
Instance-Dependent Verifiable Random
Functions and Their Application to

Simultaneous Resettability?

Yi Deng1 and Dongdai Lin1

The state key laboratory of information security,Institute of software,
Chinese Academy of sciences, Beijing, 100080, China

{ydeng,ddlin}@is.iscas.ac.cn

Abstract. We introduce a notion of instance-dependent verifiable ran-
dom functions (InstD-VRFs for short). Informally, an InstD-VRF is, in
some sense, a verifiable random function [23] with a special public key,
which is generated via a (possibly)interactive protocol and contains an
instance y ∈ L ∩ {0, 1}∗ for a specific NP language L, but the secu-
rity requirements on such a function are relaxed: we only require the
pseudorandomness property when y ∈ L and only require the unique-
ness property when y /∈ L, instead of requiring both pseudorandomness
and uniqueness to hold simultaneously. We show that this notion can be
realized under standard assumption.
Our motivation is the conjecture posed by Barak et al.[2], which states
there exist resettably-sound resettable zero knowledge arguments for NP.
The instance-dependent verifiable random functions is a powerful tool to
tackle this problem. We first use them to obtain two interesting instance-
dependent argument systems from the Barak’s public-coin bounded con-
current zero knowledge argument [1], and then, we
1. Construct the first (constant round) zero knowledge arguments for

NP enjoying a certain simultaneous resettability under standard
hardness assumptions in the plain model, which we call bounded-
class resettable ZK arguments with weak resettable-soundness. Though
the malicious party (prover or verifier) in such system is limited to
a kind of bounded resetting attack, We put NO restrictions on the
number of the total resets made by malicious party.

2. show that, under standard assumptions, if there exist public-coin
concurrent zero knowledge arguments for NP, there exist the resettably-
sound resetable zero knowledge arguments for NP.

Keywords. instance-dependent verifiable random functions, simultane-
ous resettability, zero knowledge.

1 Introduction

Pseudorandom functions, introduced by Goldreich, Goldwasser and Micali [14],
are basic cryptographic primitives and have been used in a wide range of cryp-
tographic applications. Loosely speaking, pseudorandom functions are efficient
? This work is supported by the National Natural Science Foundation of China under

Grant No. 60673069



2 Yi Deng et al.

functions that cannot be tell apart from truly random functions by any polynomial-
time observer that given a black-box access to those functions.

In some applications, the seed (the description of a specific pseudorandom
function) owner needs to convince the observer (querier) that his reply to the the
observer’s query is correctly computed in order to protect the observer. To serve
this need, Micali et al. put forward the concept of verifiable random functions
[23]. Informally, a verifiable random function is described by a public/secret key
pair, and its output consists of two part, a pseudorandom value and a proof that
proving this value is correct. The security requirements for such a function are:
1)uniqueness. Except with a exponentially small probability, there is only one
value for a fixed query can be proved correct with respect to the public key;
2)pseudorandomness. After several queries, a polynomial-time observer can not
distinguish between a value that is computed by evaluating the function on his
new query and a value picked at random without the help of proof of correctness.
These distinguishing features make it useful in protocol design, as demonstrated
in [21, 22].

Zero knowledge (ZK for short) proof [16, 15], a proof that reveals nothing
but the validity of the assertion, is another fundamental tool in design of cryp-
tographic protocols. In recent years, several notable notions have emerged to cap-
ture some new security concerns that arise in modern maliciously asynchronous
communication environment, such as concurrent ZK[11]and universal compos-
able ZK[7]. An other notable concept is resettable ZK (rZK) introduced by
Canetti et al.[8]. The rZK formalizes security in a scenario in which the verifier
is allowed to reset the prover in the middle of proof to any previous stage. From
the randomness point of view, this notion is a strongest security measure. Obvi-
ously the notion of rZK is stronger than that of concurrent ZK and therefore we
can not construct a constant round black-box rZK protocol in the plain model
for non-trivial languages[9].

Following the above work, Barak et al. [2] initiated the study of soundness
in a setting where the prover can reset the honest verifier, and showed that
the public-coin constant round ZK argument of knowledge [1, 3] can be easily
transformed into constant-round resettably-sound ZK argument of knowledge.
Barak et al. also made a fascinating conjecture in [2]: there exist resettably-sound
resettable ZK arguments for NP. Unfortunately, no progress on this conjecture
has been made so far. The known results either achieved only resettable zero
knowledge, such as the (non-constant round) resettable ZK proof system of [8]
and the constant round public-coin bounded-resettable ZK argument system
(we call it BLV’s protocol) of [5], or achieved only resettable-soundness, such as
resettably-sound ZK argument system of [2].

It is shown that psedurandom functions are crucial ingredients in the con-
structions of all known rZK or resettably-sound ZK protocols. However, the pseu-
dorandom functions, even the stronger primitive of verifiable random functions,
seem not powerful enough to tackle the simultaneous resettability problem, and
this lead us to develop the new primitive—instance-dependent verifiable random
functions (InstD-VRFs for short).



Instance-dependent Verifiable Random Functions and Their Application 3

Motivation behind InstD-VRFs. Let’s return to the resettably-sound ZK ar-
gument in [2]. We first note that if we modify this protocol in such a way that
the verifier’s messages (except for the first one) satisfy some kind of binding
property, for example, the verifier’s responses are determined by the first veri-
fier’s message and the history messages so far, then the resetting attack from the
malicious verifier can be trivialized if the verifier do not reset the prover past
its first message, therefore it seems the resulting protocol achieves some certain
simultaneous resettability. Apparently, This can be done by plugging a verifi-
able random function in Barak’s public-coin bounded concurrent ZK protocol:
the first verifier’s message includes a public key of verifiable random function
along with the description of a hash, and all subsequent verifier’s messages are
computed by applying the verifiable random function to the history messages in
a session.

At a first look, the above resulting protocol enjoys certain desirable simul-
taneous resettability: besides achieving a stronger ZK property than bounded
resettable ZK that is achieved in the BLV protocol [5], it seems to be resettably-
sound due to the pseudorandomness of the verifiable random function. Indeed,
we can prove this protocol is ZK against somewhat restricted resetting verifier.
However, we do not know how to prove the soundness in standard way (i.e., prov-
ing by reduction), let alone the resettably-soundness, because for the analysis of
soundness to go through we typically need some freedom in verifier’s responses to
the same history of messages (i.e., verifier can choose different messages to reply
the same history of messages)in the WI universal argument of Barak’s protocol,
and unfortunately, the uniqueness of the verifiable random functions precludes
this possibility.

Inspired by the previous interesting instance-dependent commitment scheme
[19, 20], We introduce the notion of instance-dependent verifiable random func-
tions (InstD-VRFs), to achieve a certain simultaneous resettability. Informally, an
InstD-VRF is, in some sense, a verifiable random function [23] with a special pub-
lic key, which is generated via a (possibly)interactive protocol and contains an
instance y ∈ L ∩ {0, 1}∗ for a specific NP language L, but the security require-
ments on such a function are relaxed: we only require the pseudorandomness
property when y ∈ L and only require the uniqueness property when y /∈ L,
instead of requiring both pseudorandomness and uniqueness to hold simultane-
ously. The reason why such functions are useful is that we use only the uniqueness
to justify resettable ZK property and use only the pseudorandomness to justify
resettable-soundness.

