
Sequential Aggregate Signatures and
Multisignatures Without Random Oracles

Steve Lu?1, Rafail Ostrovsky??2, Amit Sahai? ? ?3,
Hovav Shacham4, and Brent Waters†5

1 UCLA, stevelu@math.ucla.edu
2 UCLA, rafail@cs.ucla.edu
3 UCLA, sahai@cs.ucla.edu

4 SRI International, bwaters@csl.sri.com
5 Weizmann Institute of Science, hovav.shacham@weizmann.ac.il

Abstract. We present the first aggregate signature, the first multisigna-
ture, and the first verifiably encrypted signature provably secure without
random oracles. Our constructions derive from a novel application of a
recent signature scheme due to Waters. Signatures in our aggregate sig-
nature scheme are sequentially constructed, but knowledge of the order
in which messages were signed is not necessary for verification. The ag-
gregate signatures obtained are shorter than Lysyanskaya et al. sequen-
tial aggregates and can be verified more efficiently than Boneh et al.
aggregates. We also consider applications to secure routing and proxy
signatures.

1 Introduction

In this paper we present an aggregate signature scheme, a multisignature scheme,
and a verifiably encrypted signature scheme. Unlike previous such schemes, our
constructions are provably secure without random oracles. A series of papers
beginning with the uninstantiability result of Canetti, Goldreich, and Halevi [10]
has cast some doubt on the soundness of the random oracle methodology, making
random-oracle–free schemes more attractive. Moreover, our proposed schemes
are quite practical, and in some cases outperform the most efficient random-
oracle–based schemes.

An aggregate signature scheme allows a collection of signatures to be able
to be compressed into one short signature. Aggregate signatures are useful for
applications such as secure route attestation and certificate chains where the
? Supported in part by NSF grant DMS-0502315

?? Supported in part by a gift from Teradata, Intel equipment grant, NSF Cybertrust
grant No. 0430254, OKAWA research award, B. John Garrick Foundation and Xerox
Innovation group Award.

? ? ? Supported in part by grants from the NSF ITR and Cybertrust programs, a generous
equipment grant from Intel, and an Alfred P. Sloan Foundation Fellowship.

† Supported by DHS and DOI contract No. NBCHF040146. Views expressed in this
paper do not necessarily reflect those of DHS and DOI.

space requirements for a sequence of signatures can impact practical application
performance.

Boneh et al. [8] presented the first aggregate signature scheme, which was
based on the BLS signature [9] in groups with efficiently computable bilinear
maps. Subsequently, Lysyanskaya et al. [20] presented a sequential RSA-based
scheme that, while more limited, could be instantiated using more general as-
sumptions. In a sequential aggregate signature scheme the aggregate signature
must be constructed sequentially, with each signer modifying the aggregate sig-
nature in turn. However, most known applications are sequentially constructed
anyway. One drawback of both schemes is that they are provably secure only in
the random oracle model and thus there is only a heuristic argument for their
security.

We present the first aggregate signature scheme that is provably secure with-
out random oracles. Our signatures are sequentially constructed, however, unlike
the scheme of Lysyanskaya et al., a verifier need not know the order in which the
aggregate signature was created. Additionally, our signatures are shorter than
those of Lysyanskaya et al. and can be verified more efficiently than those of
Boneh et al.

In addition, we present the first multisignature scheme that is provably secure
without random oracles. In a multisignature scheme, a single short object – the
multisignature – can take the place of n signatures by n signers, all on the
same message. (Aggregate signatures can be thought of as a multisignature
without this restriction.) Boldyreva [6] gave the first multisignature scheme in
which multisignature generation does not require signer interaction, based on
BLS signatures.

Finally, we present the first verifiably encrypted signature scheme that is
provably secure without random oracles. A verifiably encrypted signature is an
object that anyone can confirm contains the encryption of a signature on some
message, but from which only the party under whose key it was encrypted can re-
cover the signature. Such a primitive is useful in contract signing. Boneh et al. [8]
gave the first verifiably encrypted signature scheme, based on BLS signatures.

All our constructions derive from novel adaptations of the signature scheme
of Waters [28], which follows from his Identity-Based Encryption scheme.

2 Preliminaries

In this section we first present some background on groups with efficiently com-
putable bilinear maps. Next, we recall the definition of existentially unforgeable
signatures. Then we present the Waters [28] signature algorithm.

2.1 Groups with Efficiently Computable Bilinear Maps

We briefly review the necessary facts about bilinear maps and bilinear map
groups. (For more detail, see, e.g., [13, 27].) Consider the following setting:

– G and GT are multiplicative cyclic groups of order p;

– the group action on G and GT can be computed efficiently;
– g is a generator of G;
– e : G×G→ GT is an efficiently computable map with the following proper-

ties:
• Bilinear: for all u, v ∈ G and a, b ∈ Z, e(ua, vb) = e(u, v)ab;
• Non-degenerate: e(g, g) 6= 1.

We say that G is a bilinear group if it satisfies these requirements.
The security of our scheme relies on the hardness of the Computational Diffie-

Hellman (CDH) problem in bilinear groups. We state the problem and our as-
sumption as follows. Define the success probability of an algorithm A in solving
the Computational Diffie-Hellman problem on G as

Advcdh
A

def= Pr
[
A(g, ga, h) = ha : g, h

R← G, a
R← Zp

]
.

The probability is over the uniform random choice of g and h from G, of
a from Zp, and the coin tosses of A. We say that an algorithm A (t, ε)-breaks
Computational Diffie-Hellman on G if A runs in time at most t, and Advcdh

A is
at least ε. The (t, ε)-Computational Diffie-Hellman assumption on G is that no
adversary (t, ε)-breaks Computational Diffie-Hellman on G.

Asymmetric Pairings and Short Representations. It is a simple (though tedious)
matter to rewrite our schemes to employ an asymmetric pairing e : G1 ×G2 →
GT. Signatures will then include elements of G1, while public keys will include
elements of G2 and GT. This setting allows us to take advantage of curves due
to Barreto and Naehrig [3]. With these curves, elements of G1 have a 160-bit
representation at the 1024-bit security level.6 In this case, security follows from
the Computational co-Diffie-Hellman problem [9].

2.2 The Waters Signature Scheme

We describe the Waters signature scheme [28]. In our description the messages
will be signatures on bitstrings of the form {0, 1}k for some fixed k. However, in
practice one could apply a collision-resistant hash function Hk : {0, 1}∗ → {0, 1}k
to sign messages of arbitrary length.

The scheme requires, besides the random generator g ∈ G, k + 1 additional
random generators u′, u1, . . . , uk ∈ G. In the basic scheme, these can be gener-
ated at random as part of system setup and shared by all users. In some of the
variants below, each user has generators (u′, u1, . . . , uk) of her own, which must
be included in her public key. We will draw attention to this in introducing the
individual schemes.

