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Abstract. The Feistel-network is a popular structure underlying many
block-ciphers where the cipher is constructed from many simpler rounds,
each defined by some function which is derived from the secret key.
Luby and Rackoff showed that the three-round Feistel-network – each
round instantiated with a pseudorandom function secure against adap-
tive chosen plaintext attacks (CPA) – is a CPA secure pseudorandom
permutation, thus giving some confidence in the soundness of using a
Feistel-network to design block-ciphers.
But the round functions used in actual block-ciphers are – for efficiency
reasons – far from being pseudorandom. We investigate the security
of the Feistel-network against CPA distinguishers when the only secu-
rity guarantee we have for the round functions is that they are secure
against non-adaptive chosen plaintext attacks (nCPA). We show that in
the information-theoretic setting, four rounds with nCPA secure round
functions are sufficient (and necessary) to get a CPA secure permutation.
Unfortunately, this result does not translate into the more interesting
pseudorandom setting. In fact, under the so-called Inverse Decisional
Diffie-Hellman assumption the Feistel-network with four rounds, each
instantiated with a nCPA secure pseudorandom function, is in general
not a CPA secure pseudorandom permutation.

1 Introduction

Feistel-network. The Feistel-network is a popular design approach for block-
ciphers where the cipher over {0, 1}2n is constructed by cascading simpler per-
mutations, each constructed from a round function {0, 1}n → {0, 1}n. The secret
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key of the cipher is only used to choose the particular round functions.

Luby-Rackoff Ciphers. In their celebrated paper [LR86] Luby and Rackoff
prove that the three-round Feistel-network is an adaptive chosen plaintext (CPA)
secure block-cipher – i.e. a pseudorandom permutation (PRP) – if each round
is instantiated with an independent CPA secure pseudorandom function (PRF),
and with one extra round even adaptive chosen ciphertext (CCA) security is
achieved.

Besides reducing PRPs to PRFs, this result also gives some confidence in
the soundness of using a Feistel-network to design block-ciphers. But unlike in
the Luby-Rackoff ciphers, in most block-ciphers based on Feistel-networks the
round functions are not independent (in order to keep the secret key short) and
also far from being pseudorandom (for efficiency reasons). Instead, the number
of rounds is much larger than four (which was sufficient for the Luby-Rackoff
constructions).

In order to achieve more efficient constructions of PRPs from PRFs, many
researcher have investigated the security of weakened versions of the Luby-
Rackoff ciphers. Several variations of the ciphers were proven to be pseudo-
random where for example the round functions were not required to be inde-
pendent [Pie90], some round functions were replaced by weaker primitives than
PRFs [Luc96,NR02] or the distinguisher was given direct oracle access to some
of the round functions [RR00]. These results further fortify the confidence in
using Feistel-networks to design block ciphers.

All these relaxed constructions need at least some of the round functions
to be CPA secure PRFs in order to get a CPA secure PRP. In this paper, we
investigate for the first time – to the best of our knowledge – the CPA secu-
rity of the permutation one gets by a Feistel-network where none of the round
functions is guaranteed to be CPA secure. In particular, we investigate the secu-
rity of the Feistel-network where each round is instantiated with a non-adaptive
chosen plaintext (nCPA) secure round function. Although nCPA security is still
a strong requirement, this was the weakest natural class of attacks we could
imagine which does not make the Feistel-network trivially insecure against CPA
attackers. For example round functions which are only secure against known-
plaintext attacks (KPA), i.e. look random on random inputs, are easily seen to
be too weak.1

Pseudo- and Quasirandomness. Informally, a pseudorandom function PRF
is a family of functions which can be efficiently computed, and where a random
member from the family cannot be distinguished from a uniform random func-
tion (URF) by any efficient adversary. Pseudorandom permutations (PRP) are
defined analogously. As usual in cryptography, an adversary is efficient if he is
in P/poly, i.e. in non-uniform polynomial time (but almost all our results also

1 Just consider a function f which satisfies f(0 . . . 0) = 0 . . . 0 but otherwise looks
random. This f is KPA secure as a random query is unlikely to be the all zero
string. But a Feistel-network build from such functions will output 0 . . . 0 on input
0 . . . 0 and thus is easily seen not to be CPA (or even nCPA) secure.



hold when considering uniform adversaries; the only exception is addressed in
Footnote 13). A quasirandom function (QRF) (similarly for a quasirandom per-
mutation (QRP)) is defined similar to a pseudorandom one but where one does
not require the distinguisher or the function to be efficient, only the number of
queries the distinguisher is allowed to make is bounded. Quasirandomness can be
seen as an extension of the concept of statistically close distributions to systems
which can be queried interactively.

In order to prove that some system – which is built from pseudorandom com-
ponents – is pseudorandom itself, it is often enough to prove it to be quasirandom
when the components are replaced by the corresponding ideal systems. In par-
ticular, to prove the security of the original three-round Luby-Rackoff cipher it
is enough to prove – the purely information-theoretic result – that the network
instantiated with URFs is a CPA secure QRP. It then immediately follows that
the construction is a CPA secure PRP when the URFs are replaced by CPA se-
cure PRFs, since if it was not a CPA secure PRP, we could use the distinguisher
for it to build a distinguisher for the CPA secure PRF (via a standard hybrid
argument). Similarly one can easily show that if the round functions are only
nCPA or only KPA secure PRFs, the construction is a PRP, but only against the
same class of attacks – i.e. nCPA or KPA.

2 Contributions

Our results and related work are summarized in Fig. 2 on page 5.

(In)secure Relaxations of the Three-Round Luby-Rackoff Cipher.

