
QUAD: a Practical Stream Cipher with
Provable Security

Côme Berbain1, Henri Gilbert1, Jacques Patarin2

1 France Telecom Research and Development,
38-40 rue du Général Leclerc, F-92794 Issy-les-Moulineaux, France.

2 Université de Versailles,
45 avenue des Etats-Unis, F-78035 Versailles cedex, France.

Abstract. We introduce a practical synchronous stream cipher with
provable security named QUAD. The cipher relies on the iteration of a
multivariate quadratic system of m equations in n < m unknowns over
a finite field. The security of QUAD is provably reducible to the conjec-
tured intractability of the MQ problem, namely solving a multivariate
system of quadratic equations.

1 Introduction

Stream ciphers represent, together with block ciphers, one of the two main classes
of symmetric encryption algorithms. Generally speaking stream ciphers seem to
allow faster encryption and to require lower computing resources than block
ciphers, and the fastest known stream ciphers (e.g. SEAL, RC4, SNOW 2.0, the
Shrinking Generator) are indeed significantly faster in software than an efficient
block cipher such as AES [27]. However, the design of secure stream ciphers is
not currently as well understood as the design of secure block ciphers. The state
of the art of the cryptanalysis of stream ciphers, e.g. LFSR based stream ciphers,
has evolved significantly over the last ten years and many recent proposals still
suffer from security weaknesses. This is illustrated by the fact that none of the
candidate stream ciphers submitted to the call for cryptographic primitives of
the European project NESSIE were retained since attacks more efficient than
exhaustive search were found for all candidates during the evaluation period.
This is also illustrated by the ongoing eSTREAM [11] call for stream ciphers
proposals of the European project ECRYPT. Stream ciphers complying with two
main profiles have been called for, namely stream ciphers allowing much faster
software encryption than existing block ciphers (profile 1) and stream ciphers
requiring much lower resources for hardware implementation than existing block
ciphers (profile 2). However, more than one third of the 34 submitted stream
ciphers, which cover these two profiles, have already been shown to be insecure.
0 The work described in this paper has been supported by the French Ministry of

Research RNRT X-CRYPT project and by the European Commission through the
IST Program under Contract IST-2002-507932 ECRYPT.

Our aim is to propose a practical cipher with unusually strong security ar-
guments. The novel stream cipher we propose was designed with another trade-
off between security, speed and computing resources than reflected by the eS-
TREAM profiles 1 and 2. We slightly relax the requirements on speed and com-
puting resources, i.e. we only require a stream cipher that is sufficiently fast for
most practical purposes. But we introduce an unusually strong security require-
ment for symmetric cryptography (which is out of reach of the current state of
the art for block ciphers), namely that the security of the cipher be provably
reducible to the conjectured intractability of a well-known and studied mathe-
matical problem. The security of the novel stream cipher is provably reducible to
the intractability of the MQ problem [15], which consists of finding a solution (if
any) to a multivariate quadratic system of m quadratic equations in n variables
over a finite field GF (q), typically GF (2). The MQ problem is conjectured to be
difficult for suitably chosen values of n and m. In general the associated decision
problem is known to be NP-complete even in the case where the considered field
is GF (2), and moreover no efficient algorithm to solve MQ with a significant suc-
cess probability is known to exist for sufficiently large values of n (say n > 100)
when the quadratic equations are randomly chosen. The implementation com-
plexity of our stream cipher is reasonable and the encryption speed (4.6 Mbit/s
for a software implementation in C on a standard PC), though lower than AES,
is more than sufficient for many practical purposes.

Constructing a provably secure stream cipher is not a novel topic. However,
designing a practical provably secure stream cipher is an open problem. Following
seminal work by Shamir, Blum and Micali [4], Yao [31], Levin and Goldreich [25]
in the 80’s, considerable research effort has been dedicated to the construction of
provably secure pseudo-random number generators (PRNG) that expand a short
seed (e.g. a key) into a larger bit string. This can be used as the keystream for
encryption purposes. Available security results typically state that if the iterated
function underlying the construction of a number generator satisfies suitable one-
wayness properties, then the generator is a secure PRNG, i.e. its L-bit output
is computationally indistinguishable from the uniform distribution over {0, 1}L.
This research effort has led to remarkable generic results, e.g. the proof by Im-
pagliazzo, Levin, Luby and H̊astad [21] that a secure PRNG can be constructed
based upon any one way function (OWF). It has also led to provably secure
PRNG constructions based on the conjectured intractability of specific prob-
lems. The first provably secure PRNG was introduced by Blum and Micali [4]
and relates the security of the PRNG to the one-wayness of exponentiation mod-
ulo a prime number. The provably secure PRNG proposed by L. Blum, M. Blum
and M. Shub [3] exploits the conjectured intractability of quadratic residuosity
modulo Blum integers. Alexi, Chor, Goldreich and Schnorr proposed a PRNG
construction with security that relies upon the RSA assumption. Impagliazzo
and Naor [24] and Fisher and Stern [13] proposed PRNG constructions respec-
tively relying on the difficulty of the subset sum problem and of the syndrome
decoding problem. Even in the case of specific constructions, current provably
secure PRNGs are too inefficient to provide a practical stream cipher. This is

2

due to the fact that the function iterated by the PRNG is usually too computa-
tionally expensive, and that only a restricted number of bits can be produced at
each iteration (this number is generally at most proportional to the logarithm
of the input length n of the iterated function). However some efforts have been
made to improve the constructions. A first idea is to extract more than log n bits
at each round. Constructions based on the discrete logarithm problem makes it
possible to extract n− log(n) bits at each iteration instead of log n. Despite this
fact, the fastest generator based on discrete logarithm proposed by Gennaro [16]
is still impractical: it requires 350 multiplications of 3000-bit numbers to extract
2775 bits. Another problem for which it is possible to extract more than log n
bits is the syndrome decoding problem. A PRNG has been proposed by Fisher
and Stern in [13] but the number of extracted bits, although higher than log n, is
still small for practical values of n. Another recently proposed idea is to replace
a slow iterated function by some primitive which is much faster to compute.
H̊astad and Näslund proposed BMGL [30], a stream cipher with security that
relies on the difficulty of extracting the key from one plaintext ciphertext couple
in AES. Their practical construction consists of iterating AES and extracting
log n bits at each round. This cipher is fast, especially compared to other prov-
ably secure ciphers, but its security relies only on the security of the AES and
not on a simple and well-studied mathematical problem.

On the contrary, MQ is a simple and well-studied mathematical problem and
the values of n for which the problem is difficult are small (around 100 bits),
particularly when compared to discrete logarithm or factorisation, where at least
1024 bits are required. Furthermore a large number of bits (e.g. n

2) bits or even
more can be produced at each iteration.