The Waters signature scheme is a three-tuple of algorithmsW = (Kg,Sig,Vf).
These behave as follows.
6 By “1024-bit security,” we mean parameters such that the conjectured complexity of

computing discrete logarithms is roughly comparable to the complexity of factoring
1024-bit numbers. For a more refined analysis see Koblitz and Menezes [19].

W.Kg. Pick random α
R← Zp and set A← e(g, g)α. The public key pk is A ∈ GT.

The private key sk is α.
W.Sig(sk,M). Parse the user’s private key sk as α ∈ Zp and the message M as

a bitstring (m1, . . . ,mk) ∈ {0, 1}k. Pick a random r
R← Zp and compute

S1 ← gα ·
(
u′

k∏
i=1

umi
i

)r and S2 ← gr . (1)

The signature is σ = (S1, S2) ∈ G2.
W.Vf(pk,M, σ). Parse the user’s public key pk as A ∈ GT, the message M as

a bitstring (m1, . . . ,mk) ∈ {0, 1}k, and the signature σ as (S1, S2) ∈ G2.
Verify that

e(S1, g) · e
(
S2, u′

k∏
i=1

umi
i

)−1 ?= A (2)

holds; if so, output valid; if not, output invalid.

This signature is existentially unforgeable under a chosen-message attack
– the standard notion of signature security, due to Goldwasser, Micali, and
Rivest [14] – if CDH is hard. We give a roundabout proof of this as Corollary 1.

3 Sequential Aggregate Signatures

In a sequential aggregate signature, as in an ordinary aggregate signature, a
single short object – called the aggregate – takes the place of n signatures by
n signers on n messages. Thus aggregate signatures are a generalization of mul-
tisignatures. Sequential aggregates differ from ordinary aggregates in that the
aggregation operation is performed by each signer in turn, rather than by an
unrelated party after the fact.

Aggregate signatures have many applications, as noted by Boneh et al. [8] and
Lysyanskaya et al. [20]. Below, we consider two: Secure BGP route attestation
and proxy signatures.

In BGP, routers generate and forward route attestations to other routers to
advertise the routes which should be used to reach their networks. Secure BGP
solves the problem of attestation forgery by having each router add its signature
to a valid attestation before forwarding it to its neighbors. Because of the size
of route attestations is limited, aggregate signatures are useful in reducing the
overhead of multiple signatures along a path. Nicol, Smith, and Zhao [24] gave
a detailed analysis of the application of aggregate signatures to the Secure BGP
routing protocol [18]. Our sequential aggregate signature scheme is well suited
for improving SBGP. Since all of the incoming route attestations need to be
verified anyway, the fact that our signing algorithm requires a verification adds
no overhead. Additionally, our signature scheme can have signatures that are
smaller than those of Lysyanskaya et al. and verification will be faster than that
of the Boneh et al. scheme.

A proxy signature scheme allows a user, called the designator, to delegate
signing authority to another user, the proxy signer. This signature primitive,
introduced by Mambo, Usada, and Okamoto [21], has been discussed and used
in several practical applications. Boldyreva, Palacio, and Warinschi [7] show how
to construct a secure proxy signature scheme from any aggregate (or sequential
aggregate) signature scheme. Instantiating the Boldyreva-Palacio-Warinschi con-
struction with our scheme, we obtain a practical proxy signature secure without
random oracles.

3.1 Definitions

A sequential aggregate signature scheme includes three algorithms. The first,
Kg, is used to generate public-private keypairs. The second, ASig, takes not only
a private key and a message to sign, as does an ordinary signing algorithm, but
also an aggregate-so-far by a set of l signers on l corresponding messages; it
folds the new signature into the aggregate, yielding a new aggregate signature
by l + 1 signers on l + 1 messages. The third algorithm, AVf, takes a purported
aggregate signature, along with l public keys and l corresponding messages, and
decides whether the the aggregate is valid.

The Sequential Aggregate Certified-Key Model. Because our aggregate signature
behaves like a sequential aggregate signature from the signers’ viewpoint, but
like standard aggregate signature from the verifiers’ viewpoint, we describe a
security model for it that is a hybrid of the sequential aggregate chosen key
model of Lysyanskaya et al. [20] and the aggregate chosen key model of Boneh
et al. [8]. In both models, the adversary is given a single challenge key, along with
an appropriate signing oracle for that key. His goal is to generate a sequential
aggregate that frames the challenge user. The adversary is allowed to choose all
the keys in that forged aggregate but the challenge key.

We prove our scheme in a more restricted model that requires that the ad-
versary certify that the public keys it includes in signing oracle queries and in its
forgery were properly generated. This we handle by having the adversary hand
over the private keys before using the public keys. We could also extract the
keys by rewinding or, if this is impossible, using the NIZKs proposed by Groth,
Ostrovsky, and Sahai [15].

Formally, the advantage of a forger A in our model is the probability that
the challenger outputs 1 in the following game:

Setup. Initialize the list of certified public keys C ← ∅. Choose (pk, sk) R← Kg.
Run algorithm A with pk as input.

Certification Queries. Algorithm A provides a keypair (pk′, sk′) in order to
certify pk′. Add pk′ to C if sk′ is its matching private key.

Signing Queries. Algorithm A requests a sequential aggregate signature, un-
der the challenge key pk, on a message M . In addition, it supplies an
aggregate-so-far σ′ on messages M under keys pk. Check that the signa-
ture σ′ verifies; that each key in pk is in C; that pk does not appear in pk;

and that |pk| < n. If any of these fails to hold, answer invalid. Otherwise
respond with σ = ASig(sk,M, σ′,M ,pk).

Output. Eventually, A halts, outputting a forgery σ∗ on messages M under
keys pk. This forgery must verify as valid under AVf; each key in pk (except
the challenge key) must be in C; and |pk| ≤ n must hold. In addition, the
forgery must be nontrivial: the challenge key pk∗ must appear in pk, wlog
at index 1 (since signature verification in our scheme has no inherent order),
and the corresponding message M [1] must not have been queried by A of
its sequential aggregate signing oracle. Output 1 if all these conditions hold,
0 otherwise.

We say that an aggregate signature scheme is (t, qC , qS, n, ε) secure if no t-time
adversary making qC certification queries and qS signing queries can win the
above game with advantage more than ε, where n is an upper bound on the
length of the sequential aggregates involved.

3.2 Our Scheme

We start by giving some intuition for our scheme. Each signer in our scheme will
have a unique public key from the Waters signature scheme

u′,u = (u1, . . . , uk), A← e(g, g)α.

While in the original signature scheme the private key consists only of gα, in
our aggregate signature scheme it is important that the private key holder will
additionally choose and remember the discrete logs of u′,u = (u1, . . . , uk). In
the Waters signature scheme, signatures are made of two group elements S1 and
S2. At a high level, we can view S2 as some randomness for the signature and
S1 as the signature on a message relative to that randomness.

