
Merkle Tree Traversal in Log Space and Time

Michael Szydlo

RSA Laboratories, Bedford, MA 01730. mszydlo@rsasecurity.com

Abstract. We present a technique for Merkle tree traversal which re-
quires only logarithmic space and time. For a tree with N leaves, our
algorithm computes sequential tree leaves and authentication path data
in time 2 log

2
(N) and space less than 3 log

2
(N), where the units of com-

putation are hash function evaluations or leaf value computations, and
the units of space are the number of node values stored. This result is
an asymptotic improvement over all other previous results (for example,
measuring cost = space ∗ time). We also prove that the complexity of
our algorithm is optimal: There can exist no Merkle tree traversal algo-
rithm which consumes both less than O(log

2
(N)) space and less than

O(log
2
(N)) time. Our algorithm is especially of practical interest when

space efficiency is required.

Keywords: amortization, authentication path, Merkle tree, tail zipping,
binary tree, fractal traversal, pebbling

1 Introduction

Twenty years ago, Merkle suggested the use of complete binary trees for pro-
ducing multiple one-time signatures [4] associated to a single public key. Since
this introduction, a Merkle tree [8] has been defined to be a complete binary tree
with a k bit value associated to each node such that each interior node value is
a one-way function of the node values of its children.

Merkle trees have found many uses in theoretical cryptographic construc-
tions, having been specifically designed so that a leaf value can be verified with
respect to a publicly known root value and the authentication data of the leaf.
This authentication data consists of one node value at each height, where these
nodes are the siblings of the nodes on the path connecting the leaf to the root.
The Merkle tree traversal problem is the task of finding an efficient algorithm to
output this authentication data for successive leaves. The trivial solution of stor-
ing every node value in memory requires too much space. On the other hand, the
approach of computing the authentication nodes on the round they are required
will be very expensive for some nodes. The challenge is to conserve both space
and computation by amortizing the cost of computing such expensive nodes.
Thus, this goal is different from other, more well known, tree traversal problems
found in the literature.

In practice, Merkle trees have not been appealing due to the large amount
of computation or storage required. However, with more efficient traversal tech-
niques, Merkle trees may once again become more compelling, especially given

the advantage that cryptographic constructions based on Merkle trees do not
require any number theoretic assumptions.

Our Contribution. We present a Merkle tree-traversal algorithm which has a
better space and time complexity than the previously known algorithms. Specif-
ically, to traverse a tree with N leaves, our algorithm requires computation of
at most 2 log2(N) elementary operations per round and requires storage of less
than 3 log2(N) node values. In this analysis, a hash function computation, and
a leaf value computation are each counted as a single elementary operation1.
The improvement over previous traversal algorithms is achieved as a result of
a new approach to scheduling the node computations. We also prove that this
complexity is optimal in the sense that there can be no Merkle Tree traversal al-
gorithm which requires both less than O(log(N)) space and less than O(log(N))
space.

History and Related Work. In his original presentation [7], Merkle proposed
a straightforward technique to amortize the costs associated with tree traversal.
His method requires storage of up to log2(N)/2 hash values, and computation
of about 2 log(N) hash evaluations per round. This complexity had been con-
jectured to be optimal.

In [6], an algorithm is presented which allows various time-space trade-offs.
A parameter choice which minimizes space requires a maximum storage of about
1.5 log2 (N)/ log (log (N)) hash values, and requires 2 log (N)/ log (log (N)) hash
evaluations per round. The basic logarithmic space and time algorithm of our pa-
per does not provide for any time-space trade-offs, but our scheduling techniques
can be used to enhance the methods of [6].

Other work on tree traversal in the cryptographic literature (e.g. [5]) considers
a different type of traversal problem. Related work includes efficient hash chain
traversal (e.g [1, 2]). Finally, we remark that because the verifier is indifferent to
the technique used to produce the authentication path data, these new traversal
techniques apply to many existing constructions.

Applications. The standard application of Merkle trees is to digital signatures
[4, 8]. The leaves of such a binary tree may also be used individually for au-
thentication purposes. For example, see TESLA [11]. Other applications include
certificate refreshal [9], and micro-payments [3, 12]. Because this algorithm just
deals with traversing a binary tree, it’s applications need not be restricted to
cryptography.