In the pseudo- and quasirandom setting, the three-round Feistel-network is – as
mentioned above – ATK ∈ {CPA, nCPA,KPA} secure when the round functions
are ATK secure. Moreover it is known that one can replace the first round with
a pairwise independent permutation [Luc96,NR99].2 We further relax this by
showing that the function in the last round only needs to be secure against known
plaintext attacks (KPA). This resolves an open question posed by Minematsu and
Tsunoo in [MT05]. Furthermore, for ATK = KPA we show that the first round
is not necessary – as opposed to when ATK ∈ {CPA, nCPA} – and that it is
sufficient to instantiate the (two) round functions with a single instantiation of
a KPA secure function.

But the second round seems to be the crucial one for ATK ∈ {CPA, nCPA}.
We show that for constructing a CPA secure permutation – i.e. PRP or QRP
depending on the setting – one cannot in general instantiate the second round
with a function which is only nCPA secure by constructing a counter-example,
i.e. a nCPA secure function such that the three-round Feistel-network with this
function in the second, and any random functions in the first and third round
can easily be distinguished from a uniformly random permutation (URP) with

2 In fact, the permutation must only be such that on any two values, the collision
probability on one half of the domain is small. For example one can use one normal
Feistel round instantiated with an almost XOR-universal function.



only three adaptively chosen queries. Similarly, if one instantiates the second
round with a KPA secure function, then the construction will in general not even
be nCPA secure.

Four Rounds with non-adaptive Round Functions. As a consequence,
three rounds with nCPA secure round functions are not enough to get CPA secu-
rity. On the positive side, we show that one extra nCPA secure round is sufficient
(and necessary) in the quasirandom setting. Note that for the translation of a
security proof from quasi- to pseudorandom systems – as described at the end
of the previous section – it is crucial that we can construct a distinguisher for
the components from a distinguisher for the whole system. But here the com-
ponents have a weaker security guarantee (i.e. nCPA) than what we prove for
the whole system (i.e. CPA). So even when we have a CPA distinguisher for the
four-round Feistel-network, we cannot construct a nCPA distinguisher for any
round function. This is not just a shortcoming of the used approach, but indeed,
in the pseudorandom setting the situation is different: we show that here four
rounds are not enough to get CPA security. To show this we construct a nCPA
secure PRF, such that the four-round Feistel-network with such round functions
can easily be distinguished from URP with only three adaptive queries.

This phenomenon – i.e. that some construction implies adaptive security
for quasirandom but not for pseudorandom systems – has already been proven
[MP04,MPR06,Pie05] for two simple constructions: the sequential composition
f .g(.) def= g(f(.)) and the parallel composition f ?g(.) def= f(.)?g(.) (where ? stands
for any group operation). The security proofs from [MP04] in the quasirandom
setting crucially use the fact that the sequential composition of two permutations
is a URPs whenever at least one of the permutations is a URP, similarly the par-
allel composition of two functions is a URF whenever one of the components is a
URF. The Feistel-network does not have this nice property of being ideal when-
ever one of the components is ideal, and we have to work harder here (using a
more general approach from [MPR06]). Our counter-example for the pseudoran-
dom setting – i.e. a four-round Feistel-network with nCPA secure PRFs as round
functions that is not a CPA secure PRP – is similar to the counter-examples for
sequential and parallel composition shown in [Pie05,Ple05]. In [Ple05], it is shown
that the sequential composition of arbitrarily many nCPA secure PRFs will not
be a CPA secure PRF in general, whereas for the parallel composition only a
counter-example with two components is known [Pie05]. For the Feistel-network
we also could only find a counter-example for four rounds. So we cannot rule out
the possibility that five or more rounds imply adaptive security. However, if this
was the case, then it seems likely that – like for sequential composition [Mye04]
– there is no black-box proof for this fact.3

3 Myers [Mye04] constructs an oracle relative to which there exist PRPs that are
nCPA secure, but for which their sequential composition is not a CPA secure PRP.
The idea behind this oracle is quite general, and we see no reason (besides being
technically challenging) why one should not be able to construct a similar oracle for



Construction Quasirandom Pseudorandom Reference

ψ[RRR] CPA [LR86,Mau02]

ψ[NNN ] nCPA §4
ψ[KKK] KPA §4
H . ψ[RR] CPA [Luc96,NR02]

H . ψ[RK] CPA §4
H . ψ[NK] nCPA §4
H . ψ[KK] KPA §4
ψ[RR] KPA (and NOT nCPA) [MT05] (and §4)
ψ[K2] KPA §4
ψ[RNR] NOT CPA §5
ψ[RKR] NOT nCPA §5
ψ[NNNN ] CPA NOT CPA (under IDDH) §6 and §7

Fig. 1. Security of the Feistel-network ψ with various security guarantees on the round
functions. Here ψ[f1 · · · fk](·) denotes the k-round Feistel-network with fi in the i’th

round, and ψ[f2]
def
= ψ[ff ] – i.e. the same function f in both rounds. Each occurrence

of R, N , and K stands for an independent CPA, nCPA, and KPA secure function (i.e. a
PRF or a QRF depending on the setting) respectively. The same holds for H which is
any “lightweight” permutation from which we only require that the collision probability
be small on the left half of the output, an almost pairwise independent permutation or
a Feistel round instantiated with an almost XOR-universal function is thus sufficient.

