
Efficient Two-Party Secure Computation
on Committed Inputs

Stanisław Jarecki and Vitaly Shmatikov

1 University of California, Irvine
2 The University of Texas at Austin

Abstract. We present an efficient construction of Yao’s “garbled circuits” proto-
col for securely computing any two-party circuit on committed inputs. The pro-
tocol is secure in a universally composable way in the presence of malicious
adversaries under the decisional composite residuosity (DCR) and strong RSA
assumptions, in the common reference string model. The protocol requires a con-
stant number of rounds (four-five in the standard model, two-three in the ran-
dom oracle model, depending on whether both parties receivethe output),O(|C|)
modular exponentiations per player, and a bandwidth ofO(|C|) group elements,
where|C| is the size of the computed circuit.
Our technical tools are of independent interest. We proposea homomorphic, se-
mantically secure variant of the Camenisch-Shoup verifiable cryptosystem, which
uses shorter keys, isunambiguous(it is infeasible to generate two keys which
successfully decrypt the same ciphertext), and allows efficient proofs that a com-
mitted plaintext is encrypted under acommitted key.
Our second tool is a practical four-round (two-round in ROM)protocol forcom-
mittedoblivious transfer onstrings (string-COT) secure against malicious par-
ticipants. The string-COT protocol takes a few exponentiations per player, and
is UC-secure under the DCR assumption in the common reference string model.
Previous protocols of comparable efficiency achieved either committed OT on
bits, or standard (non-committed) OT on strings.

1 Introduction

Informally, a two-party protocol for computing a circuit issecureif participants do not
learn anything from the protocol execution beyond what is revealed by the output of the
circuit. In a seminal paper, Andrew Yao showed a “garbled circuit” protocol [Yao86]
for secure two-party computation (2PC) of any circuit in thesemi-honestmodel,i.e.,
assuming that participants faithfully follow the protocolspecification. Yao’s protocol
requiresO(|C|) symmetric-key operations, and its bandwidth isO(|C|) symmetric-key
ciphertexts, in addition to the cost ofn instances of an oblivious transfer (OT) protocol,
wheren is the size of the circuit’s inputs. Using a 2-round OT protocol, Yao’s protocol
takes only two communication rounds (assuming only one player receives the output).

The main contribution of this paper is a new variant of Yao’s protocol, which re-
placesO(|C|) symmetric-key operations withO(|C|) public-key operations, and at this
cost achieves security againstmaliciousparticipants in the common reference string
(CRS) model. Specifically, our protocol operates on a multiplicative groupZ

∗
n2 where

n is a safe RSA modulus which satisfies DCR and strong RSA assumptions. The proto-
col requiresO(|C|) modular exponentiations, its bandwidth isO(|C|) elements inZ∗

n2 ,
and it takes four rounds in the standard model and two in ROM. Moreover, our protocol
is universally composable, and securely computes any circuits oncommittedinputs.

A fundamental primitive in Yao’s protocol isoblivious transfer(OT). Informally,
OT is a two-party protocol in which the receiver (a.k.a. the “chooser”) receives a value
of his choice from among several values sent by the sender, while learning nothing
about the other values. The sender does not learn anything from the protocol, and in
particular he does not learn which of the values he sent was received by the chooser.
Committed oblivious transfer(COT) is a variant of oblivious transfer, introduced by
Crépeau [Cré89] as a “verifiable OT,” in which both the sender and the chooser are
committed to their inputs, and the oblivious transfer proceeds on the committed val-
ues. The second contribution of our paper is a new protocol for committed oblivious
transfer onstrings(“string-COT”). The protocol requiresO(1) exponentiations and has
the bandwidth ofO(1) elements inZ∗

n2 , which is comparable to the cost of previous
protocols for standard (non-committed) OT on strings or previous COT protocols that
operated only on bits. This new string-COT protocol is also universally composable in
the CRS model.

A committedOT protocol secure against malicious players is a much more useful
tool in a security protocol than a standard OT. For example, unless the OT protocol runs
on committed inputs, it is fundamentally non-robust against network failures because
re-running the protocol after a failure allows the cheatingreceiver to learn both of the
sender’s values. Similarly, securecommitted 2PCprotocol is a much more useful tool
than a standard 2PC protocol. In general, universally composable string-OT and general
2PCon committed datamakes it easy to ensure that multiple instances of these protocols
are executed on consistent inputs, for example as prescribed by some larger protocol.

Technical roadmap.Both protocols we present in this paper, the protocol for secure
two-party computation on committed inputs (“committed 2PC”) and the string-COT
protocol, rely on a modification of the verifiable encryptiongiven by Camenisch and
Shoup [CS03]. The efficiency of these two protocols is essentially due to the very strong
properties that this encryption offers. We will refer to theoriginal scheme of [CS03]
asCS encryption, and we call our modificationsCS encryption, where “s” stands for
both “short” and “simplified,” because the modification consists of (1) stripping off
the chosen-ciphertext security check in the CS encryption,and (2) using significantly
shorter private keys. Below we explain how several interesting properties of this en-
cryption enable the efficient string-COT and committed 2PC protocols.

The sCS encryption scheme isadditively homomorphic, i.e., given ciphertexts of
two values, one can obtain a ciphertext of their sum without decrypting the ciphertexts,
and it is verifiable, i.e., there is a very efficient ZK proof system due to [CS03] for
showing that the encrypted message corresponds to a previously committed one. These
two features together enable an efficient string-COT protocol. First, we use additive
homomorphism of the sCS encryption to build an efficient protocol for OT on strings in
a way that is similar to how Aielloet al.[AIR01] build a standard (i.e., non-committed)
OT on strings from the multiplicatively homomorphic ElGamal encryption. Then, by
adapting the ZK proof systems given for the CS encryption in [CS03], we add efficient

ZK proofs for showing that the parties run this string-OT protocol on the previously
committed inputs.

The sCS encryption has further useful properties which allow us to extend the string-
COT protocol to an efficient committed 2PC protocol. First, it is unambiguous, in the
sense that it is committing not only to the plaintext, but also to the encryption key:
it is infeasible to produce a ciphertext that can be successfully decrypted, even to the
same plaintext, under two different decryption keys. This property is crucial in the mali-
ciously secure version of Yao’s protocol. Otherwise, the player who creates the garbled
circuit could embed all sorts of faults into the circuit. If the circuit evaluator encounters
a fault which causes him to stop, the malicious player will learn information about the
evaluator’s inputs that he is not supposed to learn.

Second, we extend the Camenisch-Shoup ZK proof system to an efficient ZK proof
that a ciphertext encrypts a committed plaintext under a committed key. (Technically,
this proof system is defined for a symmetric-key version of the sCS encryption, where
the key is both an encryption and a decryption key.) This proof system is a crucial com-
ponent of proving that Yao’s “garbled circuit” is formed correctly. Yao’s construction
of the garbled circuit involves encrypting, for every circuit gate, the keys corresponding
to the output wires under the keys corresponding to the inputwires. In our version of
Yao’s protocol, the sender commits to the keys he created forevery circuit wire. For
the wires corresponding to the receiver’s inputs, the sender sends to the receiver the
appropriate key values using our efficient string-COT protocol operating on these com-
mitments. Furthermore, the sender must prove, for each gate, that the ciphertexts that are
supposed to encrypt the appropriate output-wire keys underthe appropriate input-wire
keys are formed correctly. This is accomplished precisely by the above proof system,
because the input-wire keys appear askeysin these ciphertexts, while the output-wires
keys appear asplaintexts.