This paper is organized as follows. We first give some preliminary background
on the status of the MQ problem and basic security definitions in a concrete (non
asymptotic) security model. Then we describe the new construction and give a
formal proof of security for the associated keystream generator. Finally we give
the encryption speed of software implementations of our stream cipher.

2 Preliminaries

2.1 Multivariate Quadratic Systems

We consider a finite field GF (q). A multivariate quadratic equation (or equiva-
lently a multivariate quadratic form) in n variables over GF (q) is a polynomial
of degree at most 2 in GF (q)[x1, . . . , xn] which can be written as

Q(x) =
∑

1≤i≤j≤n

αi,jxixj +
∑

1≤i≤n

βixi + γ

with all the coefficients αi,j , βi, and γ in GF (q). In the particular case q = 2,
which will be considered in the sequel, the monomial forms xixi and xi are equal.

3

It is easy to see that the set Q of multivariate quadratic forms in n variables
is an N -dimensional vector space over GF (q), where N = n(n+3)

2 + 1 if q 6= 2
and N = n(n+1)

2 + 1 if q = 2. A basis of this vector space is given by the
N − 1 distinct monomial functions of degree 1 or 2 and the constant form 1.
Any element of Q can be represented by the N -tuple of its GF (q) coefficients
in this basis. Throughout the rest of this paper, we mean by a randomly chosen
quadratic form in n unknowns the quadratic form represented in the above basis
by a uniformly and independently drawn N -tuple of GF (q) coefficients.

A multivariate quadratic system S of m quadratic equations in n variables
over GF (q) is a set (Q1, . . . Qm) of m quadratic equations in n variables over
GF (q). In the sequel, we mean by a randomly chosen system of m quadratic
form in n unknowns, n independently and randomly chosen quadratic forms.
Such a system is represented by mN uniformly and independently drawn GF (q)
coefficients.

A quadratic form Q over n unknowns over GF (2) is called non degenerate
iff Q is not equivalent to a quadratic form in strictly fewer than n linear com-
binations of the n input variables. There exists a polynomial time algorithm to
check whether a given quadratic form is non degenerate and more generally to
compute the so-called rank of a quadratic form [26]. The number of solutions of
the quadratic equation Q = 0 associated with a non degenerate quadratic form
Q over n unknowns is either 2n−1 or 2n−1 + 2

n−2
2 or 2n−1 − 2

n−2
2 depending

on the parity of n and the value of γ. Thus for sufficient large values of n, say
n > 100, non degenerate quadratic forms are either perfectly balanced (odd n
values) or have an undetectable bias (even n values).

2.2 Status of the MQ problem

We define the problem of solving simultaneous multivariate quadratic equa-
tions (MQ problem) as follows: given a multivariate quadratic system of m
quadratic equations over GF (q) S = (Q1, . . . , Qm), find a value x ∈ GF (q)n,
if any, such that Qi(x) = 0 for all 1 ≤ i ≤ m.

Depending on the respective values of n and m, instances of MQ can be either
easy or very difficult to solve. For m = 1 the number of solutions is known [26]
and it is quite easy to find one solution. When m is significantly smaller than n,
that is for an underdefined quadratic system, finding a solution is easy [6]. In the
opposite situation of an overdefined system (m > n) providing N = n(n+1)

2 + 1
(q = 2 case) or n(n+3)

2 +1 (q 6= 2 case) linearly independent quadratic equations,
or more generally when nearly N linearly independent quadratic equations are
available, solving an MQ problem is easy by linearization. The total complexity
is then only O(n6). However for general values of m and n the MQ problem is
known to be NP-hard, even when restricted to quadratic equations over GF (2)
[15] [14] or over any finite field [28].

Moreover, what seems to make the MQ problem particularly well suited to
cryptographic applications is that it is conjectured to be very difficult not only
asymptotically and in worst case, but already for small suitably selected values

4

of m and n and in terms of the average complexity of solving a random instance.
The problem seems to be most difficult when m is close to n. For m = n and
q = 2 the complexity of the best known solving algorithms is 2n−O(

√
(n)) and

thus rather close to the 2n complexity of exhaustive search, and totally out of
reach of existing computers for a random instance and n values larger than 100.
Even when q = 2, m = kn and k > 1 is small enough compared with n

2 , the best
known computer algebra algorithms such as XL [10] and improved variants of
Buchbergers’s Groebner basis computation algorithm such as Faugère’s F4 and
F5 algorithms [12] are exponential in n for a randomly chosen quadratic system.
Much research has been dedicated in the past years to the above problem [9], [7].
Magali Bardet’s PHD thesis [1] provides an accurate analysis of the complexity
of the most efficient known Groebner basis computation algorithm for solving a
random system of m = kn equations in n unknowns. We will use some complexity
estimates of [1] when discussing practical recommendations of the parameter
values of our cipher.

Though we expect degenerate instances of the systems used in our construc-
tion leading to a weak stream cipher to be extremely unlikely, we suggest the
following extra precaution when drawing these systems at random to provide
some extra guaranties that some of the weakest instances are avoided: check
that each quadratic equation is non degenerate or at least has a high rank value
close to the one of a non degenerate form, and discard any quadratic equation
which would not satisfy this condition. In order to discard a slightly larger subset
of weak instance, one can also check that low weight linear combinations of the
selected quadratic equations satisfy the above rank conditions. Also check that
the obtained quadratic equations are linearly independent in Q.

2.3 Basic Security Notions

All the security definitions used throughout this paper relate to the concrete (non
asymptotic) security model. We are using the following basic security notions
that we state here informally. Two probability distributions D1 and D2 over a
finite set Ω are said to be computationally distinguishable with computing
resources R and advantage ε if there exits a probabilistic testing algorithm A
which on any input value x ∈ Ω outputs a binary answer “1” (accept) or “0”
(reject) using computing resources at most R and satisfies

|Prx∈D1 (A(x) = 1)− Prx∈D2 (A(x) = 1)| ≥ ε.

Though this is not explicitly reflected in our notation, the above probabilities
are not only taken over x values distributed according to D1 or D2, but also
over the random choices of algorithm A. Algorithm A is called a distinguisher
with advantage ε. If no such algorithm exists, then we say that D1 and D2

are computationally indistinguishable with advantage better than ε. When the
computing resources R is not specified, we implicitly mean feasible computing
resources (i.e. say less than 280 simple operations).

5

Let n and L denote integers such that L > n. A n-bit to L-bit function
G is said to be a Pseudo Random Number Generator (PRNG) if for a
random n-bit input variable x selected according to the uniform law on {0, 1}n

the probability distribution of the random variable G(x) is computationally in-
distinguishable from the uniform law over {0, 1}L.