Unconditional vs. Conditional Counter-examples. The counter-example
showing that the three-round Feistel-network with a nCPA secure PRF F in the
second round is not adaptively secure is unconditional4 and black-box; with this
we mean that we can construct F starting from any (nCPA secure) PRF via a
reduction which uses this PRF only as a black-box.5 As four rounds are enough
to get adaptive security for quasirandom systems, there cannot be a black-box
counter-example (like for three rounds) for the four (or more) round case. Thus it
is not surprising that our counter-example for four rounds is not unconditional.
It relies on the so-called Inverse Decisional Diffie-Hellman assumption. The fact
that there is no black-box counter-example can be used to show that there is
in some sense no “generic” adversary which breaks the adaptive security of the
four-round Feistel-network with non-adaptive round functions. What “generic”

the Feistel-network, and thus also rule out a black-box proof for showing that the
Feistel-network with nCPA secure PRFs as round functions is a CPA secure PRP.

4 I.e. we make no other assumption besides the trivially necessary one that pseudo-
random functions – which are equivalent to one-way functions [HILL99,GGM86] –
exist at all.

5 We build F from a pseudorandom involution (PRI), how to construct a PRI from a
PRP (via a black-box reduction) has been shown in [NR02].



actually means will not be the topic of this paper, but see Sect. 4 from [Pie06] (in
this proceedings) for the corresponding statement for sequential composition.

3 Basic Definitions and Random Systems

We use capital calligraphic letters like X to denote sets, capital letters like X to
denote random variables and small letters like x denote concrete values. To save
on notation we write X i for (X1, X2, . . . , Xi).

For x ∈ {0, 1}2n we denote with Lx and Rx the left and right half of x
respectively, so x = Lx‖Rx. Similarly for any function f with range {0, 1}2n, we
denote with Lf (Rf) the function one gets by ignoring the right (left) half of the
output of f . For two functions f(.) and g(.) we denote with f .g(.) def= g(f(.)) the
sequential composition of f and g.6 For a (randomized) function f we denote
with collk(f) the collision probability of any fixed k-tuple of distinct inputs, i.e.

collk(f) = max
x1,...,xk

P(∃i, j; 1 ≤ i < j ≤ k : f(xi) = f(xj)).

If f denotes a uniform random function with range {0, 1}n, then collk(f) ≤
k2/2n+1, this is called the birthday bound which we will use quite often.

Definition 1 (Feistel-network) The (one round) Feistel-network ψ[f ] :
{0, 1}2n → {0, 1}2n based on a function f : {0, 1}n → {0, 1}n is defined as

ψ[f ](x) def= (f(Lx)⊕ Rx)‖Lx.

With ψ[f1 · · · fk] def= ψ[f1].ψ[f2].· · ·.ψ[fk] we denote the k-round Feistel-network
based on (randomized) round functions f1, . . . , fk, here the randomness used by
any function is always assumed to be independent of the randomness of the other
round functions. The k round Feistel-network where the same instantiation of a
function f is used for all rounds is denoted by ψ[fk] def= ψ[f · · · f︸ ︷︷ ︸

k times

].

Random Systems: Many results from this paper are stated and proven in the
random systems framework of [Mau02]. A random system is a system which takes
inputs X1, X2, . . . and generates, for each new input Xi, an output Yi which de-
pends probabilistically on the inputs and outputs seen so far. We define random
systems in terms of the distribution of the outputs Yi conditioned onX iY i−1 (i.e.
the actual query Xi and all previous input/output pairs X1Y1, . . . , Xi−1Yi−1).

Definition 2 (Random systems) An (X ,Y)-random system F is a sequence
of conditional probability distributions PF

Yi|XiY i−1 for i ≥ 1. Here we denote by
PF

Yi|XiY i−1(yi, x
i, yi−1) the probability that F will output yi on input xi condi-

tioned on the fact that F did output yj on input xj for j = 1, . . . , i− 1.

6 Note that f . g is usually denoted with g ◦ f .



As special classes of random systems we will consider random functions (which
are exactly the stateless random systems) and random permutations.

Definition 3 (Random functions and permutations) A random function
X → Y (random permutation on X ) is a random variable which takes as values
functions X → Y (permutations on X ).

A uniform random function (URF) R : X → Y (A uniform random permu-
tation (URP) P on X ) is a random function with uniform distribution over all
functions from X to Y (permutations on X ). Throughout, the symbols R and P
are used for the systems defined above (X ,Y to be understood).

Indistinguishability of random systems. The distinguishing advantage of
a computationally unbounded distinguisher for two random variables A and B is
simply the statistical distance of A and B. It is more intricate to define what we
mean by the indistinguishability of random systems as here one must specify how
the systems can be accessed. For this we define the concept of a distinguisher.

Definition 4 A (Y,X )-distinguisher is a (Y,X )-random system which is one
query ahead; by this we mean that it is defined by PD

Xi|Y i−1Xi−1 instead of
PD

Xi|Y iXi−1 for all i. In particular the first output PD
X1

is defined before D is
fed with any input.

We can now consider the random experiment where a (Y,X )-distinguisher queries
a (X ,Y)-random system

Definition 5 With D♦F we denote the random experiment where a distin-
guisher D interactively queries a compatible random system F.

We divide distinguishers into classes by posing restrictions on how the distin-
guisher can access his inputs and produce his queries. In particular the following
attacks will be of interest to us:

– CPA: Adaptively Chosen Plaintext Attack; here the adversary can choose
the i’th query after receiving the (i− 1)’th output.

– nCPA: Non-Adaptively Chosen Plaintext Attack; here the distinguisher must
choose all queries in advance.

– KPA: Known Plaintext Attack; here the queries must be chosen uniformly
at random.

If F is a permutation, its inverse F−1 is well-defined and we can consider a

– CCA: Chosen Ciphertext Attack.

which is defined like a CPA but where the attacker can additionally make queries
from the inverse direction.