Giving an efficient ZK proof system for this statement for some version of the CS
encryption scheme is an interesting technical challenge, because in the CS cryptosystem
plaintexts and keys “live” in different groups (and are acted upon by different moduli).
It is not immediately obvious how to encrypt one CS encryption key under another CS
encryption key and have an efficient proof of correctness forthis encryption, because
the efficient proof systems given for the CS encryption require that the plaintext be
significantly smaller than the encryption key. One solutionis to extend these proof
systems to handle larger plaintexts (namely, plaintexts ofthe same size as the key),
using proofs of equality of elements of two different groupsrepresented as integers (e.g.,
[Bou00]). We propose a simpler solution based on the observation that, from the results
of Håstad, Schrift and Shamir [HSS93] on simultaneous bit security of exponentiation
in groups of unknown order, it follows that one can shorten the private keys used in
the CS encryption to|n|2 bits. This significantly speeds up the CS encryption, but, more
importantly, this modification allows for a very efficient ZKproof that a ciphertext
encrypts acommitted plaintextunder acommitted key.

Organization of the paper. In Section 2 we discuss related work. In Section 3, we
describe our cryptographic toolkit. In Section 4, we present the string-COT protocol,
and in Section 5, the protocol for general two-party secure computation on committed
inputs. All proofs have been delegated to the full version ofthe paper.

2 Related Work on Constant-Round 2PC and Committed OT

2PC protocols. The first constructions for secure two-party computation are Yao’s
“garbled circuits” protocol [Yao86] and the protocol of [GMW87]. Of the two, only
Yao’s protocol is constant-round, but secure only in the semi-honest model. Most sub-
sequent constant-round protocols for secure computation in the malicious model, such
as [Kil88,Lin03,KO04], employ generic zero knowledge proofs (i.e., proofs for any NP
statement). The overhead of this approach is likely to remain prohibitive for practical
applications.

There are secure 2PC protocols that avoid generic zero-knowledge proofs (e.g.,
see [JJ00,GMY04] and references therein), but the round complexity of these proto-
cols is linear in the (boolean or arithmetic) circuit depth.On the other hand, Damgård
and Ishai [DI05] showed the first constant-roundmulti-partyprotocol withO(|C|n2k)
bandwidth and computation (heren is the number of parties,k is the security param-
eter), assuming a trusted preprocessing stage, but this protocol is secure only with an
honest majority, and its techniques (e.g., verifiable secret sharing) do not seem applica-
ble to two-party computation.

2PC using verifiable encryption.Like our protocol, the constant-round 2PC protocol
of Cachin and Camenisch [CC00] uses a verifiable public-key encryption scheme, but
unlike in our scheme, their zero-knowledge proofs requires cut-and-choose repetitions
wheres is the statistical security parameter. Hence their 2PC protocol requiresO(s|C|)
group elements in bandwidth and the same number of exponentiations (vs.O(|C|) in
our construction). It is worth mentioning, however, that our ciphertexts are elements of
Z
∗
n2 , for n satisfying the DCR and strong RSA assumptions, while [CC00]can use any

group where the Diffie-Hellman assumption holds.

2PC using cut-and-choose approach.A recent series of works on efficient constant-
round 2PC protocols [Pin03,MF06,LP07,Woo07] shows that security in the malicious
model can be achieved by cut-and-choose verification of the entire garbled circuit, at the
cost ofO(s|C| + s2n) [LP07] or O(s|C|) [Woo07] symmetric-key operations, where
s is the statistical security parameter of cut-and-choose and n is the input size. These
cut-and-choose constructions probably require less computation than our protocol to
achieve similar levels of security based on common assumptions, but our protocol may
require less bandwidth, especially for small circuits whose size is comparable to the
input size. Also, our protocol can be made non-interactive in the random oracle model
at no extra cost, while the security parameters in the cut-and-choose solutions increases
if they are made non-interactive using the Fiat-Shamir heuristic.

COT. Committed OT (COT) was introduced by Crépeau [Cré89], where it was used to
construct a general 2PC protocol (but not constant-round one) following the approach of
[GMW87]. Crépeau constructed COT using black-box invocations ofΩ(n3) OTs. This
was improved by [CvdGT95] toO(n) OT’s andO(n2) bit commitments. Both COT
protocols, however, operate on bits rather than strings. Based on the concrete assump-
tions of Computational or Decisional Diffie-Hellman, Cramer and Damgård [CD97]
and then Garayet al. [GMY04] give COT protocols which requireO(1) exponentia-
tions but still operate only on bits, while Camenisch and Cachin [CC00] give a string-

COT protocol, but it requiresO(k) modular exponentiations wherek is the security
parameter.

Lipmaa [Lip03] proposed to extend the (non-committed) string-OT protocol of
Aiello et al. [AIR01] to a committed OT protocol on strings at the cost ofO(1) ex-
ponentiations. While this protocol does ensure that thereceivedstring is consistent
with the sender’s commitment, the sender can successfully cheat on the string that has
not been transferred during the OT. This can be used to break chooser’s privacy in
any application (such as 2PC) where the sender can observe whether the chooser suc-
cesfully completed the protocol. Stronger verifiability can potentially be achieved by
extending this protocol with zero-knowledge proofs, but the resulting protocol would
not beat theO(k) modular exponentiations bound because the commitment schemes
(e.g., [CGHGN01]) suggested in [Lip03] seem to have only cut-and-choose ZK proofs.

3 Cryptographic Tools

3.1 Camenisch-Shoup (CS) encryption scheme [CS03]

Common reference string.A trusted third party generates a safe RSA modulusn = pq,
wherep = 2p′+1, q = 2q′+1, |p| = |q|, p 6= q, andp, q, p′, q′ are all primes, a random
elementg′ in Z

∗
n2 and an elementg = (g′)2n. The common reference string is(n, g),

which also implicitly defines elementα = 1 + n. For standalone applications of CS
encryption, pair(n, g) can be thought of as part of the public key. However, placing
(n, g) in the CRS enables soundness of some very useful proof systems associated with
this encryption scheme,e.g., those used in our COT and 2PC protocols.

The groupZ∗
n2 defined by the safe RSA modulusn can be decomposed into a cross-

product of four subgroups:Z∗
n2 = Gn ×Gn′ ×G2 ×T , where groupGn, generated by

α = n + 1, has ordern, groupGn′ has ordern′ = p′q′, andG2 andT are subgroups
of order2. As one consequence of this structure ofZ

∗
n2 , the above procedure of picking

g as a2n-power of a random element implies that, with an overwhelming probability,
g is a generator of subgroupGn′ . In the following we treat all multiplications and
exponentiations as operations inZ

∗
n2 , unless stated otherwise.

Key generation.The private key is a random triplex1, x2, x3 chosen in[0, n2

4]. The
public key isPK = (n, g, g, h, f, hk) whereg = gx1 , h = gx2 , f = gx3 , andhk is a key
of a collision-resistant keyed hash functionH.

Encryption. Consider plaintextm as an integer in[−n
2 , n

2]. (Note that one can encode
elementsm′ in Zn in this range asm = m′ rem n, i.e., m = m′ if m′ ≤ n

2 and
m = m′ − n if m′ > n

2 . Observe thatm = m′ mod n.) A CS encryption ofm
under keyPK with labelL, denotedCSencL

PK(m), is a tuple(u, e, v) whereu = gr,
e = αmgr, andv = abs((hfHhk(u,e,L))r), for a randomly chosenr ∈ [0, n

4]. Operation
abs(a) returnsa for a < n

2 andn − a for a ≥ n
2 .

