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Abstract. Multipartite secret sharing schemes are those having a mul-
tipartite access structure, in which the set of participants is divided into
several parts and all participants in the same part play an equivalent role.
Several particular families of multipartite schemes, such as the weighted
threshold schemes, the hierarchical and the compartmented schemes, and
the ones with bipartite or tripartite access structure have been consid-
ered in the literature. The characterization of the access structures of
ideal secret sharing schemes is one of the main open problems in secret
sharing. In this work, the characterization of ideal multipartite access
structures is studied with all generality. Our results are based on the
well-known connections between ideal secret sharing schemes and ma-
troids. One of the main contributions of this paper is the application of
discrete polymatroids to secret sharing. They are proved to be a pow-
erful tool to study the properties of multipartite matroids. In this way,
we obtain some necessary conditions and some sufficient conditions for
a multipartite access structure to be ideal.
Our results can be summarized as follows. First, we present a charac-
terization of matroid-related multipartite access structures in terms of
discrete polymatroids. As a consequence of this characterization, a neces-
sary condition for a multipartite access structure to be ideal is obtained.
Second, we use linear representations of discrete polymatroids to char-
acterize the linearly representable multipartite matroids. In this way we
obtain a sufficient condition for a multipartite access structure to be
ideal. Finally, we apply our general results to obtain a complete charac-
terization of ideal tripartite access structures, which was until now an
open problem.
Key words. Secret sharing, Ideal secret sharing schemes, Ideal access
structures, Multipartite secret sharing, Multipartite matroids, Discrete
polymatroids.

1 Introduction

In a secret sharing scheme, every participant receives a share of a secret value.
Only the qualified sets of participants, which form the access structure of the
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scheme, can recover the secret value from their shares. This paper deals exclu-
sively with unconditionally secure perfect secret sharing schemes, that is, the
shares of the participants in an unqualified set do not provide any information
about the secret value. The reader will find in [34] an excellent introduction to
secret sharing. Observe that the access structure of a secret sharing scheme on
a set P of participants is a monotone increasing family Γ ⊆ P(P ), where P(P )
is the power set of P . That is, every subset of P containing a qualified subset is
itself qualified.

Secret sharing was introduced in 1979 by Shamir [31] and Blakley [4], who in-
dependently presented two different methods to construct threshold secret shar-
ing schemes. Their qualified subsets are those having at least a given number
of participants. The threshold schemes proposed in [4, 31] are ideal , that is, the
share of every participant has the same length as the secret, which is the best
possible situation in a perfect scheme [16].

Dealing only with threshold access structures can be a serious limitation in
some applications of secret sharing. In his seminal paper [31], Shamir made the
first attempt to overcome this by proposing a construction of weighted threshold

schemes . In such a scheme, every participant has a weight (a positive integer)
and the sets whose weight sum is greater than a given threshold are qualified.
The proposed construction is very simple: take a threshold scheme and give to
every participant as many shares as its weight. Nevertheless, the obtained scheme
is not ideal anymore. Ito, Saito, and Nishizeki [14] proved, in a constructive way,
that there exists a secret sharing scheme for every access structure, but the
schemes that are obtained by this method are very far from ideal. Benaloh and
Leichter [3] proved that there exist access structures that do not admit any
ideal scheme and, as a consequence of the results in [9, 11] and other works, in
some cases the shares must be much larger than the secret. Actually, very little
is known about the construction of efficient secret sharing schemes for general
access structures and, in particular, there is a wide gap between the best known
lower and upper bounds on the length of the shares.

Due to the difficulty of finding efficient secret sharing schemes for general
access structures, it is worthwhile to find families of access structures that ad-
mit ideal schemes and have other useful properties for the applications of secret
sharing. Brickell [7] proposed a method to construct ideal secret sharing schemes
for access structures other than the threshold ones. This method provides ideal
schemes for multilevel and compartmented access structures, two families that
were proposed by Simmons [32] because of their interesting applications. These
access structures are multipartite, that is, the set of participants is divided into
several parts and all participants in the same part play an equivalent role. Multi-
partite access structures are useful in scenarios in which the participants can be
divided into different classes, such as hierarchical organizations, or actions that
require the agreement of different parties. Other constructions of ideal secret
sharing schemes for different classes of multipartite access structures have been
presented in [25, 35, 36].