Definition 6 For k ≥ 1, the two random experiments D♦F and D♦G define a
distribution over X k×Yk. The advantage of D after k queries in distinguishing



F from G, denoted ∆D
k (F,G), is the statistical difference between those distri-

butions7

∆D
k (F,G) def=

1
2

∑
Xk×Yk

∣∣PD♦F
XkY k − PD♦G

XkY k

∣∣ . (1)

The advantage of the best ATK-distinguisher making k queries for F and G is

∆ATK
k (F,G) def= max

ATK−distinguisher D
∆D

k (F,G).

Pseudorandomness. We denote with AdvATK
PRP (F, t, k) the distinguishing ad-

vantage of the best oracle circuit for F from a URP P where the circuit must
be of size at most t and make at most k ATK-queries to its oracle. So Adv is
defined similarly to ∆ but with an additional restriction on the size of the dis-
tinguisher. In particular AdvATK

PRP (F,∞, k) = ∆ATK
k (F,P). AdvATK

PRF is defined
similarly, but with P replaced by R.

Informally, a family of keyed functions F indexed by a security parame-
ter γ ∈ N is an ATK-secure pseudorandom function (PRF) if F (with security
parameter γ) can be computed in uniform polynomial (in γ) time, and for any
polynomial p(.) the distinguishing advantage AdvATK

PRF (F, p(γ), p(γ)) is negligible
in γ (for a key chosen uniformly at random). Pseudorandom permutations (PRP)
are defined similarly but using AdvATK

PRP , and where we additionally require that
F (for any security parameter and key) is a permutation.

We usually use sans-serif fonts like F to denote systems which can be effi-
ciently computed (in particular pseudorandom systems), and bold fonts like F
to denote quasirandom and ideal systems.

4 Relaxations of the Three-Round Luby-Rackoff Cipher

Let us first state some results for the three-round Feistel-network.

Proposition 1 For any ATK ∈ {CPA, nCPA,KPA} and function F

∆ATK
k (ψ2n[FFF],P) ≤ 3 ·∆ATK

k (F,R) + 2 · k2

2n+1
. (2)

The analogous statement also holds in the computational case: for any ATK ∈
{CPA, nCPA,KPA} and any efficient function F

AdvATK
PRP (ψ2n[FFF], t, k) ≤ 3 ·AdvATK

PRF (F, t′, k) + 2 · k2

2n+1
, (3)

where t′ = poly(t, k) for some polynomial poly which accounts for the overhead
implied by the reduction we make.
7 This definition has a natural interpretation in the random experiment where we

first toss a uniform random coin C ∈ {0, 1}. Then we let D (which has no a priori
information on C) make k queries to a system H where H ≡ F if C = 0 and H ≡ G
if C = 1. Here the expected probability that an optimal guess on C based on the k
inputs and outputs of H will be correct is 1/2 +∆D

k (F,G)/2.



The classical result of Luby and Rackoff [LR86], states that the Feistel-network
with three independent PRF rounds is a CPA secure PRP – i.e (3) for CPA.

Luby and Rackoff proved this result directly. One gets a simpler proof by
first showing that the three-round Feistel-network with URFs R is a CPA secure
QRP as this is a purely information-theoretic statement. In particular it was
shown in [Mau02] that8

∆CPA
k (ψ2n[RRR],P) ≤ 2 · k2

2n+1
, (4)

from which Proposition 1 directly follows using a standard hybrid argument.9

Lucks showed [Luc96] (see also [NR02]) that the first round in the three-round
Luby-Rackoff cipher can be replaced with a much weaker primitive which only
must provide some guarantee on the collision probability on the left half of the
output (for any two fixed inputs). In particular, an almost pairwise independent
permutation or a Feistel-round with an almost XOR-universal function will do.

Proposition 2 For any ATK ∈ {CPA, nCPA,KPA}, any functions F, G, and
any permutation H

∆ATK
k (H . ψ2n[FG],P) ≤ ∆ATK

k (F,R)+2·∆KPA
k (G,R)+collk(LH)+2 · k2

2n+1
. (5)

The analogous statement also holds in the computational case: for any ATK ∈
{CPA, nCPA,KPA}, any efficient functions F,G, and any efficient permutation H

AdvATK
PRP (H . ψ2n[FG], t, k) (6)

≤ AdvATK
PRF (F, t′, k) + 2 ·AdvKPA

PRF (G, t′, k) + collk(LH) + 2 · k2

2n+1
,

where t′ = t+poly(n, k) for some polynomial poly which accounts for the overhead
implied by the reduction we make.

Let us stress that (6) does not directly follow from (5).10 The proof of Proposi-
tion 2 is given in the full version of this paper.
8 This bound has been improved – for various number of rounds – in a series of papers.

The latest [Pat04] by Patarin presents the best possible security for up to k � 2n

(and not just k � 2n/2) queries, using five rounds which is also necessary.
9 The argument goes as follows for pseudorandom systems: suppose there is an ef-

ficient ATK ∈ {CPA, nCPA,KPA} distinguisher A for ψ2n[FFF] and P, then by
(4) this A will also distinguish ψ2n[FFF] from ψ2n[RRR]. Consider the hybrids
H0 = ψ2n[FFF], H1 = ψ2n[RFF], . . . ,H3 = ψ2n[RRR]. By the triangle inequality
there is an 0 ≤ i ≤ 2 (say i = 1) such that A can distinguish Hi from Hi+1. Now,
the distinguisher which – with access to an oracle G (implementing either F or R) –
simulates A♦ψ2n[RGF] and outputs the output of A is an efficient ATK-distinguisher
for F with the same advantage as A’s advantage for H1 and H2. The corresponding
argument also holds in the quasirandom setting.