Our contributions. In this paper We introduce a notion of instance-dependent
verifiable random functions and realize them under standard assumption. These
functions yields two interesting instance-dependent argument systems, which we
call key instance-dependent resettably-sound bounded-class resettable ZK argu-
ment and resettable witness indistinguishable argument with instance-dependent
weak resettably-soundness. These results extend the study of instance-dependent
primitives (protocols).



4 Yi Deng et al.

The instance-dependent verifiable random functions, together with the above
instance-dependent protocols, are powerful tools to tackle the simultaneous re-
settability conjecture. By using them, we construct the first (constant round)
zero knowledge arguments for NP enjoying certain simultaneous resettability in
the plain model. In our argument system, both the prover and the verifier are
protected from some kinds of restricted resetting attacks: For the malicious re-
setting prover, we put a priori bound on the number of the first messages sent by
it to each incarnation of the honest verifier, and for the malicious resetting veri-
fier, in addition to putting the aforementioned restriction on it, We further put a
priori bound on the number of incarnations of prover with which it is allowed to
interact. We call this protocol the bounded-class resettable ZK argument with
weak resettable-soundness. We stress our arguments assume standard (polyno-
mial time) hardness assumptions and their resettable security for the prover (the
verifier) does not rely on any restriction on the number of the total resets made
by malicious verifiers (provers). This is in contrast to the BLV protocol [5] (that
achieves only standard soundness), which relies on a priori bound of the total
resets made by malicious verifiers and exponential hardness assumptions.

We also show that, if there exist public-coin concurrent ZK arguments for
NP, the idea behind the above construction can be applied to the unbounded
simultaneously resettable setting, and this leads to resettably-sound resetable
ZK arguments for NP.

The resettable witness indistinguishable argument with instance-dependent
weak resettably-soundness is a crucial and delicate component in our main con-
structions (in section 5), in which both the prover and the verifier use a instance-
dependent verifiable random function. For the prover, the instance to be proven
serves as the key instance for its InstD-VRF directly. The most interesting but
difficult task is to produce a key instance for the verifier’s InstD-VRF. Our so-
lution to this problem is to have the prover generate a NO key instance with
respect to a hard-to-decide language for the verifier and prove to the verifier that
the statement to be proven is true or this key instance is an YES instance via
a resettable witness indistinguishable argument with instance-dependent weak
resettably-soundness. A glaring property of this argument is that it is argument
of knowledge when the statement to be proven (in the global system) is false, and
this is the crux in the analysis of the soundness of our main argument systems
presented in section 5.

Subsequent work. The instance-dependent verifiable random functions seem
to have potential beyond what we demonstrate in this paper. Very recently, by
using these functions in a novel way, we construct resettable witness indistin-
guishable argument with instance-dependent unbounded (in contrast to ”weak”)
resettably-soundness, and this immediately yields a (unbounded) resettably-
sound bounded-class resettable ZK argument, which gets close to the simul-
taneous resettability conjecture.

Outline. The definition of bounded-class resettable ZK and weak resettable-
soundness are presented in section 2. In section 3, we introduce the notion
of instance-dependent verifiable random functions and show a construction of



Instance-dependent Verifiable Random Functions and Their Application 5

this primitive under standard assumption. The application of the new primitive
are described in section 4, 5. In section 4 we present two interesting instance-
dependent protocols that are crucial building block for our construction of bounded-
class resettable ZK argument with weak resettable-soundness, and the latter
argument, along with a sufficient condition for the simultaneous resettability
conjecture, are presented in section 5.

2 Definitions

In this section we mainly define bounded-class resettable ZK and weak resettable-
soundness, which can be viewed as intermediate notions between their full re-
settable analogues and bounded resettable analogues. Due to lack of space, we
refer readers to [13] for some basic concepts, such as computational indistin-
guishability, (statistically-biding) commitment scheme, hybrid argument, and so
on.

In the following We denote by δ ←R ∆ the process of picking a random
element δ from ∆, and abbreviate probabilistic polynomial time as PPT. A
function f(n) is said to be negligible if for every polynomial q(n) there exists an
N such that for all n ≥ N , f(n) ≤ 1/q(n).

We follows the standard definition of zero knowledge argument in [13]. Note
that for such a protocol the soundness is required to hold only against PPT
adversaries.

Resettable prover and bounded-class resettable ZK Resettable ZK was
introduced in [8]. In essence, it guarantees the security of a prover with fixed
random tape in a scenario the verifier is allowed to run polynomial number
sessions with this fixed prover.

We introduce the notion of bounded-class resettable ZK. We call a fixed prover
strategy P (i,j) = Pxi,wi,rj an incarnation. We categorize all sessions between a
verifier and a fixed incarnation of prover into a class if they share the same veri-
fier’s first message msg. We denote a class associated with the incarnation P (i,j)

and the verifier’s first message msg with ClassP (i,j),msg. Note that it is possible
that a class contains (unbounded) any polynomial number sessions because the
verifier is allowed to reset the prover.

Definition 1. (Bounded-class resettable ZK argument) Let t be a polynomial.
An interactive argument (P, V ) for a language L is said to be t3-bounded-class
resettable ZK if for every every PPT adversary V ∗ there exists a PPT M so
that the following two distributions are computational indistinguishable, where
each distribution is indexed by a sequence of distinct common inputs x = x1, · ·
·, xt ∈ L ∩ {0, 1}n and a corresponding sequence of prover’s auxiliary inputs
w = w1, · · ·, wt,

Distribution 1 is defined by the following random process depending on P and
V .



6 Yi Deng et al.

1. Randomly pick and fix t random tapes, r1, ···, rt, resulting in t2 determin-
istic incarnations P (i,j) = Pxi,wi,rj

defined by Pxi,wi,rj
(α) = P (xi, wi, rj , α),

for (i, j) ∈ {1, · · ·, t} × {1, · · ·, t}.
2. The adversary V ∗ is allowed to run polynomial many sessions with the

P (i,j)’s, but for each P (i,j), the verifier can not reset P (i,j) past its first
message more than t−1 times, that is, the number of different V ∗’s first
message to each incarnation P (i,j) is a priori bounded by t. Under this
restriction, the verifier is allowed to schedule all sessions in interleaving
way: V ∗ can send arbitrary messages to each of the P i,j, and obtain the
responses of P (i,j) to such messages immediately.
This results in at most t3 classes in the whole interaction.

3. Once V ∗ decides it is done interacting with the P (i,j)’s, it produces an
output based on its view of the whole interaction. We denote this output
by (P (w), V ∗)(x).

Distribution 2 is the output of M(x).

The resetting attack performed by the restricted malicious verifier in the
above definition is called bounded-class resetting attack. We stress there is essen-
tial difference between bounded-resettable ZK [5] and bounded-class resettable
ZK: We impose no restriction on the number of the total resets (sessions) that
malicious verifiers can make.

Resettable verifier and weak resettable-soundness. Following the defini-
tions of resettablly-sound arguments in [2], we consider a weak resetting attack,
in which a malicious prover is not allowed to reset an incarnation of the verifier
past its first message more than t− 1 times, but still can interact with arbitrary
polynomial number of verifier’s incarnations. This kind of attack corresponds to
the following notion of soundness.

