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Abstract. Among the three broad classes of Identity-Based Encryption
schemes built from pairings, the exponent inversion paradigm tends to
be the most efficient, but also the least extensible: currently there are no
hierarchical or other known extension of IBE based on those schemes.
In this work, we show that such extensions can be realized from IBE
systems that conform to a certain abstraction of the exponent inversion
paradigm. Our method requires no random oracles, and is simple and
efficient.

1 Introduction

Since the first practical constructions of the identity-based encryption (IBE)
primitive appeared a few years ago [18, 9, 4], a large body of work has been
devoted to creating better realizations of the basic primitive, and to extending
it in many interesting ways. With the notable exception of Cocks’ basic IBE
scheme [9], virtually all IBE-like constructions known to date make more or less
extensive use of bilinear pairings on elliptic curves.

The many extensions that have been proposed in the recent years have the
common goal to extend the notion of identity from its original atomic meaning,
to complex constructs of identity components on which certain operations can
be performed. In particular, we mention hierarchical identities [13], fuzzy iden-
tities [16], and identities as attributes [12] among the most significant of these
extensions. Fortunately, and unlike the original idea of IBE [19] which remained
without construction for many years, most of the IBE extensions that have been
suggested also have a known construction. However, to temper this optimism,
we should note that for many of these extensions, the only realizations we know
of all derive from the same basic IBE paradigm, despite the availability of alter-
natives. In particular, an entire family of very efficient IBE constructions does
not seem to support any of the extensions afforded by other families.

Our current knowledge of pairing-based IBE schemes can be partitioned in
three broad families: (1) full-domain hash, (2) exponent inversion, and (3) com-
mutative blinding—with little doubt that others will be invented in the future.
The connotations behind this taxonomy shall be explicited later on. Each of these
categories defines a general construction template, by which encryption and key



derivation are matched in an identity-based manner using a bilinear pairing.
The one thing that these families have in common is their use of a pairing—but
not how they use it. Indeed, the shape of the template greatly affects how the
schemes can be extended, and their security proved.

Among the three families, the commutative blinding method originated with
BB1-IBE [2] has distinguished itself as the most fertile ground for generalizing
IBE, based on the number of extensions that it currently supports, such as for-
ward secure hierarchies [3], partial-match or fuzzy identities [16], and complex
attribute-based policies [12]. It is followed rather distantly by the full-domain
hash family, defined by BF-IBE [4], which contains fewer but nevertheless inter-
esting extensions, including hierarchies [11] also with forward security [21]. In
stark contrast, based on our current state of knowledge, the exponent inversion
family does not seem to have any useful extension, despite the fact that the ba-
sic IBE functionality performs more efficiently in this family, based on BB2-IBE
[2] and SK-IBE [7, 17], than in the other two. This situation strikes us as odd,
as there is no obvious reason why the exponent inversion family should be less
accommodating than the other two.

The aim of this paper is to show that the exponent inversion paradigm is
more flexible than has been previously recognized. To this end, we first give an
abstraction of exponent inversion schemes such as BB2-IBE and SK-IBE, that
captures functional properties such as linearity in the exponent, and which we
call Linear IBE. We also define certain security properties that such schemes
should satisfy depending on the final goal of the construction; these properties
have to do with simultaneous or parallel instances of the IBE running at once,
which is a general technique we use in all our constructions. We then apply the
method to transform any black-box Linear IBE with suitable security properties
into a hierarchical, fuzzy, attribute-based, or distributed system, under generic
security reductions to the underlying base IBE abstraction.

The transformations are syntactically black-box, but their security requires
the parallel simulation of several base instances, hence our requirement that the
underlying scheme be secure in such conditions. In general, the transformations
preserve the gist of the security properties of the underlying scheme, e.g., in
the random oracle or standard model, and under selective or adaptive security,
but keeping in mind that it requires (and consumes) the supplemental notion
of parallel IBE security already mentioned. The method is quite simple and
preserves the efficiency of the underlying scheme, with a multiplier that depends
on the particulars of what the transformation seeks to achieve. In practice, this
new approach seems appealing, as it allows the very efficient but bare-bones SK
and BB2 schemes to become more flexible and thus we hope more useful.

We call ad hoc cryptosystem any such public-key system that supports pri-
vate sub-keys with designated restricted capabilities. This includes IBE and its
extensions.



2 A Classification of IBE Schemes

The following is a rough classification of the known identity-based encryption
schemes. All of them support at least a basic security reduction to a well-
formulated complexity assumption, either in the standard model or in the ran-
dom oracle model.

“Quadratic Residuosity” IBE (without pairings). We mention Cocks’ [9] scheme
as the only known example of IBE based on quadratic residuosity in RSA groups;
it is inefficient in terms of bandwidth and has no known extension.

“Full Domain Hash” IBE. This is the class of the Boneh-Franklin identity-based
encryption [4], and to which the earlier Sakai-Ohgishi-Kasahara identity-based
key exchange [18] also belongs.

In BF encryption and the constructions that are based on it, such as [11, 21],
the session keys are of the form e(H(Id), ĝα)s where Id is the recipient identity,
α is the master secret, and H is a full-domain hash function into the bilin-
ear group, viewed as a random oracle. In SOK key exchange, the session key
e(H(IdA),H(IdB)α)s is computed interactively from the identities of both par-
ties, but also involves the master key α and a random oracle as in BF encryption.