3 QUAD: a New Stream Cipher

We now introduce the proposed stream cipher, named QUAD.
S = (Q1, . . . , Qkn) denotes a multivariate quadratic system of kn randomly

chosen equations in n variables over GF (q), and S0 and S1 denote two (k times
smaller) additional multivariate systems of n randomly chosen equations in n
variables over GF (q). S, S0 and S1 are fixed and publicly known. During the
key and IV loading and the keystream generation, the internal register state is
a x = (x1, . . . , xn) n-tuple of GF (q) values.

3.1 Keystream Generation and Encryption

The keystream generation process simply consists in iterating the three following
steps in order to produce (k − 1)n GF (q) keystream values at each iteration.

– Compute the kn-tuple of GF (q) values S(x) = (Q1(x), . . . , Qkn(x)) where x
is the current value of the internal state;

– Output the sequence Sout(x) = (Qn+1(x), . . . , Qkn(x)) of (k − 1)n GF (q)
keystream values

– Update the internal state x with the sequence of n GF (q) first generated
values Sit(x) = (Q1(x), . . . , Qn(x))

The maximal keystream sequence that may be generated with a single (key,iv)
pair is L GF (q) values. In order to encrypt a plaintext of length l ≤ L GF (q)
symbols, each of the first l GF (q) values of the keystream sequence is added
(using the GF (q) addition) with the corresponding plaintext value.

x

Sit(x) Sout(x)

6

3.2 Key and IV Setup

Before generating any keystream we need to initialize the internal state x, with
the key K and the initialization vector IV , which are respectively represented by
a sequence of GF (q) elements of length |K| and a binary sequence of {0, 1} values
of length |IV |. We assume for the time being, for simplicity of the subsequent
proofs 3 that |K| is chosen exactly equal to n.

The initialization is done as follows : we use two carefully randomly chosen
multivariate quadratic systems S0 and S1 of n equations over n unknowns. We
initially set the internal state value x to the n bit value K. Then for each of the
|IV | bits IV1 to IV|IV | of the IV value the internal state x is updated as follows: if
IVi = 0, x is replaced by the GF (q)n value S0(x) ; if IVi = 1, x is replaced by the
GF (q)n value S1(x). These |IV | steps provide a key and IV dependent internal
state value x. We then clock the cipher |IV | additional times as described in
section 3.1, but without outputting the keystream in order to further transform
the internal state value x, and then enter the keystream generation mode to
produce the keystream.

4 Security

We now give a proof that for a randomly chosen multivariate quadratic system
our PRNG is secure. For simplicity of the proof we will work over GF (2). The
proof can be divided in three parts, which can be informally outlined as follows.

In the first part (Theorem 1), we prove that if the L-bit keystream sequence
associated with a known fixed or randomly chosen system S of m = kn quadratic
equations and an unknown randomly chosen initial internal state x ∈ {0, 1}n is
distinguishable from the L-bit output of a perfectly uniform generator, then for
a known random quadratic system S of m = kn equations and an unknown
randomly chosen input value x ∈ {0, 1}n, S(x) is distinguishable from a random
kn bit word.

In the second part (Theorem 2), we prove that if for a known randomly chosen
quadratic system S and an unknown randomly chosen x, S(x) is distinguishable
from a random kn bit word then, for any n-bit to 1-bit quadratic form R (in
particular any linear form R), one has the property that for a randomly chosen
n bit value x, R(x) can be predicted better than at random given S(x).

In the third part (Theorem 3), we prove that, for a known fixed or randomly
chosen S and a randomly chosen linear form R, R(x) can be predicted better
than at random given S(x), then with non negligible probability a preimage of
S(x) can be efficiently computed given S(x). Thus S is not strongly one way.
This part is essentially a proof of Goldreich-Levin’s theorem [25], in which a fast
Walsh transform computation is used to get a tighter reduction.

3 Note however that we will consider later on, in section 4.5, an extended key loading
method allowing to set the key length to values strictly lower than n, for instance
to |K| = n

2
if one wishes the key length to reflect the complexity of the best known

attack.

7

4.1 Distinguishing the Keystream Allows to Distinguish the Output
of a Random Quadratic System

Theorem 1 states that if one can distinguish the keystream of the generator based
on the iteration of a quadratic system S from a random L-bit sequence, then one
can distinguish the output of S from a random m-bit sequence. Though we
consider a randomly chosen system S because we need distinguishing properties
related to a random system for the sequel, the property we prove would also
hold if we considered a fixed system S. Our proof is inspired by the proof given
in [20] that a similar result holds for the generator based on iteration of any
fixed n-bit to m-bit function, where m > n, but provides a tighter bound for the
advantage.

Theorem 1. Let L = λ(k − 1)n be the number of keystream bits produced in
time λTS using λ iterations of our construction. Suppose there is an algorithm
A that distinguishes the L-bit keystream sequence associated with a known ran-
domly chosen system S and an unknown randomly chosen initial internal state
x ∈ {0, 1}n from a random L-bit sequence in time T with advantage ε. Then
there exists an algorithm B that for a randomly chosen S distinguishes S(x)
corresponding to an unknown random input x, from a random value of size kn
in time T ′ = T + λTS with advantage ε

λ .

Proof. We introduce the hybrid probability distributions Di(S) over {0, 1}Lxi.
For 0 ≤ i ≤ λ respectively associated with the random variables

ti(S, x) = (r1, r2, . . . , ri, Sout(x), Sout(Sit(x)), . . . , Sout(Sλ−i−1
it (x)))

where the rj and x are random independent uniformly distributed values of
{0, 1}n and the notational conventions that (r1, r2, . . . , ri) is the null string if
i = 0 and that (Sout(x), . . . , Sout(S

λ−i−1)
it (x))) is the null string if i = λ. Con-

sequently D0(S) is the distribution of the L-bit keystream and Dλ(S) is the
uniform distribution over {0, 1}L. We denote by pi(S) the probability that A
accepts a random L-bit sequence distributed according to Di(S), and denote by
pi the average value of pi(S) over the (k − 1)n(n (n+1)

2 + 1)-dimensional vector
space of quadratic systems S. We have supposed that algorithm A distinguishes
between D0(S) and Dλ(S) with advantage ε, in other words that |p0 − pλ| ≥ ε.
Algorithm B works as follows : on input (x1, x2) ∈ {0, 1}kn with x1 ∈ {0, 1}n

and x2 ∈ {0, 1}(k−1)n, it selects randomly an i such that 0 ≤ i ≤ λ − 1 and
constructs the L-bit vector

t(S, x1, x2) = (r1, r2, . . . , ri, x2, Sout(x1), Sout(Sit(x1)), . . . , Sout(Sλ−i−2
it (x1))).

