥ 1, and let k : IN 7→ IN be
any polynomially bounded function. Define (G¯, E¯, D¯) as follows: G¯ is sim-
ply identical to G. On a one-bit message σ, the encryption function E¯

pk samples
two `-bit strings m and r uniformly at random and outputs Epk(m), r, 〈m, r〉⊕σ,
where 〈m, r〉 is the inner product of m and r (mod 2). On input c, r, σ′ the de-
cryption function D¯

pk evaluates m′ = Dpk(c). If m′ 6= ⊥, then D¯
pk outputs

〈m′, r〉 ⊕ σ′, otherwise D¯
pk outputs a random bit.

Lemma 2. Let (G,E, D) be any public-key encryption scheme. If (G,E, D) is
α-correct and β-OW, then (G¯, E¯, D¯) is (1/2+α/2)-correct and 1/2+O(

√
β)-

OW. In particular, if β is negligible then (G¯, E¯, D¯) is IND-CPA secure.

Proof. For correctness, note that if m′ = Dpk(c) = m (as in Definition 6), then
D¯

pk decrypts correctly with probability one. Otherwise D¯
pk decrypts correctly

with probability half (since the probability over r that for any m′ 6= m we have
that 〈m′, r〉 = 〈m, r〉 is half). We can therefore conclude that the probability of
correct decryption is at least α · 1 + (1− α) · 1/2 = 1/2 + α/2.

For security, let us first assume that β is negligible. In this case (G¯, E¯, D¯)
is (1/2)-OW and equivalently is IND-CPA secure. Assume for the sake of contra-
diction that there exists an efficient adversary that decrypts D¯

pk with probability
1/2 + 1/poly without access to sk. In this case, there is an efficient adversary



that given Epk(m) and r guesses 〈m, r〉 with probability 1/2 + 1/poly. Now we
obtain from [19] that there exists an efficient adversary that given Epk(m) out-
puts m with probability 1/poly. This contradicts the assumption that (G,E, D)
is neg-OW.

Finally, let us consider the case where β is non-negligible. Assume for the
sake of contradiction that there exists an efficient adversary that decrypts D¯

pk

with probability 1/2 + ε, where ε = c · √β for some large constant c (note that
ε > 1/poly). This again implies the existence of an efficient adversary that given
Epk(m) and r guesses 〈m, r〉 with the same probability. Using a tight enough
version of the reconstruction algorithm for the Goldreich-Levin hard-core bit, we
can conclude that there exists an efficient adversary that given Epk(m) computes
a list of O(1/ε2) candidates that include m with probability 1/2. This means that
this adversary can also guess m with probability Ω(ε2) which can be made say 2β
by setting the constant c to be large enough. This contradicts the β-one-wayness
of (G, E, D) and completes the proof of the lemma.

Direct Product

Definition 7. Let (G, E, D) be any public-key encryption scheme, and let k :
IN 7→ IN be any polynomially bounded function. Define (G⊗k, E⊗k, D⊗k) as fol-
lows: On input 1n, the key-generating algorithm G⊗k invokes G, with input 1n,
k = k(n) times using independent random coins for each invocation. The output
of G⊗k is (p̄k, s̄k) where p̄k = pk1, . . . pkk, s̄k = sk1, . . . skk, and (pki, ski) is
the output of G in its ith invocation. On input m the output E⊗k

p̄k
(m) is defined

by E⊗k
p̄k

(m) = Epk1(m), . . . Epkk
(m), where the k encryptions are performed with

independent random coins. Finally, on input c̄ = c1, . . . ck, the decryption algo-
rithm D⊗k

s̄k
tries to decrypt each ci by applying Dski(ci). It outputs the value that

is obtained the largest number of times (ties are resolved arbitrarily).

We will use the direct product transformation only for encryptions of single
bits. In this case, it is convenient to express correctness and security in terms of
the advantage over half.

Lemma 3. Let (G,E, D) be any public-key encryption scheme over the mes-
sage space {0, 1}, and let k : IN 7→ IN be any polynomially bounded function.
If (G,E, D) is (1/2 + α)-correct and (1/2 + β)-OW, then (G⊗k, E⊗k, D⊗k)
is (1/2 + kβ)-OW and for every ε > 0, it is (1 − ε)-correct as long as k >
c · 1/α2 · log 1/ε for some fixed constant c.