Decryption. Given a ciphertext(u, e, v), checkabs(v) = v andu2(x2+Hhk(u,e,L)x3) =
v2. If this holds, computêm = (e/ux1)2. Note thate/ux1 = αm for correctly formed
ciphertexts. Ifm̂ 6∈ 〈α〉, i.e., if n does not dividêm−1, reject. Otherwise, set̂m′ = m̂−1

n

(over the integers),m′ = m̂′/2 mod n, andm = m′ rem n.

This encryption is CCA secure under the DCR assumption on safe RSA moduli [CS03]:

Assumption 1 (DCR) [Pai99]: Given RSA modulusn, random elements ofZ∗
n2 are

computationally indistinguishable from elements of a subgroup formed byn-th powers
of elements inZ∗

n2 .3

3.2 Simplified Camenisch-Shoup (sCS) encryption scheme

The group setting(n, g) is the same. Denotek′′ = |n|
2 , and letk, k′ be parameters that

control the quality of soundness and zero-knowledge of proof systems associated with
the sCS encryption. We require that2k + k′ < k′′ andk < p′, q′. For 80-bit security,
one can takek′′ = 512 andk = k′ = 80.

Key generation.The private key isx ∈ [0, 2k′′

]. The public key isy = gx.

Encryption. The sCS encryption under keyy of m, an integer in[−n
2 , n

2], denoted
sCSency(m), is (u, e) s.t.e = αmyr mod n2 andu = gr for a randomr in [0, n

4].

Decryption. Proceeds exactly like CS decryption, but omitting the CCA checks onv
(since there’s nov here), and usingx instead ofx1 in decrypting(u, e).

Apart from stripping the CCA check, the only difference between CS and sCS encryp-
tion is the shortened private key. The fact that the scheme remains semantically secure
with such modification follows from adapting the results of [HSS93] on simultaneous
bit security of exponentiation modulo a Blum integer (and a safe RSA modulus is Blum
integer) to exponentiation inZ∗

n2 .4 It follows that under the factoring assumption, the
entire upper half of the bits of exponentx is simultaneously hidden under the expo-
nentiation functiony = gx mod n2, and therefore keyy = gx for x random inZn′ is
indistinguishable fromy = gx for x random in[0, |n|

2]. 5

Theorem 1. sCS encryption is semantically secure under DCR assumptionon safe RSA
moduli.

Symmetric-key version of sCS encryption scheme.The sCS cryptosystem can also
be used as a symmetric encryption scheme if the private keyx ∈ [0, 2k′′

] is treated as a
symmetric key. Encryption ofm under keyx is a pair(e, u), wheree = αmux mod n2,
u = gr for randomr ∈ [0, n

4]. The decryption procedure does not change, nor does the
security of the encryption scheme.

Unambiguity of sCS encryption. We introduce a very strong notion ofunambiguous
encryption, which applies to both public-key and symmetric schemes. Itsays that a ci-
phertext that passes a certain proof system, denotedZKUnEnc, cannot decrypt to two
different plaintexts under two different private keys. Moreover, no two distinct decryp-
tion keys can decrypt a ciphertext even to the same plaintext. Therefore, in an unam-
biguous encryption scheme, the ciphertext is committing not only to the plaintext, but
also to the decryption key. This notion of encryption unambiguity is essential for our

3 For the safe RSA modulin, the subgroup ofn-th residues inZ∗
n2 is the subgroupGn′×G2×T .

4 Cf. similar observation in [CGHG01] for Paillier encryption, on which CS encryption is based.
5 Note that in this way one can also shorten keysx2, x3 in CS encryption and the randomnessr.

version of Yao’s 2PC protocol, because otherwise a malicious creator of the garbled
circuit could introduce errors in this circuit, and then learn something extra about the
receiver’s inputs by observing whether the receiver successfully completes his compu-
tation on this circuit.

Definition 1. An encryption scheme isunambiguousif there exists a zero-knowledge
proof systemZKUnEnc s.t. for every efficient probabilistic algorithmA, the following
event has only negligible probability: (1)A outputs tuple(c, x1, x2) s.t.x1 6= x2, (2)A
passes theZKUnEnc proof system on ciphertextc, (3)x1, x2 are valid private keys,i.e.,
they are accepted by the decryption procedure, and (4) bothDecx1

(c) andDecx2
(c)

output a valid message (or messages). In the CRS model, the probability is also taken
over the randomness of the common reference string generation.

Theorem 2. sCS encryption is unambiguous under the factoring assumption on safe
RSA moduli, in the CRS model.

The ZK proof systemZKUnEnc for the sCS encryption is the proof thatu2 belongs
to the group generated byg, i.e., ZKUnEnc(u, e) = ZKDL(g, u). (See section 3.4.)

3.3 CS commitments and sCS commitments

Our COT and 2PC protocols could be adapted to work with standard Pedersen-like com-
mitment schemes of [Ped91,FO97,DF02] at the cost of additional mappings, via range
proofs [CM99,Bou00,DF02], between commitments with different ranges of plaintexts.
Instead, we use the full (i.e., adaptive chosen-ciphertext secure) CS encryption as a com-
mitment scheme, because it operates on the same group as the encryption we use, and
hence is well-suited for both the COT and 2PC protocols of Sections 4 and 5.6 More-
over, using a CCA-secure encryption as a commitment helps inshowing that the COT
and 2PC schemes are secure in the strong sense of universal composability.

An instance of a CS commitment scheme is a CS encryption public key PK =
(n, g, g, h, f, hk). The public key is chosen by a trusted third party, and security of this
commitment scheme requires the CRS model. The CS commitmenton messagem, an
integer in range[−n

2 , n
2] (with an obvious mapping toZn), with labelL, is the ciphertext

Com = CSencL
PK(m). For notational convenience of the COT and 2PC protocols, we

denote the tuple forming commitmentCom as (u, C, v), i.e., u = gr, C = αmgr,
andv = abs((hfHhk(u,C,L))r). The decommitment is the(r, m, L) tuple. In the COT
and 2PC protocols, we often treat valueC in the CS commitment as a commitment
to m by itself. This shortened commitment is used very heavily inthe 2PC protocol,
thus we refer to valueC = αmgr by itself as ansCS commitment. The corresponding
decommitment is(m, r).

3.4 Efficient concurrently secure ZK proof systems in the CRSmodel

All proof systems used in our COT and Committed 2PC protocolsare concurrently se-
cure ZK proofs in the CRS model. Specifically, each proof system is computationally

6 Note that instances of other commitment schemes can be mapped to this one using the verifi-
able encryption proof system that accompanies the Camenisch-Shoup encryption [CS03].

sound and statistical zero-knowledge with a straight-linesimulator. The latter is im-
portant for showing that the protocols are universally composable. Each of these proof
systems is built from efficient HVZK proof systems for the languages listed below by a
series of compilations which preserve the efficiency of the underlying HVZK protocols.