Outline. We begin by presenting the background and standard algorithms of
Merkle trees (Section 2). We then introduce some notation and review the classic
Merkle traversal algorithm (Section 3). After providing some intuition (Section
4), we present the new algorithm (Section 5). We prove the time and space

1 This differs from the measurement of total computational cost, which includes, e.g.,
the scheduling algorithm itself.

bounds in (Section 6), and discuss the optimal asymptotic nature of this result
in (Section 7). We conclude with some comments on efficiency enhancements and
future work. (Section 8). In the appendix we sketch the proof of the theorem
stating that our complexity result is asymptotically optimal.

2 Merkle Trees and Background

The definitions and algorithms in this section are well known, but are useful to
precisely explain our traversal algorithm.

Binary Trees. A complete binary tree T is said to have height H if it has 2H

leaves, and 2H −1 interior nodes. By labeling each left child node with a “0” and
each right child node with a “1”, the digits along the path from the root identify
each node. Interpreting the string as a binary number, the leaves are naturally
indexed by the integers in the range {0, 1, . . . 2H − 1}. The higher the leaf index,
the further to the right that leaf is. Leaves are said to have height 0, while the
height of an interior node is the length of the path to a leaf below it. Thus, the
root has height H, and below each node at height h, there are 2h leaves.

Merkle Trees. A Merkle tree is a complete binary tree equipped with a function
hash and an assignment, Φ, which maps the set of nodes to the set of k-length
strings: n 7→ Φ(n) ∈ {0, 1}k. For the two child nodes, nleft and nright, of any
interior node, nparent, the assignment Φ is required to satisfy

Φ(nparent) = hash(Φ(nleft)||Φ(nright)). (1)

The function hash is a candidate one-way function such as SHA-1 [13].
For each leaf l, the value Φ(l) may be chosen arbitrarily, and then equation (1)

determines the values of all the interior nodes. While choosing arbitrary leaf
values Φ(l) might be feasible for a small tree, a better way is to generate them
with a keyed pseudo-random number generator. When the leaf value is the hash
of the random number, this number is called a leaf-preimage. An application
might calculate the leaf values in a more complex way, but we focus on the
traversal itself and model a leaf calculation with an oracle LEAFCALC, which
will produces Φ(l) at the cost of single computational unit2.

Authentication Paths. The goal of Merkle tree traversal is the sequential
output of the leaf values, with the associated authentication data. For each
height h < H, we define Authh to be the value of the sibling of the height h
node on the path from the leaf to the root. The authentication data is then the
set {Authi | 0 ≤ i < H}.

The correctness of a leaf value may be verified as follows: It is first hashed
together with its sibling Auth0, which, in turn, is hashed together with Auth1,

2 It is straightforward to adapt the analysis to more expensive leaf value calculations.

etc., all the way up to the root. If the calculated root value is equal to the pub-
lished root value, then the leaf value is accepted as authentic. Fortunately, when
the leaves are naturally ordered from left to right, consecutive leaves typically
share a large portion of the authentication data.

Efficiently Computing Nodes. By construction, each interior node value
Φ(n) (also abbreviated Φn) is determined from the leaf values below it. The
following well known algorithm, which we call TREEHASH, conserves space.
During the required 2h+1 − 1 steps, it stores a maximum of h + 1 hash values at
once. The TREEHASH algorithm consolidates node values at the same height
before calculating a new leaf, and it is commonly implemented with a stack.

Algorithm 1: TREEHASH (start, maxheight)

1. Set leaf = start and create empty stack.
2. Consolidate If top 2 nodes on the stack are equal height:
• Pop node value Φright from stack.
• Pop node value Φleft from stack.
• Compute Φparent = hash(Φleft||Φright).
• If height of Φparent = maxheight, output Φparent and stop.
• Push Φparent onto the stack.
3. New Leaf Otherwise:
• Compute Φl = LEAFCALC(leaf).
• Push Φl onto stack.
• Increment leaf .
4. Loop to step 2.

Often, multiple instances of TREEHASH are integrated into a larger algo-
rithm. To do this, one might define an object with two methods, initialize, and
update. The initialization step simply sets the starting leaf index, and height of
the desired output. The update method executes either step 2 or step 3, and
modifies the contents of the stack. When it is done, the sole remaining value on
the stack is Φ(n). We call the intermediate values stored in the stack tail node

values.

3 The Classic Traversal

The challenge of Merkle tree traversal is to ensure that all node values are ready
when needed, but are computed in a manner which conserves space and time.
To motivate our own algorithm, we first discuss what the average per-round
computation is expected to be, and review the classic Merkle tree traversal.