“Exponent Inversion” IBE. This approach to IBE can be traced to an idea of
Mitsunary, Sakai, and Kasahara in the context of traitor tracing [14]. For IBE,
the principle is to obtain a session key of the form e(g, ĝ)s based on a ciphertext
(gf(Id))s and a private key g1/f(Id), where f(Id) is a secret function of the recipient
identity but gf(Id) is computable publicly. A benefit of this type of construction
is that there is no need to hash directly on the curve. Notice also that the master
key cancels out completely from the session key.

This category includes the Sakai-Kasahara scheme originally described in
[17] and later proven secure in [7] in the random oracle model. The category
also includes the second of two IBE schemes proposed by Boneh and Boyen
[2], which has a selective-identity proof of security in the standard model. All
these schemes rely on the fairly strong BDHI complexity assumption [2], which
was first used in another context by Mitsunary, Sakai, and Kasahara [14]. This
assumption, called Bilnear Diffie-Hellman Inversion (BDHI), has been further
analyzed in [8].

Recently, Gentry [10] proposed another construction that has superficial sim-
ilarities to the others in this category, but with a proof of security in the adaptive-
identity model (based on an even stronger assumption). Gentry’s IBE scheme
appears to belong in the exponent inversion category, although the case is not
clear-cut because the session key is not of the form e(g, ĝ)s, but of the form
e(g, ĥ)s, where ĥ is created by the initial setup procedure. Although ĥ remains
statistically independent of the secret key, it is not intended to be constant from
one instance of the system to the next, and Gentry’s security proof no longer
applies if ĥ and thus e(g, ĥ) is fixed.



“Commutative Blinding” IBE. The last category of IBE systems descends from
BB1, the first scheme given in the Boneh-Boyen paper [2]. These systems are
based on the same BDH assumption as the Boneh-Franklin scheme [4], but use
a mechanism that avoids random oracles. Very roughly, the general principle is
to create blinding factors from two secret coefficients in a way that makes them
“commute” (i.e., not depend on the application order), thanks to the pairing.

The algebraic versatility exhibited by the BB1 approach has given rise to a
fair number of extensions to the original scheme; see for example [3, 16, 20, 15, 1].
Virtually all constructions in the commutative blinding paradigm have session
keys of the form e(g, ĝα)s, where α is part of the master key, and s is chosen by
the sender.

It is likely that the coming years will see the emergence of additional families
of schemes. In this paper, we are concerned with the Exponent Inversion family,
which tends to be the most computationally efficient and arguably requires the
least bandwidth, but currently lacks the flexibility of the other pairing-based
families (such as Commutative Blinding especially).

3 Exponent Inversion Abstractions

We now describe an abstraction of IBE that captures the properties of the expo-
nent inversion paradigm that we need. Our abstraction is sufficiently powerful
to support a wide variety of generic constructions, and sufficiently general to
encompass all IBE schemes known to date that do not “obviously” fall outside
of the exponent inversion paradigm.

3.1 Linear IBE Schemes

Based on the properties that our semi-generic construction will require, we de-
fine the following abstraction of IBE schemes that use the exponent inversion
principle. Two basic schemes mentioned earlier (BB2 and SK) fit particularly
nicely within this abstraction.

Intuitively, we exploit two facets of the “linearity” exhibited by exponent
inversion IBE. All such schemes construct their identity-based trapdoor from
a secret polynomial θ(Id), and publish enough information to allow anyone to
compute gθ(Id) but not ĝ1/θ(Id). The latter can serve as private key for Id, and
the trapdoor arises from the cancellation of the exponents on both sides of the
pairing: e(gθ(Id), ĝ1/θ(Id)) = e(g, ĝ). To get an IBE scheme, the encryptor needs
to pick a randomization exponent s; the ciphertext becomes gθ(Id) s and the
session key e(g, ĝ)s. Because session keys constructed this way are linear in both
the private key and the ciphertext, it will be easy to construct secret sharing
schemes in the exponent either in the ciphertext or on the private key side. This
is the first property we need (we shall precise and generalize it momentarily).

Our second property is the independence of session keys with respect to the
master secret. As in any IBE scheme, the master secret is needed to construct



the private keys, but here it need not affect the choice of session keys. Indeed,
if the generators g and ĝ are imposed externally, the only degree of freedom
in the session key e(g, ĝ)s is the exponent s chosen by the encryptor. (This is
very much unlike full-domain hash and commutative blinding IBE schemes, in
which session keys are respectively of the form e(H(Id), ĝα)s and e(g, ĝα)s and
necessarily involve the master key α.)

As already mentioned, Gentry’s IBE scheme uses session keys of the form
e(g, ĥ)s rather than e(g, ĝ)s, where ĥ is created at random by the initial setup
procedure. Although our template requires ĥ to be fixed, the current proof of
Gentry’s IBE does not tolerate it, and so we provisionally include Gentry-IBE
as a “syntactic” Linear IBE scheme until the question can be settled.

A Template for Exponent Inversion IBE. Toward formalizing the requirements
above, we first define the particular template that candidate IBE schemes must
obey.

Setup(e, g, ĝ, v, ω) on input a pairing e : G× Ĝ→ Gt, generators g ∈ G, ĝ ∈ Ĝ,
v ∈ Gt, and a random seed ω, outputs a master key pair (Msk, Pub) where
Pub = (e, g, ĝ, v, ...).
We require key pairs generated from independent random seeds ω1, ω2, ... to
be mutually independent. We allow key pairs generated from the same inputs
e, g, ĝ, v, ω to be mutually independent, as the setup algorithm is permitted
to use its own source of randomness.

