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Abstract. To prove that a secure key-agreement protocol exists one
must at least show P 6= NP . Moreover any proof that the sequential
composition of two non-adaptively secure pseudorandom functions is se-
cure against at least two adaptive queries must falsify the decisional
Diffie-Hellman assumption, a standard assumption from public-key cryp-
tography. Hence proving any of this two seemingly unrelated statements
would require a significant breakthrough. We show that at least one of
the two statements is true.
To our knowledge this gives the first positive cryptographic result (namely
that composition implies some weak adaptive security) which holds in
Minicrypt, but not in Cryptomania, i.e. under the assumption that one-
way functions exist, but public-key cryptography does not.

1 Introduction

A pseudorandom function (PRF) is a function which cannot be distinguished
from a uniformly random function by any efficient adversary. One can give dif-
ferent security definitions for PRFs depending on how the attacker can access
the function: a non-adaptive adversary must choose all his queries to the func-
tion at once, whereas a (more powerful) adaptive adversary must only decide on
the i’th query after receiving the i− 1’th output. As a generalisation we define
k-adaptive adversaries which can choose k blocks of queries to be made, where
the k’th block must be chosen at once but only after receiving the outputs to
the k−1’th block (in particular 1-adaptive means non-adaptive, and∞-adaptive
means adaptive). Consider the following two statements:

Kk : There exists a secure k-pass key-agreement protocol.
Ck : The sequential composition of two (k − 1)-adaptively secure PRFs is k-

adaptively secure.

The main result of this paper is that either composition of PRFs always increases
the security in the sense that the cascade is k-adaptive secure whenever the
components are k − 1 secure OR that key agreement exists.
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Theorem 1 For any k ≥ 2: Ck ∨ K2k−1

This theorem has a nice interpretation in terms of Impagliazzo’s five possible
worlds as described in the survey paper “A Personal View of Average-Case Com-
plexity” [8]. Here “possible world” means that with our current knowledge we
cannot rule out it as being reality. As each world does exists relative to an ora-
cle, showing equivalence of two worlds would require non-relativizing techniques,
and in the ten years that passed since this survey none has been resolved.1 This
five worlds are Algorithmica (where P = NP ), Heuristica (NP 6= P but NP is
tractable on average), Pessiland (NP is hard on average but one-way functions
do not exist), Minicrypt (one-way functions exist) and Cryptomania (Public-key
cryptography exists, this is probably the real world). In this view, the theorem
states that for any k ≥ 2 the statement Ck holds in Minicrypt but not in Cryp-

tomania. As the naming suggests, Cryptomania is cryptographers paradise, but
our result somewhat challenges this viewpoint, as cryptographers interested only
in symmetric cryptography might well prefer to live in Minicrypt rather than in
Cryptomania, as some results (in particular Ck) only can be found there.

But let us stress that there are known (black-box) constructions of adaptively
secure PRFs from non-adaptively secure PRFs [4], but these constructions are
inefficient as they need a linear (in the security parameter) number of calls to the
underlying primitive on each invocation. Thus we do not show that adaptively
secure PRF exists in Minicrypt (as this is known), but rather that here adap-
tive security can be achieved by probably most straight forward and efficient
construction: cascading two functions.

We prove Theorem 1 by constructing a 2k−1-pass key-agreement protocol from
any pseudorandom functions which provides a counterexample for Ck, i.e. from
any (k−1)-adaptively secure pseudorandom functions F(·) and G(·) where there
exists an efficient k-adaptive D which can distinguish G(F(·)) from a random
function.

There is a gap between what is generally considered a successful distinguisher
(or any other kind of an adversary) and what one expects from a protocol: a
system is usually considered broken even if only a non-uniform advantage exists,
whereas a protocol should be uniform and achieve its task with overwhelming2

probability to be considered useful. The key-agreement protocol we construct
uses D as a black-box, and only if D is uniform and has noticeable advantage
in distinguishing G(F(·)) from random, we will get a useful (as described above)
key-agreement protocol. But if D in non-uniform, also the key-agreement pro-
tocol will be non-uniform. Furthermore if D has only non-negligible (but not
noticeable) advantage, then our key-agreement protocol will only work (i.e. have

1 But several new worlds, in particular between Minicrypt and Cryptomania [3], have
been added. Recently Harnik and Naor [5] proposed an interesting approach to show
Minicrypt=Cryptomania. Wee investigates Pessiland in [17]. A classical result due to
Rudich [15] oracle separates Kk from Kk+1 for every k.