The natural step beyond the construction of ideal schemes for particular
structures is the search of a characterization of the ideal access structures , that
is, the access structures of ideal secret sharing schemes. This is one of the most
important open problems in secret sharing. As a consequence of the results by
Brickell [7], and Brickell and Davenport [8], this open problem has important
connections with matroid theory. Some basic concepts about matroids and their
connection to secret sharing are recalled in Section 4.1.

Brickell and Davenport [8] proved that every ideal secret sharing scheme on
a set P of participants determines a matroid M with ground set Q = P ∪ {p0}.
This matroid determines the access structure of the scheme. Namely, A ⊆ P is a
minimal qualified subset if and only if A∪{p0} is a circuit of M. In this situation,
we say that this access structure is matroid-related or, more specifically, related

to the matroid M. Therefore, a necessary condition for an access structure to
be ideal is obtained.

Theorem 1. (Brickell and Davenport [8]) The access structure of every ideal

secret sharing scheme is matroid-related.

The method to construct ideal schemes proposed by Brickell [7], which is
based on linear algebra, provides a sufficient condition for an access structure to
be ideal.

Theorem 2. (Brickell [7]) There exists an ideal secret sharing scheme for every

access structure that is related to a linearly representable matroid.

The minimal qualified subsets of a matroid-related access structure form a
matroid port , a combinatorial object introduced by Lehman [17] in 1964, much
before secret sharing was invented. Seymour [29] presented in 1976 a forbidden
minor characterization of matroid ports, which has been used recently to obtain
new results on the characterization of matroid-related access structures [21]. The
information rate of a secret sharing scheme is the ratio between the length of
the secret and the maximum length of the shares. The main result in [21] is a
generalization of Theorem 1.

Theorem 3. (Mart́ı-Farré and Padró [21]) The access structure of every secret

sharing scheme with information rate greater than 2/3 is matroid-related.

2 Related Work

Due to the difficulty of finding general results, the characterization of ideal access
structures has been studied for several particular classes of access structures:
the access structures on sets of four [34] and five [15] participants, the ones
defined by graphs [6, 8, 9], the bipartite access structures [28], those with three
or four minimal qualified subsets [18], the ones with intersection number equal to
one [19], the access structures with rank three [20], and the weighted threshold
access structures [2]. In most of these families, all the matroids that are related
to access structures in the family are representable, and then the matroid-related



access structures coincide with the ideal ones. This, combined with Theorem 3,
implies that the optimal information rate of every non-ideal access structure in
those families is at most 2/3.

Multipartite access structures were first introduced by Shamir [31] in his
introductory work, in which weighted threshold access structures were consid-
ered. These structures have been studied also in [23, 28] and a characterization
of the ideal weighted access structures has been presented in [2]. Brickell [7] con-
structed ideal secret sharing schemes for several different kinds of multipartite
access structures that had been previously considered by Simmons [32]. Other
constructions of ideal schemes for these and other multipartite structures have
been presented in [12, 25, 35, 36]. A complete characterization of ideal bipartite
access structures was given in [28] and, independently, in [24, 26]. Partial re-
sults on the characterization of tripartite access structures have been presented
in [2, 10, 12]. The first attempt to provide general results on the characteriza-
tion of ideal multipartite access structures has been made recently by Herranz
and Sáez [12]. They present some necessary conditions for a multipartite access
structure to be ideal, which generalize the ones given in [10] for the tripartite
case. In addition, they present a wide family of ideal tripartite access structures.

3 Our Results

In this paper, we study the characterization of the ideal multipartite access struc-

tures . Since we can always consider as many parts as participants, every access
structure is multipartite, and hence we are not dealing here with a particular
family of structures, but with the general problem of the characterization of
the ideal access structures. Of course, we do not solve this long-standing open
problem. Nevertheless, we present some new results by looking at it under a dif-
ferent point of view. Namely, we investigate the conditions given in Theorems 1
and 2 by taking into account that the set of participants can be divided into
several parts formed by participants playing an equivalent role in the structure.
We introduce the natural concept of multipartite matroid , which applies to the
matroids that are defined from ideal multipartite secret sharing schemes. The
study of multipartite matroids leads to discrete polymatroids, which appear to
be a very powerful tool to characterize the matroid-related multipartite access
structures. Even though our results can be applied to the general case, their most
meaningful consequences are obtained when applied to some particular families
of multipartite access structures. Specifically, in the case that the number of
parts is significantly smaller than the number of participants, or in situations
in which the parts are distributed in some special way as, for instance, in hier-
archical access structures. In particular, we present a complete characterization
of the ideal tripartite access structures, which was an open question until now.
Our main contributions are described with more detail in the following.