An aggregate signature in our scheme also consists of group elements S′
1, S

′
2.

The second element S′
2 again consists of some “shared” randomness for the sig-

nature. When a signer wishes to add his signature on a message to an aggregate
(S′

1, S
′
2), he simply figures out what his S1 component would be in the underlying

signature scheme given S′
2 as the randomness. In order to perform this computa-

tion the signer must know the discrete log values of all of his public generators.
He then then then multiplies this value into S′

1 and finally re-randomizes the
signature.

We now formally describe the sequential aggregate obtained from the Waters
signature.

Our sequential aggregate scheme is a three-tuple of algorithms WSA =
(Kg,ASig,AVf). These behave as follows.

WSA.Kg. Pick random α, y′
R← Zp and a random vector y = (y1, . . . , yk) R← Zk

p.
Compute

u′ ← gy′
and u = (u1, . . . , uk)← (gy1, . . . , gyk) and A← e(g, g)α .

The user’s private key is sk = (α, y′,y) ∈ Zk+2
p . The public key is pk =

(A, u′,u) ∈ GT × Gk+1; it must be certified to ensure knowledge of the
corresponding private key.

WSA.ASig(sk,M, σ′,M ,pk). The input is a private key sk, to be parsed as
(α, y′, y1, . . . , yk) ∈ Zk+2

p ; a message M to sign, parsed as (m1, . . . ,mk) ∈
{0, 1}k; and an aggregate-so-far σ′ on messages M under public keys pk.
Verify that σ′ is valid by calling AVf(σ′,M ,pk); if not, output fail and
halt. Check that the public key corresponding to sk does not already appear
in pk; if it does, output fail and halt. (We revisit the issue of having one
signer sign multiple messages below.)
Otherwise, parse σ′ as (S′

1, S
′
2) ∈ G2. Set l ← |pk|. Now, for each i, 1 ≤

i ≤ l, parse M [i] as (mi,1, . . . ,mi,k) ∈ {0, 1}k, and parse pk[i] as (Ai, u′i,
ui,1, . . . , ui,k) ∈ GT ×Gk+1. Compute

w1 ← S′
1 · gα · (S′

2)
(y′+

Pk
j=1 yjmj) and w2 ← S′

2 . (3)

The values (w1, w2) form a valid signature on M‖M under keys pk‖pk, but
this signature needs to be re-randomized: otherwise whoever created σ′ could
learn the user’s private key gα. Choose a random r̃ ∈ Zp, and compute

S1 ← w1 ·
(
u′

k∏
j=1

u
mj

j

)r̃ ·
l∏

i=1

(
u′i

k∏
j=1

u
mi,j

i,j

)r̃ and S2 ← w2g
r̃ . (4)

It is easy to see that σ = (S1, S2) is also a valid sequential aggregate signature
on M‖M under keys pk‖pk, with randomness r + r̃, where w2 = gr; output
it and halt.

WSA.AVf(σ,M ,pk). The input is a purported sequential aggregate σ on mes-
sages M under public keys pk. Parse σ as (S1, S2) ∈ G. If any key appears
twice in pk, if any key in pk has not been certified, or if |pk| 6= |M |, output
invalid and halt.
Otherwise, set l ← |pk|. If l = 0, output valid if S1 = S2 = 1, invalid
otherwise.
Now, for each i, 1 ≤ i ≤ l, parse M [i] as (mi,1, . . . ,mi,k) ∈ {0, 1}k, and
parse pk[i] as (Ai, u′i, ui,1, . . . , ui,k) ∈ GT ×Gk+1. Finally, verify that

e(S1, g) · e
(
S2,

l∏
i=1

(
u′i

k∏
j=1

u
mi,j

i,j

))−1 ?=
l∏

i=1

Ai (5)

holds; if so, output valid; if not, output invalid.

Signature Form. Consider a sequential aggregate signature on l messages M
under l public keys pk. For each i let M [i] be (mi,1, . . . ,mi,k) and let pk[i]
be (Ai, u′i, ui,1, . . . , ui,k) with corresponding private key (αi, y′i, yi,1, . . . , yi,k). A
well-formed sequential aggregate signature σ = (S1, S2) in this case has the form

S1 =
l∏

i=1

gαi ·
l∏

i=1

(
u′i

k∏
j=1

u
mi,j

i,j

)r and S2 = gr .

Additionally, we consider σ = (1, 1) to be a valid signature on an empty set of
signers. Notice that (S1, S2) is the product of Waters signatures all sharing the
same randomness r.

Even though in our description we did not allow a signer to sign twice in an
aggregate signature, a simple trick allows for this. Suppose a signer wishes to
add his signature on message M to a sequential aggregate signature that already
contains his signature on another message M ′. He need simply first remove his
signature on M ′ from the aggregate, essentially by dividing it out of S1, and
multiply in a signature on M ′ : M , which is a message that attests to both
M ′ and M .

Performance. Verification in our signatures is fast, taking approximately k/2
multiplications per signer in the aggregate, and only two pairings regardless of
how many signers are included. In contrast, the aggregate signatures of Boneh
et al. [8] take l + 1 pairings to verify when the aggregate includes l signers.

3.3 Proof of Security

Theorem 1. The WSA sequential aggregate signature scheme is (t, qC , qS, n, ε)-
unforgeable if the W signature scheme is (t′, q′, ε′)-unforgeable on G, where

t′ = t + O(qC + nqS + n) and q′ = qS and ε′ = ε .

Proof. Suppose that there exists an adversary A that succeeds with advantage
ε. We build a simulator B to play the forgeability game against the W signature
scheme. Given the challenge W-signature public key pk∗ = (A, u′, u1, . . . , uk),
simulator B interacts with A as follows.

Setup. Algorithm B runs A supplying it with the challenge key pk∗.
Certification Queries. Algorithm A wishes to certify some public key pk =

(A, u′, u1, . . . , uk), providing also its corresponding private key sk = (α, y′,
y1, . . . , yk). Algorithm B checks that the private key is indeed the correct
one and if so registers (pk, sk) in its list of certified keypairs.

Aggregate Signature Queries. Algorithm A requests a sequential aggregate
signature, under the challenge key, on a message M . In addition, it supplies
an aggregate-so-far σ′ on messages M under keys pk. The simulator first
checks that the signature σ′ verifies; that each key in pk has been certified;
that the challenge key does not appear in pk; and that |pk| < n. If any of
these conditions does not hold, B returns fail.
Otherwise, B queries its own signing oracle for key pk∗, obtaining a signa-
ture σ on message M , which we view as a sequential aggregate on messages
(M) under keys (pk∗). The simulator now constructs the rest of the required
aggregate by adding to σ, for each signer pk[i], the appropriate signature
on message M [i] using algorithm ASig. It can do this because it knows – by
means of the certification procedure – the private key corresponding to each
public key in pk. The result is an aggregate signature σ′ on messages M‖M
under keys pk‖pk∗. This reconstruction method works because signatures

are re-randomized after each aggregate signing operation and because our
signatures have no inherent verification order.