10 The reason why a reduction – like the simple argument to show that Proposition 1
follows from (4) – fails here, is that the KPA security guarantee for one of the com-
ponents is weaker than the CPA security for the whole construction. But fortunately
the proof of (5) is such that it easily translates to the pseudorandom setting.



We relax the construction further for ATK = KPA by showing that the first
round can be removed completely (as opposed to when ATK ∈ {CPA, nCPA})11.
The round functions can also be replaced by a single instantiation of a KPA
secure function. Note that the resulting construction is an involution, i.e. has
the structural property of being self inverse. This result also generalizes Lemma
2.2 of [MT05] which states that the two round Feistel-network with CPA secure
PRFs is a KPA secure PRP. We give the proof in the full version of this paper.

Proposition 3 For any function F

∆KPA
k (ψ2n[F2],P) ≤ ∆KPA

2k (F,R) + 4 · k2

2n+1
. (7)

The analogous statement also holds in the computational case: for any function F
(in particular any efficient function F)

AdvKPA
PRP (ψ2n[F2], t, k) ≤ AdvKPA

PRF (F, t′, 2k) + 4 · k2

2n+1
, (8)

where t′ = t+poly(n, k) for some polynomial poly which accounts for the overhead
implied by the reduction we make.

Note that unlike in the previous propositions, here we do not require the round
function F to be efficient in the computational case (the reason is that in the
proof we do not need the distinguisher to simulate any round function).

5 The Second Round is Crucial

In the previous section we have seen that in the classical three-round Luby-
Rackoff cipher the first and third round function need not be CPA secure. In this
section we will see that the security requirements for the second round cannot be
relaxed. We only give proof sketches for the propositions of this section. Detailed
proofs can be found in the full version.

The following proposition states that to achieve CPA security in general it is
not sufficient that the second round function is nCPA secure. There exists a nCPA
secure function, such that the three-round Feistel-network with this function in
the second, and any random functions in the first and third round, is not CPA
secure.

Proposition 4 There exists a function F such that for any functions G and G′

(in particular for G = R and G′ = R)

∆nCPA
k (F,R) ≤ 4 · k2

2n+1
and ∆CPA

2 (ψ2n[GFG′],P) ≥ 1− 2−n+1.

The analogous statement also holds in the computational case: (informal) there
is a nCPA secure PRF F such that ψ2n[GFG′] is not a CPA secure PRP for any
(not necessarily efficient) functions G and G′.
11 ψ2n[RR] can be distinguish from P with two non-adaptively chosen queries: query

0n‖0n 7→Ly‖Ry and 0n‖1n 7→Ly
′‖Ry

′, and output 1 if Ry⊕Ry
′ = 1n and 0 otherwise.



Proof (sketch). Let us first consider the quasirandom statement. Let I be a
uniform random involution, i.e. I(I(x)) = x for all x. Now, F is simply defined
as F(x) = x⊕ I(x), note that this F satisfies F(x) = F(x ⊕ F(x)) for all x.

The nCPA security of F (which is simply the nCPA security of I) can be
bounded as stated in the proposition by standard techniques. Furthermore,
ψ2n[GFG′] can easily be distinguished from P with two adaptively chosen
queries as follows. After a first query 0n‖0n, the output LY ‖Z contains the
output Z of the internal function F. Now make a second query 0n‖Z. If the
(unknown) input to F in the first query was some value V , then in this query it
will be V ⊕Z, and as F satisfies F(V ) = F(V ⊕F(V )) = F(V ⊕Z), the output of
F will again be Z, and the overall output will be (LY ⊕ Z)‖Z. The proposition
follows as the output of P will satisfy such a relation with probability at most
2−n+1.

The corresponding statement for the pseudorandom setting is proven almost
identically. The only difference is that we need to use a CPA secure pseudorandom
involution instead of the uniform random involution. It is shown in [NR02] how
to construct a pseudorandom involution from any CPA secure PRF. ut

The next proposition states that the network will in general not (even) be
nCPA secure when the second round function is only secure against KPAs.

Proposition 5 There exists a function F such that for any functions G and G′

∆KPA
k (F,R) ≤ k2

2n+1
, and ∆nCPA

2 (ψ2n[GFG′],P) ≥ 1− 2−n+2.

The analogous statement also holds in the computational case: (informal) there
is a KPA secure PRF F such that ψ2n[GFG′] is not a nCPA secure PRP for any
(not necessarily efficient) functions G and G′.

Proof (sketch). Let us first consider the statement in the quasirandom setting.
Let F be a URF which ignores the first input bit, i.e. for all x ∈ {0, 1}n−1 we
have F(0‖x) = F(1‖x). The KPA security of F follows from the fact that F looks
completely random unless we happen to query two queries of the form 0‖x and
1‖x. By the birthday bound the probability that this happens after k queries is
at most k2

2n+1 . Furthermore, ψ2n[GFG′] can be distinguished from P with two
non-adaptively chosen queries. For instance on input 0n‖0n and 0n‖(1‖0n−1),
the right half of the output will be identical.

The corresponding statement in the pseudorandom setting is proven exactly
as above, except that we have to use a PRF F instead of F. ut

6 Four nCPA Secure Rounds, the Quasirandom Case

In this section we will show that the four-round Feistel-network with nCPA secure
QRFs is a CPA secure QRP. This is also the best possible as in Sect. 5 we showed
that four rounds are also necessary. The theorem is even stronger as the third
and fourth round function must only be KPA secure QRFs.