The compilations start from 3-round HVZK proof systems withthe properties of
special honest-verifier zero-knowledgeand(weak) special soundess(we discuss these
below). First, with the techniques of Crameret al. [CDS94], HVZK systems of this
class can be combined, at no extra cost, into HVZK proof systems of the same class
for any (monotonic) disjunctive and/or conjuctive formulaover statements proved in
the component proof systems. Then, using Damgård [Dam02],the resulting HVZK
proof system can be compiled into a three-round concurrently secure ZK proof systems
with statistical zero-knowledge, computational soundness, and a straight-line simulator
in the CRS model. This latter technique requires statistically hiding trapdoor commit-
ments, and using Pedersen’s commitment scheme it incurs a computational overhead of
just one extra exponentiation per player. The computational soundness of the resulting
ZK proof system is subject to the same assumption as the computational binding of the
commitment scheme, which can be Strong RSA if Pedersen’s trapdoor commitment is
adapted to theZ∗

n2 setting,e.g., as in Damgård-Fujisaki commitments [DF02]. Note
that in ROM, using the Fiat-Shamir heuristic, the HVZK proofsystems of this class
can be converted at no extra cost tonon-interactiveZKs with the same properties of
computational soundness and statistical zero-knowledge with straight-line simulation.

We denote the statements being proved asX, Y, Z, and the corresponding “atomic”
HVZK proof systems asHVZKX, HVZKY, HVZKZ. We use a notation derived from
boolean formulas for the ZK proof systems resulting from this series of compilations.
For example, the resulting ZK proof system for languageX ∧ (Y ∨ Z) will be denoted
ZKX∧(ZKY∨ZKZ). We catalog the proof systems used in the COT and 2PC protocols
by the statements they prove, namely, membership in the languagesDL, DLEQ, NotEq,
Cot, Com, and PlainEq. Each of these is parameterized by tuple(n, g, g, h, f, hk),
which forms an instance of the CS commitment scheme. Triple(n, g, g) also defines
an instance of the sCS commitment. Parametersk, k′, k′′ are as in Section 3.2.

DL = {(g, X) | there existsx s.t.X2 = g2x}.

DLEQ = {(g, X, g̃, X̃) | there existsx s.t.X2 = g2x, X̃2 = g̃2x}.

NotEq = {(Ca, Cb) | there exista, b, ra, rb s.t. a 6= b mod n, Ca = αagra , and
Cb = αbgrb}. In other words,Ca andCb are sCS commitments to two different values.

Cot = {(i, e′, u′, e, u, y, C) | there existm, w, s, r s.t.C2 = α2mg2w,
e′2 = e2sα2m−i∗2sy2r, andu′2 = u2sg2r}. In other words,m rem n is committed in
sCS commitmentC, and(u′, e′) is a correct “re-encryption” ofm performed by the
sender in the COT protocol, given the(y, u, e) tuple sent by the receiver.

Com = {(Com, ids) | there existm, r s.t. Com = (u, C, v) whereu = gr, C =
αmgr, andv = abs((hfHhk(u,C,ids))r)}. In other words,Com is a properly formed CS
commitment to some messagem with labelids.

PlainEq = {((e, u), Cx, Cm) | there existx, m, rx, rm s.t.e = αmux, Cx = αxgrx ,
andCm = αmgrm}. In other words,(e, u) is an sCS encryption of the plaintextm
committed in (sCS commitment)Cm under the keyx committed inCx.

All of the above languages have efficient 3-round HVZK proof systemsHVZKDL,
HVZKDLEQ, etc., which unconditionally satisfy the two properties we need:(1) spe-
cial HVZK, and (2) weak special soundness. The only exception isHVZKPlainEq, for
which we show that weak special soundness holds under the strong RSA assumption.
All systems are efficient: the players make only a few exponentiations (between one
and four) modulon2, and communication complexity ranges from3|n| in HVZKDL
to at most20|n| bits in HVZKPlainEq. We show theHVZKPlainEq proof system in
Appendix A, because it has the most novelty. We delegate the other proof systems to
the full version of the paper, but most of them are either standard, or simple modifica-
tions of the proofs that appear in [CS03]. TheHVZKPlainEq proof system shown in
Appendix A gives a good idea of how all of these HVZKs work.

Special HVZK and (weak) special soundness.Let (P1, P2, V) be a specification
of a 3-round public coin proof system for languageL. The prover’s message in the
first round on instancex, witnessw for x ∈ L, and randomnessr is computed as
a = P1(x, w, r), its response in the third round is computed asz = P2(x, w, r, e) where
e is the verifier’s challenge, and the verifier accepts if and only if V (x, a, e, z) = 1.
We call this proof systemspecial (statistical) HVZKif there exists a simulatorS s.t.
for every challengee and every witness(x, w) for x ∈ L, the tuple(a, z) output
by S(z, e) is distributed statistically close to tuple(a, z) wherea = P1(x, w, r) and
z = P2(x, w, r, e). The probability is over the coins ofS and overr. We say that
this proof system has(weak) special soundnessif for every x 6∈ L, and for every
PPT algorithmP̂ , the probability thatP̂ (x) outputs(a, e, z, e′, z′) s.t. e 6= e′ and
V (x, a, e, z) = V (x, a, e′, z′) = 1, is negligible. Since the HVZK proof systems we
use are parametrized by a reference string, the adversaryP̂ takes the CRS as an input
and the probability is taken over the choice of the CRS and theadversary’s coins. This
notion of (weak) special soundnessis weaker than thespecial soundnessassumed by
the compilers of [CDS94,Dam02], but it’s easy to see that thesame compilers still apply
to this weaker class of HVZKs.

4 UC-Secure Committed Oblivious Transfer on Strings

Our protocolPcot for 1-out-of-2 committed oblivious transfer (COT) on strings is sim-
ilar to the 1-out-of-2 non-committed string-OT protocol ofAiello et al. [AIR01], but
instead of multiplicatively homomorphic ElGamal encryption,Pcot usesadditivelyho-
momorphic andverifiablesCS encryption, which enables succinct (constant number of
exponentiations) proofs that receiver’s and sender’s inputs into OT match their previous
commitments. Moreover,Pcot is universally composable in the CRS model.

We define the ideal functionalityFCOT for a COT scheme, and show thatPcot

securely realizes it. In contrast to the ideal COT functionality proposed by Garayet
al. [GMY04], our functionalityFCOT runs onstringsrather than bits. However,FCOT

is more restricted than the functionality of [GMY04] in that(1) the obliviously trans-
ferred values are the plaintexts of commitments, not full decommitments; and (2)FCOT

Ideal functionality FCOT for committed oblivious transfer on strings (COT)

Commit: Upon receiving a〈ComMsg, (Pi, cid), m〉 message fromPi, FCOT records
the ((Pi, cid), m) pair and broadcasts〈Committed, (Pi, cid)〉. Herem can be ei-
ther a message in the prescribed message space or a special symbol⊥.

StartCOT: Upon receivingmsg = 〈StartCOT, (PS , PR, sid, cidR, cidS,0, cidS,1)〉
from PR, FCOT verifies that it has records ((PR, cidR), mR),
((PS, cidS,0), mS,0), and ((PS, cidS,1), mS,1), and that mR 6=⊥. If this
fails, FCOT ignores this message; otherwise,FCOT recordsmsg and forwards it
to PS .