2 τ (·) is overwhelming if 1 − τ (·) is negligible.



overwhelming success probability) for infinitely many values of the security pa-
rameter (and not as usually for all).

1.1 What is Known?

It is known that under the decisional Diffie-Hellman (DDH) assumption two-pass
key-agreement (i.e. public-key encryption) exists [1, 2], and in [13] it is shown
that under the same assumption ¬C2 holds, i.e. that composition does not imply
adaptive security.3 Thus [13] shows a negative result for private-key systems
under a standard assumption from public-key cryptography. By Theorem 1 this
is not just an artificial property of the counterexample given in [13], but in fact
any falsification of C2 implies (and thus must either assume or unconditionally
prove) the existence of the central public-key primitive key-agreement.

Interestingly the equivalent of C2 in the information theoretic setting is true:
the cascade of two functions, each having security ε against non-adaptive (com-
putationally unbounded) distinguishers making at most q queries, has security
2ε against any adaptive distinguisher making q queries [11]. Therefore the rea-
son why composition does imply adaptive security in the information-theoretic
but probably not in the computational setting is closely related to the fact that
public-key cryptography cannot exist in the information theoretic setting [16,
10] but is believed to exist in the real world [1]. We’ll muse further on the im-
plications of Theorem 1 in Section 4.

2 Basic Definitions

Throughout we denote by n ∈ N a security parameter. An algorithm is efficient if
it can be implemented by a probabilistic Turing machine whose expected running
time is polynomial in the input length (which for us will always mean polynomial
in n). We use a SANS-SERIF font for efficient entities and a CALLIGRAPHIC
font for idealised systems like uniform random functions.

Negligible. A function µ : N→ [0, 1] is negligible if for any c > 0 there is an
n0 such that µ(n) ≤ 1/nc for all n ≥ n0. And contrarily µ is non-negligible if for
any c > 0 we have µ(n) ≥ 1/nc for infinitely many n.

Noticeable. A function φ : N → [0, 1] is noticeable if for some c > 0 there is
an n0 such that φ(n) ≥ 1/nc for all n ≥ n0.

3 In [13] a F(·) and G(·) are constructed which are non-adaptively secure under the
DDH assumption, but where three (and not two as required for ¬C2) adaptive queries
are enough to learn the whole key when querying G(F(·)). But after two adaptive
queries one already learns the key of G and thus can distinguish G(F(·)) from random,
and this is all we need to get ¬C2. Previous to [13] is was already known that there
is no black-box proof for C2 as Myers [12] has constructed an oracle relative to
which ¬C2.



Note that non-negligible is not the same as noticeable, for example µ(n)
def

=
n mod 2 is non-negligible but not noticeable.

Unless stated otherwise, all characters that appear below are probabilistic effi-
cient Turing machines.

Bit-Agreement. Bit-agreement is a protocol between two efficient parties,
let’s call them Amélie and Benôıt . They get as a common input the security
parameter n in unary (denoted 1n) and can communicate over an authentic
channel. Finally Amélie and Benôıt output a bit bA and bB respectively. The
protocol has correlation ε if for all n

Pr[bA = bB] ≥
1 + ε(n)

2

and the protocol is δ-secure if for any efficient adversary E which can observe
the whole communication C we have for all n

Pr[E(1n, C)→ bA] ≤ 1−
δ(n)

2

Key-Agreement. If ε(·) and δ(·) are overwhelming then such a protocol
achieves key-agreement. Any protocol which achieves bit-agreement with a no-
ticeable correlation ε(·) and overwhelming security δ(·) can be turned into a
key-agreement protocol by sequential composition, and using parallel repetition
this can even be done without increasing the number of rounds [6, 7].

If ε(·) is only non-negligible (i.e. for any c > 0 : ε(n) ≥ 1/nc for all n ∈ Sc ⊂ Z

where |Sc| is infinite), then also the key-agreement protocol will only achieve
correctness for security parameters n ∈ Sc (one can choose any constant c here,
the running time of the key-agreement protocol will then basically grows as n2c).