If (x1, x2) is distributed accordingly to the output distribution of S, i.e. (x1, x2) =
S(x) = (Sit(x), Sout(x)) for a uniformly distributed value of x, then

t(S, x1, x2) = (r1, r2, . . . , ri, Sout(x), Sout(Sit(x)), . . . , Sout(Sλ−i−1
it (x)))

8

is distributed according to Di(S). Now if (x1, x2) is distributed according to the
uniform distribution, then

t(S, x1, x2) = (r1, r2, . . . , ri, x2, Sout(x1), Sout(Sit(x1)), . . . , Sout(Sλ−i−2
it (x1))).

Thus t(S, x1, x2) is distributed according to Di+1(S). In order to distinguish the
output distribution of S from the uniform law, algorithm B calls algorithm A
with inputs (S, t(S, x1, x2)) and returns the value returned by A. Thus

|PrS,x(B(S, S(x)) = 1)− PrS,x1,x2(B(S, (x1, x2)) = 1)|

= | 1
λ

λ−1∑
i=0

pi − 1
λ

λ∑
i=1

pi| = 1
λ
|p0 − pλ| ≥ ε

λ
.

Thus B distinguishes the output distribution of S from the uniform distribution
with probability at least ε

λ in time T + λTS .

4.2 Distinguishing the Output of a Random Quadratic System
Allows to Predict any Quadratic Equation

Now we prove that if there exists a distinguisher between S(x) and a kn-bit ran-
dom value such as the one considered in the above theorem, it can be converted
into an algorithm that predicts the result of any quadratic polynomial (and in
particular any linear polynomial).

Theorem 2. Suppose there is an algorithm A that, given a randomly chosen
known multivariate quadratic system S of kn equations in n unknowns, distin-
guishes S(x), where x is an unknown random input value, from a random string
of length kn with advantage at least ε and in time T . Then there is an algorithm
B that, given a randomly chosen quadratic system S of kn equations in n un-
knowns, any n-bit to 1-bit quadratic form R, and y = S(x) where x is a random
input value, predicts R(x) with success probability at least 1

2 + ε
4 using at most

T ′ = T + 2TS operations.

Proof. We first show that there exists an algorithm A′ which returns 1 on input
(S, S(x)) with probability at least 1

2 + ε
2 and returns 1 on input (S, u) for some

random u with probability 1
2 : if the acceptance probability of A is larger (by at

least ε) on an input (S, S(x)) than on a random input. Then it suffices to consider
A′ which on input (S, r) either returns A(S, r) or draws a random value u and
returns 1−A(S, u) with probability 1

2 for each case. In the opposite situation, it
suffices to consider A′ which on input (S, r) either returns 1− A(S, r) or draws
a random value and returns A(S, u) with probability 1

2 for each case.
Algorithm B works as follows. On input S = (Q1, . . . Qkn),R and a kn-bit

value y, B selects a random kn-bit vector a = (a1, . . . , akn) and a random bit
b, which represents an hypothesis for R(x). Then it computes for all i from 1
to kn the quadratic equation Pi = Qi + (ai · R). All the equations Pi form
the quadratic system S′. Then B invokes the algorithm A′ with input the new
quadratic system S′ and the value y +(b ·a). Finally B returns what A′ returns.

9

Now assume that y = S(x) where x is an unknown random value. We have
∀i, x, Pi(x) = Qi(x) + (ai ·R(x)) = yi + (ai ·R(x)).

Suppose b is really equal to R(x), then S′(x) = y +(b ·a) so the distinguisher
A’ has been fed with the random quadratic system S′ = (P1, · · · , Pkn) and S′(x):

PrS,x∈Un(B(S, S(x), R) = R(x)) = PrS′,x∈Un(A′(S′, S′(x)) = 1) ≥ 1
2

+
ε

2
.

On the contrary, suppose b is not equal to R(x), then S′(x) = y + ((1 + b) · a) =
(y + (b · a)) + a. Thus there is an error of a on the value furnished to A′ as
compared with S′(x). Because a is randomly chosen, we have:

PrS,x∈Un
(B(S, S(x), R) = R(x)) = PrS′,x∈Un

(A′(S′, S′(x) + a) = 0)

= PrS′,t∈Ukn
(A′(S′, t) = 0) =

1
2

Thus we have:

PrS,x∈Un
(B(S, S(x), R) = R(x)) ≥ 1

2

((
1
2

+
ε

2

)
+

1
2

)
=

1
2

+
ε

4

The total running time of B is at most T + 2TS , since computing the kn Pi

requires for each i to compute all the n(n−1)
2 monomials of Qi and R, which does

not cost more than two evaluations of the system for some entry.

4.3 A Linear Form is a Hard Core Bit for any One Way Function

Now we show that if for a fixed or random quadratic system S and more generally
any fixed or random n-bit to m-bit function f there exists a predictor such as
the one considered in the former theorem, i.e. a predictor allowing, given an
n-bit to 1-bit linear form R, to predict R(x) with a success probability (over
all S and x values) strictly larger than 1

2 , then a preimage of S(x) (resp. f(x))
can be efficiently computed, so that S (resp f) is not one way. This result is
the Goldreich-Levin theorem [25] that we prove as to get a tight reduction.
Before proving the theorem, which relates to the computation, given the image
S(x) or f(x) for a random unknown value x and a random system S, of a list
containing x, we first establish a lemma representing the technical core of the
proof in which a fixed (unknown) value of x is considered. Our proofs are inspired
by the simplified treatment of the original Goldreich-Levin proofs developed by
Rackoff, Goldreich[18] and Bellare [2], and also by the proofs provided by H̊astad
and Näslund in their BMGL paper [30].

Lemma 1. Let us denote by x a fixed unknown n-bit value and denote by f
a fixed n-bit to m-bit function. Suppose there exists an algorithm B that given
the value of f(x) allows to predict the value of any linear equation R over n
unknowns with probability 1

2 + ε over R, using at most T operations. Then there
exists an algorithm C, which given f(x) produces in time at most T ′ a list of at

10

most 4n2ε−2 values such that the probability that x appears in this list is at least
1/2.

T ′ =
2n2

ε2

(
T + log

(
2n

ε2

)
+ 2

)
+

2n

ε2
Tf

The proof of lemma 1 is given in the Appendix. Lemma 1 applies to a fixed
x and a fixed system S (or a fixed n-bit to m-bit function f). However, the
success probability of the predictor of Theorem 2 is taken over all (x, S) pairs
for any linear form R. Consequently, we need a theorem allowing us to exploit
the existence of such a predictor to show the applicability of the lemma to a
non-negligible fraction of (x, S) pairs.