Output. Eventually, A halts, outputting a forgery, σ∗ = (S∗
1 , S∗

2) on mes-
sages M under keys pk. This forgery must verify as valid under AVf; each
key in pk (except the challenge key) must have been certified; and |pk| ≤ n
must hold. In addition, the forgery must be nontrivial: the challenge key pk∗

must appear in pk, wlog at index 1 (since signature verification in our scheme
has no inherent order), and the corresponding message M [1] must not have
been queried by A of its sequential aggregate signing oracle. If the adversary
was not successful we can quit and disregard the attempt.
Now, for each i, 1 ≤ i ≤ l = |pk| = |M |, parse pk[i] as (Ai, u

′
i, ui,1, . . . , ui,k)

and M [i] as (mi,1, . . . ,mi,k) ∈ {0, 1}k. Note that we have pk∗ = (A1, u
′
1,

u1,1, . . . , u1,k). Furthermore, for each i, 2 ≤ i ≤ l, let (αi, y
′
i, yi,1, . . . , yi,k) be

the private key corresponding to pk[i]. Algorithm B computes

S1 ← S∗
1 ·

l∏
i=2

(
gαi · (S∗

2)
(
y′

i+
Pk

j=1 yi,jmi,j

))−1

and S2 ← S∗
2 .

We now have

e(S1, g) · e
(
S2, u′1

∏k

j=1
u

m1,j

1,j

)−1

= e(S∗
1 , g) · e

(
S∗

2 , u′1
∏k

j=1
u

m1,j

1,j

)−1

×
l∏

i=2

e(gαi , g)−1 ·
l∏

i=2

e
(
(S∗

2)
(
y′

i+
Pk

j=1 yi,jmi,j

)
, g

)−1

= e(S∗
1 , g) · e

(
S∗

2 , u′1
∏k

j=1
u

m1,j

1,j

)−1

×
l∏

i=2

A−1
i ·

l∏
i=2

e
(
S∗

2 , u′i
∏k

j=1
u

mi,j

i,j

)−1

= e(S∗
1 , g) ·

l∏
i=1

e
(
S∗

2 , u′i
∏k

j=1
u

mi,j

i,j

)−1

·
l∏

i=2

A−1
i

=
l∏

i=1

Ai ·
l∏

i=2

A−1
i = A1 = A .

So (S1, S2) is a valid W signature on M∗ = M [1] = (m1,1, . . . ,m1,k) under
key pk[1] = pk∗. The last line follows from the sequential aggregate verifi-
cation equation. Moreover, since A did not make an aggregate signing query
at M∗, B did not make a signing query at M∗, so σ = (S1, S2) is a nontrivial
W signature forgery. Algorithm B returns it and halts.

Algorithm B is successful whenever A is. Algorithm B makes as many signing
queries as A makes sequential aggregate signing queries. Algorithm B’s running

time is that of A, plus the overhead in handling A’s queries, and computing
the final result. Each certification query can be handled in O(1) time; each
aggregate signing query can be handled in O(n) time; and the final result can
also be computed from A’s forgery in O(n) time.

4 Multisignatures

In a multisignature scheme, a single multisignature – the same size as one ordi-
nary signature – stands for l signatures on a message M . Multisignatures were
introduced by Itakura and Nakamura [17], and have been the subject of much
research [26, 25, 6]. The first multisignatures in which signatures could be com-
bined into a multisignature without interaction was proposed by Boldyreva [6],
based on BLS signatures [9]. Below, we present another non-interactive multisig-
nature scheme, based on the Waters signature, which is provably secure without
random oracles.

Security Model. Micali, Ohta, and Reyzin [22] gave the first formal treatment of
multisignatures. We prove security in a variant of the Micali-Ohta-Reyzin model
due to Boldyreva [6]. In this model, the adversary is given a single challenge
public key pk, and a signing oracle for that key. His goal is to output a forged
multisignature σ∗ on a message M∗ under keys pk1, . . . ,pkl. Of these keys, pk1

must be the challenge key pk. For the forgery to be nontrivial, the adversary must
not have queried the signing oracle at M∗. The adversary is allowed to choose
the remaining keys, but must prove knowledge of the private keys corresponding
to them. For simplicity, Boldyreva handles this by having the adversary hand
over the private keys; in a more complicated proof of knowledge, the keys could
be extracted by rewinding, with the same result.

4.1 Our Scheme

We describe the multisignature obtained from the Waters signature. In this
scheme, all users share the same random generators u′, u1, . . . , uk, which are
included in the system parameters. Our scheme is a five-tuple of algorithms
WM = (Kg,Sig,Vf,Comb,MVf), which behave as follows.

WM.Kg, WM.Sig, WM.Vf. Same as W.Kg, W.Sig, and W.Vf, respectively.
WM.Comb({pki, σi}li=1, M). For each user in the multisignature the algorithm

takes as input a public key pki and a signature σi. All these signatures are
on a single message M . For each i, parse user i’s public key pki as Ai ∈ GT

and her signature σi as (S(i)
1 , S

(i)
2) ∈ G2; parse the message M as a bitstring

(m1, . . . ,mk) ∈ {0, 1}k. Verify each signature using Vf; if any is invalid,
output fail and halt. Otherwise, compute

S1 ←
l∏

i=1

S
(i)
1 and S2 ←

l∏
i=1

S
(i)
2 . (6)

The multisignature is σ = (S1, S2); output it and halt.

WM.MVf({pki}li=1, M, σ). For each user in the multisignature, the algorithm
takes a public key pki. The algorithm also takes a purported multisignature σ
on a message M . Parse user i’s public key pki as Ai ∈ GT, the message M as a
bitstring (m1, . . . ,mk) ∈ {0, 1}k, and the multisignature σ as (S1, S2) ∈ G2.
Verify that

e(S1, g) · e(S2, u
′

k∏
i=1

umi
i)−1 ?=

l∏
i=1

A(i) (7)

holds; if so, output valid; if not, output invalid.

It is clear that if all signatures verify individually, the multisignature formed
by their product also verifies according to (7). Note that we have

(S1, S2) =
(
g

Pl
i=1 α(i)

·
(
u′

∏k

j=1
u

mj

j

)Pl
i=1 r(i)

, g
Pl

i=1 r(i)
)

,

where r(i) is the randomness used by User i to generate her signature.

Proof of Security. The WM scheme is unforgeable if W signatures are unforge-
able. The proof is given in Appendix A.

5 Verifiably Encrypted Signatures

A verifiably encrypted signature on some message attests to two facts:

– that the signer has produced an ordinary signature on that message; and
– that the ordinary signature can be recovered by the third party under whose

key the signature is encrypted.