Definition 2. (Weak resettably-sound argument of knowledge.) for some a-priori
fixed polynomial t, a weak resetting attack of a malicious prover P ∗ on a reset-
table verifier V is defined by the following random process, indexed by a security
parameter n.

1. Uniformly picks and fix poly(n) random-tapes, denoted r1, · · ·, rpoly(n), for
V , resulting in deterministic strategies V (j)(x) = Vx,rj , x ∈ {0, 1}n and
j ∈ {1, · · ·, poly(n)}, defined by Vx,rj (α) = V (x, rj , α). We call each V (j)(x)
an incarnation of V .

2. Taking as input 1n, P ∗ is allowed to initiate any polynomial number sessions
with the V (j)(x)’s, but the number of different P ∗’s first message to each
incarnation V (j)(x) is a priori bounded by t. Under this restriction, the
prover P ∗ is allowed to schedule all sessions in interleaving way as usual: P ∗

can send arbitrary messages to each of the V (j)(x), and obtain the responses
of V (j)(x) to such messages immediately.

We say an argument system (P, V ) is a weak resettably-sound argument of knowl-
edge system if it satisfies:



Instance-dependent Verifiable Random Functions and Their Application 7

1. Resttable-completeness: Considering an arbitrary resetting attack of a PPT
P ∗. If P ∗ follows the strategy of P in some sessions after selecting an incar-
nation V (j)(x) and x ∈ L, then V (j)(x) rejects with negligible probability.

2. weak Resettably-soundness: For every weak resetting attack of a PPT P ∗,
the probability that in some sessions the corresponding V (j)(x) has accepted
an false statement (x /∈ L) is negligible.

3. Argument of knowledge: For every PPT P ∗, there exists a PPT machine E
such that for every weak resetting attack of P ∗, the probability that E, upon
input the description of P ∗, outputs a witness for the statement in a session
is negligibly close to the probability that P ∗ convinces V in a session.

We remark that in a weak resetting attack the malicious prover is entitled to
interacts with unbounded number of incarnations of the verifier. So we have four
types of resetting attack, full resetting attack, weak resetting attack, bounded-
class resetting attack and bounded resetting attack [5], each of which is more
powerful than the previous one.
Resettably-sound resettable WI. Roughly speaking, witness indistinguisha-
bility arguments [12] are arguments with property that nobody can tell which
witness was used to prove a statement in an interaction. Analogously, we define
Resettably-sound resettable WI (cf. [2]), and its variants according to our re-
strictions on the number of class and/or the number of a malicious party’s first
messages to each incarnation of the honest party. Due to space limitations, we
omit it here.

A note on terminology. Let A be a security property or a type of attack. In
the rest of the paper, the notion ”unbounded A” means an unrestricted version
of A.

3 Instance-dependent Verifiable Random Functions

In this section we will present the formal definition of instance-dependent veri-
fiable random functions and show how to implement it.

3.1 InstD-VRFs: Definition

As is hinted by its name, the public key for a instance-dependent verifiable
function contains a instance y ∈ L ∩ {0, 1}∗ for a NP language L, and unlike
the verifiable random functions, whose pseudorandomness and uniqueness are
required to hold at the same time, we require an instance-dependent verifiable
random function satisfies only the pseudorandomness when y ∈ L, and satisfies
only the uniqueness when y /∈ L.

Let d, l : N → N be two polynomial. Formally, an instance-dependent ver-
ifiable random function with respect to an NP language L associates with the
following (interactive) algorithms:

– KGProt, the key generation protocol between two parties, the querier A and
the owner of the function B, each party taking security parameter n and an



8 Yi Deng et al.

random string as input, produces a public/secret key pair (PK, SK), and
PK is of form (y, ·), where y ∈ L ∩ {0, 1}n is called key instance.

– F = (f, prov), the function evaluator, the first component is a determinis-
tic algorithm while the second component prov is a probabilistic algorithm.
Given a (PK, SK), on input an element a ∈ {0, 1}d(n) (the domain of fSK),
it outputs a function value b ∈ {0, 1}l(n) (the range of fSK) and a proof π.
That is, F(PK,SK)(a) = (fSK(a), prov(a, fSK(a), PK, SK)) = (b, π), where
F(PK,SK)(·) = F(PK, SK, ·).

– Ver, the verification (deterministic) algorithm, on input a, b, PK and a proof
π, Ver outputs 1 or 0.

– FakeF, the fake function evaluator. Assume y is in L. Given PK and a
witness wy for y ∈ L, for every a ∈ {0, 1}d(n), FakeF(PK,wy) can validate an
arbitrary false function value, i.e., for an arbitrary b ∈ {0, 1}l(n), taking a
as input, FakeF(PK,wy) can output (b, prov(a, b, PK,wy)) = (b, π) such that
Ver(a, b, PK, π) = 1.

The property of the fake function evaluator guarantees for a function h : {0, 1}d(n) →
{0, 1}l(n) that deviates arbitrarily from the function fSK specified by the secret
key, We can run the algorithm prov using wy to produce a valid proof of cor-
rectness for the function value h(a). We define the following two useful fake
functions:

– FakeF(PK,wy,s)(a) , (fs(a), prov(a, fs(a), PK, wy)), where fs : {0, 1}d(n) →
{0, 1}l(n) is an arbitrarily (independent of fSK) pseudorandom function.

– FakeF(PK,wy,h)(a) , (h(a), prov(a, h(a), PK, wy)), where h : {0, 1}d(n) →
{0, 1}l(n) is an arbitrarily (truly) random function.

Note that the algorithm prov in FakeF(PK,wy) produces a valid proof without
knowledge of the secret key SK, or the seed s (the description) of the function
fs (h) plugged in.

We say F(PK,SK)(·) is a instance-dependent verifiable function if it satisfies
the following conditions:

1. Provability. If (b, π) = F(PK,SK)(a), then Ver(a, b, PK, π) = 1
2. Uniqueness on NO key instance. If y /∈ L, then except with a negligible prob-

ability, there exist no values (a, b1, b2, PK, π1, π2) such that Ver(a, b1, PK, π1) =
Ver(a, b2, PK, π2) = 1

3. Pseudorandomness on YES key instance. If y ∈ L and wy is a witness for
y ∈ L, then for every PPT oracle machine M , every polynomial p, and all
sufficient large n′s,

|[Pr[MF(P K,SK)(1n) = 1]−Pr[MFakeF(P K,wy,h)(1n) = 1 : h ←R Hn]| < 1/p(n)

where Hn is the ensemble of all functions mapping d(n)-bit-long strings to
l(n)-bit-long strings.

Remarks:



Instance-dependent Verifiable Random Functions and Their Application 9

On key generation protocol. In contrast to the verifiable random functions [23]
whose keys are generated by the function owner alone, our instance-dependent
verifiable random functions allows interaction between the querier and the owner
of the function in the key generation process. Note also that in above definition
we do not make any requirement on the key generation protocol. This will allow
us to design different key generation protocols for different purposes, see details
in section 4.2 and section 5.

On pseudorandomness when y ∈ L. We remark that in the testing experi-
ment, M obtains the function value along with its proof of correctness for every
string that the oracle machine M queried. This is different from the testing ex-
periment used to demonstrate the pseudorandomness of verifiable random func-
tions, in which providing the proof of correctness along with the function value
of the last query for judgement to the testing machine will trivialize this test
because of the uniqueness of the verifiable random functions.