Theorem 3. Suppose there is an algorithm B, that given a randomly chosen
quadratic system S of m quadratic equations, a randomly chosen n-bit to 1-
bit quadratic form R and the image S(x) of a randomly chosen (unknown) n-
bit value x, predicts the value of R(x) with probability at least 1

2 + ε over all
possible (x, S, R) triplets using T operations. Then there is an algorithm C, which
given the image S(x) of a randomly chosen (unknown) n-bit value x produces a
preimage of S(x) with probability at least ε/2 (over all possible values of x and
S) in time T ′ .

T ′ =
8n2

ε2

(
T + log

(
8n

ε2

)
+ 2

)
+

8n

ε2
Tf

Proof. The assumption about algorithm B can be written as

Pr(x,S,R)∈{0,1}n+mN+n {B(S, S(x), R) = R(x)} ≥ 1
2

+ ε.

It results that for a fraction at least ε of all the (x, S) pairs one has

PrR∈{0,1}n {B(S, S(x), R) = R(x)} ≥ 1
2

+
ε

2
.

Otherwise, there would exist a fraction at least 1 − ε of the (x, S) pairs which
associated prediction probability over the R values would be strictly less than
1
2 + ε

2 , and therefore Pr(x,S,R)∈{0,1}n+mN+n {B(S, S(x), R) = R(x)} would be up-
per bounded by (1− ε)(1

2 + ε
2)+ ε = 1

2 + ε− ε2, which contradicts the assumption
about Algorithm B.

Thus for a fraction at least ε of all the (x, S) pairs the conditions of lemma
1 are met and algorithm C of the lemma provides a preimage of S(x) with
probability at least 1/2.

4.4 A Security Proof for the Proposed PRNG

Now it is easy to see that if we sequentially apply theorems 1, 2, and 3, we obtain
the following reduction theorem, which states that if, for a random system and
a random initial value, the L-bit keystream sequence was distinguishable from
a random L-bit sequence then there would exist an efficient algorithm allowing

11

to find a preimage of the image of a random n-bit input value by a random
quadratic n-bit to m-bit system, which for suitably chosen values of n would
contradict the assumptions made in Section 2 on the difficulty of solving MQ.

Keystream

Distinguisher

Random Quadratic

System Output

Distinguisher

Linear Bit

Prediction
Inversion

Thm. 1

Thm. 3

Thm. 2Thm. 4

Theorem 4. Let L = λ(k− 1)n be the number of keystream bits produced by in
time λTS using λ iterations of our construction. Suppose there exists an algo-
rithm A that distinguishes the L-bit keystream sequence associated with a known
randomly chosen system S and an unknown randomly chosen initial internal
state x ∈ {0, 1}n from a random L-bit sequence in time T with advantage ε.
Then there exists an algorithm C, which given the image S(x) of a randomly
chosen (unknown) n-bit value x by a randomly chosen n-bit to m-bit quadratic
system S produces a preimage of S(x) with probability at least ε

23λ over all pos-
sible values of x and S in time upper bounded by T ′.

T ′ =
27n2λ2

ε2

(
T + (λ + 2)TS + log

(
27nλ2

ε2

)
+ 2

)
+

27nλ2

ε2
TS

Proof. Theorems 1 to 3 state that if an algorithm X exists, then another al-
gorithm Y exists. In the case of Theorem 1, the resulting algorithm Y can be
directly play the role of algorithm X in Theorem 2. In the case of Theorem 2,
the resulting algorithm Y , named algorithm B, has the property

∀R ∈ {0, 1}NPr(x,S)∈{0,1}n+mN {B(S, S(x), R) = R(x)} ≥ 1
2

+
ε

4

which implies

Pr(x,S,R)∈{0,1}n+mN+N {B(S, S(x), R) = R(x)} ≥ 1
2

+
ε

4

Thus algorithm Y can play the role of algorithm X in Theorem 3, and if we
compose the distinguishing probability and complexity expressions of the three
concatenated theorems, we obtain the claimed distinguishing probability and
complexity bounds.

Discussion: Theorem 4 above relates to the keystream generation part of
QUAD, i.e. to the expansion of a randomly chosen initial state into the keystream

12

and does not include the key and IV loading for deriving the initial state. More-
over it does not guarantee the strength of a particular instance of QUAD asso-
ciated with a fixed system S but (informally) it shows that if MQ is intractable
then most instances of QUAD are secure.

4.5 Specifying the Parameter Values for QUAD

We now propose concrete parameters n, k, L, |K| and |IV | for our construction.
We restrict ourselves to the GF (2) case. We want to ensure a security level of at
least 280. More precisely we want Theorem 4 to ensure that if for a random sys-
tem and a random initial internal state value at the beginning of the keystream
generation there exists a testing algorithm that allows us to distinguish an L-bit
keystream produced by QUAD from a uniformly drawn keystream sequence with
an advantage of more than ε = 1

100 in time less than T = 280 this would im-
ply the existence of an inversion algorithm of non negligible success probability
ε′ = ε

23λ allowing, given a random n-bit to kn-bit system of quadratic equations
and the S(x) image by S of a random input value x, to find a preimage by S of
S(x) in time T ′ lower by a factor of more than ε′ than the best known inversion
algorithms for the MQ problem, and thus result in the existence of a large set
of weak instances of MQ.

Depending on the intended application of the stream cipher, the maximum
keystream length L can vary from a few hundreds bits for a mobile phone appli-
cation to up to 240 bits. Consequently the allowed parameter values for n and k
will also vary, since it is much more demanding to get a security argument for
L = 240 bits than for L = 1000 bits. We will however retain the latter value
L = 240 for a first estimate of the corresponding required value of n.

In her thesis, Magali Bardet [1] shows that the best Groebner basis algo-
rithm to solve a system of kn equations in k unknowns has (in the case of
a regular system) a complexity of T (k, n) =

((
n+1
D

))2.37
, where D is close to(

−k + 1
2 + 1

2

√
2k2 − 10k − 1 + 2(k + 2)

√
k(k + 2)

)
n. To obtain a contradic-

tion, we need to have T ′ lower than ε′T (k, n). For k = 2 and with the previous
values of L = 240, T = 280 and ε = 1

100 , we get ε′ = 2−42 and we need to have
n greater than 350. For n = 256 and k = 2, we only get a contradiction if we
produce less than L = 222 = 4 Mbits of keystream for each key and IV pair.

Practical values For practical use of QUAD we recommend an internal
state length of n = 160 bits and an expansion factor k of 2 and a maximum
keystream length L = 240. We further recommend an IV length |IV | of 80 bits.
For such n, k and L values, we do not get a contradiction as for the former
parameter values. However our proof reduction is not optimal, and we expect
that these parameter values suffice to provide the desired security level of about
280.