Such a primitive is useful for contract signing, in a protocol called optimistic
fair exchange [1, 2]. Suppose both Alice and Bob wish to sign some contract.
Neither is willing to produce a signature without being sure that the other will.
But Alice can send Bob a verifiably encrypted signature on the contract. Bob
can now send Alice his signature, knowing that if Alice does not respond with
hers he can take Alice’s verifiably encrypted signature and the transcript of his
interaction with Alice to the third party – called the adjudicator – who will
reveal Alice’s signature.

Boneh et al. [8] introduced verifiably encrypted signatures, gave a security
model for them, and constructed a scheme satisfying the definitions, based on
the BLS short signature [9].

We describe the verifiably encrypted signature scheme obtained from the Wa-
ters signature scheme. Unlike the scheme of Boneh et al., ours is secure without
random oracles.

Security Model. Boneh et al. specify two properties (besides correctness) that a
verifiably encrypted signature scheme must satisfy: unforgeability and opacity.
Both are defined in games. In each, the adversary is given a signer’s public key pk
and an adjudicator’s public key apk. He is allowed to make verifiably encrypted
signing queries of the form ESig(sk, apk, ·) and adjudication queries of the form
Adj(ask,pk, ·, ·). In the unforgeability game, his goal is to output (M∗, η∗) such
that he didn’t query his signing oracle at M∗; in the opacity game his goal is
to output (M∗, σ∗) such that he didn’t query his adjudication oracle at M∗.
An adversary can thus win the opacity game either by creating a forgery for
the underlying signature scheme directly or by recovering the ordinary signature
from an encrypted signature without the adjudicator’s help.

5.1 Our Scheme

Our scheme is a seven-tuple of algorithms WVES = (Kg,Sig,Vf,AKg,ESig,EVf,
Adj) that behave as follows.

WVES.Kg, WVES.Sig, WVES.Vf These are the same as W.Kg, W.Sig, and
W.Vf, respectively.

WVES.AKg. Pick β
R← Zp, and set v ← gβ . The adjudicator’s public key is

apk = v; the adjudicator’s private key is ask = β.
WVES.ESig(sk, apk,M) Parse the user’s private key sk as α ∈ Zp and the ad-

judicator’s public key apk as v ∈ G. To sign the message M = (m1, . . . ,mk),
compute a signature (S1, S2)

R← Sig(sk,M). Pick a random s
R← Zp, and

compute

K1 ← S1 · vs and K2 ← S2 and K3 ← gs .

The verifiably encrypted signature η is the tuple (K1,K2,K3).
WVES.EVf(pk, apk,M, η). Parse the user’s public key pk as A ∈ GT, the adju-

dicator’s public key apk as v ∈ G, and the verifiably encrypted signature η
as (K1,K2,K3) ∈ G3. Accept if the following equation holds:

e(K1, g) · e(K2, u
′

k∏
i=1

umi
i)−1 · e(K3, v)−1 ?= A , (8)

where M = (m1, . . . ,mk).
WVES.Adj(ask,pk,M, η). Parse the adjudicator’s private key ask as β ∈ Zp.

Parse the user’s public key pk as A ∈ GT, and check that it has been certified.
Parse the message M as (m1, . . . ,mk) ∈ {0, 1}k. Verify (using EVf) that the
verifiably encrypted signature η is valid, and parse it as (K1,K2,K3) ∈ G3.
Compute

S1 ← K1 ·K−β
3 and S2 ← K2 ;

re-randomize (S1, S2) by choosing s
R← Zp and computing

S′
1 ← S1 ·

(
u′

k∏
i=1

umi
i

)s and S′
2 ← S2 · gs ;

and output the signature (S′
1, S

′
2).

It is easy to see that this scheme is valid, since if all parties are honest we
have, for a verifiably encrypted signature (K1,K2,K3),

e(K1, g) · e(K2, u
′

k∏
i=1

umi
i)−1 · e(K3, v)−1

=
(
e(S1, g) · e(vs, g)

)
· e(S2, u

′
k∏

i=1

umi
i)−1 · e(gs, v)−1

= e(S1, g) · e(S2, u
′

k∏
i=1

umi
i)−1 = A ,

as required; and if (K1,K2,K3) is a valid verifiably encrypted signature then

e(S1, g) · e(S2, u
′

k∏
i=1

umi
i)−1 =

(
e(K1, g) · e(K−β

3 , g)
)
· e(K2, u

′
k∏

i=1

umi
i)−1

= e(K1, g) · e(K2, u
′

k∏
i=1

umi
i)−1 · e(K3, v)−1 = A ,

so the adjudicated signature is indeed a valid one.

Proofs of Security. The WVES scheme is unforgeable if W signatures are un-
forgeable, and opaque if CDH is hard on G. The proofs are given in Appendix B.

5.2 VES from General Assumptions

Recent work has shown that group signatures [4] and ring signatures [5] can be
built from general assumptions using Non-Interactive Zero Knowledge (NIZK)
proofs. We note that verifiably encrypted signatures can also be realized from
general assumptions. Roughly, the signer signs a message, encrypts the signature
to the adjudicator and then attaches a NIZK proof that this was performed
correctly.

6 Comparison to Previous Work

In this section, we compare the schemes we have presented to previous schemes in
the literature. For the comparison, we instantiate pairing-based schemes using
Barreto-Naehrig curves [3] with 160-bit point representation. Note that BLS-
based constructions must compute, for signing and verification, a hash function
onto G. This is an expensive operation [9, Sect. 3.2].

Table 1. Comparison of aggregate signature schemes. Signatures are by l signers; k is
the output length of a collision resistant hash function; “R.O.” denotes if the security
proof uses random oracles.

Scheme R.O. Sequential Key Model Size Verification Signing

BGLS YES NO Chosen 160 bits l + 1 pairings 1 exp.
LMRS-1 YES YES Chosen 1024 bits 2l exp. verify + 1 exp.
LMRS-2 YES YES Registered 1024 bits 4l mult. verify + 1 exp.
Ours NO YES Registered 320 bits 2 pairings, lk/2 mult. verify + 1 exp.

Sequential Aggregate Signatures. We compare our sequential aggregate signature
scheme to the aggregate scheme of Boneh et al. [8] (BGLS) and to the sequential
aggregate signature scheme of Lysyanskaya et al. [20] (LMRS).

We instantiate the LMRS scheme using the RSA-based permutation family
with common domain devised by Hayashi, Okamoto, and Tanaka [16]. With this
permutation family LMRS signatures do not grow by 1 bit with each signature,
as is the case with the RSA-based instantiation given by Lysyanskaya et al. [20];
but evaluating the permutation requires two applications of the underlying RSA
function. Lysyanskaya et al. give two variants of their scheme. One places con-
straints on the format of the RSA keys, thereby avoiding key certification; we
call this variant LMRS-1. The other uses ordinary RSA keys and can have pub-
lic exponent e = 3 for fast verification, but requires key certification, like our
scheme; we call this variant LMRS-2.