Extract(Msk, Id) on input Msk and an identity Id, outputs a private key PvkId =
(Id, R, d), which can be deterministic or randomized.
Here, Id ∈ Id , the domain of identities; R ∈ Rd , some non-empty auxiliary
domain; and d = (d1, ..., dn) ∈ D, a vector space of n coordinates, each a
copy of one of Fp, G, Ĝ, Gt.

Encrypt(Pub, Id,Msg, s) on input Pub, a recipient Id, a plaintext Msg, and a
randomization exponent s ∈ Fp, outputs a ciphertext Ctx = (Id, S, c0, c).
Here we require that Msg ∈ Gt, that c0 = Msg · vs, and that c = (c1, ..., cm) ∈
C, where C is a vector space of m coordinates, each being a copy of Fp, G, Ĝ,
or Gt. Finally, we assume that S ∈ Sd , with Sd some non-empty auxiliary
domain.

Decrypt(Pub,PvkId,Ctx) on input Pub, a private key PvkId = (Id, R, d), and a
ciphertext Ctx = (Id, S, Msg · vs, c), outputs Msg provided the inputs are
well-formed and the identities match.

The purpose of ω given to setup is to allow the creation of multiple instances of
a single scheme with related keys; this may enable certain schemes (potentially
Gentry’s) to fit the template, provided that other security conditions are met.
Normally, ω is ignored by the underlying scheme and all key pairs are indepen-
dent.

Based on this template, we define the notion of Linear IBE to capture the
intuitive linearity properties of the session keys that we discussed.



Definition 1. A Linear IBE scheme, (Setup, Extract, Encrypt, Decrypt), is a
quadruple of algorithms that follows the template above, and further satisfies the
two properties below.

1. There exists a (publicly) efficiently computable function, fPub : Id × Rd ×
Sd ×C ×D → Gt, linear in each of its last two arguments, such that, for all
well-formed PvkId = (Id, R, d) and Ctx = (Id, S, c0, c),

fPub (Id, R, S, c, d) = v−s ,

where we recall that v is the generator of Gt given as input to the Setup
function, and thus independent of the choice of Msk.
Note that the decryption algorithm reduces to: Decrypt(PvkId,Ctx) ← c0 ·
fPub(Id, R, S, c,d).

2. For any two possibly identical public keys Pub1 and Pub2 derived from the
same parameters (e, g, ĝ, v, ω), for any auxiliary values R′

1 and R′
2, and for

any identities Id1 and Id2 such that Pub1 6= Pub2∨ Id1 6= Id2, one can publicly
and efficiently find two “reciprocal private keys” d′1 = (d̂′1,1, ..., d̂

′
1,n) and

d′2 = (d̂′2,1, ..., d̂
′
2,n) such that:

(a) For i, j = 1, 2, let [dij : (Idj , R , dij)← Extract(Mskj , Idj) | R = Ri] be
the conditional distribution induced by sampling the extraction algorithm
and retaining outcomes with the stated auxiliary value Ri. There must
exist a non-trivial linear combination with coefficients tij ∈ Fp, allowed
to depend on the Ri and R′

j, that renders these random variables statis-
tically indistinguishable,

[d′1] ∼ [(d11)t11 (d12)t12 ] ,

[d′2] ∼ [(d21)t21 (d22)t22 ] .

(b) For any two well-formed ciphertexts Ctx1 = (Id1, S1, Msg1 · vs, c1) and
Ctx2 = (Id2, S2, Msg2 · vs, c2), for identities Id1 and Id2, and built with
the same randomization exponent s, we have,

fPub(Id1, R′
1, S1, c1, d′1) · fPub(Id2, R′

2, S2, c2, d′2) = v0 = 1 .

Property 1 expresses our two earlier requirements: first, that the session keys
be bilinear functions of both the private keys and the ciphertexts (represented
by c and d); and second, that session keys be of the form v−s for externally fixed
v, and thus independent of the master key.

Property 2 asks that anyone be able to produce d′1 and d′2 that cancel out
when used as private keys. The private keys Pvk1 and Pvk2 and the linear co-
efficients t11, ..., t22 must provably exist, but they need not and should not be
efficiently computable from public information (as this would be incompatible
with IBE security). Requirement 2a serves to ensures that d′1 and d′2 are prop-
erly randomized and compatible with the function fPub. Requirement 2b implies
a generalization to arbitrary linear combinations of keys d′1, ...,d

′
k for any num-

ber k of identities (and auxiliary values): cancellation would then occur in a
k-wise product under the chosen linear combination. We shall see this in action
in the HIBE scheme of Section 5.1.



3.2 Parallel IBE Security

The preceding notion of Linear IBE must be strengthened slightly in order to
be useful. What we need is a weak notion of parallelism for the IBE scheme
that extends to the simulation proofs, but that does not necessarily entail full
concurrency.

Essentially, we want the ability to run multiple instances of the IBE at once,
in a way that the session keys be all the same (though the identities might
be different). For this, we need all the instances to use the same target group
generator v ∈ Gt (which need not be specified externally), and allow them to
use the same random exponent s to create the common session key vs.

We define the notion of parallel semantic security under selective-identity
chosen plaintext attack using the following game played against an attacker A.

Target: A announces the identities Id∗1, ..., Id
∗
` it intends to attack.