Theorem 1 For any functions F and G

∆CPA
k (ψ2n[FFGG],P) ≤ 4 ·∆nCPA

k (F,R) + 3 ·∆KPA
k (G,R) + 9 · k2

2n+1
.

To prove this theorem we use Theorem 2 from [MPR06] which, for the special
case of the four-round Feistel-network, is given as Proposition 6 below. The
proposition bounds the security of a composition against a “strong” attacker
sATK (in particular CPA) in terms of the security of the components against
“weak” attackers wATKi (in particular nCPA or KPA).

The proposition uses the concept of conditions defined for random systems
which we only define informally here (see [MPR06] for a formal definition): With
FA we denote the random system F, but which additionally defines an internal
binary random variable after each query (called a condition). Let Ai ∈ {0, 1}
denote the condition after the i’th query. We set A0 = 0 and require the condition
to be monotone which means that Ai = 1 ⇒ Ai+1 = 1 (i.e. when the condition
failed, it will never hold again). Let ai denote the event Ai = 1, then

νATK(FA, ak) def= max
ATK−distinguisher D

PD♦FA
ak

, (9)

denotes the advantage of the best ATK distinguisher to make the condition fail
after at most k queries to FA.

Proposition 6 If for any ({0, 1}n, {0, 1}n)-random system with a condition FA

νsATK(ψ2n[FARRR], ak) ≤ νwATK1(FA, ak) + α1 (10)
νsATK(ψ2n[RFARR], ak) ≤ νwATK2(FA, ak) + α2 (11)
νsATK(ψ2n[RRFAR], ak) ≤ νwATK3(FA, ak) + α3 (12)
νsATK(ψ2n[RRRFA], ak) ≤ νwATK4(FA, ak) + α4 (13)

for some attacks wATK1, wATK2, wATK3, wATK4, sATK and some α1, α2, α3,
α4 ≥ 0, then for any F1,F2,F3,F4

∆sATK
k (ψ2n[F1F2F3F4], ψ2n[RRRR]) ≤

4∑
i=1

(∆wATKi

k (Fi,R) + αi).

To apply this proposition we must show that equations (10), (11), (12) and (13)
hold for some attack wATKi and αi for i = 1, 2, 3, 4.

In the full version we prove the following claim, from which Theorem 1 now
follows.

Claim 1 Equation (10) - (13) are satisfied for any function with a condition
FA, sATK = CPA, and

(
wATKi, αi

)
=




(
nCPA, 2 · k2

2n+1

)
if i = 1(

nCPA, 2 · k2

2n+1 + 2 ·∆nCPA
k (F,R)

)
if i = 2(

KPA, 3 · k2

2n+1 +∆KPA
k (F,R)

)
if i = 3(

KPA, 2 · k2

2n+1

)
if i = 4 .



7 Four nCPA Secure Rounds, the Pseudorandom Case

In this section we again investigate the CPA security of the four-round Feistel-
network with nCPA secure round functions, but this time for pseudorandom
systems. We show that here the situation is dramatically different from the
quasirandom setting by constructing a nCPA secure PRF where the four-round
Feistel-network with this PRF as round function is not CPA secure.

This PRF is defined over some group, and to prove the nCPA security we
assume that the so-called inverse decisional Diffie-Hellman (IDDH) is hard in
this group. Informally, the IDDH assumption requires that for a generator g and
random x, y it is hard do distinguish the triple (g, gx, gy) from (g, gx, gx−1

).

Theorem 2 (Informal) Under the IDDH assumption there exists a nCPA secure
PRF F such that the four-round Feistel-network where each round is instantiated
with F (with independent keys) is not a CPA secure pseudorandom permutation.

This theorem follows from Lemma 1 below which states that there exist nCPA
secure PRFs F1,F2,F3 such that the left half of the three round Feistel-network
Lψ2n[F1F2F3] is not a CPA secure PRF. This implies that also ψ2n[F1F2F3G] is
not a CPA secure PRP for any G (and thus proves Theorem 2) as follows. By
the so-called PRF/PRP Switching Lemma any CPA secure PRP P is also a CPA
secure PRF. Clearly, then also LP must be a CPA secure PRF. Now, by Lemma 1
Lψ2n[F1F2F3] = Rψ2n[F1F2F3G] is not a CPA secure PRF, so ψ2n[F1F2F3G] can-
not be a CPA secure PRP.12

Lemma 1 Under the IDDH-assumption there exist nCPA secure PRFs F1,F2,F3

such that Lψ2n[F1F2F3] is not a CPA secure PRF: it can be distinguished effi-
ciently from a URF with only three (adaptive) queries with high probability.

Outline For this Section. In §7.1 we give a more formal definition of the
IDDH assumption. Then, in §7.2 we first show the construction from [Ple05] of
a nCPA secure PRF whose sequential composition will not be CPA secure. This
extremely simple and intuitive construction is the basis for the (more involved)
counter-example for the Feistel-network (i.e. Lemma 1) given in §7.3.

7.1 The Non-uniform IDDH Assumption

Below we define the IDDH assumption which is similar (and easily seen to im-
ply) the well known decisional Diffie-Hellman assumption. Throughout, we will
work with hardness assumptions in a non-uniform model of computation (i.e. we

12 The lemma talks about three different Fi’s (and in the proof we really construct a
different Fi for every round), but the theorem is stated for a single F. This does
not really make a difference. For example this single F can be defined as behaving
like Fi with probability 1/3 for i ∈ {1, 2, 3}. Then with constant probability 3−3 the
ψ2n[FFF] behaves like ψ2n[F1F2F3].



require hardness against polynomial size circuit families and not just any fixed
Turing machine).13

Let G denote an efficiently computable family of groups indexed by a security
parameter n ∈ N. By efficiently computable we mean that one can efficiently (i.e.
in time polynomial in n) sample a group (together with a generator) from the
family, and efficiently compute the group operations therein. Abusing notation
we denote with (G, g) = G(n) any group/generator pair for security parameter n.