CompleteCOT: Upon receiving〈CompleteCOT, (PS , PR, sid, cidR, cidS,0, cidS,1)〉
from PS , FCOT verifies that it has a record〈StartCOT, ids〉, where ids =
(PS, PR, sid, cidR, cidS,0, cidS,1). FCOT looks up records((PS , cidS,0), mS,0)
and((PS , cidS,1), mS,1), and checks ifmS,0 6=⊥ andmS,1 6=⊥. If anything fails,
FCOT ignores this message.
Otherwise FCOT looks up the record ((PR, cidR), mR) (observe that
such a record must exist). IfmR /∈ {0, 1}, FCOT sends a spe-
cial message 〈COTFailed, PS, PR, sid〉 to PR. Otherwise FCOT sends
〈CompleteCOT, ids, (mS,b, b)〉 to PR for b = mR.

Note: Additionally,FCOT screens outs duplicates in commitment identifierscid for ev-
eryPi, and in COT instance identifierssid for every(PS, PR) pair.

Fig. 1.FCOT ideal functionality

does not support opening of the committed values. Nevertheless,FCOT can ensure that
any combination of COT instances is executed on same committed inputs, and thus
it can ensure that whenever COT is used as part ofanysecurity protocol, the parties’
inputs into COT are consistent across multiple COT instances.

The COT protocolPcot is given in fig. 2. It assumes a common reference string
picked by the trusted third party, which defines an instancePK of the CS commitment
scheme. The message space for this COT scheme is[−n

2 , n
2], the message space of the

CS commitment scheme. The commitment, identified ascid, of playerPi on message
m is a CS commitmentCom = CSencids

PK(m) with label ids = (Pi, cid). As we will
argue,Pcot is a secure realization ofFCOT; in particular, the receiver either outputs
messagemσ committed inComS,σ, or rejects.

The two proof systems used inPcot involve conjunctions ofCom, DLEQ, andCot
statements. As explained in Section 3.4, such proofs are computationally sound ZK
proofs which are concurrently secure in the CRS model. Each takes only a few expo-
nentiations and three communication rounds. Moreover, themessages in both proofs
(PR to PS andPS to PR) can be piggy-backed, with the statements proved by the two
players delayed to the last messages, which results in a 4-round protocol. In the random
oracle model these proofs are non-interactive and the protocol takes only 2 rounds.

Theorem 3. Under the DCR assumption, protocolPcot is a UC-secure realization of
the Committed-OT functionalityFCOT in the CRS model, if the proof systems involved

Protocol Pcot for committed oblivious transfer on strings

Common Reference String: CS commitment instancePK = (n, g, g, h, f, hk).

Commit: For playerPi, on commitment instancecid and messagem: PlayerPi sets
ids = (Pi, cid), Com = CSencids

PK(m), and broadcasts〈ComMsg, ids, Com〉.

ReceiverPR executes a COT instancesid with senderPS . PR ’s bit σ is com-
mitted in ComR, PS ’s messagesm0, m1 are committed inComS,0, ComS,1. Let
cidR, cidS,0, cidS,1 be the identifiers for these commitments.

COT Step 1: PR setsids = (PS , PR, sid, cidR, cidS,0, cidS,1), retrievesComR =
(ũ, C, ṽ) and its decommitmentr ∈ [0, n

4
]. Note thatC = ασgr. PR picksx ∈ [0, n

4
],

and computes
y = gx, u = gr, e = ασyr

PR sends〈COTMsg1, ids, (u, e, y)〉 to PS , and performs as the prover in the proof
systemZKDLEQ(g, u, g/y, C/e) ∧ ZKCom(PK,ComR, (PR, cidR)) with PS .

COT Step 2: Upon receiving〈COTMsg1, ids, (u, e, y)〉 from PR, PS retrieves mes-
sagesm0, m1 committed inComS0

= (ũ0, C0, ṽ0) andComS1
= (ũ1, C1, ṽ1). Note

thatCi = αmigrmi for somermi
. PS creates two “COT-encryptions” fori = 0, 1:

ei = esiαmi−i∗siyri and ui = usigri

for randomevenvaluessi ∈ [0, 2n] andri ∈ [0, n
2
]. If PR passed its proof in Step 1,PS

sends message〈COTMsg2, ids, (u0, e0, u1, e1)〉 to PS , and performs withPR as the
verifier a proof systemZKCot(0, e0, u0, e, u, y, C0) ∧ ZKCot(1, e1, u1, e, u, y, C1) ∧
ZKCom(ComS,0, (PS, cidS0

)) ∧ ZKCom(ComS,1, (PS , cidS1
)).

COT Step 3:PR decrypts the sCS ciphertext(uσ, eσ) and obtainsmσ. If PS passed its
proof in step 2, thenPR outputsmσ; otherwisePR rejects.

Note: Either player rejects if the values he receives arevisibly not in Z
∗
n2 , i.e., they are

outside the[1, n2] range or are divisible byn.

Fig. 2. ProtocolPcot for committed OT on strings

are computationally sound and statistically zero-knowledge with straight-line simula-
tors in the CRS model.

Due to lack of space, we present only the crucial aspects of the proof.

Verifiability of inputs. By computational soundness of the proof systems, the play-
ers cannot, except with negligible probability, enter different valuesσ, m0, m1 into the
OT protocol than those they previously committed. This is easy to see for the cheat-
ing receiverPR. For the cheating senderPS , by soundness ofZKCot, if PR accepts,
then, with overwhelming probability, for eachi there exists a tuple(mi, rmi

, si, ri) s.t.
(Ci)

2 = α2mig2rmi , e2
i = e2siα2mi−i∗2siy2ri , andu2

i = u2sig2ri , whereComi =
(ũi, Ci, ṽi) is PS ’s commitment whose id iscidS,i. In particular,mi is the message
committed inComi. Since for honestPR, e = ασyr andu = gr, it follows that for

i = σ we havee2
σ = α2mσy2r′′

andu2
σ = g2r′′

wherer′′ = sσr + rσ . Therefore,
messagemσ decrypted byPR from the ciphertext(uσ, eσ) is the message committed
in Comσ.

Receiver’s and sender’s privacy.Receiver’s privacy follows from semantic security
of CS encryption, while the sender’s privacy relies on the fact that if PR’s commit-
mentComR = (ũ, C, ṽ) and the tuple(u, e, y) in PR’s COT message are correctly
formed (and they are, except for negligible probability, ifPS acceptsPR’s ZKCom
andZKDLEQ proofs, and if the factoring assumption holds), and ifσ is a value that
satisfiese2 = α2σg2r for somer (there exists suchσ for everye ∈ Z

∗
n2), then the

pairs (e0, u0) and (e1, u1) sent byPS revealmσ, but information-theoretically hide
mi for i 6= σ. Observe first that if tuples(ũ, C, ṽ) and (u, e, y) are accepted by the
verifier (i.e., each element is inZn2 , but is not a multiple ofn), then under the fac-
toring assumption, which is implied by the DCR assumption, all these elements are
also inZ

∗
n2 , except for negligible probability. Second, ifPR passes theZKCom proof

on ComR and theZKDLEQ proof on(u, e, y), then except for negligible probability
we havee = ω0α

σgr, u = ω1g
r, andy = ω2g

x for some(σ, r, x) and some ele-
mentsω0, ω1, ω2 of order2 in Z

∗
n2 . Therefore, values(ui, ei) sent byPS are equal

to ei = αmi+si(σ−i)ysir+ri andui = gsir+ri , becausesi is even. Note that for any
σ, gcd(σ − i, n) = 1 for either i = 0 or i = 1 (or for both). Since the order ofα
is n, and(si mod n) is distributed uniformly inZn, valueαmi+si(σ−i) is distributed
uniformly in the subgroup generated byα in Z

∗
n2 . Because (1) the orders ofg andy

are both divisors of2n′, (2) sir + ri is even, and (3)(ri mod n′) is distributed statis-
tically close to uniform overZn′ , it follows that pair(gsir+ri , ysir+ri) is distributed
statistically close to(g2r′

, y2r′

) for r′ uniform in Zn′ . Taken together, it follows that
pair (ei, ui), for i 6= σ, is distributed statistically close to(αm′

y2r′

, g2r′

) for random
(m′, r′) ∈ (Zn × Zn′), and thus it is statistically independent ofmi.