First, we investigate how the necessary condition in Theorem 1 can be ap-
plied to multipartite access structures. Consequently, we study the properties
of matroid-related multipartite access structures. The partition in the set of



participants of a matroid-related access structure extends to the set of points
of the corresponding matroid. This leads us to introduce the natural concept
of multipartite matroid . We point out that every multipartite matroid with m
parts defines a discrete polymatroid on a set of m points. Discrete polymatroids
are a particular class of polymatroids. In the same way as matroids abstract
the combinatorial properties of a collection of vectors in a vector space, discrete
polymatroids abstract the combinatorial properties of a collection of subspaces
in a vector space. Discrete polymatroids have been thoroughly studied by Her-
zog and Hibi [13], and some of the results in that paper are used here. By using
discrete polymatroids, we present in Theorem 8 a characterization of matroid-
related multipartite access structures, which implies a necessary condition for
a multipartite access structure to be ideal. We present some examples showing
that this necessary condition is a useful tool to prove that a given multipartite
structure is not ideal.

Second, we study the application of Theorem 2 to multipartite access struc-
tures. Therefore, we study the existence of linear representations for multipartite
matroids, and we relate them to linear representations of discrete polymatroids.
In the same way as in a linear representation of a matroid a vector is assigned
to each point in the ground set, a subspace is assigned to each point in a lin-
ear representation of a discrete polymatroid. We prove in Theorem 13 that a
multipartite matroid is linearly representable if and only if the corresponding
discrete polymatroid is linearly representable. This implies a sufficient condition
for a multipartite access structure to be ideal. We think that Theorem 13 is
interesting not only for its implications in secret sharing, but also as a result
about representability of matroids. This result is specially useful if the number
of parts is small. For instance, a tripartite matroid can have many points, but,
as a consequence of our result, we only have to find three suitable subspaces of
a vector space to prove that it is linearly representable.

And third, we apply our general results to the tripartite case, and we present
a complete characterization of the ideal tripartite access structures. By using
Theorem 8, we characterize the matroid-related tripartite access structures. The-
orem 13 is used to prove that all matroids related to these structures are linearly
representable, and hence that all matroid-related tripartite access structures are
ideal. Moreover, as a consequence of Theorem 3, the optimal information rate of
every non-ideal tripartite access structure is at most 2/3. The application of our
general results to the tripartite case requires to solve some non-trivial problems.
Therefore, our characterization of the ideal tripartite access structures is not a
simple corollary of the main theorems in this paper.

We observe that the last result above cannot be extended to m-partite access
structures with m ≥ 4, because there does not exist any ideal secret sharing
scheme defining the Vamos matroid [1, 30, 33], which is quadripartite. Hence,
there exist matroid-related quadripartite access structures that are not ideal.
Nevertheless, this does not mean that our general results are not useful for m-
partite access structures with m ≥ 4, as it is demonstrated with some examples.



After the results in this paper, the open problems about the characterization
of ideal multipartite access structures are as difficult as the open problems in
the general case. That is, closing the gap between the necessary and the suffi-
cient conditions requires to solve very difficult problems about representations
of matroids and polymatroids.

4 Multipartite Access Structures, Multipartite Matroids,

and Discrete Polymatroids

4.1 Ideal Secret Sharing Schemes and Matroids

As a consequence of the results by Brickell [7], and Brickell and Davenport [8],
the characterization of the ideal access structures, that is the access structures
of ideal schemes, has important connections with matroid theory.