Proof. The one-wayness of (G⊗k, E⊗k, D⊗k) is obtained by a standard hybrid
argument. Correctness is also simple to show using Chernoff bound. We note that
we assume here that decryption errors occur with roughly the same probability
for encryptions of zero and encryptions of one. For example, it is sufficient to
assume that both Pr[Dsk(Epk(0)) = 0] > 1/2 + α/2 and Pr[Dsk(Epk(1)) = 1] >
1/2 + α/2. This is with no loss of generality as biases of D (towards outputting
zero or towards one) can always be corrected.



4.3 Combining the Basic Transformations

The three basic transformations defined above can be combined in various ways
to improve α-correct and β-OW encryption schemes. The most efficient com-
bination depends on the particular values of α and β. We will not attempt to
optimize the efficiency of our transformations but rather to demonstrate their
effectiveness. For that we consider two settings of the parameters: (1) β is an ar-
bitrary constant smaller than one and α is also a constant smaller than one (that
depends on β). (2) α is as small as 1/poly and β is non-negligible (β = Ω(α4)).

Constant Decryption Errors

Theorem 3. For any constant β < 1 there exists a constant α < 1 such that
if there exists an α-correct and β-OW public-key encryption scheme then there
exists an almost-all-keys perfectly-correct IND-CPA secure public-key encryption
scheme.

Proof. Set α to be a constant such that e−(1−β)2/256 < α8 and let (G0, E0, D0)
be an α-correct and β-OW public-key encryption scheme. Define the following
systems:

– (G1, E1, D1) = (Gk1
0 , Ek1

0 , Dk1
0 ) where k1 = logα(1/n). Lemma 1 implies that

(G1, E1, D1) is (1/n)-correct and O(1/n8)-OW.
– (G2, E2, D2) = (G¯1 , E¯

1 , D¯
1 ). Lemma 2 implies that (G2, E2, D2) is (1/2 +

n/2)-correct and (1/2 + O(1/n4))-OW.
– (G3, E3, D3) = (G⊗k2

2 , E⊗k2
2 , D⊗k2

2 ) where k2 = O(n3), for which Lemma 3
implies that (G3, E3, D3) is (1− 2−5n)-correct and (1/2 + O(1/n))-OW.

– (G4, E4, D4) = (Gn
3 , En

3 , Dn
0 ). Lemma 1 implies that (G1, E1, D1) is (1 −

2−5n)n-correct, which means that it is also (1−n ·2−5n)-correct. In addition
it is (1/p)-OW for any polynomial p. Thus it is also neg-OW.

– (G5, E5, D5) = (G¯4 , E¯
4 , D¯

4 ). Lemma 2 implies that (G5, E5, D5) is (1 −
(n/2) · 2−5n)-correct and IND-CPA secure.

Theorem 3 now follows as a corollary of Theorem 1.

Very Frequent Decryption Errors

Theorem 4. There exists some positive constant c such that for any functions
α > 1/poly and β < α4/c the following holds: If there exists an α-correct and β-
OW public-key encryption scheme then there exists an almost-all-keys perfectly-
correct IND-CPA secure public-key encryption scheme.

Proof. Let (G0, E0, D0) be an α-correct and β-OW public-key encryption scheme.
The conditions of the theorem imply that it is also (α4/c)-OW.

Define (G1, E1, D1) = (G¯0 , E¯
0 , D¯

0 ). Lemma 2 implies that (G1, E1, D1) is
(1/2 + α/2)-correct and (1/2 + O(α2/

√
c))-OW.

Define (G2, E2, D2) = (G⊗k
1 , E⊗k

1 , D⊗k
1 ). For any constant ε > 0 we can

let k = O(1/α2) (with the constant hidden in the big O notation depending



on ε), such that Lemma 3 will imply that (G2, E2, D2) is (1 − ε)-correct and
(1/2 + O(1/

√
c))-OW. Setting c to be a large enough constant implies that

(G2, E2, D2) is (3/4)-OW. In other words, for any constant ε > 0, if c is a large
enough constant, there exists a (1−ε)-correct and (3/4)-OW encryption scheme.
Theorem 4 now follows as a corollary of Theorem 3.