3.2 InstD-VRFs: Constructions

We begin with an informal description of our construction. The querier A and
the function owner B execute a protocol and produce an key instance y, then B
selects a pseudorandom function f at random and commits to the description of
this function. On input a string a in the domain of f , B returns f(a) and a witness
indistinguishable proof in which he proves that the function value is computed
correctly or y ∈ L using the knowledge of description of f he committed to. The
public key of this instance-dependent verifiable random function consists of the
instance y, the commitment and the setup information for the WI proof, the
secret key is the decommitment.

For our applications, we require that the proof in use satisfies both resettable-
soundness and resettable WI. To this end, the 2-round ZAPs introduced in [10]
and the non-interactive ZAPs suggested in [17] are good candidates. Here we
adopt 2-round ZAPs just for the purpose of basing our results on more general
assumptions.

In the key generation protocol KGProt, the way to produce an key instance for
the owner of the function is a subtle problem and may vary depending on specific
applications. In our applications there are two approaches to do this: for the
function owned by the prover, the key instance in its public key is the instance
to be proven (therefore the honest prover supposedly knows the corresponding
witness wy); for the function owned by the verifier, the key instance will be
generated by the prover and the prover gives a special WI argument in which
it proves the statement to be proven is true or the key instance generated by
itself is an YES instance(therefore the instance generated by an honest prover
is a NO instance, and this guarantees the uniqueness property of this function).
See details in section 5.

Bearing the above in mind, we omit the formal description of KGProt here
for greater flexibility. Now, we simply assume that the key instance y has been
generated already. The rest components of the key pair are created in following



10 Yi Deng et al.

way: the function owner B picks a pseudorandom functions fs0 from the ensem-
ble {fs : {0, 1}d(n) → {0, 1}l(n)}s∈{0,1}n , and commits to the seed s0 using a
statistically binding commitment scheme Com, let c = Com(s0, r) (r is the ran-
domness required by the commitment scheme). The querier A selects a random
string ρ as the first round message of ZAP and send it to B. On received ρ, the
function owner B publish the public key PK = (y, c, ρ) and keep SK = (s0, r)
as the secret key.

Given (PK, SK), on input a ∈ {0, 1}d(n), F(PK,SK) returns a function value
b and the second round message of ZAP π (the proof) in which it proves that
there exist (s0, r) such that fs0(a) = b and c = Com(s0, r) or y ∈ L. i.e.,
F(PK,SK)(a) = (fs0(a), prov(a, fs0(a), PK, SK)) = (b, π). Here we can view the
probabilistic algorithm prov as the prover in a ZAP system.

In the fake function evaluator FakeF(PK,wy), by using the witness wy to the
YES instance y, the algorithm prov can always generate the valid proof of cor-
rectness regardless of whether the function value is correct or not.

Theorem 1. If there exist trapdoor permutations, there exist instance-dependent
verifiable random functions.

Proof. We prove that The function evaluator F(PK,SK) described above is an
instance-dependent verifiable random function. Note that the statistically-binding
commitment scheme and pseudorandom functions can be constructed based on
one-way fucntions [24, 18], and ZAPs assumes only trapdoor permutations.

The Provability is straightforward. Uniqueness on NO key instance follows
immediately from the statistically-binding property of Com and the soundness
of ZAPs.

We prove the Pseudorandomness on YES key instance using hybrid argu-
ments. For every PPT oracle machine M , we consider the following sequences
of hybrids, in each hybrid M makes a polynomial number of queries to a func-
tion that is slightly different from the one in previous hybrid. We complete the
proof by showing M distinguishes each hybrid from its neighbor with at most a
negligible probability.
Hybrid 0 M queries F(PK,SK).
Hybrid 1 M queries F′(PK,SK), where F′(PK,SK)(·) = (fs0(·), prov(·, fs0(·), PK, wy)).

That is, F′(PK,SK) behaviors as the same as F(PK,SK) except it produces the
proof of correctness using the witness wy to y ∈ L. The fact that F(PK,SK)

and F′(PK,SK) are indistinguishable follows immediately from the witness
indistinguishability of ZAPs.

Hybrid 2 M queries FakeF(PK,wy,s), where the pseudorandom function seed s

is selected at random. We claim that M cannot distinguish F′(PK,SK) from
FakeF(PK,wy,s) with non-negligible probability. Assume otherwise, we con-
struct a non-uniform algorithm D to break the hiding property of the sta-
tistically binding commitment Com. We give the detailed proof later.

Hybrid 3 M queries FakeF(PK,wy,h), where h is a truly random function. Note
that the proof of correctness has nothing to do with the seed s or the de-
scription of h, so if M distinguishes FakeF(PK,wy,s) from FakeF(PK,wy,h), it
distinguishes a pseudorandom function form a truly random function.



Instance-dependent Verifiable Random Functions and Their Application 11

Now we give the description of algorithm D to prove the claim in Hybrid 2. D
runs as follows. It takes s0,s1 and wy

1 as input. On received the target commit-
ment c′ that is the commitment to s0 or s1, D uses PK = (y, c′, ρ) as public key,
and for any query a made by M , it returns fs0(a) and prov(a, fs0(a), PK, wy))
(Note that D always uses fs0 to compute the function value, then when c′ =
Com(s0), D performs as F′(PK,SK); when c′ = Com(s1), D performs as FakeF(PK,wy,s0)).
At end, if M outputs b ∈ {0, 1}, D output 1− b. We show D breaks the hiding
property of Com. We assume for some polynomial p,

|[Pr[MF′(P K,SK)(1n) = 1]− Pr[MFakeF(P K,wy,s)(1n) = 1 : s ←R {0, 1}n]| > 1/p(n)

Then we have

|[Pr[D outputs 1|c′ = Com(s1)]− Pr[D outputs 1|c′ = Com(s0)]

=|[Pr[MFakeF(P K,wy,s0)(1n) = 0]− Pr[MF′(P K,SK)(1n) = 0]|
=|[Pr[MF′(P K,SK)(1n) = 1]− Pr[MFakeF(P K,wy,s0)(1n) = 1]|
>1/p(n)

A note on input length. We remark that an InstD-VRF F(PK,SK) with domain
{0, 1}d(n) can also be applied to inputs of length shorter than d(n) by simply
encoding the shorter inputs into the ones of desired length (cf. [13]) and using
a prefix of ρ with suitable length as the first round message of a ZAP for the
proof of correctness.

4 Two Instance-dependent Protocols

With the instance-dependent verifiable random functions we developed, We
are ready to construct two interesting instance-dependent protocols, which we
call key instance-dependent resettabley-sound bounded-class resettable ZK ar-
gument (KInstD rs-rZK argument) and resettable WI argument with instance-
dependent weak resettable-soundness (InstD rs-rWI argument). Though these
protocols do not even satisfy ZK (WI) and (knowledge) soundness at the same
time, they are crucial tools for our main constructions presented in next sections.