The IDDH assumption is hard in G if for (G, g) = G(n) polynomial size
circuits have negligible advantage guessing whether for a given triple (g, gx, gy)
the y is random or computed as y = x−1, more formally

Definition 7 (non-uniform IDDH) For a group G and a generator g of G

AdvIDDH(G, g, s) def= max
C,|C|≤s

∣∣∣∣Pr
x

[
C(g, gx, gx−1

)= true
]
− Pr

x,y
[C(g, gx, gy)= true]

∣∣∣∣ ,
where the probability is over the random choice of x, y ∈ [1, . . . , |G|]. We say that
IDDH is hard in G if for any polynomial p(.)

AdvIDDH(G(n), p(n)) = negl(n).

7.2 Counter-example for Sequential Composition from [Ple05]

In this section we construct a simple PRF F, but where the sequential composi-
tion of (arbitrary many) such F (with independent keys) is not CPA secure.

F is based on some prime order cyclic group (G, g) = G(n) where the IDDH
problem is hard and where the elements of the group can be efficiently and
densely encoded into {0, 1}n (with dense we mean that all but a negligible frac-
tion of the strings should correspond to an element of the group).14 For example
we can take the subgroup of prime order q of Z

∗
p where p is a safe prime (i.e.

2q + 1) and q is close to 2n ([Dam04] describes how to embed such a G into
{0, 1}n).

Let [.] : G(n) → {0, 1}n denote an (efficient) embedding of G into bitstrings
(to save on notation we let [a, b] denote the concatenation of [a] and [b]). Let
13 In cryptography security usually means security against non-uniform (and not just

uniform) adversaries, and thus also the hardness assumptions used are usually non-
uniform, though this is sometimes not explicitly stated as the security proofs work
in both settings – i.e. a uniform (non-uniform) assumption implies hardness against
uniform (non-uniform) adversaries. But here this is not quite the case, we do not
know how to prove a uniform version of Lemma 1. (But one can do so under a
somewhat stronger assumption than IDDH. Loosely speaking, this assumption is
IDDH but where the attacker can also choose the generators to be used in the
challenge.)

14 For this construction we actually do not need this embedding, we could define F
directly over the group. But we will need it (or more precisely, the fact that if X
is in the range of F, also X ⊕ R for a random bitstring R is in the range with
overwhelming probability) when we extend this construction to get the counter-
example for the Feistel-network in the next section.



R : K × {0, 1}4n → Z
4
q be any nCPA secure PRF. Now consider the following

definition of a nCPA secure PRF F : {0, 1}4n → {0, 1}4n with secret key (k1 ∈
K, x ∈ Z

∗
q).

The first thing F does on input (α, β, γ, δ) ∈ {0, 1}4n is to generate some
pseudorandom values using R, i.e.

(r1, r2, r3, r4)← R(ki, α, β, γ, δ). (14)

Further, if there exists (a, b, c, d) ∈ G4 s.t. α = [a], β = [b], γ = [c], δ = [d] then F
outputs (here x−1 is the inverse of x in Z

∗
q)

F([a, b, c, d])→ ([axr1 , br1 , cx
−1r2 , dr2 ]), (15)

with r1, r2 generated as in (14). On the remaining inputs (which are a negligible
fraction of {0, 1}4n) F outputs just the (pseudo) random values [gr1 , gr2 , gr3 , gr4 ].

Now consider the cascade F′ . F′′ . F′′′ of three independent F’s (with corre-
sponding keys (x1, k1), (x2, k2), and (x3, k3)). Make a first query [g, g, g, g]

F′ . F′′ . F′′′([g, g, g, g])→ [gx1x2x3r, gr, gx−1
1 x−1

2 x−1
3 r′ , gr′ ].

Then the output will have the form gx1x2x3r, gr, gx−1
1 x−1

2 x−1
3 r′ , gr′ for some r, r′.

Now exchange the right and the left half of this output and use it as the second
query

F′ . F′′ . F′′′([gx−1
1 x−1

2 x−1
3 r′ , gr′ , gx1x2x3r, gr])→ [gr′′ , gr′′ , gr′′′ , gr′′′ ]

so the output is of the form [u, u, v, v] for some u, v and thus can be distinguished
from random. Therefore F′ . F′′ . F′′′ is not a CPA secure PRF. This proves that
the sequential composition of nCPA secure PRFs does not yield a CPA secure
function in general. Note that this distinguishing attack works for any number
of rounds, not just three. In the full version of this paper we prove the following
lemma which states that F is an nCPA secure PRF if IDDH is hard in G and R
is a nCPA secure PRF.

Lemma 2 Let g be any generator of the group over which F is defined, then

AdvnCPA
PRF (F, k, s) ≤ 6k ·AdvIDDH(F, g, s′) + AdvnCPA

PRF (R, k, s′),

where s′ = s+ poly(k, n) for some polynomial poly which accounts for the over-
head implied by the reduction we make.