Distinguisher. By a k-adaptive distinguisher we denote an efficient oracle
algorithm which at the end of the computation outputs a decision bit. He may
query the oracle an arbitrary number of times, but the queries must come in
k blocks where he must settle for a whole block before reading any outputs on
queries from that block.

This definition is not standard, but note that a 1-adaptive distinguisher is just
a standard non-adaptive distinguisher and a ∞-adaptive distinguisher is a stan-
dard adaptive distinguisher.

As we only consider stateless systems (which always give the same answer on the
same query) w.l.o.g we always can and will assume that a distinguisher never

makes the same query twice. Moreover we require the distinguishers themselves to

be stateless. This can be done w.l.o.g. if we always provide the previous outputs
of the system queried as an input to the distinguisher when he must come up
with the next query or the final decision bit (note that we need not to provide
the previous inputs to the system as the distinguisher can compute this inputs
himself).

Pseudorandom Function/Permutation. A pseudorandom function (PRF)
is a pair of efficient algorithms F and KeyGenF where for any n ∈ N we have



KeyGenF : 1n → Kn and F : Kn × {0, 1}n → {0, 1}n. Let Fk(·)
def

= F(k, ·). Let
Rn : {0, 1}n → {0, 1}n be a uniform random function, then F is `-adaptive secure
if for any efficient `-adaptive distinguisher D

|Pr[DFk(·)(1n)→ 1|k ← KeyGenF(1
n)]− Pr[DRn(·)(1n)→ 1]| = τ(n).

for some negligible τ . Pseudorandom permutations (PRP) are defined similarly,
but here one additionally requires that for any k, Fk(·) is a permutation.

Sequential Composition. For two functions F and G we denote by G◦F their
sequential composition.

G◦F(x)
def

= G(F(x)).

For a set S we denote by x
$
← S that x is assigned a value from S uniformly at

random.

3 The Reduction

In this section we prove the statement ¬Ck ⇒ K2k−1 of Theorem 1. Actually, we
only show that ¬Ck implies a (2k−1)-pass bitagreement protocol with noticeable
correlation and overwhelming security, but as said in the previous section, this
is equivalent to K2k−1.

For the clarity of exposition we prove only the special case k = 2 and we assume
that ¬C2 holds in a strong sense, namely that the cascade considered can be
distinguished by an adversary which makes only two adaptive queries, this is a
special case of a general 2-adaptive distinguisher which can make two blocks of
arbitrary many queries (where he must settle for whole blocks at once). At the
end of this section we will show how the reduction must be extended to cover
the general case (and thus to prove Theorem 1).

Let F, KeyGenF and G, KeyGenG be two pseudorandom functions, each secure
against non-adaptive distinguishers, but which can be distinguished with two
adaptive queries. This means that there exists an efficient D and a non-negligible
φ such that

Pr[b2 = 1]− Pr[b1 = 1] ≥ φ(n) (1)

where b1 and b2 are bits whose distribution is defined by Games 1 and 2 below
where D either queries the sequential composition (Game 1) or a random func-
tion (Game 2) with two adaptive queries.



Game 1

k1 ← KeyGenF(1n)

k2 ← KeyGenG(1n)

x1 ← D(1n)

y1 ← Gk2
◦Fk1

(x1)

x2 ← D(y1)

y2 ← Gk2
◦Fk1

(x2)

b1 ← D(y1, y2)

Game 2

x1 ← D(1n)

y1 ← Rn(x1)

x2 ← D(y1)

y2 ← Rn(x2)

b2 ← D(y1, y2)

Game 3

k ← KeyGenG(1n)

z1
$
← {0, 1}n

y1 ← Gk(z1)

z2
$
← {0, 1}n

y2 ← Gk(z2)

b3 ← D(y1, y2)

In Game 2 the y1, y2 are just uniform random values whereas in Game 3 the
y1, y2 are computed by G on random inputs. From the non-adaptive security of
G it also follows that for some negligible δ23

|Pr[b2 = 1]− Pr[b3 = 1]| ≤ δ23(n). (2)