4.1 Key instance-dependent Resettabley-sound Bounded-class
Resettable ZK Arguments for NP

We first show how to transform a public-coin bounded concurrent ZK argu-
ment into a key instance-dependent resettabley-sound bounded-class resettable
1 In case y is generated by the querier in the key generation protocol, it seems that

y must be generated before the commitment c is seen by the querier, otherwise,
our non-uniform algorithm D does not work because it needs to take a fixed advice
(i.e.,the witness to y) in advance (before seeing the target commitment) in breaking
the hiding property of the commitment. However, in our applications, we do not
need comply with this order. To enable the above analysis, we require the querier
give a special argument of knowledge of the witness to y which is generated by itself.



12 Yi Deng et al.

ZK argument by equipping the verifier in the former system with an instance-
dependent verifiable random function. Similar to any other instance-dependent
primitive, the key instance-dependent resettabley-sound bounded-class resettable
ZK argument satisfies only the resettable-soundness when the key instance is
a YES instance, and satisfies only the bounded-class resettable ZK when the
key instance is a NO instance.

As showed in [2], we can transform a constant-round public-coin bounded
concurrent ZK argument (PB, VB) into a constant round resettably-sound bounded
concurrent ZK argument (PR, VR) by simply equipping VR with a pseudoran-
dom function and letting VR emulate VB except that it generate the current
round message by applying a pseudorandom function to the transcript so far.
With the argument (PR, VR), We construct a key instance-dependent resettably-
sound bounded-class resettable ZK argument (KInstD rs-rZK argument, for
short) (P, V ) as follows. The prover P and the verifier V first execute a key
generation protocol KGProt aimed at setting up a key pair (PK, SK) of an
instance-dependent verifiable random function F(PK,SK) = (fs0 , prov) with re-
spect to a hard language L′ (the choice of language L′ see section 5) for V , and
then they execute the protocol (PR, VR) in following way: 1) In each P ’s step,
P checks whether the message sent by V is computed correctly, if so, it replies
according to the instruction of PR; 2) V feeds VR with the randomness s0, and
in each V ’s step, V generates its message by running VR and using the algorithm
prov in F(PK,SK) = (fs0 , prov) to give a proof of correctness for the output by
VR. Note that VR always generates its message by applying fs0 to the history
produced by PR and VR, so each V ’s message can be viewed as the output by
F(PK,SK) = (fs0 , prov) on the the transcript of the underlying protocol (PR, VR)
so far. See Fig.1 for the formal description.

We assume the transcript size of an execution of the resettably-sound t3-
bounded concurrent ZK argument (PR, VR) is bounded by a polynomial d, and
assume the longest message sent by VR is t3n3. Without of loss generality, We
assume all verifier’s messages are of equal length.

Theorem 2. The KInstD rs-rZK argument (P, V ) depicted in Fig.1 satisfies
following conditions:

1. Unbounded resettable-soundness when y ∈ L′: for any x /∈ L, if all key instance
y’s generated by an incarnation V (j)(x) = Vx,rvj

are in L, then for any PPT
P ∗ mounting unbounded resetting attack, the probability that V (j)(x) ac-
cept in some session is negligible.

2. t3-Bounded-class resettable ZK when y /∈ L′: For all PPT V ∗ mounting
bounded-class resetting attack, if y /∈ L′ holds for all sessions, then there
exists a PPT M satisfying the requirement of Definition 1.

Intuitively, the property of resettable-soundness when y ∈ L′ follows from
the fact that once the verifier has the witness, it can send arbitrary messages
to a same history of a session without being detected by the prover, so we can
reduce the soundness of the KInstD rs-rZK argument (P, V ) to the underlying
protocol (PR, VR). On the other hand, if all y’s are NO instance, then the first



Instance-dependent Verifiable Random Functions and Their Application 13

KInstD rs-rZK Argument (P, V )

Common input: x ∈ L (|x| = n)
The Prover’s private input: a witness w for x ∈ L.
Prover’s randomness: rp, a seed of a pseudorandom function frp

Verifier’s randomness: rv, a seed of a pseudorandom function frv

Phase 1: the key generation protocol KGProt

V → P V sets (r1
v, r2

v) = frv (x), selects fs0 ←R {fs : {0, 1}≤d(n) →
{0, 1}t3n3}s∈{0,1}n and r0 ←R∈ {0, 1}n using randomness r1

v, computes
c0 = Com(s0, r0) using the statistically-binding commitment scheme
Com and generates an instance y ∈ L′ ∩ {0, 1}n, stores SK = (s0, r0).
Sends c0, y;

P → V P sets (r1
p, r2

p) = frp(x, c0, y), selects the first message ρ for a ZAP using
randomness r1

p. at random. At the end of this step, the InstD-VRF’s key
pair (PK, SK) = ((y, c0, ρ), (s0, r0)) is set up for V .
Sends ρ;

Phase 2: the Modified resettably-sound t3-bounded concurrent ZK argument
V ⇔ P Let (PR, VR) be the resettably-sound t3-bounded concurrent ZK argu-

ment. P writes r2
p on PR’s random tape. V writes s0 on VR’s random

tape (the description of fs0). P and V perform the following strategy.

V ’s Strategy In each V ’s step, V runs VR(s0, ·) on input hist, where
hist is the history (including the common input) produced by PR

and VR (not the history produced by P and V ) so far. V obtains
mv = VR(s0, hist), and computes π = prov(hist, mv, PK, SK) us-
ing randomness fr2

v
(hist), then V sends (mv, π) to P .

Note that (mv, π) = (fs0(hist), prov(hist, mv, PK, SK)) =
F(PK,SK)(hist) (VR always generates mv by applying fs0 to the
history so far).

P ’s Strategy In each P ’s step, P checks whether the message (mv, π)
sent by V is correct by using the algorithm Ver associated with
F(PK,SK), if not, aborts; if so, runs PR(r2

p, ·) on input (hist, mv),
here hist is the history produced by PR and VR before the message
mv was sent by V . P sends mp = PR(r2

p, hist, mv) to V .
V ’s Decision V accepts if only if VR accepts the transcript that gen-

erated by PR and VR.

Fig. 1. The key instance-dependent resettably-sound bounded-class resettable ZK ar-
gument for a NP language L.



14 Yi Deng et al.

verifier’s message essentially determines the verifier’s behavior, this will make
our protocol enjoy bounded-class resettable ZK. The actual proof is omitted
here, and will be found in the full version of this paper.

4.2 The Resettable WI Arguments with Instance-dependent Weak
Resettable-soundness

In this subsection, we construct resettable WI arguments with instance-dependent
weak resettable-soundness (InstD rs-rWI argument, for short), in which the
prover proves that one of the two instances x0 and x1 is in the language L.
Though there are resetably-sound resettable WI arguments for NP such as ZAPs,
which achieves more stronger security than our InstD rs-rWI arguments, how-
ever, the InstD rs-rWI arguments have a distinguishing property that ZAPs do
not enjoy: they are arguments of knowledge on some special instances. This prop-
erty is crucial for the analysis of soundness of our main construction presented
in next section.

We assume that there are 3 round public-coin WI arguments of knowledge
for all NP languages. Let (a, e, z) is the three messages exchanged in a session.
Furthermore, we assume these arguments have the following property: it is easy
to extract the witness for the statement from two different transcripts (a, e, z)
and (a, e′, z′) when e 6= e′. To this end, the parallelized version of Blum’s proof
of knowledge for Hamiltonian Cycle is a good candidate, which assumes one-way
permutations exist.