To illustrate these connections, we describe the construction of ideal secret
sharing schemes due to Brickell [7]. Given a set P of participants, consider a
special participant p0 /∈ P , which is usually called dealer , and Q = P ∪ {p0}.
Every mapping ψ : Q → E, where E is a vector space over some finite field K,
determines an ideal secret sharing scheme Σψ on the set P of participants. Given
a secret value s0 ∈ K, a random vector x ∈ E such that the dot product x ·ψ(p0)
is equal to s0 is chosen uniformly at random. The share of the participant i ∈ P
is the value si = x · ψ(i) ∈ K. A subset A ⊆ P is in the access structure Γ
of the scheme Σψ if and only if the vector ψ(p0) is a linear combination of the
vectors in {ψ(i) : i ∈ A}. The ideal schemes of this form are called K -vector

space secret sharing schemes , and their access structures are called K -vector

space access structures .
The access structure of Σψ is determined by the rank function r : P(Q) → Z,

where P(Q) is the power set of Q and, for every X ⊆ Q, the value r(X) is the
dimension of the subspace of E spanned by the set {ψ(i) : i ∈ X}. Actually, a
subset A ⊆ P is qualified if and only if r(A ∪ {p0}) = r(A). It is easy to check
that the function r satisfies

1. 0 ≤ r(X) ≤ |X | for every X ⊆ Q, and
2. r is monotone increasing : if X ⊆ Y ⊆ Q, then r(X) ≤ r(Y ), and
3. r is submodular : r(X∪Y )+r(X∩Y ) ≤ r(X)+r(Y ) for every pair of subsets
X,Y of Q.

Matroids are combinatorial objects that abstract and generalize many concepts
from linear algebra, including ranks, independent sets, bases, and subspaces.
The reader is referred to [27, 37] for general references on matroid theory. One
of the many possible equivalent definitions for this concept says that a matroid
is a pair (Q, r) formed by a finite set Q, the ground set , and a rank function

r : P(Q) → Z satisfying the properties above. A matroid M = (Q, r) is said to
be K-linearly representable if there exists a K-vector space E and a mapping
ψ : Q→ E assigning a vector to each element in Q such that the rank function r
can be defined from ψ as before.



For a matroid M = (Q, r) and a point p0 ∈ Q, we define the access struc-
ture Γp0(M) on the set of participants P = Q − {p0} by Γp0(M) = {A ⊆ P :
r(A∪{p0}) = r(A)}. The access structures of this form are called matroid-related

(the definition we gave in the Introduction for this concept is equivalent to this
one). If the access structure Γp0(M) is connected , that is, if every participant
is in a minimal qualified subset, then the matroid M is univocally determined
by Γp0(M). Observe that Γ is a K-vector space access structure if and only if
Γ = Γp0(M) for some K-linearly representable matroid M. Therefore, as a con-
sequence of the construction by Brickell [7], we obtain Theorem 2, a sufficient
condition for an access structure to be ideal.

Brickell and Davenport [8] proved that this sufficient condition is not very
far from being necessary. Specifically, they proved that every ideal secret sharing
scheme on a set P of participants determines a matroid M with ground set
Q = P ∪{p0} such that the access structure of the scheme is Γp0(M). Therefore,
a necessary condition for an access structure to be ideal is obtained (Theorem 1).

Matroids that are obtained from ideal secret sharing schemes are said to
be secret sharing representable (or ss-representable for short). Therefore, an ac-
cess structure is ideal if and only if it is related to a ss-representable matroid.
Since there exist non-ss-representable matroids, the necessary condition in The-
orem 1 is not sufficient. The first example, the Vamos matroid, was found by
Seymour [30]. Other proofs of this fact were presented in [1, 33]. Many other ex-
amples non-ss-representable matroids were given by Matúš [22]. In addition, the
sufficient condition in Theorem 2 is not necessary because of the non-Pappus ma-
troid, which is not linearly representable but was proved to be ss-representable
by Simonis and Ashikhmin [33].

At this point, two open problems arise that are central in the characterization
of ideal access structures. First, the characterization of matroid-related access
structures and, second, the characterization of ss-representable matroids.

A number of important results and interesting ideas for future research on
the characterization of ss-representable matroids can be found in the works by
Simonis and Ashikhmin [33] and Matúš [22]. The first one deals with the ge-
ometric structure that lies behind ss-representations of matroids. The second
one analyzes the algebraic properties that the matroid induces in all its ss-
representations. These properties make it possible to find some restrictions on
the ss-representations of a given matroid and, in some cases, to exclude the ex-
istence of such representations. By using these tools, Matúš [22] presented an
infinite family of non-ss-representable matroids with rank three.

4.2 Matroids, Integer Polymatroids, and Discrete Polymatroids

Matroids have been defined in Section 4.1 by using the rank function. There
exist many other definitions. We present in the following the ones based on
independent sets and on bases. The equivalence between them, which is proved
in [27], will be useful to obtain our results.