Setup: The challenger generates a set of public bilinear parameters
(e, g, ĝ, v) and a secret random seed ω, and makes ` independent
calls to the IBE setup algorithm (Mski,Pubi) ← Setup(e, g, ĝ, v, ω)
using these inputs, but with different internal randomness if Setup
uses any. A is given (e, g, ĝ, v) and the ` public keys Pub1, ...,Pub`,
which may or may not be the same.

Queries I: A adaptively submits private key extraction queries on each
IBE scheme. For any query Id made with respect to the i-th IBE
public key Pubi, we require that Id 6= Id∗i . The challenger answers
such a query with PvkId,i ← Extract(Mski, Id), recalling PvkId,i from
storage if it has been computed already.

Challenge: A then outputs two messages Msg1 and Msg2 on which it
wishes to be challenged. The challenger selects b ∈ {1, 2} at ran-
dom, draws a random exponent s ∈ Fp, and creates ` ciphertexts
Ctxi ← Encrypt(Pubi, Id

∗
i ,Msgb, s) using the same message Msgb. The

challenge given to A is the ` ciphertexts Ctx1, ...,Ctx`.
Queries II: A makes additional queries under the same constraints as

before, to which the challenger responds as before. The total number
of queries to each IBE subsystem in phases I and II may not exceed
q.

Guess: A eventually outputs a guess b′ ∈ {1, 2}, and wins the game if
b′ = b.

Definition 2. We say that an IBE scheme is (q, `, τ, ε)-Par-IND-sID-CPA secure
if there is no adversary A that and wins the preceding game in time τ with
probability at least 1

2 + ε.
We say that an IBE scheme is (q, `, τ, ε)-Par-IND-ID-CPA secure in the same

conditions, if the Target phase is moved to the beginning of the Challenge phase.

We further strengthen the security notion by offering an additional type of
key extraction query, which captures the intuition that the challenger is able
to create linear relations between arbitrary private keys, including the ones on



the target identities (albeit without revealing what those are). We define this
security property separately because it is not needed for all generic constructions.
In Query phases I and II, we add a “parallel simulation” query, which goes as
follows:

Queries I’ & II’: A can make adaptive “parallel simulation” queries
across all IBE instances. To query, A outputs k + 1 pairs (ij , Idij )
where {i0, ..., ik} ⊆ {1, ..., `}. We require Idij 6= Id∗ij

for j = 1, ..., k

but allow Idi0 = Id∗i0 . To respond, B picks a random γ ∈$ F×p ; for j =
0, ..., k, it computes Pvkij = (Idij , Ri,j ,di,j) ← Extract(Mskij , Idij ),
or recalls it from storage if is was computed before; it then outputs
(Idij

, Ri,j , (di,j)γ) for j = 0, ..., k.
Each new needed call to Extract counts toward the quota of q private
key queries; no PvkId,i is ever recomputed under different random-
izations.

The above game augmented with the “parallel simulation” query defines the
following security notion.

Definition 3. We say that an IBE scheme is (q, `, τ, ε)-ParSim-IND-sID-CPA
secure if there is no adversary A that and wins the augmented game in time τ
with probability at least 1

2 + ε.
We similarly define adaptive-identity (q, `, τ, ε)-ParSim-IND-ID-CPA security,

if the Target phase is postponed to the beginning of the Challenge phase.

We short-handedly say that an IBE scheme is Exponent Inversion Compliant
(or EI-compliant) if it satisfies Definitions 1 and 3, and thus 2 (with parameters
that are understood from context).

4 Concrete Instantiations

In this section, we prove that the canonical examples of IBE schemes that in-
tuitively fall under the exponent inversion umbrella are, indeed, Linear IBE
schemes per our formal definition, and also fulfil the Parallel Simulation IBE
security property (albeit in different ways). For completeness, we briefly review
the workings of each scheme, and refer to the literature for the details.

4.1 BB2-IBE

Our first example is the second of two IBE constructions given by Boneh and
Boyen in [2], or BB2. It was originally proven secure against selective-identity
attacks from the BDHI assumption [14, 2] in the standard model.

– BB2.Setup outputs the master key Msk ← (a, b) and the public parameters
Pub←

(
g, ga = ga, gb = gb, v = e(g, ĝ)

)
where a, b ∈$ Fp.

– BB2.Extract(Msk, Id) outputs PvkId ←
(
rId = r, d̂Id = ĝ

−1
a+Id+b r

)
for r ∈$ Fp.



– BB2.Encrypt(Pub, Id,Msg, s) outputs Ctx ← (c0, c1, c2) where c0 = Msg · vs,
c1 = (ga gId)s, c2 = gs

b for the given s.
– BB2.Decrypt(Pub,PvkId,Ctx) outputs Msg′ ← c0 · e(c1 crId

2 , d̂Id) ∈ Gt.

Note that the setup seed ω is not used; the master key (a, b) is generated from
internal randomness.

Lemma 1. BB2-IBE is a Linear IBE scheme. 1

Proof. For key and ciphertext with matching identities, we find that Msg′ =
(Msg · vs) · v−s = Msg. Towards Property 1, if follows that,

fPub

(
Id, R = (rId), S = ⊥, c = (c1, c2), d = (d̂Id)

)
= e(c1 crId

2 , d̂Id) = v−s .

Linearity in the last two arguments is then easy to show. In particular,

fPub

(
Id, R = (rId), ⊥, cα = (cα

1 , cα
2 ), dβ = (d̂Id)β

)
= v−s α β .