Our construction is inspired by the protocol 6.2 in [2], in which the verifier
first commits to a seed of a pseudorandom function and generates the query e
by applying this function to the first round message a. The important deviation
is that the verifier in our system uses a KInstD rs-rZK argument to prove the
query e is computed correctly. In the KInstD rs-rZK argument, one instance, say
x0, serves as the key instance for a InstD-VRF used by the verifier (the prover in
the global system). The formal description appears in Fig.2.

Theorem 3. The InstD rs-rWI argument (PW, VW) depicted in Fig.2 satisfies
following properties:

1. Unbounded Resettable witness indistinguishability: For any PPT V ∗
W mount-

ing unbounded resetting attack, the distribution (PW(w0), V ∗
W )(x) is compu-

tationally indistinguishable from (PW(w1), V ∗
W )(x), where x = x1, · · ·, xpoly(n),

xi = (xi
0, x

i
1), wb = w1

b , ···, wpoly(n)
b such that (xi

b, w
i
b) ∈ RL, i = 1, ···, poly(n),

b = 0, 1.
2. Weak resettably-sound argument of knowledge property when x0 /∈ L: For

every PPT P ∗W mounting weak resetting attack, if P ∗W convinces VW on state-
ment (x0, x1) such that x0 /∈ L with probability p in a session, then there
exists a PPT machine E, upon input the description of P ∗W , outputs a witness
for the instance x1 with probability negligibly close to p.

The Unbounded Resettable witness indistinguishability follows from the fact that
the underlying KInstD rs-rZK argument satisfies resettably-soundness when x0 ∈



Instance-dependent Verifiable Random Functions and Their Application 15

L. For the Weak resettably-sound argument of knowledge property when x0 /∈ L,
We can construct a extractor E to justify it. Assume P ∗W convinces an incarnation
V j
W (x) on statement (x0, x1) such as x0 /∈ L with high probability in a session.

The extractor E first plays the role of V j
W (x) and get an accepting transcript

InstD rs-rWI Argument (PW, VW)

Common input: two instance x0, x1 ∈ L, a security parameter n.
The Prover’s private input: the witness w such that (x0, w) ∈ RL or (x1, w) ∈ RL.
Prover’s randomness: rp, a seed of a pseudorandom function frp

Verifier’s randomness: rv, a seed of a pseudorandom function frv

VW → PW VW sets (r1
v, r2

v) = frv (x0, x1). Using the randomness r1
v, VW selects a

pseudorandom function fs : {0, 1}≤poly(n) → {0, 1}|e| and r, computes
c = Com(s, r) using a statistically-binding commitment scheme Com.
Sends c;

PW → VW PW sets (r1
p, r2

p) = frp(x0, x1, c).
Using the randomness r1

p , PW invokes the 3 round WI argument in
which it proves x0 ∈ L or x1 ∈ L, produces the first message a of this
protocol .
using the randomness r2

p, PW invokes a KInstD rs-rZK argument (in
which PW plays the role of verifier), produces the first message c0 (i.e.,
the commitment to the description of pseudorandom function) and uses
x0 as the key instance.
Send a,c0;

VW → PW VW computes e = fs(x0, x1, c, a, c0). Using the randomness r2
v, VW and

selects the first message ρ for a ZAP according to the KInstD rs-rZK
argument.
Sends e, ρ;

PW ⇔ VW PW and VW continue to run the KInstD rs-rZK argument in which
VW proves there exist s, r such that e = fs(x0, x1, c, a, c0) and c =
Com(s, r). The public key for PW’s InstD-VRF is PK = (x0, c0, ρ) and
the corresponding secret key is the decommitment to c0.

PW → VW Sends the answer z to the query e according to the 3 round WI argument
if the above transcript is accepting.

VW’s Decision VW accepts if only if the transcript (a, e, z) is accepting.

Fig. 2. The resettable WI arguments with instance-dependent weak resettable-
soundness.

(a, e, z) of the underlying 3-round WI argument, and then rewinds P ∗W to the
point that the message that contains a was first sent by P ∗W , and then sends
another challenge e′ and runs the simulator associated with the KInstD rs-rZK
argument to prove that e′ is correctly computed. At the end E will receive
another accepting transcript (a, e′, z′) with probability close to the probability



16 Yi Deng et al.

that P ∗W convinces V j
W (x), and this allows E to compute a witness for x1 (x0 is

assumed to be NO instance). Due to space limitations, the formal analysis of
this extractor are omitted here and will appear the full version of this paper.

We stress that the InstD rs-rWI argument achieves weak resettably-sound ar-
gument of knowledge property when x0 /∈ L, rather than bounded-class resettably-
sound argument of knowledge property when x0 /∈ L. There are two reasons for
this: 1) it is sufficient to consider only one incarnation of the verifier in the analy-
sis of soundness; 2) the simulation performed by E will be run successful (due to
the bounded resettable zero knowledge property when x0 /∈ L of the underlying
KInstD rs-rZK argument, note x0 is the key instance for P ∗W ’s InstD-VRF).

However, we failed to achieve unbounded resettable-soundness. This is be-
cause, for justifying the extraction, we need to simulate all proofs given by V j

W (x),
not just those proofs given by V j

W (x) with the first P ∗W ’s (P ∗W plays the role of the
verifier in the underlying KInstD rs-rZK argument) first message (a, c0) (there-
fore, we need to put a priori bound on the number of the P ∗W ’s first messages).
Recently, we overcome this obstacle by using the the instance-dependent verifi-
able random functions in a novel way.

5 Transforming Public-coin (Bounded) Concurrent
ZK Arguments to (Bounded-class) Resettable ZK
Arguments with (Weak) Resettable-soundness

We now show how to transform a public-coin bounded concurrent ZK argument
into a bounded-class resettable ZK argument with weak resettable-soundness, us-
ing the two instance-dependent protocols developed in last section. Furthermore,
if public-coin (unbounded) concurrent ZK argument exists, the same transforma-
tion yields a (unbounded) resettably-sound resettable ZK argument immediately.

We obtain a bounded-class resettable ZK argument with weak resettable-
soundness from a public-coin bounded concurrent ZK argument in the following
way: we first transform the public–coin bounded concurrent ZK argument into a
key instance-dependent resettably-sound bounded-class resettable ZK argument,
then we modify the resulting protocol in such a way taht, in the key generation
protocol, instead of having the verifier generates a key instance itself, we have the
prover generates a NO instance with respect to some hard-to-decide language
L′ as the key instance for the verifier’s InstD-VRF and gives a proof that the
statement x ∈ L to be proven is true or this key instance is a YES instance via a
resettable WI argument with instance-dependent weak resettable-soundness in
which the prover uses x as the key instance for its own InstD-VRF, The second
phase of the key instance-dependent resettably-sound bounded-class resettable
ZK argument remains unchanged. For the language L′, we choose the one defined
by a pseudorandom generator [6, 25]: L′ = {y|∃δ, y = G(δ), |y| = 2n, |δ| = n},
where G : {0, 1}n → {0, 1}2n is a pseudorandom generator. This protocol is
formally depicted in Fig.3.

The key idea behind this protocol is that for an honest prover, it always
generates NO instance as key instance of the verifier’s InstD-VRF, and for a



Instance-dependent Verifiable Random Functions and Their Application 17

false statement x /∈ L, the cheating prover must generate YES instance due
to the weak resettably-sound argument of knowledge property when x /∈ L of
the InstD rs-rWI argument used in the key generation protocol. Note that the
common input x itself serves as the key instance for the prover’s InstD-VRF in
the InstD rs-rWI argument.