Average Costs. Each node in the tree is eventually part of an authentication
path, so one useful measure is the total cost of computing each node value
exactly once. There are 2H−h right (respectively, left) nodes at height h, and if
computed independently, each costs 2h+1 − 1 operations. Rounding up, this is
2H+1 = 2N operations, or two per round. Adding together the costs for each
height h (0 ≤ h < H), we expect, on average, 2H = 2 log(N) operations per
round to be required.

Three Components. As with a digital signature scheme, the tree-traversal
algorithms consists of three components: key generation, output, and verification.
During key generation, the root of the tree, the first authentication path, and
some upcoming authentication node values are computed. The root node value
plays the role of a public key, and the leaf values play the role of one-time private
keys.

The output phase consists of N rounds, one for each leaf. During round leaf ,
the leaf’s value, Φ(leaf) (or leaf pre-image) is output. The authentication path,
{Authi}, is also output. Additionally, the algorithm’s state is modified in order
to prepare for future outputs.

As mentioned above, the verification phase is identical to the traditional
verification phase for Merkle trees.

Notation. In addition to denoting the current authentication nodes Authh, we
need some notation to describe the stacks used to compute upcoming needed
nodes. Define Stackh to be an object which contains a stack of node values as
in the description of TREEHASH above. Stackh.initialize and Stackh.update
will be methods to setup and incrementally compute TREEHASH. Addition-
ally, define Stackh.low to be the height of the lowest node in Stackh, except
in two cases: if the stack is empty Stackh.low is defined to be h, and if the
TREEHASH algorithm has completed Stackh.low is defined to be ∞.

3.1 Key Generation and Setup

The main task of key generation is to compute and publish the root value. This is
a direct application of TREEHASH. In the process of this computation, every
node value is computed, and, it is important to record the initial values {Authi},
as well as the upcoming values for each of the {Authi}.

If we denote the j’th node at height h by nh,j , we have Authh = Φ(nh,1)
(these are right nodes). The “upcoming” authentication node at height h is
Φ(nh,0) (these are left nodes). These node values are used to initialize Stackh to
be in the state of having completed TREEHASH.

Algorithm 2: Key-Gen and Setup

1. Initial Authentication Nodes For each i ∈ {0, 1, . . . H−1}:
Calculate Authi = Φ(ni,1).

2. Initial Next Nodes For each i ∈ {0, 1, . . . H − 1}: Setup
Stackk with the single node value Authi = Φ(ni,1).

3. Public Key Calculate and publish tree root, Φ(root).

3.2 Output and Update (Classic)

Merkle’s tree traversal algorithm runs one instance of TREEHASH for each
height h to compute the next authentication node value for that level. Every 2h

rounds, the authentication path will shift to the right at level h, thus requiring
a new node (its sibling) as the height h authentication node.

At each round the TREEHASH state is updated with two units of compu-
tation. After 2h rounds this node value computation will be completed, and a
new instance of TREEHASH begins for the next authentication node at that
level.

To specify how to refresh the Auth nodes, we observe how to easily deter-
mine which heights need updating: height h needs updating if and only if 2h

divides leaf + 1 evenly. Furthermore, we note that at round leaf + 1 + 2h, the
authentication path will pass though the (leaf + 1 + 2h)/2h’th node at height
h. Thus, its sibling’s value, (the new required upcoming Authh) is determined
from the 2h leaf values starting from leaf number (leaf + 1 + 2h)⊕ 2h, where ⊕
denotes bitwise XOR.

In this language, we summarize Merkle’s classic traversal algorithm.

Algorithm 3: Classic Merkle Tree Traversal

1. Set leaf = 0.
2. Output:
• Compute and output Φ(leaf) with LEAFCALC(leaf).
• For each h ∈ [0, H − 1] output {Authh}.
3. Refresh Auth Nodes:

For all h such that 2h divides leaf + 1:
• Set Authh be the sole node value in Stackh.
• Set startnode = (leaf + 1 + 2h) ⊕ 2h.
• Stackk.initialize(startnode, h).
4. Build Stacks:

For all h ∈ [0, H − 1]:
• Stackh.update(2).
5. Loop:
• Set leaf = leaf + 1.
• If leaf < 2H go to Step 2.