If instead of the n-bit key length assumed (for simplicity of the security
arguments) in sections 2 and 3, a keylength |K| strictly lower than n is preferred
in order for |K| to better reflect the expected security level, we suggest the

13

following extension of the key loading method described in section 3: periodically
repeat the |K| bits of K to get an expanded key of length n, and apply the key
and IV procedure of section 3 to this expanded key. We suggest, if this extended
key loading method option is retained, to select a key length |K| = 80. Though
the shorter key option weakens the security arguments of section 4 and can thus
be considered less conservative than the full length n = 160-bit key, we are not
aware of any major security weakness resulting from this option.

An indication of the advantages of the use of the MQ problem for construct-
ing a provably secure stream cipher, in terms of the required internal state size,
is given by a comparison with the fastest known provably secure stream ci-
pher, namely a discrete log based construction proposed by Gennaro in [16]
with internal state length n = 3000 bits (to be compared with the n = 350
and 256 internal state lengths derived above) and which produces 2775 bits per
iteration and applies 335 modular multiplications of 3000-bit numbers at each
iteration. Moreover the security argument of [16] does not assume the existence
of a keystream sequence distinguishing algorithm in time T = 280 to get a con-
tradiction, but only a distinguishing algorithm in time T = 3.5 · 1010 ' 235.
Another advantage of MQ is that MQ is NP-hard, whereas the Discrete Loga-
rithm Problem is only in NP ∩ co-NP. Moreover the best known algorithm to
solve the Discrete Logarithm problem are subexponential, while for MQ, those
algorithm are exponential.

5 Cryptanalysis

In this section, we consider various attacks and verify whether they are applica-
ble to our construction. We focus on security aspects not covered by the proof
of security of the former section, e.g. the protection against resynchronization
attacks provided by the key and IV loading mechanism.

Resistance against Algebraic Attacks: QUAD was designed to resist
algebraic attack techniques. As a matter of fact, the key and IV loading and
keystream generation mechanisms of QUAD are based upon the iteration of
quadratic systems whose associated equations are conjectured to be computa-
tionally impossible to solve 4. In more details, recovering the initial state x of the
keystream generator from the whole keystream is more difficult than recovering
x from S(x), i.e. solving an intractable quadratic system of kn equations. As for
the key and IV loading mechanism, it is possible to express any keystream block,
as a set of (k− 1)n algebraic equations on the |K| ≥ 80 key bits. However since
the key and IV setup consists of 2|K| rounds of a quadratic function, this set
consists of (k− 1)n equations of degree |K| or nearly |K| on the |K| key bits. It
is quite natural to conjecture that such a system is highly intractable.

Correlation Attacks and Distinguishing Attacks: we expect QUAD to
be immune to such attacks except for extremely unlikely degenerate instances
of the quadratic system S, for example if one of the n-bit to 1-bit quadratic
4 except for a small fraction of degenerate instances of S, S0 and S1 whose occurrence

is extremely unlikely if these systems are selected as described in section 4.5.

14

forms of Sout or a linear combination of these (k − 1)n quadratic forms has an
exceptionally low rank and therefore (for even values of n) a detectable bias.

Time-Memory-Data Tradeoffs and other Generic Attacks: the inter-
nal state of our construction has a size n of at least 160 bits in order to resist
against generic time-data tradeoff, which have a complexity of 2

n
2 .

Since QUAD is based upon the iteration of the quadratic system Sit, the
keystream sequences it produces are ultimately periodic. Moreover, since Sit is
not one to one, the order of magnitude of the period can be expected to be 2

n
2

(k− 1)n-bit keystream blocks. One of the consequences of specifying a maximal
keystream length L << 2

n
2 (a typical order of magnitude is L = 240) is that the

detection of short cycles is extremely unlikely.
Guess and Determine Attacks: the analysis of attacks of this type allows

us to fix an upper bound on k. Let us assume that an adversary is able to guess p
bits of the internal state. Then this adversary gets a system of (k−1)n equations
in the (n − p) remaining internal state variables. If the number of monomials
generated by these n− p variables np = 1

2 (n− p)(n− p + 1) is close to (k− 1)n,
the adversary can linearize the system and recover the internal state. Solving

np = (k − 1)n gives us a number p0 = n + 1−
√

1+8n(k−1)

2 such that for p ≥ p0

the linearization is possible. The complexity C of the resulting “attack” is about
2p0((k − 1)n)ω, where ω is between 2 and 3. If C is lower than 2|K|, then the
attack is better than exhaustive search. Consequently, k has to be chosen such
that C be larger than 2|K|. For instance for n = 160 and |K| = 80, k < 21
implies that p0 > 80, and therefore C >> 280. More conservative (i.e. lower)
values of k than the one given by this simple bound are of course recommended.

Unsurprisingly, the attack would become more efficient for unlikely degen-
erate instances of S, for instance if several quadratic forms of S could be all
expressed as quadratic functions of substantially less than n linear combinations
of the n state variables.

Resistance to Resynchronization Attacks with Chosen IVs: our proof
does not cover the Key and IV setup but only the keystream generation. They
provide a strong argument towards the conjecture that the keystream sequence
resulting from any single known or chosen IV value cannot be distinguished
from a random sequence, but do not provide guarantees regarding the indepen-
dence of the sequences resulting from several chosen IVs and the resistance of
QUAD against resynchronization attacks. However the following informal argu-
ment indicates that the key and IV setup construction of QUAD prevents such
resynchronization attacks, or more generally any detectable statistical bias on
the joint distribution of the keystream sequences resulting from the same key
and several chosen IVs. Let us consider any t-tuple (IV 1, · · · , IV t) of t distinct
IV values and one randomly chosen n-bit initial state value before IV loading x.
By applying the security proofs of section 4 to the S = (S0, S1) system of 2n
quadratic equations, the n-bit to 2n-bit mapping S0, S1 is a strong pseudoran-
dom generator. However, the key and IV loading consists of applying a tree-based
construction proposed by Goldreich, Goldwasser and Micali [19] to this genera-
tor, so that we can expect the distribution of the (x1, · · · , xt) t-tuple of internal

15

state values resulting from the loading of x and IV 1 to IV t to be indistinguish-
able from a t-tuple of random independent values. Moreover, the subsequent
runnup rounds during which the keystream generator is run without outputting
keystream bits provide an extra security margin, since only high degree func-
tions of x1 to xt are available to an adversary instead of quadratic functions. If
instead of the proposed key and IV setup the key and IV values the IV had been
loaded into the initial state and an insufficient number of quadratic mappings
had been applied to the initial state before activating the keystream generation,
then chosen-IV attacks exploiting the higher degree differential properties of low
degree functions could have been mounted.