With such an F, G and D we can construct a bit-agreement protocol with non-
negligible correlation and overwhelming security (and thus get key-agreement)
as shown in Figure 1. If D is randomised we need Amélie and Benôıt to use the

Protocol BitAgreement(n)

Amélie Benôıt

bA

$
← {0, 1}

kA ← KeyGenF(1
n) kB ← KeyGenG(1n)

x1 ← D(1n)

if bA = 0 then z1 ← FkA
(x1)

otherwise z1
$
← {0, 1}n z1 → y1 ← GkB

(z1)

← y1

x2 ← D(y1)

if bA = 0 then z2 ← FkA
(x2)

otherwise z2
$
← {0, 1}n z2 → y2 ← GkB

(z2)

bB ← D(y1, y2)

Fig. 1. 3-pass BitAgreement protocol from a 2-adaptive D.

same random coins for D in BitAgreement. Here Amélie can simply choose
the random coins initially and send them to Benôıt .



Claim 1 BitAgreement(n) has correlation φ− δ23.

Proof. Note that if bA = 0 (bA = 1) then the distribution of bB is the same as
the distribution of b1 (b3) in game 1 (game 3), now as (1) and (2) imply

Pr[b3 = 1]− Pr[b1 = 1] ≥ φ(n) − δ23(n)

we get

Pr[bA = bB] = Pr[bA = 0]Pr[bB = 0|bA = 0] + Pr[bA = 1]Pr[bB = 1|bA = 1]

=
1− Pr[b1 = 1]

2
+

Pr[b3 = 1]

2

≥
1 + φ(n) − δ23(n)

2

�

Claim 2 BitAgreement(n) is δ-secure for an overwhelming δ.

Proof. We must show that there is an overwhelming δ such that for all efficient
D

Pr[D(z1, y1, z2)→ bA] ≤ 1−
δ(n)

2

We consider six more games which all define a distribution for the values (z1, y1, z2).
The distribution of (z1, y1, z2) in game 4 and 9 is the same as in BitAgreement(n)
conditioned on bA = 0 and bA = 1 respectively.

Game 4

k1 ← KeyGenF(1n)

k2 ← KeyGenG(1n)

x1 ← D(1n)

z1 ← Fk1
(x1)

y1 ← Gk2(z1)

x2 ← D(y1)

z2 ← Fk1
(x2)

Game 5

k1 ← KeyGenF(1
n)

x1 ← D(1n)

z1 ← Fk1
(x1)

y1
$
← {0, 1}n

x2 ← D(y1)

z2 ← Fk1
(x2)

Game 6

k1 ← KeyGenF(1n)

x1 ← D(1n)

y1
$
← {0, 1}n

x2 ← D(y1)

z1 ← Fk1
(x1)

z2 ← Fk1
(x2)



Game 7

x1 ← D(1n)

y1
$
← {0, 1}n

x2 ← D(y1)

z1 ← Rn(x1)

z2 ← Rn(x2)

Game 8

x1 ← D(1n)

z1 ← Rn(x1)

y1
$
← {0, 1}n

x2 ← D(y1)

z2 ← Rn(x2)

Game 9

k2 ← KeyGenG(1n)

x1 ← D(1n)

z1 ← Rn(x1)

y1 ← Gk2
(z1)

x2 ← D(y1)

z2 ← Rn(x2)

With PrGi[E] we denote the probability of the event E in game i, and δij is
defined by

|PrGi[D(z1, y1, z2)→ 1]− PrGj [D(z1, y1, z2)→ 1]| = δij(n)

Game 4 differs from Game 5 only by the computation of y1 which is computed
by G and random respectively. As G is non-adaptively secure (and a single query
is always non-adaptive) δ45 is negligible. For the same reason δ89 is negligible.
Game 6 differs from Game 7 only by the computation of z1 and z2 which in
Game 6 are non-adaptively computed by F and in Game 7 by R, so from F’s
non-adaptive security it follows that δ67 is also negligible. Finally δ56 and δ78

are 0 as Game 5 is equivalent to Game 6 (only the order of the commands is
changed to emphasis that in Game 5 the F is in fact queried non-adaptively)
and Game 7 is equivalent to Game 8.