4 Intuition for an Improvement.

Let us make some observations about the classic traversal algorithm. We see
that with the classic algorithm above, up to H instances of TREEHASH may
be concurrently active, one for each height less than H. One can conceptualize
them as H processes running in parallel, each requiring also a certain amount
of space for the “tail nodes” of the TREEHASH algorithm, and receiving a
budget of two hash value computations per round, clearly enough to complete
the 2h+1 − 1 hash computations required over the 2h available rounds.

Because the stack employed by TREEHASH may contain up to h+1 node
values, we are only guaranteed a space bound of 1+2+· · ·+N . The possibility of
so many tail nodes is the source of the Ω(N 2/2) space complexity in the classic
algorithm.

Considering that for the larger h, the TREEHASH calculations have many
rounds to complete, it appears that it might be wasteful to save so many inter-
mediate nodes at once. Our idea is to schedule the concurrent TREEHASH

calculations differently, so that at any given round, the associated stacks are
mostly empty. We chose a schedule which generally favors computation of up-
coming Authh for lower h, (because they are required sooner), but delays begin-
ning of a new TREEHASH instance slightly, waiting until all stacks {Stacki}
are partially completed, containing no tail nodes of height less than h.

This delay, was motivated by the observation that in general, if the com-
putation of two nodes at the same height in different TREEHASH stacks are
computed serially, rather than in parallel, less space will be used. Informally, we
call the delay in starting new stack computations “zipping up the tails”. We will
need to prove the fact, which is no longer obvious, that the upcoming needed
nodes will always be ready in time.

5 The New Traversal Algorithm

In this section we describe the new scheduling algorithm. Comparing to the
classic traversal algorithm, the only difference will be in how the budget of 2H
hash function evaluations will be allocated among the potentially H concurrent
TREEHASH processes.

Using the idea of zipping up the tails, there is more than one way to invent
a scheduling algorithm which will take advantage of this savings. The one we
present here is not optimal, but it is simple to describe. For example, an earlier
version of this work presented a more efficient, but more difficult algorithm.

Algorithm 4: Logarithmic Merkle Tree Traversal

1. Set leaf = 0.
2. Output:
• Compute and output Φ(leaf) with LEAFCALC(leaf).
• For each h ∈ [0, H − 1] output {Authh}.
3. Refresh Auth Nodes:

For all h such that 2h divides leaf + 1:
• Set Authh be the sole node value in Stackh.
• Set startnode = (leaf + 1 + 2h) ⊕ 2h.
• Stackk.initialize(startnode, h).
4. Build Stacks:

Repeat the following 2H − 1 times:
• Let lmin be the minimum of {Stackh.low}.
• Let focus be the least h so Stackh.low = lmin.
• Stackfocus.update(1).
5. Loop:
• Set leaf = leaf + 1.
• If leaf < 2H go to Step 2.

This version can be concisely described as follows. The upcoming needed
authentication nodes are computed as in the classic traversal, but the various
stacks do not all receive equal attention. Each TREEHASH instance can be

characterized as being either not started, partially completed, or completed. Our
schedule to prefers to complete Stackh for the lowest h values first, unless another

stack has a lower tail node. We express this preference by defining lmin be the
minimum of the h values {Stackh.low}, then choosing to focus our attention
on the smallest level h attaining this minimum. (setting Stackh.low = ∞ for
completed stacks effectively skips them over).

In other words, all stacks must be completed to a stage where there are
no tail nodes at height h or less before we start a new Stackh TREEHASH
computation. The final algorithm is summarized in the box above.

6 Correctness and Analysis

In this section we show that our computational budget of 2H is indeed sufficient
to complete every Stackh computation before it is required as an authentication
node. We also show that the space required for hash values is less than 3H.

6.1 Nodes are Computed on Time.

As presented above, our algorithm allocates exactly a budget of 2H computa-
tional units per round to spend updating the h stacks. Here, a computational
unit is defined to be either a call to LEAFCALC, or the computation of a hash
value. We do not model any extra expense due to complex leaf calculations.

To prove this, we focus on a given height h, and consider the period starting
from the time Stackh is created and ending at the time when the upcoming au-
thentication node (denoted Needh here) is required to be completed. This is not
immediately clear, due to the complicated scheduling algorithm. Our approach
to prove that Needh is completed on time is to showing that the total budget
over this period exceeds the cost of all nodes computed within this period which
can be computed before Needh.