For Property 2, given Id1, Id2, and any r′1, r
′
2 ∈ Fp, set d′1 = (ĝa2 ĝ

r′2
b2

ĝId2) and

d′2 = (ĝa1 ĝ
r′1
b1

ĝ−Id1)−1, taking (ga1 , gb1) from Pub1 and (ga2 , gb2) from Pub2,
which are not necessarily distinct. Then, for actual private keys PvkId1 = (r1,d1)
and PvkId2 = (r2,d2), we have,

d′1 = (d1)(a1+b1 r1+Id1) (a2+b2 r′2+Id2) · (d2)0 ,

d′2 = (d1)0 · (d2)−(a2+b2 r2+Id2) (a1+b1 r′1+Id1) ,

and, for any c1 =
(
(ga1 gId1)s, gs

b1

)
and c2 =

(
(ga2 gId2)s, gs

b2

)
, we have that,

fPub (Id1, r′1, ⊥, c1, d′1) · fPub (Id2, r′2, ⊥, c2, d′2) = 1, ∀s, as required.

The following lemma generalizes the BB2 security theorem from [2] to the
notion of parallel IBE semantic security defined in Section 3.2.

Lemma 2. BB2-IBE is (q, `, τ, ε)-ParSim-IND-sID-CPA secure in any bilinear
context that satisfies the Decision (q′, τ ′, ε)-BDHI assumption with q′ > q ` and
τ ′ < τ −Θ(q2 `2).

In other words, BB2 is secure under a selective-identity, parallel simulation
attack, in the standard model, provided that the BDHI assumption holds in the
relevant bilinear context.

4.2 SK-IBE

The second scheme we describe is adapted from the identity-based key encapsu-
lation mechanism (IBKEM) given in [7] and attributed to Sakai and Kasahara
[17]. Its security proof is set in the random oracle model. For consistency with
our definitions, we present an IBE version of the scheme, and call it SK.
1 See Remark 1 concerning implementations in asymmetric bilinear groups.



– SK.Setup outputs the master key Msk← a ∈$ Fp and the public key Pub←
(g, ga = ga, v = e(g, ĝ), H : {0, 1}∗ → Fp).

– SK.Extract(Msk, Id) outputs the private key PvkId ← ĝ
1

a+H(Id) .
– SK.Encrypt(Pub, Id,Msg, s) outputs Ctx←

(
c0 = Msg · vs, c1 = (ga gH(Id))s

)
.

– SK.Decrypt(Pub,PvkId,Ctx) outputs Msg′ ← c0 / e(c1, PvkId) ∈ Gt.

As in BB2, the setup seed ω is not used; the master key a is generated from
internal randomness.

Lemma 3. SK-IBE is a Linear IBE scheme. 1

Proof. SK-IBE clearly fits the Linear IBE template with v = e(g, ĝ). Property 1
is easily verified; in particular, for cα = (cα

1 ) and dβ = (Pvkβ
Id),

fPub (Id, ⊥, ⊥, c, d) = e(c1, PvkId)−α β = e(g, ĝ)−s α β = v−s α β .

For Property 2, given Id1 and Id2 anyone can pick d′1 = (ĝa2 ĝH(Id2)) and d′2 =
(ĝ−1

a1
ĝ−H(Id1)), so,

d′1 = (PvkId1)
t11 · (PvkId2)

t12 t11 = (a1 + H(Id1)) (a2 + H(Id2)), t12 = 0 ,

d′2 = (PvkId1)
t21 · (PvkId2)

t22 t21 = 0, t22 = −t11 ,

and ∀s, fPub

(
Id1, ⊥, ⊥, (ga1 gH(Id1))s, d′1

)
·fPub

(
Id2, ⊥, ⊥, (ga2 gH(Id2))s, d′2

)
=

e(g(a1+H(Id1)) s, ĝa2+H(Id2)) · e(g(a2+H(Id2)) s, ĝ−a1−H(Id1)) = e(g, ĝ)0 = 1, as re-
quired.

Lemma 4. SK-IBE is (q, `, τ, ε)-ParSim-IND-ID-CPA secure in any bilinear con-
text that satisfies the Decision (q′, τ ′, ε′)-BDHI assumption with q′ > q ` and
τ ′ < τ − Θ(q2 `2), in the random oracle model, where ε′/ε ≥

∏`
i=1 Qi, where

Qi is the number of adversarial queries to the random oracle that hashes the
identities in the i-th IBE subsystem.

Notice that the above lemma pertains to a full adaptive-identity, parallel
simulation attack. The security is not tight, however, and the security losses
mount exponentially with the number of IBE subsystems in the experiment.

Proof. The security proof is similar to (and a simpler version of) the proof of
Lemma 2.

4.3 The case of the Gentry IBE

The ambiguity of Gentry’s IBE as an exponent inversion candidate presents an
intriguing open problem. Recall from [10] that it uses a powerful security reduc-
tion that gives it tight security under adaptive-identity attacks, albeit under a
strong assumption. On the one hand, the Gentry IBE has much in common with
the exponent inversion family, such as the use of session keys e(g, ĥ)s that do not
involve the master secret. On the other hand, the scheme uses two generators, g



and ĥ, chosen at random by the master key generator. The security proof breaks
when both g and ĥ are fixed externally, or even when chosen randomly but reused
across parallel instances in the sense of Section 3.2. Thus, Gentry-IBE currently
fails the exponent inversion litmus test that session keys be of the form vs for
fixed v; it remains open whether this can be remedied using a different proof.