We present the comparisons in Table 1. The size column gives signature
length at the 1024-bit security level. The Verification and Signing columns give
the computational costs of those operations; l is the number of signatures in an
aggregate, and k is the output length of a collision-resistant hash function.

One drawback of our scheme is that a user’s public key will be quite large.
If we use a 160-bit collision resistant hash function, then keys will be approxi-
mately 160 group elements and take around 10KB to store. While it is desirable
to achieve smaller public keys, this will be acceptable in many settings such as
SBGP where achieving the signature size is a much more important consider-
ation than the public key size. Additionally, Naccache [23] and Chatterjee and
Sarkar [11] independently proposed ways to achieve shorter public keys in the
Waters signature scheme. Using these methods we can also achieve considerably
shorter public keys.

Multisignatures. We compare our multisignature scheme to the Boldyreva mul-
tisignature [6]. We present the comparisons in Table 2. The size column gives
signature length at the 1024-bit security level. The Verification and Signing
columns give the computational costs of those operations; l is the number of
signatures in a multisignature, and k is the output length of a collision-resistant
hash function.

Verifiably Encrypted Signatures. We compare our verifiably encrypted signa-
ture scheme to that of Boneh et al. [8] (BGLS). We present the comparisons in

Table 2. Comparison of multisignature schemes. Multisignatures are by l signers; k is
the output length of a collision resistant hash function; “R.O.” denotes if the security
proof uses random oracles.

Scheme R.O. Key Model Size Verification Signing

Boldyreva YES Registered 160 bits 2 pairings 1 exp.
Ours NO Registered 320 bits 2 pairings, k/2 mult. 1 exp.

Table 3. Comparison of verifiably encrypted signature schemes. We let k be the output
length of a collision resistant hash function. “R.O.” specifies whether the security proof
uses random oracles.

Scheme R.O. Key Model Size Verification Generation

BGLS YES Registered 320 bits 3 pairings 3 exp.
Ours NO Registered 480 bits 3 pairings, k/2 mult. 4 exp.

Table 3. The size column gives signature length at the 1024-bit security level.
The Verification and Generation columns give the computational costs of those
operations; k is the output length of a collision-resistant hash function.

7 Conclusions and Open Problems

In this paper we gave the first aggregate signature scheme which is provably
secure without random oracles; the first multisignature scheme which is prov-
ably secure without random oracles; and the first verifiably encrypted signature
scheme which is provably secure without random oracles. All our constructions
derive from the recent signature scheme due to Waters [28]. All our constructions
are quite practical.

Signatures in our aggregate signature scheme are sequentially constructed,
but knowledge of the order in which messages are signed is not necessary for
verification. Additionally, our scheme gives shorter signatures than in the LMRS
sequential aggregate signature scheme [20] and has a more efficient verification
algorithm than the BGLS aggregate signature scheme [8]. That this gives some
interesting tradeoffs for practical applications such as secure routing and proxy
signatures.

Some interesting problems remain open for random-oracle–free aggregate sig-
natures:

1. To find a scheme which supports full aggregation, in which aggregate signa-
ture do not need to be sequentially constructed. While many applications
only require sequential aggregation, having a more general capability is de-
sirable.

2. To find a sequential aggregate signature scheme provably secure in the cho-
sen-key model.

3. To find a sequential aggregate signature scheme with shorter user keys. The
size of public keys in our system reflects the size of keys in the underly-
ing Waters signature scheme. Naccache [23] and Chatterjee and Sarkar [11]

have proposed ways to shorten the public keys of the Waters IBE/signature
scheme by trading off parameter size with tightness in the security reduction.
It would be better to have a solution in which the public key is just a few
group elements.

The last two are particularly important for certificate chain compression, pro-
posed by Boneh et al. [8] as an application for aggregate signatures. If keys need
to be registered with an authority then a chaining application is impractical, and
having large public keys negates any benefit from reducing the signature size in
a certificate chain, since the keys must be included in the certificates.

References

[1] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signa-
tures. IEEE J. Selected Areas in Comm., 18(4):593–610, Apr. 2000.

[2] F. Bao, R. Deng, and W. Mao. Efficient and practical fair exchange protocols with
offline TTP. In P. Karger and L. Gong, editors, Proceedings of IEEE Security &
Privacy, pages 77–85, May 1998.

[3] P. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In
B. Preneel and S. Tavares, editors, Proceedings of SAC 2005, volume 3897 of
LNCS, pages 319–31. Springer-Verlag, 2006.

[4] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general
assumptions. In E. Biham, editor, Proceedings of Eurocrypt 2003, volume 2656 of
LNCS, pages 614–29. Springer-Verlag, May 2003.

[5] A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions, and
constructions without random oracles. In S. Halevi and T. Rabin, editors, Pro-
ceedings of TCC 2006, volume 3876 of LNCS, pages 60–79. Springer-Verlag, Mar.
2006.

[6] A. Boldyreva. Threshold signature, multisignature and blind signature schemes
based on the gap-Diffie-Hellman-group signature scheme. In Y. Desmedt, editor,
Proceedings of PKC 2003, volume 2567 of LNCS, pages 31–46. Springer-Verlag,
Jan. 2003.

[7] A. Boldyreva, A. Palacio, and B. Warinschi. Secure proxy signature schemes for
delegation of signing rights. Cryptology ePrint Archive, Report 2003/096, 2003.
http://eprint.iacr.org/.

[8] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps. In E. Biham, editor, Proceedings of Euro-
crypt 2003, volume 2656 of LNCS, pages 416–32. Springer-Verlag, May 2003.

[9] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.
J. Cryptology, 17(4):297–319, Sept. 2004. Extended abstract in Proceedings of
Asiacrypt 2001.

[10] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revis-
ited. J. ACM, 51(4):557–94, July 2004.

[11] S. Chatterjee and P. Sarkar. Trading time for space: Towards an efficient IBE
scheme with short(er) public parameters in the standard model. In D. Won and
S. Kim, editors, Proceedings of ICISC 2005, LNCS. Springer-Verlag, Dec. 2005.
To appear.

[12] J.-S. Coron and D. Naccache. Boneh et al.’s k-element aggregate extraction as-
sumption is equivalent to the Diffie-Hellman assumption. In C. S. Laih, editor,
Proceedings of Asiacrypt 2003, volume 2894 of LNCS, pages 392–7. Springer-
Verlag, Dec. 2003.

[13] S. Galbraith. Pairings. In I. F. Blake, G. Seroussi, and N. Smart, editors, Advances
in Elliptic Curve Cryptography, volume 317 of London Mathematical Society Lec-
ture Notes, chapter IX, pages 183–213. Cambridge University Press, 2005.

[14] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Computing, 17(2):281–308, 1988.