Dual Ciphers: because of the structure of the QUAD equations, it is easy
to find dual ciphers of QUAD, i.e. simple (e.g. linear) transformations f and g
of the key K and the keystream as to ensure that for each triplet of quadratic
systems (S, S0, S1) there exist quadratic systems (S′, S′

0, S
′
1) such that for any

key K and any IV value IV , the keystream associated with (f(K), IV, S′, S′
0, S

′
1)

is the image by g of the keystream associated with (f(K), IV, S, S0, S1). We do
not expect this property to represent a security threat for QUAD.

6 Performance

In this Section we give performance results for our recommended version of
QUAD, which has 160 bits of internal state, an expansion factor of 2 and a 80-
bit key and IV length. On a Pentium IV clocked at 2.5GHz with 512 kByte of
cache and using the Intel compiler, our recommended version of QUAD reaches
a speed of 4347 cycles/byte (4.6 Mbit/s). On a Pentium 4 with 1MByte of
cache, the same version reaches a speed of 2915 cycles/byte (5.7 Mbit/s). This
cache effect is due to the fact that the quadratic system used contains more
than 4 millions of binary coefficients, which requires around 1MByte to store.
A version of QUAD running on an Opteron clocked at 2.1 GHz with a 64-bit
architecture reaches the speed of 2176 cycles/byte (quite close from 1MByte/s).
An optimised version of Blum Blum Shub’s generator with an internal state of
1024 bits, which is far from the number of bits of the internal state required for
proven security, reaches 30374 cycles/byte. In his paper[16], Gennaro claimed
his discrete logarithm based generator to be twice faster for these parameters.
We can therefore assume that this generator runs at about 15000 cycles/byte.
Though QUAD is significantly slower than AES, which runs at 25 cycles/byte,
it is much more efficient than other provably secure pseudo random generator.
Moreover, implementations of QUAD with quadratic system over larger fields
(e.g. GF (16) or GF (256)) are much faster and even reach 106 cycles/byte.

7 Conclusion

In this paper we introduced QUAD, a novel synchronous stream cipher based
on MQ with a security proof in the concrete security model. Eventhough this
construction relies on a mathematical problem and has a proof of security, its

16

internal state is of small size n and it extracts a small multiple of n bits at
each round. A software implementation of our recommended version of QUAD
reaches a speed of 4.6 Mb/s on a standard PC. This makes QUAD of great
interest for applications where security is the main concern. We do not preclude
that it might be possible to derive tighter bounds in some parts of the proof,
which would allow us to further reduce the internal state size and increase the
number of extracted bits.

We would like to thank Matt Robshaw and Olivier Billet for helpful com-
ments.

References

1. Magali Bardet. Étude des systèmes algébriques surdéterminés. Applications aux
codes correcteurs et à la cryptographie. PhD thesis, Université Paris VI, 2004.

2. Mihir Bellare. The Goldreich-Levin Theorem.
http://www-cse.ucsd.edu/users/mihir/courses.html, 1999.

3. Lenore Blum, Manuel Blum, and Mike Shub. A simple unpredictable pseudo-
random number generator. SIAM J. Comput., 15(2):364–383, 1986.

4. Manuel Blum and Silvio Micali. How to generate cryptographically strong se-
quences of pseudo-random bits. SIAM J. Comput., 13(4):850–864, 1984.

5. Don Coppersmith, Shai Halevi, and Charanjit S. Jutla. Cryptanalysis of stream
ciphers with linear masking. In Moti Yung, editor, Advances in Cryptology –
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 515–532.
Springer-Verlag, 2002.

6. Nicolas Courtois, Louis Goubin, Willi Meier, and Jean-Daniel Tacier. Solving
underdefined systems of multivariate quadratic equations. In Public Key Cryptog-
raphy, pages 211–227, 2002.

7. Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient
algorithms for solving overdefined systems of multivariate polynomial equations.
In Bart Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, volume
1807 of Lecture Notes in Computer Science, pages 392–407. Springer-Verlag, 2000.

8. Nicolas Courtois and Willi Meier. Algebraic attacks on stream ciphers with linear
feedback. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003, vol-
ume 2656 of Lecture Notes in Computer Science, pages 345–359. Springer-Verlag,
2003.

9. Nicolas Courtois and Jacques Patarin. About the XL Algorithm over GF (2). In
Marc Joye, editor, Topics in Cryptology – CT-RSA 2003, volume 2612 of Lecture
Notes in Computer Science, pages 141–157. Springer-Verlag, 2003.

10. Claus Diem. The XL-Algorithm and a Conjecture from Commutative Algebra. In
Pil Joong Lee, editor, Advances in Cryptology – ASIACRYPT 2004, volume 3329
of Lecture Notes in Computer Science, pages 323–337. Springer-Verlag, 2004.

11. ECRYPT. eSTREAM: ECRYPT Stream Cipher Project, IST-2002-507932. Avail-
able at http://www.ecrypt.eu.org/stream/, Accessed September 29, 2005, 2005.

12. Jean-Charles Faugère, Hideki Imai, Mitsuru Kawazoe, Makoto Sugita, and
Gwénolé Ars. Comparison Between XL and Grbner Basis Algorithms. In Pil Joong
Lee, editor, Advances in Cryptology – ASIACRYPT 2004, volume 3329 of Lecture
Notes in Computer Science, pages 338–353. Springer-Verlag, 2004.

13. Jean-Bernard Fischer and Jacques Stern. An efficient pseudo-random generator
provably as secure as syndrome decoding. In EUROCRYPT, pages 245–255, 1996.

17

14. Aviezri S. Fraenkel and Yaacov Yesha. Complexity of solving algebraic equations.
Inf. Process. Lett., 10(4/5):178–179, 1980.

15. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness, chapter 7.2 Algebraic Equations over GF (2).
W H Freeman & Co, 1979.

16. Rosario Gennaro. An improved pseudo-random generator based on discrete log.
In CRYPTO, pages 469–481, 2000.

17. Oded Goldreich. Three xor-lemmas an exposition. Technical report, Weizmann
Instritute of Science, Revohot, Israel, 1995.

18. Oded Goldreich. Fondationsof Cryptography, volume 1. Cambridge University
Press, 2001.

19. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

20. Shafi Goldwasser and Mihir Bellare. Lecture notes on cryptography. Available at
http://www-cse.ucsd.edu/users/mihir/courses.html, 2001.

21. Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,
1999.

22. Russel Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random gener-
ation from one-way functions. In D.S.Johnson, editor, 21th ACM Symposium on
Theory of Computing – STOC ’89, pages 12–24. ACM Press, 1989.

23. Russel Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as
secure as subset sum. Journal of Cryptology, 9(4):199–216, 1996.

24. Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as
secure as subset sum. J. Cryptology, 9(4):199–216, 1996.

25. Leonid A. Levin and Oded Goldreich. A hard-core predicate for all one-way func-
tions. In D. S. Johnson, editor, 21th ACM Symposium on Theory of Computing –
STOC ’89, pages 25–32. ACM Press, 1989.