Let M = (Q, r) be a matroid. The subsets X ⊆ Q with r(X) = |X | are
said to be independent . The family I ⊆ P(Q) of the independent sets of M is a
nonempty family of subsets characterized by the following two properties.

1. If I ∈ I and I ′ ⊆ I , then I ′ ∈ I, and
2. if I1 and I2 are in I and |I1| < |I2|, then there exists x ∈ I2 − I1 such that
I1 ∪ {x} ∈ I.

The bases of the matroid M are the maximally independent sets. Similarly
to the independent sets, the nonempty family B of the bases determines the
matroid. Moreover, a nonempty subset B ⊆ P(Q) is the family of bases of a
matroid on Q if and only if the following exchange condition is satisfied.

– For every B1, B2 ∈ B and x ∈ B1 − B2, there exists y ∈ B2 − B1 such that
(B1 − {x}) ∪ {y} is in B.

All bases have the same number of elements, which is the rank of M and is
denoted r(M). Actually, r(M) = r(Q). The dependent sets are those that are
not independent, and a circuit is a minimally dependent set. A matroid is said
to be connected if, for every two points x, y ∈ Q, there exists a circuit C with
x, y ∈ C.

If E is a K-vector space and ψ : Q → E is a K-linear representation of the
matroid M = (Q, r), then a subset X ⊆ Q is independent (respectively, a basis)
if and only if the multiset {ψ(i) : i ∈ X}, where some values may be repeated,
is a linearly independent set of vectors in E (respectively, a basis of the subspace
of E spanned by ψ(Q)).

A polymatroid is a pair Z = (J, h) formed by a finite set J , the ground set ,
and a rank function h : P(J) → R satisfying

1. h(∅) = 0, and
2. h is monotone increasing : if X ⊆ Y ⊆ J , then h(X) ≤ h(Y ), and
3. h is submodular : if X,Y ⊆ J , then h(X ∪ Y ) + h(X ∩ Y ) ≤ h(X) + h(Y ).

If the rank function h is integer-valued, we say that Z is an integral polymatroid .
The reader is referred to [37] for more information about polymatroids.

The following example of an integral polymatroid illustrates the similarity
with matroids. In the same way as matroids abstract some properties of collec-
tions of vectors, integral polymatroids do the same with collections of subspaces.
Let E be a K -vector space, and V1, . . . , Vm subspaces of E. It is not difficult to
check that the mapping h : P({1, . . . ,m}) → Z defined by h(X) = dim(

∑
i∈X Vi)

is the rank function of an integral polymatroid Z = ({1, . . . ,m}, h). The inte-
gral polymatroids that can be defined in this way are said to be K -linearly

representable.
Discrete polymatroids were introduced by Herzog and Hibi [13]. They are

closely related to integral polymatroids. In addition, we show in the following
that discrete polymatroids are extremely useful to study multipartite matroids,
and hence they are a very important tool in the characterization of ideal multi-
partite access structures.



We need to introduce some notation. For every integer m ≥ 1, we consider
the set Jm = {1, . . . ,m}. Let Zm+ denote the set of vectors u = (u1, . . . , um) ∈ Zm

with ui ≥ 0 for every i ∈ Jm. If u, v ∈ Zm+ , we write u ≤ v if ui ≤ vi for every
i ∈ Jm, and we write u < v if u ≤ v and u 6= v. The vector w = u ∨ v is defined
by wi = max{ui, vi}. The modulus of a vector u ∈ Zm+ is |u| = u1 + · · ·+um. For

every subset X ⊆ Jm, we write u(X) = (ui)i∈X ∈ Z
|X|
+ and |u(X)| =

∑
i∈X ui.

A discrete polymatroid with ground set Jm is a nonempty finite set of vectors
D ⊂ Zm+ satisfying

1. if u ∈ D and v ∈ Zm+ is such that v ≤ u, then v ∈ D, and
2. for every pair of vectors u, v ∈ D with |u| < |v|, there exists w ∈ D with
u < w ≤ u ∨ v.

A basis of a discrete polymatroid D is a maximal element in D, that is, a
vector u ∈ D such that there does not exist any v ∈ D with u < v. Similarly to
matroids, all bases have the same modulus. In addition, a discrete polymatroid
is determined by its bases. Specifically, in [13, Theorem 2.3] it is proved that a
nonempty subset B ⊂ Zm+ is the family of bases of a discrete polymatroid if and
only if it satisfies the following exchange condition.