4.4 Conclusion - Obtaining Non-Malleability

As discussed in the introduction, one of the main motivations in dealing with
decryption errors is obtaining non-malleability and chosen ciphertext security.
As with Corollary 2 we now get from Theorem 4 the following corollary.

Corollary 5 There exists some positive constant c such that for any functions
α > 1/poly and β < α4/c the following holds: If there exists an α-correct and
β-OW public-key encryption scheme and NIZK proof system for NP exist, then
there exists an almost-all-keys perfectly-correct NM-CCA-post secure public-key
encryption scheme.

5 Dealing with Errors Using Random Oracles

In this section we provide an integrated construction for transforming error-prone
public-key encryption schemes with some negligible probability of error that
are not necessarily secure against chosen ciphertext attacks into schemes that
enjoy non-malleability against a chosen ciphertext attack of the post-processing
kind. The advantage over the construction of Section 3 is that it works for any
negligible probability of error (no need to first decrease the error probability to
2−Ω(n) where n is the message length).

Let (G,E, D) be a public-key encryption scheme that for public key pk maps
a message m ∈ {0, 1}n and random coins string r ∈ {0, 1}` into a ciphertext
c = Epk(m, r) (since we may start with a scheme that is not necessarily seman-
tically secure, we consider also the case of deterministic encryption, so ` may
be 0). We assume without loss of generality that the decryption algorithm D is
deterministic5. The properties that we assume E satisfies are:

α correctness and few bad pairs For a random message m and random r
we have Pr[Dsk(Epk(m, r)) 6= m] ≤ 1 − α(n), where 1 − α(n) is negligi-
ble. The probability is over the choice of m, r. We call a pair (m, r) where
Dsk(Epk(m, r)) 6= m a bad pair. The set of bad pairs is sparse in {0, 1}n+`

One-wayness For any polynomial time adversary A and for c = Epk(m, r) for
random m and r we have Prm,r[A(c, pk) = m] is negligible. In other words,
E is 0-OW.

5 This may justified, for instance by applying a pseudo-random function to the message
in order to obtain the random bits and adding the seed of the function to the secret
key.



In addition to the public-key cryptosystem E satisfying the above condi-
tions, we require (i) a shared-key encryption scheme FS which is NM-CCA-
post secure. The keys S are of length k bits. Note that such schemes are easy
to construct from pseudo-random functions (see [11]); and (ii) Four functions
H1 : {0, 1}n/2 7→ {0, 1}n/2, H2 : {0, 1}n/2 7→ {0, 1}n/2, H3 : {0, 1}n/2 7→ {0, 1}`

and H4 : {0, 1}n/2 7→ {0, 1}k which will be modelled as ideal random functions.
We assume that n is sufficiently large so that 2n/2 is infeasible.

Construction 51 Let (G,E,D) be a public-key encryption scheme, H1,H2,H3,H4

be idealized random functions as above and FS be shared-key encryption scheme
as above.

Generation G′ operates the same as G and generates a public key pk and secret
key sk.

Encryption E′: Choose t ∈R {0, 1}n/2. Compute z = H1(t) and w = H2(z)⊕ t
and r = H3(z ◦w). The encrypted message is composed of two parts (c1, c2):
– The generated c1 = Epk(z ◦ w, r)
– The plaintext m itself is encrypted with the shared-key encryption scheme

Fs with key s = H4(t), i.e. c2 = Fs(m).
Decryption D′: Given ciphertext (c1, c2):

1. Apply D to c1 and obtain candidates for z and w. Set t = H2(z)⊕w and
r = H3(z ◦ w).

2. Check that H1(t) = z and that for r = H3(z ◦ w) we have that c1 =
E(z ◦ w, r).

3. Check, using s = H4(t), that c2 is a valid ciphertext under Fs.
4. If any of the tests fails, output invalid (⊥). Otherwise, output the de-

cryption of c2 using s.