Construction of the straight-line simulator. The proof that protocolPcot UC-realizes
the COT functionalityFCOT involves construction of a straight-line simulator, which
pretends to follow the protocol on behalf of the uncorruptedparties by executing it
on some fixed values unrelated to the real inputs of these parties, and simulates their
proof systems using their straight-line simulators. Moreover, the simulator straight-
line extracts the effective inputs contributed by the corrupted players by choosing the
Camenisch-Shoup public keyPK embedded in the CRS and decrypting these play-
ers’ inputs from their commitments. The simulator submits these extracted inputs to the
ideal functionality if the corrupted players pass the associated ZK proofs. CCA security
of Camenisch-Shoup encryption implies that the ciphertexts contained in the commit-
ments and COT messages created by the simulator remain indistinguishable from the
corresponding ciphertexts created in the real protocol, even if the simulator accesses
the decryption oracle (to extract the values committed by the corrupt players). Finally,
the proof systems performed by the corrupted players are sound even if the simulator
picks the CRS because as long as the adversary passes its proofs only on correct state-
ments, the simulation is distributed statistically close to the real execution. Hence, by
the standard soundness of the proof systems involved, the adversary has only negligible
probability of passing some proof on an incorrect statementin the simulation.

5 UC-Secure Two-Party Computation on Committed Inputs

We present an efficient version of Yao’s “garbled circuits” protocol for secure two-
party computation (2PC). The protocol operates on committed inputs and is universally
composable (in the CRS model). In addition to any two-party secure computation in
the malicious model, our protocol can be used, for example, to ensure that multiple
instances of secure computation are executed on consistentinputs.

The ideal functionalityF2PC for secure two-party computation on committed in-
puts in shown in fig. 3. Abstracting from the bookkeeping details, F2PC is a simple
generalization of the standard secure computation functionality where two players send
their respective inputsx andy to the trusted third partyF , who returns the result of
evaluating some circuitC(x, y) to one or both players.

Thecommitted 2PCfunctionalityF2PC accepts any number of commitments from
partiesP1, . . . , Pn, which are intended to represent the commitments to the bitsencod-
ing these parties’ inputs into some two-party computation protocols. For every commit-
ment,F2PC records the committed bit. If some partyPR requests secure computation
of some circuitC with another partyPS , the request specifiesC and a vector of com-
mitments toPR’s andPS ’s inputs into this circuit. If partyPS accedes to this request,
F2PC sends toPR the output of circuitC computed on the inputs committed in the
specified commitments. Note that ourF2PC sends the output only toPR, but since this
is acommitted2PC functionality, the players can simply reverse the rolesand request
that the sameC be computed on the same vector of commitments, in order to enable
PS to receive the output. (Our actual 2PC protocol allowsPS to receive the output with
no computational overhead and one extra communication round.)

We assume that the circuitC consists of binary two-input gatesG = {g1, . . . , gc}
with unbounded fan-out but no cycles, connected by wiresW = {w1, . . . , wm}. Some
subsetWS of ns input wires are designated asPS ’s inputs, andnr input wires form the
setWR of PR’s inputs. Some subsetWO of the output wires is designed as outputs for
PR. (Optionally, some output wires can also be designated as outputs forPS .)

The Committed 2PC protocol is in fig. 4. It is similar to the COTprotocol of Sec-
tion 4, and uses the same commitments and same message pattern, requiring 4 rounds
in CRS and 2 rounds in ROM. In the first message, the receiver uses the proof sys-
tems of thePcot protocol and an additional proof systemZKBit(C) = (ZKDL(g, C) ∨
ZKDL(g, C/α)) for proving that the CS commitmentCom = (u, C, v) or the sCS
commitmentC are commitments to a bit. In the second message, the sender creates the
garbled circuit and uses theCorrectYao proof system to prove that it has been formed
correctly. This step encompasses the entire Yao’s construction and is discussed below.
In the following, we denote senderPS asS and receiverPR asR.

Wire keys and commitments: S picks two random (symmetric) sCS private keys
xw

0 , xw
1 for every wirew ∈ W , and for eachxw

i computes an sCS commitmentCw
i to

xw
i . Also, S makes a set of wire keys corresponding to his inputs,{xw

bw
}w∈WS

, where
bw is S’s input bit onw ∈ WS .

COTs on receiver’s wire keys:S completesnr instances of the COT protocol on
the wire keys corresponding to receiver’s wires: for eachi = 1, .., nr, S enters keys
(xwi

0 , xwi

1) as a sender in the COT protocol, wherewi designates the receiver’sith input

Ideal functionality F2PC for two-party secure computation on committed inputs

Commit: Upon receiving a〈ComMsg, (Pi, cid), m〉 message fromPi, F2PC verifies
that thiscid has not been used byPi before, records the((Pi, cid), m) pair and broad-
casts a〈Committed, (Pi, cid)〉 message. Messagem is either a message in the pre-
scribed message space, or a special symbol⊥.

Start2PC: Upon receiving

msg = 〈Start2PC, (PS, PR, sid, cidS1, . . . , cidSns
, cidR1, . . . , cidRnr

, C)〉

from PR, F2PC verifies that (i) thissid has not been used byPS andPR before; (ii) for
every indexk such that1 ≤ k ≤ ns, F2PC has a unique record((PS, cidSk), mSk)
(these commitments correspond toPS ’s inputs into the protocol); (iii) for every indexl
such that1 ≤ l ≤ nr, F2PC has a unique record((PR, cidRl), mRl) and thatmRl ∈
{0, 1} (these commitments correspond toPR’s inputs into the protocol), and (iv)C is a
description of a circuit that takesns + nr bits as inputs. If this fails,F2PC ignores this
message; otherwise, it recordsmsg and forwards it toPS .

Complete2PC:Upon receiving

msg = 〈Complete2PC, (PS, PR, sid, cidS1, . . . , cidSns
, cidR1, . . . , cidRnr

, C)〉

from PS , F2PC verifies that it has a record〈Start2PC, ids〉, where ids =
(PS, PR, sid, cidS1, . . . , cidR1, . . . , C). If not, F2PC ignores this message.
F2PC looks up the records((PS, cidS1), mS1), . . . , ((PS , cidSns

), mSns
) and

((PR, cidR1), mR1), . . . , ((PR, cidRnr
), mRnr

). If mSk /∈ {0, 1} for some indexk,
F2PC ignores this instance of the 2PC protocol.
Otherwise,F2PC evaluates circuitC on inputsmS1, . . . , mSns

, mR1, . . . , mrnr
.F2PC

sends〈Complete2PC, ids, b)〉 to PR, whereb is the output of the circuit.

Note: This is a functionality forone-directionaltwo-party computation, where only the
receiverPR learns the output. Because both parties are committed to their inputs, they
can run another instance of the same protocol with the roles of PS andPR reversed.