Since the HIBE transformation we describe next preserves adaptive-identity
security, extending Gentry’s proof to work in the exponent inversion setting
would resolve the long-standing problem of realizing fully secure HIBE for broad
and deep hierarchies. Meanwhile, the very existence of such schemes remains an
open problem.

Remark 1 (Asymmetric Implementations).
Lemmas 1 and 3 tacitly assume that for each element g, ga = ga, gb = gb ∈ G

published in Pub, the corresponding element ĝ, ĝa = ĝa, ĝb = ĝb ∈ Ĝ is made
available for the creation of d′1 and d′2. This is automatically true if we assume
that G = Ĝ, as was the case in the original descriptions of BB2 [2] and SK [7,
17]. Otherwise, the relevant elements will need to be published explicitly, e.g., in
the public key, which is harmless to the security of any scheme that was already
secure under the assumption that G = Ĝ.

5 Generic Constructions

Let an abstract scheme IBE = (IBE.Setup, IBE.Extract, IBE.Encrypt, IBE.Decrypt)
with “parallel” semantic security against selective-identity chosen-plaintext at-
tacks, that has an appropriate linear structure as above. We show how to turn it
into generalizations of IBE that are semantically secure against (the appropriate
notion of) selective-identity chosen-plaintext attacks.

5.1 Hierarchical Identities

In the HIBE primitive [13, 11], identities are arranged in a hierarchy, and the
private keys can be derived per the hierarchy without involving the global master
secret. HIBE is essentially a delegation mechanism with a single root (the private
key generator). We construct such a scheme generically as follows.

HIBE.Setup(L). Given a security parameter and the desired number L of levels
in the hierarchy:
1. Create bilinear group parameters, e, g, ĝ, v, at the desired level of secu-

rity. Also pick an ephemeral shared random seed ω which is kept secret.
2. Generate L sets of IBE master key pairs with common bilinear pa-

rameters, e, g, ĝ, v, by making L calls to setup (IBE.Mski, IBE.Pubi) ←
IBE.Setup(e, g, ĝ, v, ω) for i = 1, ..., L.

3. Select L collision-resistant hash functions (or UOWHFs) from vectors of
IBE identities to single identities, Hi : Ii → I for i = 1, ..., L, where I
is the domain of IBE identities.



4. Output the HIBE master key pair:

HIBE.Msk = (IBE.Msk1, ..., IBE.MskL) ,

HIBE.Pub = (IBE.Pub1, ..., IBE.PubL, H1, ..., HL) .

HIBE.Extract(Msk, Id). Given HIBE.Msk and a target identity Id = (I1, ..., I`) at
level ` ≤ L:
1. ∀i = 1, ..., `, let hi = Hi(I1, ..., Ii) be the hash of the first i components.
2. ∀i = 1, ..., `, extract an IBE key (hi, Ri,di)← Extract(IBE.Mski, hi).
3. Select r1, ..., r` ∈ Fp under the constraint that

∑`
i=1 ri = 1 (mod p).

4. Output the HIBE private key:

HIBE.PvkId = ((I1, R1,d
r1
1 ), ..., (I`, R`,d

r`

` )) .

Observe that all the components of the private key are bound to each other
via the constraint

∑`
i=1 ri = 1 (mod p). Without it, the key would be utterly

random and therefore useless. The mutual binding of the components also
ensures that private keys given to different users are impervious to collusion
attacks.

HIBE.Derive(PvkId, I
′). Given HIBE.PvkId for an `-level HIBE “parent” identity

Id with ` < L, and an IBE identity I ′ to act as the (` + 1)-th component of
the HIBE “child” identity:
1. Decompose HIBE.PvkId as a list of triples (Ii, Ri,di) for i = 1, ..., `. Let

also I`+1 = I ′.
2. For each i = 1, ..., ` + 1, let hi = Hi(I1, ..., Ii) be the hash of the first i

components.
3. For each i = 1, ..., `:

(a) Find two vectors d′1,i and d′2,i that satisfy Property 2 for Id1 = hi

and Id2 = hi+1 (and the auxiliary Ri and Ri+1) relative to the public
keys IBE.Pubi and IBE.Pubi+1.

(b) Select ri ∈ F×p and observe that (d′1,i)
ri and (d′2,i)

ri also satisfy
Property 2.

4. For i = 1, ..., ` + 1, define d′′i =


(d′1,1)

r1 if i = 1
(d′2,i−1)

ri−1 (d′1,i)
ri if 2 ≤ i ≤ `

(d′2,`)
r` if i = ` + 1

.

5. Output the HIBE private key:

HIBE.PvkId′ =
(
(I1, R1,d1 · d′′1), ..., (I`, R`,d` · d′′` ), (I`+1, R`+1,d

′′
`+1)

)
Notice that the derived private key is fully randomized (its distribution is
the same as if it had been created by HIBE.Extract), it will decrypt correctly
(because of Property 2), and its creation required only the parent private
key and not the master key.

HIBE.Encrypt(Pub, Id,Msg). Given HIBE.Pub, an `-level identity Id = (I1, ..., I`)
where ` ≤ L, and a message Msg ∈ Gt:
1. Pick a random exponent s ∈ Fp.