Theorem 4. If there exist trapdoor permutations and collision-resistant hash
functions, there exist bounded-class resettable ZK arguments with weak resettable-
soundness for all NP languages.

We prove this theorem by showing the wrs-brZK argument described in Fig.3 is
a bounded-class resettable ZK argument with weak resettable-soundness for any
NP language L. For the complexity assumption, we note that one-way functions
are sufficient for the pseudorandom generator, so, our protocol assumes trapdoor
permutations and collision-resistant hash functions (for Barak’s protocol).
Proof. Completeness is straightforward.

Weak resettable-soundness. Assume a PPT P∗ mounting a weak reset-
ting attack, convinces an incarnation Vj(x) on a false statement x /∈ L with non-
negligible probability p. By the weak resettably-sound argument of knowledge
property when x /∈ L (note that x serves as the key instance of P∗’s InstD-VRF)
of the InstD rs-rWI argument in the key generation protocol, we have with prob-
ability essentially close to p there exists ∃δ, |δ| = n such that y = G(δ) (assume
y is the instance generated by P∗), and use the extractor associated with the
InstD rs-rWI argument, we will extract the witness δ. Furthermore, note that
y serves as the key instance of the verifier’s InstD-VRF in phase 2, then using
this witness and the strategy P∗ , we can break the resettable-soundness of the
underlying resettably-sound bounded-concurrent ZK argument in phase 2 in a
way similar to the analysis of soundness for the KInstD rs-rZK argument, which
leads to a contradiction.

Bounded-class resettable ZK. This property follows from the next lemma.

Lemma 1. Let (PR, VR) be a resettably-sound t3-bounded concurrent ZK argu-
ment system, and (P,V) be the wrs-brZK argument transformed from (PR, VR).
Then for every PPT V∗ bounded-class resettable model, there exists a PPT V ∗

R

in the bounded concurrent model such that (PR(w), V ∗
R)(x) is computationally

indistinguishable from (P(w),V∗)(x), where x = x1, · · ·, xt ∈ L, w = w1, · · ·, wt

such that (xi, wi) ∈ RL, i = 1, · · ·, t.
Proof. We construct V ∗

R in bounded concurrent model using the following strat-
egy to handle V∗’s message.

1. V∗ sends a new first message msg to P(i,j) : Assume this is the kth new
first message to P(i,j) (1 ≤ i, j, k ≤ t). V ∗

R chooses δ randomly, generates
y = G(δ) itself, and stores (y, δ). It acts as honest prover but uses δ as the
witness to execute the InstD rs-rWI argument, and forwards a message to
V∗. Furthermore, V ∗

R maintains a table, in which the row with index (i, j, k)
contains those messages belonging to the class ClassP(i,j),msgk

.



18 Yi Deng et al.

2. V∗ repeats a first message msg to P(i,j). Assume msg equals msgk that V ∗
R

received before. V ∗
R retrieves its response to this message from row(i,j,k) in

its table and forwards it to V∗.

wrs-brZK Argument (P,V)

Common input: x ∈ L (|x| = n).
The Prover’s private input: the witness w such that (x, w) ∈ RL.
Prover’s randomness: rp, a seed of a pseudorandom function frp

Verifier’s randomness: rv, a seed of a pseudorandom function frv

Phase 1: the key generation protocol KGProt
V → P V sets (r1

v, r2
v, r3

v) = frv (x), selects fs0 and r0 ∈ {0, 1}n using ran-
domness r1

v, computes c0 = Com(s0, r0) using the statistically-binding
commitment scheme Com, and stores SK = (s0, r0).
Sends c0;

P ⇔ V P sets (r1
p, r2

p, r3
p, r4

p) = frp(x, c0) and generates a random string y (|y| =
2n) using randomness r1

p.
P and V run a InstD rs-rWI argument in which P proves that x ∈ L
or ∃δ, |δ| = n such that y = G(δ). In the underlying the KInstD rs-
rZK argument used in this InstD rs-rWI argument, x serves as the
InstD-VRF’s (owned by the prover in global system) key instance, the
randomness used by P is r2

p and the randomness used by V is r2
v.

P → V P selects the first message ρ for a ZAP using randomness r3
p. At the end

of this step, the InstD-VRF’s key pair (PK, SK) = ((y, c0, ρ), (s0, r0))
is set up for V.
Sends ρ;

Phase 2: the Modified resettably-sound bounded concurrent ZK argument
V ⇔ P P and V follows the same strategy as described in the phase 2 in the

KInstD rs-rZK argument (see Fig.1), in which the verifier uses an InstD-
VRF described by (PK, SK) = ((y, c0, ρ), (s0, r0)). In this phase, P uses
randomness r4

p and V uses randomness r3
v.

Fig. 3. The bounded-class resettable ZK argument with weak resettable-soundness for
a NP language L.

3. V∗ sends a valid non-first message belonging to the key generation protocol
KGProt to P(i,j). V ∗

R produces the response to this message2 according to the
key generation protocol KGProt as the honest prover but in the execution of
InstD rs-rWI argument it uses the δ as the witness. V ∗

R stores this response,
and forwards it to V∗.

2 Without loss of generality, we assume each message sent by V ∗ is prepended with a
session ID.



Instance-dependent Verifiable Random Functions and Their Application 19

Note that V∗ is free in the key generation protocol, Thus a class recorded
by V ∗

R may contain many different sessions due to V∗’s resetting in phase 1.
4. V∗ sends a invalid message belonging to the the key generation protocol

KGProt to P(i,j). V ∗
R sends an abort message to V∗ to end this session.

5. V∗ sends a valid message belonging to the Modified resettably-sound bounded
concurrent zero knowledge argument (i.e., a message sent in phase 2) to
P(i,j). Assume that this message is the lth round message belonging to
ClassP(i,j),msgk

. Parse this message into (ml, πl). We distinguish three cases:
Case 1. The lth round message was sent by V∗ before in some previous

session in this class and the current message ml does not equal the
lth round message m′

l recorded in the row row(i,j,k). In this case, V ∗
R

terminates.
Case 2. The lth round message was never sent by V∗ before in this class. In

this case, V ∗
R forwards ml to the incarnation P i,jk

R , stores ml and P i,jk

R ’s
response in row(i,j,k) and forwards it to V∗.

Case 3. The lth round message was sent by V∗ before in some previous
session in this class and the current message ml equals the lth round
message m′

l recorded in the row row(i,j,k). In this case, V ∗
R retrieves the

P i,jk

R ’s response to this message in the row(i,j,k) and forwards it to V∗.
We stress that in this case V ∗

R does not interact with any incarnation of
PR.

Observe that for two different first verifier V∗’s messages msgm 6= msgn to
the same incarnation P(i,j), V ∗

R initiates two independent incarnations P i,jm

R

and P i,jn

R to generate the V∗’s view, and this strategy makes V ∗
R look like

the real incarnation P(i,j).
6. V∗ sends a invalid message belonging to the Modified resettably-sound

bounded concurrent zero knowledge argument to P(i,j). V ∗
R sends an abort

message to V∗ to end this session.
7. V∗ terminates. Without loss of generality, V∗ outputs its view in the whole

interaction. V ∗
R outputs what V∗ outputs.