Fig. 3.F2PC ideal functionality

wire. This way, for everyw ∈ Wr, the receiver obtains the wire keyxw
bw

wherebw is his
input bit on wirew. Technically,S computes tuple(u0

(wi), e0
(wi), u1

(wi), e1
(wi)) by

following the sender’s algorithm in Step 2 ofPcot on tuple(u(i), e(i), y(i)) and a pair
of messages(x0

wi , x1
wi), and their corresponding sCS commitments(C0

wi , C1
wi).

Receiver’s output wires:For every receiver’s output wirew ∈ W0, S creates a pair of
ciphertextsEw

0 , Ew
1 that enablesR to interpret the corresponding wire keys. Namely,

Ew
0 = sCSencxw

0
(0) andEw

1 = sCSencxw
1
(1).

Forming the garbled truth tables: The following process is repeated for every gate
g ∈ G. Let A andB be the input wires ofg, andC the output wire. LetCA

0,1, C
B
0,1, C

C
0,1

be the six sCS commitments to the respective wire keys (two per wire). These commit-
ments form the truth table for the gateg in which the input bitsbA, bB and the output bit

Committed 2PC Protocol

Common Reference String: CS commitment instancePK = (n, g, g, h, f, hk).

Commit: As in Pcot of fig. 2, playerPi on commitment instancecid and messagem
broadcasts〈ComMsg, ids, Com〉 whereCom = CSencids

PK(m) for ids = (Pi, cid).

2PC Step 1:To trigger instancesid of the protocol in order to compute circuitC on com-
mitment instancescidS1, . . . , cidSns

made byPS and commitmentscidR1, . . . , cidRnr

made byPR, thereceiverPR preparesnr messages, each computed as in Step 1 ofPcot

(fig. 2): for eachi = 1, .., nr, PS computes a tuple(y(i), u(i), e(i)) on bitσi committed
in ComcidRi

= (ũ(i), C(i), ṽ(i)) and its decommitmentr(i). PS sends toPR message

〈Start2PC, ids, C, {y(i), u(i), e(i)}i=1..nr
〉

whereids is the above vector of commitment ids.PR then performs the ZK proof system
ZKR2PC, which is a conjunction ofnr instances of theZKDLEQ(. . .) ∧ ZKCom(. . .)
proof system used in Step 1 ofPcot, one per each tuple(ri, C(i), y(i), u(i), e(i)), andnr

instances of theZKBit(C(i)) proof.

2PC Step 2:On receiving the〈Start2PC, ids, C, ...〉 message and verifying the ZK
proofs, PS retrieves its commitmentsComcidS1

, ..., ComcidSns
specified in theids

string, and sends toPR a garbled version of circuitC computed on these inputs:

Complete2PC〈 ids, {Cw
b }b∈{0,1}, w∈W , {Eg

αβ}αβ∈{00,01,10,11}, g∈G,

{xw
bw

}w∈WS
, {Ew

0 , Ew
1 }w∈W0

, {u
(w)
0 , e

(w)
0 , u

(w)
1 , e

(w)
1 }w∈WR

〉

These values are defined in Section 5.PS also performs the ZK proofCorrectYao.

2PC Step 3:PR verifies the ZK proofCorrectYao, evaluates the garbled circuit and
outputs its result. (Optionally,PR can send back toPS the wire keys corresponding to
PS ’s output wires.)

Fig. 4. Committed 2PC Protocol

bC = g(bA, bB) are replaced by commitments to the corresponding wire keys.As in the
original Yao’s protocol,S creates a ciphertext for each row of the truth table, encrypt-
ing the output-wire key corresponding to this row’s output bit under the two input-wire
keys corresponding to this row’s input bits. The ciphertexts must be randomly shuffled
to preventR from learning which row(bA, bB, g(bA, bB)) of the truth table he succeeds
in decrypting.S picks two random bits,σA andσB, which determine, intuitively, if the
values corresponding to theA andB wires are “switched” or not. (Ifw is S’s input
wire, thanσw is equal toS’s input bit on that wire.) If the rows are denoted in binary
as00, 01, 10, 11, then the first ciphertext received byR corresponds to rowσAσB , the
second to row̄σAσB , the third to rowσAσ̄B, and the fourth to row̄σAσ̄B.

S creates the ciphertext list(E00, E01, E10, andE11) using a two-key encryption
schemeEαβ = 2KEncx1, x2

(x), where for eachα, β, x1 = xA
α⊕σA

, x2 = xB
β⊕σB

, and
x = xC

g(α⊕σA ,β⊕σB). For example, ifσA = σB = 0, then eachEαβ is a two-key en-

cryption under keysxA
α andxB

β of the output-wire keyxC
g(α,β). If σA = 1, σB = 0, then

eachEαβ is a two-key encryption under keysxA
α andxB

β of keyxC
g(α,β), and so on. Note

that tuple(σA, σB, α, β) uniquely defines the commitmentsC1, C2, C that correspond
to the above keysx1, x2, x: C1 = CA

α⊕σA
, C2 = CB

β⊕σB
, andC = CC

g(α⊕σA ,β⊕σB).

The two-key encryption2KEncx1, x2
(x) is created as follows. The keyx ∈ [0, 2k′′

]

is split in two parts,x′
1 andx′

2, by choosingx′
1 at random in[−2k′′+k, 2k′′+k] (re-

call thatk′′, k are security parameters, wherek′′ = |n|
2 andk can be 80), and setting

x′
2 = x − x′

1 (over integers).S also computes an sCS commitmentD to x′
1. Observe

that if C is an sCS commitment tox, thenC/D is an sCS commitment tox′
2. The

ciphertextE is a triple〈D, F (1), F (2)〉, whereF (i) = sCSencxi
(x′

i). Let Eαβ denote

〈Dαβ , F
(1)
αβ , F

(2)
αβ 〉.

Proving circuit correctness:CorrectYao is a (concurrent ZK, with straight-line simu-
lator) proof system formed byconjunctionof the following proof systems:

∧
g∈G CorrectGarbleg ∧

∧
w∈W GoodKeysw ∧

∧
w∈WS

CorrectInputw
∧

∧
w∈WR

ZKSw ∧
∧

w∈WO
CorrectOutputw

where

GoodKeysw = ZKNotEq(Cw
0 , Cw

1)

CorrectInputw = (ZKDL(g, Cw
0 /αxw

bw) ∧ ZKDL(g, Cb)) ∨

(ZKDL(g, Cw
1 /αxw

bw) ∧ ZKDL(g, Cb/α)), whereCb is the
sCS commitment insideComcidSi

if w is theith input wire ofS
CorrectOutputw = ZKPlainEq2(Ew

0 , Cw
0 , 0) ∧ ZKPlainEq2(Ew

1 , Cw
1 , 1)

HereZKSw refers to the proof performed by the sender in the instance ofthe COT
protocol that corresponds to receiver’s wirew ∈ WR. ZKPlainEq2(E, Ck, m) is the
proof system for showing thatE is an sCS encryption of plaintextm under keyk com-
mitted inCk, and is a trivial simplification of theZKPlainEq(E, Ck, Cm) proof system
for proving the same about commitmentCm to m. Finally,CorrectGarbleg proves that
the ciphertext tableE00, E01, E10, E11 corresponding to garbled gateg is formed cor-
rectly, whereEαβ = (Dαβ , F

(1)
αβ , F

(2)
αβ):

CorrectGarbleg = CorrectShuffle(0, 0) ∨ CorrectShuffle(0, 1) ∨
CorrectShuffle(1, 0) ∨ CorrectShuffle(1, 1)

CorrectShuffle(α, β) = CorrectCipher(0, 0, α, β) ∧ CorrectCipher(0, 1, α, β) ∧
CorrectCipher(1, 0, α, β) ∧ CorrectCipher(1, 1, α, β)

CorrectCipher(σA, σB , α, β) = ZKPlainEq(F
(1)
αβ , CA

α⊕σA
, Dαβ) ∧

ZKPlainEq(F
(2)
αβ , CB

β⊕σB
, (CC

g(α⊕σA,β⊕σB)/Dαβ))

Circuit evaluation: R obtains his input-wire keys via COT and evaluates the entire
circuit gate by gate. Unambiguity of sCS encryption and soundness of the proof systems
ensures that for each gate,R decrypts exactly one of the four ciphertexts forming that
gate’s garbled truth table and obtains the key corresponding to the gate’s output wire.