26. Rudolf Lidl and Haradl Niederreiter. Finite Fields. Cambride University Press,
1997.

27. National Institute of Standards and Technology. FIPS-197: Advanced Encryption
Standard, November 2001. Available at http://csrc.nist.gov/publications/fips/.

28. Jacques Patarin and Louis Goubin. Asymmetric cryptography with s-boxes. In
ICICS, pages 369–380, 1997.

29. Jacques Patarin and Louis Goubin. Asymmetric cryptography with s-boxes. In
ICICS, pages 369–380, 1997.

30. Johan H̊astad and Mats Näslund. Bmgl: Synchronous key-stream henerator with
provable security. submitted to Nessie Project, 2000.

31. Andrew Yao. Theory and applications of trapdoor function. In Foundations of
Cryptography FOCS 1982, 1982.

Appendix: Proof of lemma 1

We denote by Li, 1 ≤ i ≤ n the n-bit to 1-bit linear forms defined by Li(x)=xi,
where x is represented by the binary string x1x2 · · ·xn. The idea of the proof is
to call algorithm B sufficiently many times to recover all the xi = Li(x) one by
one. To do so, we introduce a parameter t, whose order of magnitude is log n
which will be specified later. We use t randomly chosen n-bit to 1-bit linear forms
R1, . . . , Rt to randomize our requests to algorithm B. For each Li(x) we want to

18

retrieve, we call algorithm B 2t times, using the 2t linear combinations
⊕

j αjRj

of the Rk forms in order to randomize Li. Suppose we know the t values for
Rj(x), then for any α we can also compute the value of

⊕
j αjRj(x) and add

this value to B(
⊕

j αjRj ⊕ Li, f(x)). We denote

C(i, α) = B(
⊕

j

αjRj ⊕ Li, f(x))⊕
⊕

j

αjRj(x)

If we make a correct assumption on the t values R1(x) to Rt(x) and if B returned
the right value of (

⊕
j αjRj ⊕ Lj)(x) , then we have

C(i, α) = (
⊕

j

αjRj ⊕ Li)(x)⊕
⊕

j

αjRj(x)

= Li(x)⊕
⊕

j

αjRj(x)⊕
⊕

j

αjRj(x) = Li(x).

For all the possible α values, we collect the vote C(i, α) for the value of Li(x).
Since algorithm B is supposed to answer correctly most of the time, taking the
majority of the votes C(i, α) will provide us with the value of Li(x) with a high
probability if we assume that 2t requests are enough. The counterpart of this
technique is that we have to guess the real values of Rj(x) for all j but since t
is of logarithmic size this is achievable.

We now give a more formal proof with a small difference: we use fast Walsh
transform computations to simultaneously compute the 2t results of the votes on
the C(i, α) values for all the 2t possible t-tuples of assumptions Rj(x), 1 ≤ j ≤ t,
instead of computing them independently.

Before we give the proof, we need to recall some results on the Walsh trans-
form. Given a real function of t binary variables g(x1, . . . , xt), the Walsh trans-
form of g is the real function of t binary variables G = W (g) defined by

G(u1, . . . , ut) =
∑

x1,...,xt∈{0,1}t

f(x1, . . . , xt)(−1)u1x1+...+utxt

It is known that the time needed to compute the Walsh transform of a function
of t binary variables is t · 2t.

Proof. The algorithm C works as follows : first it randomly selects t elements
R1, . . . , Rt of the n-dimensional vector space over GF (2) of the n-bit to 1-bit
linear forms.

Then for each i = 1, . . . , n it executes the following process: for all the 2t pos-
sible α = (α1, . . . αt) t-tuples ∈ {0, 1}t store (−1)B(

L
j αjrj⊕Li,f(x)) in a table of

size 2t, say (c0, . . . c2t−1) (thus the coefficient associated with α is cPt−1
j=0 αj ·2j−1).

Then it applies the Walsh transform to this table (which represents a function
of α. This gives 2t numbers (βi

0, . . . , β
i
2t−1) such that

βi
k =

∑
α

(−1)B(
L

j αjRj⊕Li,f(x))(−1)<k,α>

= |{α|C(i, α) = 0}| − |{α|C(i, α) = 1}|

19

βi
k is the difference of the number of 0 votes and 1 for Li(x) corresponding to the

assumption that Rj(x) = kj for all j comprised between 1 and t. Consequently
if βi

k is positive, then C sets bit i of the n-bit candidate value Ck associated with
the assumption k to Ci

k = 0, otherwise this bit is set to Ci
k = 1.

After this process has been completed for all the n values of i, one is left
with a list of 2t n-bit candidate values for x corresponding to each of the 2t

assumptions for R1(x) to Rt(x). For each candidate value Ck, algorithm C then
computes f(Ck) and compares it to f(x). If a match occurs, C keeps Ck in the
list of at most 2t candidate values for x it outputs, otherwise Ck is discarded
from the list.

The total running time of algorithm C is n2t(T + t + 2) + 2tTf where Tf is
the time needed to compute f(y) for an n-bit value y.

Let us now upper bound the probability that algorithm C fails to select x
in the list of pre-images of f(x) it produces. Over the 2t assumptions for R1(x)
to Rt(x), only the correct one is to be considered. The failure probability of C
is upper bounded by the sum of the n probabilities pi that the vote for Li(x) is
incorrect and we have:

pi = Pr

{
|{α|C(i, α) = Li(x)}| < 2t

2

}
|{α|C(i, α) = Li(x)}| is the sum of the 2t pairwise independent 0-1 variables
C(i, α)⊕Li(x)⊕ 1 of average value µα ≥ 1

2 + ε
2 and variance vα = 1

4 −
ε2

4 . Thus

pi has average value µ = 2t
(

1
2 + ε

2

)
and variance σ2 = 2t

(
1
4 −

ε2

4

)
. By applying

Chebyshev’s inequality, we have

pi = Pr

{∑
α

C(i, α)⊕ Li(x)⊕ 1 <
2t

2

}

= Pr

{∑
α

C(i, α)⊕ Li(x)⊕ 1− µ < −2tε

2

}

≤ Pr

{∣∣∣∣∣∑
α

C(i, α)⊕ Li(x)⊕ 1− µ

∣∣∣∣∣ >
2tε

2

}
≤ σ2

(2t ε
2)2

≤ 1
2tε2

Thus the failure probability of C is upper bounded by n
2tε2 . If we want to

have a probability of success for algorithm C higher than 1
2 , then we have to

choose t such that 2t = n
ε2 . Finally the total complexity of algorithm C is given

by
2n2

ε2

(
T + log(

2n

ε2
) + 2

)
+

2n

ε2
Tf

20