[15] J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge
for NP. In S. Vaudenay, editor, Proceedings of Eurocrypt 2006, LNCS. Springer-
Verlag, May 2006. This volume.

[16] R. Hayashi, T. Okamoto, and K. Tanaka. An RSA family of trap-door permuta-
tions with a common domain and its applications. In F. Bao, R. H. Deng, and
J. Zhou, editors, Proceedings of PKC 2004, volume 2947 of LNCS, pages 291–304.
Springer-Verlag, Mar. 2004.

[17] K. Itakura and K. Nakamura. A public-key cryptosystem suitable for digital
multisignatures. NEC J. Res. & Dev., 71:1–8, Oct. 1983.

[18] S. Kent, C. Lynn, and K. Seo. Secure border gateway protocol (Secure-BGP).
IEEE J. Selected Areas in Comm., 18(4):582–92, April 2000.

[19] N. Koblitz and A. Menezes. Pairing-based cryptography at high security levels.
In N. Smart, editor, Proceedings of Cryptography and Coding 2005, volume 3796
of LNCS, pages 13–36. Springer-Verlag, Dec. 2005.

[20] A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential aggregate
signatures from trapdoor permutations. In C. Cachin and J. Camenisch, editors,
Proceedings of Eurocrypt 2004, volume 3027 of LNCS, pages 74–90. Springer-
Verlag, May 2004.

[21] M. Mambo, K. Usuda, and E. Okamoto. Proxy signatures for delegating signing
operation. In L. Gong and J. Stearn, editors, Proceedings of CCS 1996, pages
48–57. ACM Press, Mar. 1996.

[22] S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures (ex-
tended abstract). In P. Samarati, editor, Proceedings of CCS 2001, pages 245–54.
ACM Press, Nov. 2001.

[23] D. Naccache. Secure and practical identity-based encryption. Cryptology ePrint
Archive, Report 2005/369, 2005. http://eprint.iacr.org/.

[24] D. Nicol, S. Smith, and M. Zhao. Evaluation of efficient security for BGP route
announcements using parallel simulation. Simulation Modelling Practice and The-
ory, 12:187–216, 2004.

[25] K. Ohta and T. Okamoto. Multisignature schemes secure against active insider
attacks. IEICE Trans. Fundamentals, E82-A(1):21–31, 1999.

[26] T. Okamoto. A digital multisignature scheme using bijective public-key cryp-
tosystems. ACM Trans. Computer Systems, 6(4):432–41, November 1988.

[27] K. Paterson. Cryptography from pairings. In I. F. Blake, G. Seroussi, and
N. Smart, editors, Advances in Elliptic Curve Cryptography, volume 317 of Lon-
don Mathematical Society Lecture Notes, chapter X, pages 215–51. Cambridge
University Press, 2005.

[28] B. Waters. Efficient identity-based encryption without random oracles. In
R. Cramer, editor, Proceedings of Eurocrypt 2005, volume 3494 of LNCS, pages
114–27. Springer-Verlag, May 2005.

A WM Proof of Security

Theorem 2. The WM multisignature scheme is (t, q, ε)-unforgeable if the W
signature scheme is (t′, q′, ε′)-unforgeable, where

t′ = t + O(q) and q′ = q and ε′ = ε .

Proof. Suppose A is an adversary that can forge multisignatures, and (t, q, ε)-
breaks the WM scheme. We show how to construct an algorithm B that (t′, q, ε)-
breaks the W scheme. Algorithm B is given a W public key A = e(g, g)α. It
interacts with A as follows.

Setup. Simulator B invokes A, providing to it the public key A.
Signature queries. Algorithm A requests a signature on some message M

under the challenge key A. Algorithm B requests a signature on M in turn
from its own signing oracle, and returns the result to the adversary.

Output. Finally, A halts, having output a signature (S∗
1 , S∗

2) on some mes-
sage M∗, along with public keys A(1), . . . , A(l) for some l, where A(1) equals
A, the challenge key. It must not previously have requested a signature
on M∗. In addition, it outputs the private keys α(2), . . . , α(l) for all keys
except the challenge key. Algorithm B sets S ← S∗

1/
∏l

i=2 gα(i)
. Then we

have

e(S, g) · e(S2, u
′

k∏
i=1

umi
i)−1 = e(S1, g) · e(S2, u

′
k∏

i=1

umi
i)−1 ·

l∏
i=2

e(g, g)−α(i)

=
l∏

i=1

A(i) ·
l∏

i=2

A−(i) = A(1) = A ,

so (S, S2) is a valid W signature on M∗ under the challenge key A. Since A
did not make a signing query to the challenger at M∗, neither did B make
a signing query to its own signing oracle at M∗, and the forgery is thus
nontrivial. Algorithm B outputs (S, S2) and halts.

Thus B succeeds whenever A does. Algorithm B makes exactly as many
signing queries as A does. Its running time is the same as A’s, plus the time
required for setup and output – both O(1) – and to handle A’s signing queries
– O(1) for each of at most q queries.

B WVES Proofs of Security

B.1 Unforgeability

Theorem 3. The WVES verifiably encrypted signature scheme is (t, qS, qA, ε)-
unforgeable if the W signature scheme is (t′, q′, ε′)-unforgeable, where

t′ = t + O(qS + qA) and q′ = qS and ε′ = ε .

Proof. We show how to turn a verifiably-encrypted signature forger A into a
forger B for the underlying Waters signature scheme.

Algorithm B is given a Waters signature public key A = e(g, g)α. It picks
β

R← Zp, sets v ← gβ , and provides the adversary A with A and v.
When A requests a verifiably encrypted signature on some message M , the

challenger B requests a signature on M from its own signing oracle, obtaining a
signature (S1, S2). It picks s

R← Zp and computes

K1 ← S1 · vs and K2 ← S2 and K3 ← gs .

The tuple (K1,K2,K3) is a valid verifiably encrypted signature on M . Algo-
rithm B provides A with it. (Here B is simply evaluating ESig, except that it
uses its signing oracle instead of evaluating Sig directly.)

When algorithm A requests adjudication of a verifiably encrypted signature
(K1,K2,K3) on some message M under the challenge key A, B responds with
Adj

(
β, A,M, (K1,K2,K3)

)
. Note that B knows the adjudicator’s private key β.

Finally, A outputs a forged verifiably-encrypted signature (K∗
1 ,K∗

2 ,K∗
3) on

some message M∗ = (m∗
1, . . . ,m

∗
k). Algorithm A must never have made a veri-

fiably encrypted signing query at M∗.
The challenger B computes

S∗
1 ← K∗

1 · (K∗
3)−β and S∗

2 ← K∗
2 .