Node Costs. The node Needh itself costs only 2h+1 − 1 units, a tractable
amount given that there are 2h rounds between the time Stackh is created, and
the time by which Needh must be completed. However, a non trivial calculation
is required, since in addition to the resources required by Needh, many other
nodes compete for the total budget of 2H2h computational units available in
this period. These nodes include all the future needed nodes Needi, (i < h), for
lower levels, and the 2N output nodes of Algorithm 4, Step 2. Finally there may
be a partial contribution to a node Needi i > h, so that its stack contains no
low nodes by the time Needh is computed.

It is easy to count the number of such needed nodes in the interval, and we
know the cost of each one. As for the contributions to higher stacks, we at least
know that the cost to raise any low node to height h must be less than 2h+1 − 1
(the total cost of a height h node). We summarize these quantities and costs in
the following figure.

Nodes built during 2h rounds for Needh.

Node Type Quantity Cost Each
Needh 1 2h+1 − 1
Needh−1 2 2h − 1
· · · · · · · · ·
Needk 2h−k 2k+1 − 1
· · · · · · · · ·
Need0 2h 1
Output 2h 1
Tail 1 ≤ 2h+1 − 2

We proceed to tally up the total cost incurred during the interval. Notice that
the rows beginning Need0 and Output require a total of 2h+1 computational
units. For ever other row in the node chart, the number of nodes of a given type
multiplied by the cost per node is less than 2h+1. There are h + 1 such rows, so
the total cost of all nodes represented in the chart is

TotalCosth < (h + 2)2h.

For heights h ≤ H − 2, it is clear that this total cost is less than 2H2H . It is
also true for the remaining case of h = H − 1, because there are no tail nodes in
this case.

We conclude that, as claimed, the budget of 2H units per round is indeed
always sufficient to prepare Needh on time, for any 0 ≤ h < H.

6.2 Space is Bounded by 3H.

Our motivation leading to this relatively complex scheduling is to use as little
space as possible. To prove this, we simply add up the quantities of each kind
of node. We know there are always H nodes Authh. Let C < H be the number
completed nodes Nexth.

#Authi + #Nexti = H + C. (2)

We must finally consider the number of tail nodes in the {Stackh}. As for
these, we observe that since a Stackh never becomes active until all nodes in
“higher” stacks are of height at least h, there can never be two distinct stacks,
each containing a node of the same height. Furthermore, recalling algorithm
TREEHASH, we know there is at most one height for which a stack has two
node values. In all, there is at most one tail node at each height (0 ≤ h ≤ H−3),
plus up to one additional tail node per non-completed stack. Thus

#Tail ≤ H − 2 + (H − C). (3)

Adding all types of nodes we obtain:

#Authi + #Nexti + #Tail ≤ 3H − 2. (4)

This proves the assertion. There are at most 3H − 2 stored nodes.

7 Asymptotic Optimality Result

An interesting optimality result states that a traversal algorithm can never beat
both time = O(log(N)) and space = O(log(N)). It is clear that at least H − 2
nodes are required for the TREEHASH algorithm, so our task is essentially
to show that if space is limited by any constant multiple of log(N), then the
computational complexity must be Ω(log(N)). Let us be clear that this theorem
does not quantify the constants. Clearly, with greater space, computation time
can be reduced.

Theorem 1. Suppose that there is a Merkle tree traversal algorithm for which

the space is bounded by α log(N). Then there exists some constant β so that the

time required is at least β log(N).

The theorem simply states that it is not possible to reduce space complexity
below logarithmic without increasing the time complexity beyond logarithmic!

The proof of this technical statement is found in the appendix, but we will
briefly describe the approach here. We consider only right nodes for the proof. We
divide all right nodes into two groups: those which must be computed (at a cost
of 2h+1−1), and those which have been saved from some earlier calculation. The
proof assumes a sub-logarithmic time complexity and derives a contradiction.

The more nodes in the second category, the faster the traversal can go. How-
ever, such a large quantity of nodes would be required to be saved in order to
reduce the time complexity to sub-logarithmic, that the average number of saved
node values would have to exceed a linear amount! The rather technical proof in
the appendix uses a certain sequence of subtrees to formulate the contradiction.

8 Efficiency Improvements and Future Work

Halving the required time. The scheduling algorithm we presented above
is not optimally efficient. In an earlier version of this paper, we described a
technique to half the number of required hash computations per round. The
trick was to notice that all of the left nodes in the tree could be calculated
nearly for free. Unfortunately, this resulted in a more complicated algorithm
which is less appealing for a transparent exposition.