Using the triangle inequality we see that δ49 ≤
∑8

i=4 δi i+1 is negligible, and thus

δ
def

= 1− δ49 is overwhelming. We can now conclude the proof of the claim as

Pr[D(z1, y1, z2)→ bA]

= Pr[bA = 0]Pr[D(z1, y1, z2)→ 0|bA = 0] +

Pr[bA = 1]Pr[D(z1, y1, z2)→ 1|bA = 1]

= (1− Pr[D(z1, y1, z2)→ 1|bA = 0] + Pr[D(z1, y1, z2)→ 1|bA = 1])/2

= (1− PrG4[D(z1, y1, z2)→ 1] + PrG9[D(z1, y1, z2)→ 1])/2

≤ (1 + δ49)/2

= 1− δ/2

This concludes the proof of ¬Ck ⇒ K2k−1 for the case k = 2 with the additional
assumption that the cascade can be broken by a distinguisher D which makes
two adaptive queries (and not a general 2-adaptive distinguisher). �

We first explain how to adapt the reduction so that if works for any 2-adaptive
distinguisher and not just for two adaptive queries. Then we show how to adapt



Protocol BitAgreement(n)

Amélie Benôıt

bA

$
← {0, 1}

kA ← KeyGenF(1
n) kB ← KeyGenG(1n)

for i = 1 to k − 1 do

Xi ← D′′(Y1, . . . , Yi−1)
if bA = 0then Zi ← FkA

(Xi)

otherwise Zi

$
← {0, 1}n Zi → Yi ← GkB

(Zi)
← Yi

od;

Xk ← D′′(Y1, . . . , Yk−1)
if bA = 0 then Zk ← FkA

(Xk)

otherwise Zk

$
← {0, 1}n Zk → Yk ← GkB

(Zk)
bB ← D′′(Y1, . . . , Yk)

Fig. 2. (2k − 1)-pass BitAgreement protocol from a k-adaptive D′′.

it so that it works for any k ≥ 2 which will then conclude the proof of Theorem 1.

Reduction from 2-adaptive D′. Let D′ be any 2-adaptive distinguisher which
can distinguish Fk1

◦Gk2
from random. From such a D′ we can construct a 3-

pass bitagreement protocol almost like from the D which made only two queries.
If q = q(n) denotes (an upper bound on) the size of the blocks requested by
D′, then just replace all occurrences of x1, x2, y1, y2, z1, z2 by appropriate q-
tuples X1, X2, Y1, Y2, Z1, Z2 in the bitagreement protocol. For example replace
x1 ← D(1n) with X1 = (x1

1, x
2
1, . . . , x

q
1) where X1 ← D′(1n), similarly replace

y1 ← Fk1
◦Gk2(x1) by Y1 ← Fk1

◦Gk2(X1) and so on.

Reduction from k-adaptive D′′. For any k ≥ 2, let D′′ be any k-adaptive
distinguisher for Fk1

◦Gk2 from random. To construct a bitagreement from such
a distinguisher we can proceed similarly to the k = 2 case, only the number of
rounds must be increased as now D′′ must be fed with k and not just 2 input
blocks.

The construction of (2k − 1)-pass bitagreement from a k-adaptive D′′ is shown
in Figure 3. It is straight forward (and we omit it) to adapt the Claims 1 and 2
and their proofs for this protocol.



4 Discussion

Does Theorem 1 Ck ∨ K2k−1 have any practical meaning? After all, DDH is
believed to be true in the real world, so K2 is true [1] and C2 is wrong [13]. Even
if someday (2k − 1)-pass key-agreement turns out to be impossible, having Ck

instead is a cold comfort.

But one can see Ck∨K2k−1 as a positive result, even when assuming that DDH is
true: Composition of k-adaptively secure pseudorandom functions implies (k+1)-
adaptive security4, unless the pseudorandom functions themselves have some

public-key functionality in the sense that they can be turned into a key-agreement
protocol by a black-box (BB for short) reduction. Of course that was more an
intuitive argument than a result that can be actually applied. In the next section
we prove a first positive composition result for PRFs whose security can be BB-
reduced to the security of a one-way function.