Note that once t ∈ {0, 1}n/2 has been chosen, there is unique ciphertext
(c1, c2) generated from t and encrypting m, which we denote E′

pk(m, t). Further-
more, for any ciphertext, once the corresponding t ∈ {0, 1}n/2 is known, it is
easy to decrypt the ciphertext without access to sk. This is the key for obtain-
ing security against chosen ciphertext attacks (since it is possible to follow the
adversary calls to H1).

Why does this process immunize against decryption errors? The point is not
that the decryption errors have disappeared, but that it is hard to find them. We
can partition all strings (of length equal to |Epk(z ◦w, r)|) into those that are in
the range of E (i.e., such that there exist m and r such that the string is equal
to Epk(m, r)) and those that are not. Consider a candidate ciphertext (c1, c2)
that is given to the decryption procedure D′. If the prefix of the ciphertext (i.e.
c1) is not in the range of E, then it is going to be rejected by D′ (at Step 2).
So the security rests on the hardness of finding among the bad pairs (z ◦ w, r)
one where r = H3(z ◦ w) and H1(H2(z) ⊕ w) = z. This is difficult for any fixed
(but sparse) set of bad pairs and a random set of functions H1,H2, and H3

even for an all powerful adversary who is simply restricted in the number of
calls to H1,H2, and H3. In particular, as we will explain, if there are q1 calls to



H1 and q2 calls to H2 then the probability that the adversary finds a bad pair
that passes the test is bounded by q1(1 − α) + q1q2/2n/2. The first term comes
from the “natural” method for constructing a pair that satisfies the constraints:
Choose an arbitrary y. Apply H1 to y and call the result z, so that z = H1(y).
Define w = H2(z) ⊕ y. Then r = H3(z ◦ w), and we have the pair (z ◦ w, r)
satisfying the necessary constraints. Note that the pair is completely determined
by y, once the random oracles are fixed, and the pair is random, because the
oracles are random. So for any method of choosing y the probability of hitting
a bad pair is (1− α). This gives us the first term. For the second term, suppose
during its history the adversary invokes H2 a total of q2 times, say, on inputs
x1, x2, . . . , xq2 . Let y be arbitrary. Define wi = y ⊕H2(xi), for i = 1, . . . , q2. We
now check to see if H1(y) ∈ {x1, . . . , xq2}. Suppose indeed that H1(y) = xi (an
event that occurs with probability at most q2/2n/2). Let z = xi. Then we have
that z = H1(y) = H1(wi ⊕H2(xi)) = H1(wi ⊕H2(z)). We let r = H3(z ⊕ wi)
and again we have a pair satisfying the constraints. The total number of pairs
we can hope to generate this way is q1q2/2n/2.

Why does this process protect against chosen ciphertext attacks? This is
very much for the same reason that the Fujisaki-Okamoto [14] scheme is secure.
Note that hardness of finding a bad pair is true also for someone knowing the
private key sk of E, that is even the creator of the cryptosystem cannot find a
bad pair. Therefore, even under a chosen ciphertext attack w.h.p. a bad pair will
not be found. So w.h.p. on all queries given during the attack there is only one
response. Furthermore, this response can be given by someone who is aware of
the attacker’s calls to H1 (by going over all candidates for t). The addition of
the function H4 and the shared key scheme FS transforms the system from a
one-way scheme into one that is non-malleably secure against chosen ciphertext
attacks. From these sketched arguments we get:

Theorem 6. If (G,E,D) is (1−neg)-correct and neg-one-way then (G′, E′, D′)
is (1− neg)-correct and NM-CCA-post secure.

6 Conclusions and Open Problems

We have shown how to eliminate decryption errors in encryption schemes (and
even handle non-negligible success probability of the adversary). It is interesting
to note that sometimes such ambiguity is actually desirable. This is the case
with deniable encryption [7], where the goal is, in order to protect the privacy
of the conversation, to allow a sender to claim that the plaintext corresponding
to a given ciphertext is different than the one actually sent.

As discussed in Section 4, an interesting open problem is to give a transfor-
mation that deals with α-correct and β-OW encryption schemes when the gap
between α and β is very small. For example, we may hope to have β − α be an
arbitrary constant or even 1/poly. Nevertheless, as discussed there, having such a
strong transformation may involve improving the corresponding transformation
in the related information-theoretic setting of [35].
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