Other Variants. A space-time trade-off is the subject of [6]. For our algorithm,
clearly a few extra node values stored near the top of the tree will reduce total
computation, but there are also other strategies to exploit extra space and save
time. For Merkle tree traversal all such approaches are based on the idea that
during a node computation (such as that of Needi) saving some wisely chosen
set of intermediate node values will avoid their duplicate future recomputation,
and thus save time.

Future work. It might be interesting to explicitly combine the idea in this
paper with the work in [6]. One might ask the question, for any size tree, what
is the least number of hash computations per round which will suffice, if only S
hash nodes may be stored at one time.

Perhaps a more interesting direction will be to look for applications for which
an efficient Merkle tree traversal would be useful. Because the traversal algo-
rithms are a relatively general construction, applications outside of cryptography
might be discovered.

Within cryptography, there is some interest in understanding which construc-
tions would still be possible if no public-key functionality turned out to exist.
(For example due to quantum computers). Then the efficiency of a signature
scheme based on Merkle tree’s would be of practical interest. Finally, in any
practical implementation designed to conserve space, it is important to take into
consideration the size of the algorithm’s code itself.

9 Acknowledgments

The author wishes to thank Markus Jakobsson, and Silvio Micali, and the anony-
mous reviewers for encouraging discussions and useful comments. The author
especially appreciates the reviewer’s advice to simplify the algorithm, even for
a small cost in efficiency, as it may have helped to improve the presentation of
this result, making the paper easier to read.

References

1. D. Coppersmith and M. Jakobsson, “Almost Optimal Hash Sequence Traversal,”
Financial Crypto ’02. Available at www.markus-jakobsson.com.

2. M. Jakobsson, “Fractal Hash Sequence Representation and Traversal,” ISIT ’02,
p. 437. Available at www.markus-jakobsson.com.

3. C. Jutla and M. Yung, “PayTree: Amortized-Signature for Flexible Micropay-
ments,” 2nd USENIX Workshop on Electronic Commerce, pp. 213–221, 1996.

4. L. Lamport, “Constructing Digital Signatures from a One Way Function,” SRI
International Technical Report CSL-98 (October 1979).

5. H. Lipmaa, “On Optimal Hash Tree Traversal for Interval Time-Stamping,”
In Proceedings of Information Security Conference 2002, volume 2433 of Lec-
ture Notes in Computer Science, pp. 357–371. Available at www.tcs.hut.fi/ ˜
helger/papers/lip02a/.

6. M. Jakobsson, T. Leighton, S. Micali, M. Szydlo, “Fractal Merkle Tree Represen-
tation and Traversal,” In RSA Cryptographers Track, RSA Security Conference
2003.

7. R. Merkle, “Secrecy, Authentication, and Public Key Systems,” UMI Research
Press, 1982. Also appears as a Stanford Ph.D. thesis in 1979.

8. R. Merkle, “A Digital Signature Based on a Conventional Encryption Function,”
Proceedings of Crypto ’87, pp. 369–378.

9. S. Micali, “Efficient Certificate Revocation,” In RSA Cryptographers Track, RSA
Security Conference 1997, and U.S. Patent No. 5,666,416.

10. T. Malkin, D. Micciancio, and S. Miner, “Efficient Generic Forward-Secure Signa-
tures With An Unbounded Number Of Time Periods” Proceedings of Eurocrypt
’02, pp. 400-417.

11. A. Perrig, R. Canetti, D. Tygar, and D. Song, “The TESLA Broadcast Authenti-
cation Protocol,” Cryptobytes, Volume 5, No. 2 (RSA Laboratories, Summer/Fall
2002), pp. 2–13. Available at www.rsasecurity.com/rsalabs/cryptobytes/.

12. R. Rivest and A. Shamir, “PayWord and MicroMint–Two Simple Micropayment
Schemes,” CryptoBytes, Volume 2, No. 1 (RSA Laboratories, Spring 1996), pp.
7–11. Available at www.rsasecurity.com/rsalabs/cryptobytes/.

13. FIPS PUB 180-1, “Secure Hash Standard, SHA-1”. Available at
www.itl.nist.gov/fipspubs/fip180-1.htm.

A Complexity Proof

We now begin the technical proof of Theorem 1. This will be a proof by contra-
diction. We assume that the time complexity is sub logarithmic, and show that
this is incompatible with the assumption that the space complexity is O(log(N)).