7.3 Proof of Lemma 1

The Feistel-network can be seen as a sequential composition of the round func-
tions, but where one additionally XORs the input to the i’th round function to
the output of the (i + 1)’th round function. So it is not surprising that we can
use Fi’s similar to the F from the previous section to prove Lemma 1. But the



F1,F2, and F3 (from the statement of the lemma) are a bit more complicated as
we have to “work around” this additional XORs. Like F, each Fi has a ki ∈ K
as part of its secret key. Moreover F1 has a x ∈ Z

∗
q and s, t ∈ {0, 1}n, F2 has a

y ∈ Z
∗
q , and F3 a z ∈ Z

∗
q as keys. On input (α, β, γ, δ) = [a, b, c, d] the Fi’s are

defined as (with the ri’s generated as in (14))

F1([a, b, c, d])→




[gxr1, gr1 ], s, t if [a, b, c, d] = [0, 0, 0, 0];
[0, 0, 0, 0] elseif c = dx;
[gxr1, gr1 , ([γ ⊕ s]−1)x−1r2 , ([δ ⊕ t]−1)r2 ] elseif [a, b] = [0, 0];
[gr1 , gr2, gr3 , gr4 ] otherwise.

F2([a, b, c, d])→ [cy
−1r1 , dr1 , ayr2 , br2 ]

F3([a, b, c, d])→
{

[0, 0, 0, 0] if bz = a;
[az−1r1 , br1 , czr2 , dr2 ] otherwise.

Proof (of Lemma 1). The lemma follows from Claim 2 and 3 below. ut

Claim 2 One can distinguish Lψ2n[F1F2F3] from a URF with three adaptively
chosen queries with advantage almost 1.

Proof (sketch). In Fig. 2 we demonstrate an adaptive three query distinguishing
attack on Lψ2n[F1F2F3]. In the figure, values which are not relevant for the attack
are denoted by ∗. All r′i values are random, but not necessarily equal to a random
value generated by a round function (i.e. as in (14)).15 To see that this is a legal
attack note that every query Qi can be computed from the previous output
Oi−1. That the values will really have the form as described in the attack can
be verified from the definition of the Fi’s.16 Since the third output starts with
[0, 0] it can be distinguished from a random output with high probability. ut

Claim 3 F1,F2, and F3 are nCPA secure PRFs if IDDH is hard in G.

Proof (sketch). The nCPA security of the Fi’s follows from the nCPA security
of F from the previous section as stated in Lemma 2: F2 is exactly F, so there
is nothing else to prove here. The function F3 behaves exactly as F unless it
is queried on an input [a, b, c, d] which satisfies bz = a for a random z. The
probability that this happen on any (non-adaptive) query is just |G|−1 (and
thus exponentially small even after taking the union bound over all polynomially
many queries). The argument for F1 is somewhat longer and omitted in this
extended abstract. ut
15 For instance, r′1 is the first random value generated by F1 and r′2 is the product of
r′1 and the second random value generated by F2.

16 Actually, there is an exponentially small probability that the values will not have
that form, namely when the input to some round function “by chance” satisfies a
condition that is checked. E.g. when R3

1 is of the form [bz, b, c, d], then the “bz = a”
case of F3 applies, which is only supposed to happen in the second and third query.



LQ1 : [0, 0, 0, 0] RQ1 : [0, 0, 0, 0]

R2
1 : [gxr′1 , gr′1 ], s, t

R3
1 : ∗, ∗, [gxyr′2 , gr′2 ]

O1 : ∗, ∗, [gxyzr′3 ]⊕ s, [gr′3 ]⊕ t

LQ2 : [0, 0], [gxyzr′3]⊕ s, [gr′3 ]⊕ t RQ2 : [0, 0, 0, 0]

R2
2 : [gxr′4 , gr′4 , gyzr′5, gr′5 ]

R3
2 : [gzr′6 , gr′6 ], ∗, ∗

O2 : [gxr′4 , gr′4 , gyzr′5, gr′5 ]

LQ3 : [0, 0, gxr′4 , gr′4 ] RQ3 : [0, 0, gyzr′5, gr′5 ]

R2
3 : [0, 0, gyzr′5 , gr′5 ]

R3
3 : [gzr′7 , gr′7 ], ∗, ∗

O3 : [0, 0, gyzr′5 , gr′5 ]

LQi RQi

F1 ⊕

R2
i F2 ⊕

R3
i F3 ⊕

Oi

Fig. 2. An adaptive three query distinguishing attack for Lψ2n[F1F2F3].

8 Some Remarks on CCA Security

In the previous two sections we have seen that the four-round Feistel-network
with nCPA secure round functions is CPA secure in the information-theoretic,
but in general not in the computational setting. A natural question is to ask
how many rounds are necessary/not sufficient to achieve CCA security. In this
section we state some observations. The full version of this paper addresses this
question in more detail.

In order to get a CCA secure quasirandom permutations (QRP), it is enough
– by the following statement (taken from [MPR06]) – to cascade two nCPA secure
QRPs (the second in inverse direction)

∆CCA
k (F .G−1,P) ≤ ∆nCPA

k (F,P) +∆nCPA
k (G,P).

With this and Proposition 1 we directly get that six rounds with nCPA secure
QRFs give a CCA secure QRP, i.e.

∆CCA
k (ψ2n[FFFFFF],P) ≤ 6 ·∆nCPA

k (F,R) +
k2

2n−1
.

So six nCPA secure round functions are sufficient to get CCA security, and by
Proposition 4 we know that at least four rounds are necessary. Using Proposi-
tion 5 we can further relax the requirements for the round functions as

∆CCA
k (H . ψ2n[FGGF] . H−1,P)

≤ 2 ·∆nCPA
k (F,R)+4·∆KPA

k (G,R)+2 · collk(LH)+2 · k2

2n+1
.

As to the (in)security of the Feistel-network with nCPA secure round-functions
in the computational setting, we do not know anything beyond what is already



implied by CPA security alone, i.e. four rounds are not enough to get CCA security
(as it is not enough to get CPA security by Theorem 2).
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