Theorem 4. Under the strong RSA and DCR assumptions, the 2PC protocol offig. 4 is
a UC-secure realization of the Committed 2PC functionalityF2PC in the CRS model.

References

[AIR01] W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell digital
goods. InProc. EUROCRYPT, pages 119–135, 2001.

[Bou00] F. Boudot. Efficient proofs that a committed number lies in an interval. InProc.
EUROCRYPT, pages 431–444, 2000.

[CC00] J. Camenisch and C. Cachin. Optimistic fair secure computation. InProc. CRYPTO,
pages 93–111, 2000.

[CD97] R. Cramer and I. Damgård. Linear zero-knowledge – a note on efficient zero-
knowledge proofs and arguments. InProc. STOC, pages 436–445, 1997.

[CDS94] R. Cramer, I. Damgård, and B. Schoenmakers. Proofsof partial knowledge and
simplified design of witness hiding protocols. InProc. CRYPTO, pages 174–187,
1994.

[CGHG01] D. Catalano, R. Gennaro, and N. Howgrave-Graham. The bit security of Paillier’s
encryption scheme and its applications. InProc. EUROCRYPT, pages 229–243,
2001.

[CGHGN01] D. Catalano, R. Gennaro, N. Howgrave-Graham, andP. Nguyen. Paillier’s cryp-
tosystem revisited. InProc. CCS, pages 206–214, 2001.

[CM99] J. Camenisch and M. Michels. Proving in zero-knowledge that a number is a product
of two safe primes. InProc. EUROCRYPT, pages 107–122, 1999.

[Cré89] C. Crépeau. Verifiable disclosure of secrets and applications. InProc. EURO-
CRYPT, pages 181–191, 1989.

[CS03] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of dis-
crete logarithms. InProc. CRYPTO, pages 126–144, 2003.

[CvdGT95] C. Crépeau, J. van de Graaf, and A. Tapp. Committed oblivious transfer and private
multiparty computation. InProc. CRYPTO, pages 110–123, 1995.

[Dam02] I. Damgård. Efficient concurrent zero-knowledge in the auxiliary string model. In
Proc. EUROCRYPT, pages 418–430, 2002.

[DF02] I. Damgård and E. Fujisaki. A statistically hiding integer commitment scheme based
on groups with hidden order. InProc. ASIACRYPT, pages 125–142, 2002.

[DI05] I. Damgård and Y. Ishai. Constant-round multipartycomputation using a black-box
pseudorandom generator. InProc. CRYPTO, pages 378–394, 2005.

[FO97] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. InProc. CRYPTO, pages 16–30, 1997.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. InProc.
STOC, pages 218–229. ACM, 1987.

[GMY04] J. Garay, P. MacKenzie, and K. Yang. Efficient and universally composable oblivi-
ous transfer and applications. InProc. TCC, pages 297–316, 2004.

[HSS93] J. Håstad, A. Schrift, and A. Shamir. The discrete logarithm modulo a composite
hideso(n) bits. J. Comput. Syst. Sci., 47:850–864, 1993.

[JJ00] M. Jakobsson and A. Juels. Mix and match: Secure function evaluation via cipher-
texts. InProc. ASIACRYPT, pages 162–177, 2000.

[Kil88] J. Kilian. Founding cryptography on oblivious transfer. InProc. STOC, pages 20–
31, 1988.

[KO04] J. Katz and R. Ostrovsky. Rount-optimal secure two-party computation. InProc.
CRYPTO, pages 335–354, 2004.

[Lin03] Y. Lindell. Parallel coin-tossing and constant-round secure two-party computation.
J. Cryptology, 16(3):143–184, 2003.

[Lip03] H. Lipmaa. Verifiable homomorphic oblivious transfer and private equality test. In
Proc. ASIACRYPT, pages 416–433, 2003.

[LP07] Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in
the presence of malicious adversaries. InProc. EUROCRYPT, 2007.

[MF06] P. Mohassel and M. Franklin. Efficiency tradeoffs formalicious two-party compu-
tation. InProc. PKC, pages 458–473, 2006.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Proc. EUROCRYPT, pages 223–238, 1999.

[Ped91] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. InProc. CRYPTO, pages 129–140, 1991.

[Pin03] B. Pinkas. Fair secure two-party computation. InProc. EUROCRYPT, pages 87–
105, 2003.

[Woo07] D. Woodruff. Revisiting the efficiency of malicioustwo-party computation. InProc.
EUROCRYPT, 2007.

[Yao86] A. Yao. How to generate and exchange secrets. InProc. FOCS, pages 162–167,
1986.

A HVZK Proof System for Statement PlainEq

This is an HVZK proof system for languagePlainEq = {((e, u), Cx, Cm) | there
exist x, m, rx, rm s.t. e = αmux, Cx = αxgrx , andCm = αmgrm }, i.e., for the
language of tuples((e, u), Cx, Cm) s.t. (e, u) is an sCS encryption of the plaintextm
committed in sCS commitmentCm under the keyx committed in sCS commitmentCx.
It is special HVZK with weak special soundness under the strong RSA assumption. All
the parameters are as in section 3.4, except for two additional elementsG, H which are
assumed to be random inZ∗

n2 and can be included in the CRS.

1. The private inputs of the prover are

m ∈ [−2k′′+k, 2k′′+k], x ∈ [0, 2k′′

], rm, rx ∈ [0,
n

4
]

2. The prover pickstx ∈ [0, n
4] and sendsTx = GxHtx to the verifier. He also picks

m′, r′m, x′, r′x, t′x ∈ [0, 2k+k′+2k′′

]

and sends the following commitments to the verifier:

e′ = α2m′

u2x′

, C′
x = α2x′

g2r′

x , C′
m = α2m′

g2r′

m , T ′
x = Gx′

Ht′
x

3. Verifier responds with a random challengec ∈ {0, 1}k

4. Prover sends the following responses, all computed over integers:

m̃ = m′ − cm, r̃m = r′m − crm, x̃ = x′ − cx, r̃x = r′x − crx, t̃x = t′x − ctx

5. Verifies accepts if̃x ∈ [−n
4 , n

4] and if the following equations hold:

e′ = e2cα2m̃u2x̃,

C′
m = (Cm)2cα2m̃g2r̃m , C′

x = (Cx)2cα2x̃g2r̃x ,

T ′
x = (Tx)cGx̃H t̃x