Our strategy to produce a contradiction is to find a bound on some linear
combination of the average time and the average amount of space consumed.

Notation The theorem is an asymptotic statement, so we will be considering
trees of height H = log(N), for large H. We need to consider L levels of subtrees
of height k, where kL = H. Within the main tree, the roots of these subtrees
will be at heights k, 2 ∗ k, 3 ∗ k . . . H. We say that the subtree is at level i if its
root is at height (i + 1)k. This subtree notation is similar to that used in [6].

Note that we will only need to consider right nodes to complete our argument.
Recall that during a complete tree traversal every single right node is eventually
output as part of the authentication data. This prompts us to categorize the
right nodes in three classes.

1. Those already present after the key generation: free nodes.

2. Those explicitly calculated (e.g. with TREEHASH): computed nodes.

3. Those retained from another node’s calculation (e.g from another node’s
TREEHASH): saved nodes.

Notice how type 2 nodes require computational effort, whereas type 1 and
type 3 nodes require some period of storage. We need further notation to conve-
niently reason about these nodes. Let ai denote the number of level i subtrees
which contain at least 1 non-root computed (right) node. Similarly, let bi de-
note the number of level i subtrees which contain zero computed nodes. Just by
counting the total number of level i subtrees we have the relation.

ai + bi = N/2(i+1)k. (5)

Computational costs Let us tally the cost of some of the computed nodes.
There are ai subtrees containing a node of type 2, which must be of height at
least ik. Each such node will cost at least 2ik+1 − 1 operations to compute.
Rounding down, we find a simple lower bound for the cost of the nodes at level
i.

Cost > ΣL−1
0 (ai2

ik). (6)

Storage costs Let us tally the lifespans of some of the retained nodes. Measur-
ing units of space × rounds is natural when considering average space consumed.
In general, a saved node, S, results from a calculation of some computed node
C, say, located at height h. We know that S has been produced before C is even
needed, and S will never become an authentication node before C is discarded.
We conclude that such a node S must be therefore be stored in memory for at
least 2h rounds.

Even (most of) the free nodes at height h remain in memory for at least 2h+1

rounds. In fact, there can be at most one exception: the first right node at level
h.

Now consider one of the bi subtrees at level i containing only free or stored
nodes. Except for the leftmost subtree at each level, which may contain a free
node waiting in memory less than 2(i+1)k rounds, every other node in this subtree
takes up space for at least 2(i+1)k rounds. There are 2k − 1 nodes in a subtree
and thus we find a simple lower bound on the space × rounds.

Space ∗ Rounds ≥ ΣL−1
0 (bi − 1)(2k − 1)2(i+1)k. (7)

Note that the (bi − 1) term reflects the possible omission of the leftmost level i
subtree.

Mixed Bounds We can now use simple algebra with Equations (5), (6), and
(7) to yield combined bounds. First the cost is related to the bi, which is then
related to a space bound.

2kCost > ΣL−1
0 ai2

(i+1)k = ΣL−1
0 N − 2(i+1)kbi. (8)

As series of similar algebraic manipulations finally yield (somewhat weaker) very
useful bounds.

2kCost + ΣL−1
0 2(i+1)kbi > NL. (9)

2kCost + ΣL−1
0 2(i+1)k/(2k−1) + Space ∗ Rounds./(2k−1) > NL (10)

2kCost + 2N + Space ∗ Rounds/(2k−1) > NL. (11)

2kAverageCost + Average Space/(2k−1) > (L − 2) ≥ L/2. (12)

(k 2k+1)AverageCost + (k/2k−2)Average Space > L/2 ∗ 2k = H. (13)

This last bound on the sum of average cost and space requirements will allow
us to find a contradiction.

Proof by Contradiction Let us assume the opposite of the statement of
Theorem 1. Then there is some α such that the space is bounded above by
α log(N). Secondly, the time complexity is supposed to be sub-logarithmic, so
for every small β the time required is less than β log(N) for sufficiently large N .

With these assumptions we are now able to choose a useful value of k. We
pick k to be large enough so that α > 1/k2k+3. We also choose β to be less than
1/k2k+2. With these choices we obtain two relations.

(k 2k+1)AverageCost < H/2. (14)

(k/2k−2)Average Space < H/2. (15)

By adding these two last equations, we contradict Equation (13).
QED.