2. ∀i = 1, ..., `, let hi = Hi(I1, ..., Ii) be the hash of the first i components.
3. ∀i = 1, ..., `, use s to construct an IBE ciphertext Ctxi = (hi, Si, c0, ci)←

Encrypt(IBE.Pubi, hi,Msg, s).
4. Output the HIBE ciphertext:

HIBE.Ctx = ((h1, ..., h`), c0, (S1, ..., S`), (c1, ..., c`)) .

Notice that c0 = Msg · vs is the same in all the IBE ciphertexts.
HIBE.Decrypt(Pub,PvkId,Ctx). Given the public key HIBE.Pub, a private key

PvkId = (Pvk1, ...,Pvk`) for some hierarchical identity, and a ciphertext Ctx =
((h1, ..., h`), c0, (S1, ..., S`), (c1, ..., c`)) for the same identity:
1. ∀i = 1, ..., `, assemble Ctxi = (hi, 1, Si, ci), using 1 ∈ Gt in lieu of c0.
2. ∀i = 1, ..., `, IBE-decrypt vi ← IBE.Decrypt(IBE.Pubi,Pvki,Ctxi).
3. Output the decrypted plaintext:

Msg = c0 ·
∏̀
i=1

vi .

By Property 1, we know that vi = v−s ri provided that the algorithm inputs
are as expected. Since

∑
i ri = 1, we obtain the desired result.

The collision-resistant hash functions H1, ...,HL serve to enforce the “inheri-
tance” requirement that identity components of higher index be dependent on
the components of lower index. The hash functions do this by creating a prece-
dence ordering over the indices in a construction that would otherwise be indif-
ferent to it. The schemes we build next have no such requirement.

The above construction is quite efficient. If we instantiate it using BB2 or
SK, we respectively obtain two HIBE systems that only require ` pairings for
decryption at level `, which is marginally faster than most previously known
HIBE systems [11, 2, 3]. The specialized construction from [3] offers faster de-
cryption for identities of depth ` ≥ 3.

We can prove selective-identity security of the scheme if the underlying
scheme meets the weaker version of “parallel” selective-identity IBE security
(from Definition 2).

Theorem 1. The generic HIBE scheme is (q, `, τ, ε)-IND-sHID-CPA secure [5]
provided that the underlying IBE scheme is a Linear IBE that satisfies (q, `, τ ′, ε)-
Par-IND-sID-CPA security for some τ ′ ≈ τ .

We have essentially the same result in the adaptive-identity models.

Corollary 1. The generic HIBE scheme is (q, `, τ, ε)-IND-HID-CPA secure [11]
provided that the underlying IBE scheme is a Linear IBE that satisfies (q, `, τ ′, ε)-
Par-IND-ID-CPA security for some τ ′ ≈ τ .



5.2 Fuzzy Identities

In the Fuzzy IBE primitive [16], private keys and ciphertexts pertain to multiple
identities (or attributes) at once, and decryption is predicated on meeting certain
threshold of matching attributes. The collusion resistance property stipulates
that private keys containing different sets of attributes cannot be combined to
obtain a larger set than any of them provided by itself.

Two versions of the primitive are defined in [16]: a “small universe” version
which supports an enumerated set of possible attributes, and a “large universe”
version, where exponentially many attributes are representable but only a con-
stant number at a time. In both versions the attributes are boolean (either
present or absent), which we call “small domain”.

Here, we give a “large domain” generalization of “small universe” Fuzzy IBE,
where the enumerated attributes are now key/value pairs that range in all of
Fp. This could be useful in applications of Fuzzy IBE that require non-boolean
attributes, such as a biometric system with attributes such as the height of a
person.

The small-universe, large-domain, generic Fuzzy IBE construction is as fol-
lows.

FuzzyIBE.Setup(n). Given a security parameter, and the number n of attribute
types to support:
1. Create bilinear group parameters, e, g, ĝ, v, at the desired level of secu-

rity, and a secret random string ω.
2. Generate n independent IBE master key pairs with shared bilinear pa-

rameters, e, g, ĝ, v, by executing setup n times, (IBE.Mski, IBE.Pubi)←
IBE.Setup(e, g, ĝ, v, ω) for i = 1, ..., n.

3. Output the Fuzzy IBE master key pair:

FuzzyIBE.Msk = (IBE.Msk1, ..., IBE.Mskn) ,

FuzzyIBE.Pub = (IBE.Pub1, ..., IBE.Pubn) .

FuzzyIBE.Extract(Msk, Id, t). On input a master key FuzzyIBE.Msk, a vector Id =
(I1, ..., In) of (positionally sensitive) attributes Ii ∈ Fp, and a threshold
parameter t with 1 ≤ t ≤ n:
1. Pick f1, ..., ft−1 ∈ Fp and let f(x) = 1 +

∑t−1
i=1 fi xi of degree t− 1. Note

that f(0) = 1.
2. ∀i = 1, ..., n, extract an IBE key (Ii, Ri,di)← Extract(IBE.Mski, Ii),
3. Output the Fuzzy IBE private key:

FuzzyIBE.PvkId =
(
t, (I1, R1, d

f(1)
1 ), ..., (In, Rn, df(n)

n )
)

.

FuzzyIBE.Encrypt(Pub, Id,Msg). On input a public key FuzzyIBE.Pub, a vector
Id = (I1, ..., In) of (positionally sensitive) attributes Ii ∈ Fp, and a message
Msg ∈ Gt:
1. Pick a random exponent s ∈ Fp.