4.1 Black-Box Breaks

Combining Theorem 1 with the Impagliazzo-Rudich result [9] that key-agreement
cannot be BB-reduced to one-way functions we can prove a first positive result
in the direction that composition sometimes does imply adaptive security (or
rather, that the adaptive security cannot be broken in a generic way) even in
the computational setting. Before we can state the theorem we first need some
definitions.

F(·) is an oracle PRF whose k-adaptive security can be BB-reduced to the one-
wayness of the oracle if the following is true: There exists an efficient B(·) such
that for any (not necessarily efficient) k-adaptive adversary A(·) and any f (for
simplicity we assume f is {0, 1}∗ → {0, 1}∗ and length preserving) for which

∣

∣

∣

Pr[k ← KeyGen
f
F
(n);AF

f

k → 1]− Pr[ARn → 1]
∣

∣

∣

is k-negligible (note that this means that A breaks the k-adaptive pseudoran-
domness of Ff ), BA,f breaks the one-wayness of f , this means that then also

Pr[x
$
← {0, 1}n; BA,f (f(x)) ∈ f−1(x)]

is non-negligible. This definition of BB-reduction is standard and called a fully-
BB reduction in the taxonomy from [14]. The definition of a BB-break given
below is not standard.

We say that the k-adaptive security of F(·) can be BB-broken if there exists an
efficient k-adaptive C(·) where

∣

∣

∣
Pr[k ← KeyGen

f
F
(n); CF

f

k
,f → 1]− Pr[CRn,f → 1]

∣

∣

∣

4 And in particular composition of non-adaptively secure pseudorandom functions
implies 2-adaptive security.



is noticeable for all f ; So C can distinguish Ff from R for every f , i.e. C breaks
the the security of the construction F(.) and not some particular instantiation.
Note that if the k-adaptive security of F(.) can be BB-broken, then it obviously
cannot be BB-reduced to the one-wayness of the oracle, but the converse is not
true in general.

Theorem 2 If the k-adaptive security of the PRFs F(·) and G(·) can be BB-

reduced to the one-wayness of the oracle, then the (k + 1)-adaptive security of

G(·)◦F(·) cannot be BB-broken.

Proof. The proof is by contradiction: assume there is (k + 1)-adaptive distin-
guisher C(·) which can distinguish Gf◦Ff from a random function with noticeable
advantage for any f . With such a C(·), Ff , Gf we can construct a key-agreement
protocol.5 The security of this protocol can be BB-reduced to the k-adaptive se-
curity of Ff and Gf whose security can again be BB-reduced to the one-wayness
of f . So we have a BB-reduction from key-agreement to one-way functions which
is not possible [9]. �

Note that the theorem does not claim that the k + 1-adaptive security of Ff◦Gf

can be BB-reduced to the one-wayness of f , but something weaker. Namely that
there is no single efficient C(·) which breaks the (k + 1)-adaptive security for all
f .

4.2 Outlook

Are there other interesting statements that one can we prove to be true only
under the assumption that public-key cryptography does not exist? It seems
unlikely that our composition result is an isolated example.

As shown in Theorem 2 given such a statement one might well be able to prove
a weaker version of it without making the (unlikely) assumption that public-
key crypto does not exist. But what does “BB-broken” as used in Theorem 2
actually mean? Can one strengthen this theorem and replace “BB-broken” with
“BB-reduced to the one-wayness of the oracle” or show that this is not possible.

Can we strengthen Theorem 1? For example can we show that key-agreement
(via a BB-reduction) exists when the composition of two (k− 2)-adaptive PRFs
secure PRFs is k-adaptive secure6? We think this is not true,7 but we believe
that Theorem 2 holds with an infinite gap, i.e. where k-adaptive is replaced by
non-adaptive and (k + 1)-adaptive by adaptive. To show this one would have to

5 As shown in Section 3 for the special case k = 1 and where each of the k + 1 blocks
contained only one message.

6 This is statement Ck with an increased gap, i.e. k − 2 instead of (k − 1)
7 Because there seems to be an oracle relative to which no key-agreement exists and

cascading (k − 2)-adaptive PRFs does not give k-adaptive security. But we didn’t
check all details.



show that there exists some statement L such that L is implied by the statement
“the composition of two non-adaptive PRFs is not adaptively secure” and where
L cannot be BB-reduced to one-way functions.
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