It is easy to see that the strategy V ∗
R works in bounded concurrent models if

V∗ works in bounded-class resettable model. Since V ∗
R runs only one session with

each P i,jk

R ’s, we can identify each class ClassP (i,j),msgk
with the single session of

V ∗
R with P i,jk

R (though a class contains many different sessions, but all those
sessions have the same tail, i.e., the transcript produced by P i,jk

R and V ∗
R in

phase 2).
Note that in sessions having different first verifier’s message or sessions be-

tween V∗ and different honest incarnations of P, P will generate (almost) inde-
pendent random tapes to emulate the action of PR in the second phase of the
wrs-brZK argument in different sessions, and V ∗

R , incorporating with P i,jk

R ’s, uses
the same strategy as P in the second phase of this argument. So, if the case 1 in
item 5 does not occur, the only difference between V∗’s view during the interac-
tion with V ∗

R and its view during the real interaction with many incarnations of
P is that in the former interaction V ∗

R uses pseudorandom generator to produce



20 Yi Deng et al.

YES instances y and uses the corresponding witness to execute the InstD rs-rWI
argument. We can use a standard hybrid algorithm3 to show V∗’s view in these
two scenario are indistinguishable, furthermore, note that V ∗

R ’s view is just the
copy of V∗’s view, so (PR(w), V ∗

R)(x) is computationally indistinguishable from
(P(w),V∗)(x).

Note that the case 1 in item 5 occurs with only negligible probability when
y is NO instance due to the uniqueness property of the InstD-VRF on NO
key instance. Therefore, if the case 1 occurs with non-negligible property in
our setting that all y’s are YES instances, then we construct an algorithm to
break the pseudorandomness of the generator. This algorithm takes all witness
for these statements x as inputs and uses them to execute the underlying InstD
rs-rWI argument, if case 1 occurs, outputs ”yes”. It is not hard to see that this
algorithm works.

Public-Coin Concurrent ZK Implies Simultaneously Resettable Se-
cure ZK. If public-coin concurrent ZK argument exists, then we can con-
struct key instance-dependent resettably-sound unbounded resettable ZK argu-
ment and resettable WI argument with instance-dependent unbounded resettable
soundness, therefore, using the above transformation, we get a resettably-sound
resettable ZK argument. So, we have

Theorem 5. If there exist public-coin concurrent zero knowledge argument for
a NP language L, and if trapdoor permutations exist, there exist resettably-
sound resettable ZK argument for L.

We don’t know if the public-coin concurrent ZK argument for non-trivial
language exists, and if Barak’s technique can be extended to (unbounded) con-
current setting. Theorem 5 shows this question deserves our attention: if such
protocols (regardless of the number of rounds) for NP exist, the simultaneous
resettability conjecture is true.

Acknowledgements Yi Deng is grateful to Boaz Barak and Yehuda Lindell
for helpful conversations on concurrent and resettable zero knowledge. We thank
anonymous reviewers for their encouragement and valuable comments.

References

[1] B. Barak. How to go beyond the black-box simulation barrier. In Proc. of IEEE
FOCS 2001, pp.106-115.

3 Consider an algorithm H takes the witnesses for all statement x as input, generates
YES instances using a pseudorandom generator, and interacts with V∗ using the
witnesses for x as witnesses to execute the underlying InstD rs-rWI argument. Ob-
serve that V∗’s view in the interaction with H is distinguishable form both its view
in the interaction with V ∗

R (due to resettable WI property of the underlying InstD
rs-rWI argument) and its view in the interaction with P (due to pseudorandomness
of the generator), thus we conclude the latter two are indistinguishable.



Instance-dependent Verifiable Random Functions and Their Application 21

[2] B. Barak, O. Goldreich, S. Goldwasser, Y. Lindell. Resettably sound Zero Knowl-
edge and its Applications. In Proc. of IEEE FOCS 2001, pp. 116-125.

[3] B. Barak, O. Goldreich. Universal Arguments and Their Applications. In Proc.
of IEEE CCC 2002, pp. 194-203.

[4] M. Blum. How to Prove a Theorem so No One Else can Claim It. In Proc. of
ICM’86, pp. 1444-1451, 1986.

[5] B. Barak, Y. Lindell, S. Vadhan. Lower Bounds for Non-Black-Box Zero Knowl-
edge. In Proc. of IEEE FOCS 2003, pp.384-393

[6] M. Blum, S. Micali. How to Generate Cryptographically Strong Sequences of
Pseudo Random Bits. In Proc. of IEEE FOCS 1982, pp. 112-117

[7] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In Proc. of IEEE FOCS 2001, pp.136-145

[8] R. Canetti, O. Goldreich, S. Goldwasser, S. Micali. Resettable Zero Knowledge.
In Proc. of ACM STOC 2000, pp.235-244

[9] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Concurrent Zero-Knowledge
requires Ω(logn) rounds. In Proc. of ACM STOC 2001, pp.570-579.

[10] C. Dwork, M. Naor. Zaps and Their Applications. In Proc. of IEEE FOCS 2000,
pp.283-293

[11] C. Dwork, M. Naor and A. Sahai. Concurrent Zero-Knowledge. In Proc. of ACM
STOC 1998, pp.409-418.

[12] U.Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Proto-
cols. In Proc. of ACM STOC 1990, pp.416-426.

[13] O. Goldreich. Foundation of Cryptography-Basic Tools. Cambridge University
Press, 2001.

[14] O. Goldreich, S. Goldwasser, S. Micali. How to construct random functions. J.
ACM 33(4), pp.792-807

[15] O. Goldreich, S. Micali and A. Wigderson. Proofs that yield nothing but their
validity or All languages in NP have zero-knowledge proof systems. J. ACM,
38(3), pp.691-729, 1991.

[16] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM. J. Computing, 18(1):186-208, February 1989.

[17] J. Groth, R. Ostrovsky and A. Sahai. Non-interactive Zaps and New Techniques
for NIZK. In Advances in Cryptology-Crypto’o6, LNCS 4117, pp.97-111.

[18] J. Hastad, R. Impagliazzo, L. A. Levin, M. Luby. A Pseudorandom Generator
from Any One-Way Functions. SIAM Journal on Computing 28(4):1364-1396,
1999.

[19] T. Itoh, Y. Ohta. A language-dependent cryptographic primitive. Journal of Cryp-
tology 10(1) pp.37-49, 1997

[20] Daniele Micciancio, Shien Jin Ong, Amit Sahai, Salil P. Vadhan. Concurrent Zero
Knowledge Without Complexity Assumptions. TCC 2006, LNCS3876, pp.1-20

[21] S. Micali, L. Reyzin. Soundness in the public-key model. In Advances in
Cryptology-Crypto’o2, LNCS2139, pp.542C565, 2001.

[22] S. Micali, R. Rivest. Micropayments revisited. In CT-RSA, pp.149C163, 2002.
[23] S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In Proc. of

IEEE FOCS, pp. 120C130, 1999.
[24] M. Naor. Bit Commitment using Pseudorandomness. Journal of Cryptology 4(2):

151-158, 1991.
[25] A. Yao. Theory and Applications of Trapdoor Functions. In Proc. of IEEE FOCS

1982, pp.80-91