2. For all i = 1, ..., n, build an IBE ciphertext Ctxi = (Ii, Si, c0, ci) ←
Encrypt(IBE.Pubi, Ii,Msg, s).

3. Output the Fuzzy IBE ciphertext (using c0 = Msg · vs common to all
IBE ciphertexts):

FuzzyIBE.Ctx = (Id, c0, (S1, ..., Sn), (c1, ..., cn)) .

FuzzyIBE.Decrypt(Pub,PvkId,Ctx). Given FuzzyIBE.Pub, a private key PvkId, and
a ciphertext Ctx:
1. Determine t attributes Ii1 , ..., Iit that appear in both PvkId and Ctx in

matching positions.
(a) If there are fewer than t “key/value” matches, then output ⊥ and

halt.
(b) Else, select any t matching attributes Ii1 , ..., Iit

and define T =
{i1, ..., it}.

2. For j = 1, ..., t:
(a) Extract the IBE private key (Iij

, Rij
,dij

) from PvkId and call it Pvkj .
(b) Assemble the IBE ciphertext (Iij , 1, Sij , cij ) from Ctx and call it

Ctxj .
(c) Let ΛT,i(x) =

∏
i′∈T\{i}

x−i′

i−i′ be the Lagrange interpolation coeffi-
cients from T to x.

(d) Perform the IBE decryption vj ← IBE.Decrypt(IBE.Pubj ,Pvkj ,Ctxj).
3. Output the plaintext:

Msg = c0 ·
t∏

j=1

vj
ΛT,ij

(0) .

By Property 1, we know that vj = v−s f(ij) if the inputs to the algorithm are
as expected. The result follows by using Lagrange polynomial interpolation,∑

j f(ij) ΛT,ij
(0) = f(0) = 1, “in the exponent”.

The efficiency of the scheme is comparable to that of (the “small universe”
version of) [16] when instantiated with BB2 or SK, even though this is a “large
domain” construction.

Theorem 2. The generic FuzzyIBE scheme is (q, n, τ, ε)-IND-sFuzID-CPA se-
cure [16] provided that the base IBE scheme is a Linear IBE with (q, n, τ ′, ε)-
ParSim-IND-sID-CPA security for τ ′ ≈ τ .

5.3 Attribute-Based Encryption

Attribute-based encryption (ABE) is a powerful generalization of Fuzzy IBE that
was recently proposed in [12]. Instead of allowing decryption conditionally on the
satisfaction of a single threshold gate (whose inputs are the matching attributes
in the ciphertext and the key), ABE allows the condition to be defined by a
tree of threshold gates. The construction given in [12] generalizes the Fuzzy IBE



construction of [16] in the commutative blinding approach, and is based on the
use of not one but multiple interpolation polynomials f(x), each of which applies
to a subset of the input attributes. The degrees of the random polynomials and
their inputs determine the access structure in the ABE scheme; in Key-Policy
(KP) ABE, they are chosen by the authority.

Our generic framework can mirror the KP-ABE construction of [12], in the
same way that our Fuzzy IBE construction retains the structure of the construc-
tion in [16]. The main difference is that, since our method is to build an inde-
pendent instance of the underlying IBE for each attribute, we obtain a “large
domain” generalization of ABE, with attributes as key/value pairs instead of
booleans.

5.4 Multiple Independent Key Generators

Our generic construction immediately generalizes to the case of multiple inde-
pendent key generators, which can be useful in many applications. For example,
when using Fuzzy IBE for encrypting under someone’s biometric readings, one
may wish to use one set of attributes constructed from fingerprints and another
from iris scans, and require a combination of both to decrypt. It is quite possible
in this scenario that the authority issuing fingerprint-based private keys would
be different than the one issuing keys based on iris scans.

Depending on the nature of the underlying IBE system, it is possible to base
our generic Fuzzy IBE construction on independent subsystems that share only
the bilinear groups and generators, thereby facilitating their setup. Whether in-
dependent setup is allowed (in a commonly agreed upon bilinear group), depends
on the use that the IBE.Setup function makes of the common random ω. For in-
stance, since the BB2 and SK schemes achieve our notion of parallel simulation
security without using ω, they are suitable for building a multi-authority system
without shared secret.

The only remaining difficulty lies in the final assembly of private keys given
to the users, because the separate authorities will have to agree on a suitable ran-
dom polynomial f(x) in order to create a new key. Some amount of coordination
between the servers will be required (possibly mediated by the key recipient),
but since the polynomial to be agreed upon is ephemeral and decoupled from
the master keys, this is an orthogonal problem that can be solved in many stan-
dard ways. In particular, Chase [6] showed how to construct a multi-authority
attribute-based scheme, in the commutative blinding framework, where multi-
ple authorities can vouch for separate attributes under the auspices of a central
authority that handles the sharing of ephemerals.

6 Conclusion

We have shown that the family of identity-based encryption schemes based on
the exponent inversion principle can be leveraged into building more powerful



systems. We first presented an abstraction to capture a number of useful prop-
erties shared by such schemes. We then showed how to use this abstraction to
construct generalizions of IBE. We described Hierarchical and Fuzzy IBE as con-
crete examples, as each of them illustrates a specific feature of exponent inversion
schemes, but many other generalizations are possible based on the same abstrac-
tion. Our approach is fairly lightweight and is also compatible with decentralized
authorities.

These results have practical implications, since the few known exponent in-
version IBE schemes tend to be marginally more efficient than competing con-
structions, although they require stronger complexity assumptions. Our formal-
ism has no effect on these benefits and drawbacks, but it extends the range of
applicability of the relevant schemes.
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