Then we have

e(S∗
1 , g) · e

(
S∗

2 , u′
k∏

i=1

u
m∗

i
i

)−1

=
[
e(K∗

1 , g) · e
(
K∗

2 , u′
k∏

i=1

u
m∗

i
i

)−1
]
· e

(
(K∗

3)−β , g
)

= e(K∗
1 , g) · e

(
K∗

2 , u′
k∏

i=1

u
m∗

i
i

)−1 · e(K∗
3 , v)−1 = A ,

and (S∗
1 , S∗

2) is therefore a valid Waters signature on M∗. The last equality
follows from equation (8). Because A did not make a verifiably encrypted signing
query at M∗, neither did B make a signing query at M∗, and the forgery is thus
nontrivial. The challenger B outputs (S∗

1 , S∗
2) and halts.

Algorithm B thus succeeds whenever A does. Its running time overhead is
O(1) for each of A’s verifiably encrypted signing and adjudication queries, and
for computing the final output.

B.2 Opacity

For convenience, we prove opacity by reduction from the aggregate extraction
assumption: given (gα, gβ , gγ , gδ, gαγ+βδ), computing gαγ is hard. Coron and
Naccache [12] showed that this assumption, introduced by Boneh et al. [8], is
equivalent to CDH.

Theorem 4 (Coron–Naccache [12]). The aggregate extraction and Compu-
tational Diffie-Hellman problems are Karp reducible to each other with O(1)
computation.7

Theorem 5. The WVES verifiably encrypted signature scheme is (t, qS, qA, ε)-
opaque if aggregate extraction is (t′, ε′)-hard on G, where

t′ = t + O(qS + qA) and q′ = qS and ε′ = 4kqAε .

Proof. Given an algorithm A that breaks the opacity of the scheme, we show how
to construct an algorithm B that breaks the aggregate extraction assumption.

The challenger B is given values gα, gβ , gγ , and gδ, along with gαγ+βδ; its
goal is to produce gαγ . It sets v ← gβ , g1 ← gα, and g2 ← gγ . It computes
A← e(g1, g2) = e(g, g)αγ .

Let λ = 2qA. Algorithm B picks κ
R← {0, . . . , k}, x′, x1, . . . , xk

R← Zλ =
{0, . . . , λ− 1} and y′, y1, . . . , yk

R← Zp and sets

u′ ← gx′−κλ
2 gy′

and ui ← gxi
2 gyi for i = 1, . . . , k .

It then interacts with A as follows.

Setup. Algorithm B gives to A the system parameters (g, u′, u1, . . . uk), the
signer’s public key A, and the adjudicator’s public key v. Note that the
private signing key is αγ.

Verifiably Encrypted Signing Queries. A requests a verifiably-encrypted
signature on M = (m1, . . . ,mk) ∈ {0, 1}k under challenge key A and ad-
judicator key v. Define F = −κλ + x′ +

∑k
i=1 ximi and J = y′ +

∑k
i=1 yimi.

If F 6= 0 mod p algorithm B proceeds as follows. It picks r
R← Zp and sets

S1 ← g
−J/F
1

(
u′

k∏
i=1

umi
i

)r and S2 ← g
−1/F
1 gr .

This is a valid W signature with randomness r̃ = r − α/F : observing that
u′

∏k
i=1 umi

i = gF
2 gJ , we see that

S1 = g
−J/F
1

(
u′

k∏
i=1

umi
i

)r = gα
2 (gF

2 gJ)−α/F (gF
2 gJ)r = gαγ

(
u′

k∏
i=1

umi
i

)r̃
,

where for the second equality we have multiplied and divided by gα
2 . Algo-

rithm B then encrypts (S1, S2) by choosing s
R← Zp and setting

K1 ← S1 · vs and K2 ← S2 and K3 ← gs .

If F = 0, however, B picks r, s
R← Zp and sets

7 Strictly speaking, the amount of work is poly-logarithmic in the security parameter
since the group element representations grow. The number of algebraic operations
is constant.

K1 ← (gαγ+γδ)·(gγ)s ·
(
u′

k∏
i=1

umi
i

)r and K2 ← gr and K3 ← (gδ)·gs .

This is a W signature with randomness r, encrypted with randomness δ + s.
In either case, B returns toA the verifiably encrypted signature (K1,K2,K3).

Adjudication Queries. Suppose A requests adjudication on (K1,K2,K3) for
message M = (m1, . . . ,mk). Algorithm B first verifies that (K1,K2,K3) is
valid and rejects it otherwise. Define F = −κλ + x′ +

∑k
i=1 ximi and J =

y′ +
∑k

i=1 yimi as before. If F = 0 mod p, B declares failure and halts.

Otherwise, it picks r
R← Zp and computes

S1 ← g
−J/F
1

(
u′

k∏
i=1

umi
i

)r and S2 ← g
−1/F
1 gr

as above, returning (S1, S2) to A.
(Note that Amust previously have made a verifiably encrypted signing query
at M , since otherwise we could use it to break the unforgeability of WVES.)

Output. Finally, algorithm A outputs a signature (S∗
1 , S∗

2) on a message M∗ =
(m∗

1, . . . ,m
∗
k); it must not have queried its adjudication oracle at M∗. Define

F ∗ = −κλ + x′ +
∑k

i=1 xim
∗
i and J∗ = y′ +

∑k
i=1 yim

∗
i . If F ∗ 6= 0 mod p, B

declares failure and exits. Otherwise, we have u′
∏k

i=1 u
m∗

i
i = gJ∗

, so that

e(g1, g2) = A = e(S∗
1 , g) · e

(
S∗

2 , u′
k∏

i=1

u
m∗

i
i

)−1

= e(S∗
1 , g) · e

(
S∗

2 , gJ∗)−1 = e
(
S∗

1 (S∗
2)−J∗

, g
)

,

and S∗
1 (S∗

2)−J∗
equals gαγ , which is the solution to the aggregate extraction

challenge; B outputs it and halts.

The probability that B doesn’t abort in any adjudication query is at least
1− 1/λ; since there are at most qA = λ/2 such queries, B manages to answer all
queries without aborting with probability at least 1/2. Having done so, B then
receives a forgery such that F ∗ = 0 mod p with probability at least 1/(κλ) ≥
1/(2kqA). Thus B succeeds with probability at least ε/(4kqA). (For more detailed
probability analysis, see Waters’ original proof [28].) Algorithm B’s run-time
overhead is O(1) to answer each of A’s queries and to compute the final output.

Security of the Waters Signature. The reduction above did not require that
A had requested a verifiably encrypted signature at M∗. It is easy to convert
an algorithm A′ that forges the underlying W signature to a WVES opacity
breaker of this sort: simulate a W signing oracle by a call to the verifiably
encrypted signing oracle followed by a call to the adjudication oracle. Combining
this insight with Theorems 5 and 4 immediately gives the following corollary:

Corollary 1 (Waters [28]). The Waters signature scheme is (t, q, ε)-unforge-
able if Computational Diffie-Hellman is (t + O(q), 4kqε)-hard on G. Here q is
the number of signing queries.