– For every u ∈ B and v ∈ B with ui > vi, there exists j ∈ Jm such that uj < vj
and u− ei + ej ∈ B, where ei denotes the i-th vector of the canonical basis
of Rm.

The mapping h : P(Jm) → Z defined by h(X) = max{|u(X)| : u ∈ D} is
called the rank function of the discrete polymatroid D. As a consequence of a
result by Herzog and Hibi [13, Theorem 3.4], there is a one-to-one correspon-
dence between discrete polymatroids and integral polymatroids, as it is stated
in the following proposition. Because of that, from now on we will deal only with
discrete polymatroids.

Proposition 4. A mapping h : P(Jm) → Z is the rank function of a discrete

polymatroid D ⊂ Zm+ with ground set Jm if and only if (Jm, h) is an integral

polymatroid. In addition, a discrete polymatroid D is univocally determined from

its rank function h because D = {u ∈ Zm+ : |u(X)| ≤ h(X) for every X ⊆ Jm}.

4.3 Multipartite Access Structures and Multipartite Matroids

An m-partition Π = (X1, . . . , Xm) of a set X is a disjoint family of m nonempty
subsets of X with X = X1 ∪ · · · ∪ Xm. Let Λ ⊆ P(X) be a family of subsets
of X . For a permutation σ on X , we define σ(Λ) = {σ(A) : A ∈ Λ} ⊆ P(X).
A family of subsets Λ ⊆ P(X) is said to be Π-partite if σ(Λ) = Λ for every
permutation σ such that σ(Xi) = Xi for every Xi ∈ Π . We say that Λ is
m-partite if it is Π-partite for some m-partition Π .

These concepts can be applied to access structures Γ , which are actually
families of subsets of the set of participants P , and they can be applied as well
to the family of independent sets of a matroid. A matroid M = (Q, r) is Π-

partite if its family of independent subsets I ⊆ P(Q) is Π-partite.



If a multipartite access structure is matroid-related, then the corresponding
matroid is multipartite for a similar partition. Specifically, we have the following
result.

Lemma 5. Let M = (Q, r) be a connected matroid and, for a point p0 ∈ Q,

consider the partitions Π = (P1, . . . , Pm) and Π0 = ({p0}, P1, . . . , Pm) of the

sets P = Q−{p0} and Q, respectively. Then the matroid-related connected access

structure Γ = Γp0(M) on P is Π-partite if and only if the matroid M = (Q, r)
is Π0-partite.

The members of a Π-partite family of subsets are determined by the number
of elements they have in each part. We formalize this in the following and we
obtain a compact way to represent a multipartite family of subsets. Let Π =
(X1, . . . , Xm) be a partition of a set X . For every A ⊆ X and i ∈ Jm, we
define Πi(A) = |A ∩ Xi|. The partition Π defines a mapping Π : P(X) → Zm+
by considering Π(A) = (Π1(A), . . . , Πm(A)). If a family Λ ⊆ P(X) of subsets
is Π-partite, then A ∈ Λ if and only if Π(A) ∈ Π(Λ). That is, Λ is completely
determined by the set of vectors Π(Λ) ⊂ Zm+ , and hence we can describe an m-
partite family of subsets by using vectors in Zm+ . The following result shows the
close connection between multipartite matroids and discrete polymatroids. It can
be easily proved by using Proposition 4 and the properties of the independent
sets of a matroid.

Proposition 6. Let Π = (Q1, . . . , Qm) be an m-partition of a set Q and let

I ⊆ P(Q) be a Π-partite family of subsets. Then I is the family of independent

sets of a Π-partite matroid M = (Q, r) if and only if Π(I) ⊂ Zm+ is a discrete

polymatroid. In addition, if M = (Q, r) is a Π-partite matroid and h : P(Jm) →
Z is the rank function of the discrete polymatroid Π(I) ⊂ Zm+ , then h(X) =
r(

⋃
i∈X Qi) for every X ⊆ Jm.

For a Π-partite matroid M = (Q, I), we say that Π(I) ⊂ Zm+ is the dis-

crete polymatroid associated with M. Clearly, a Π-partite matroid is univocally
determined from its associated discrete polymatroid and the partition Π .

5 Matroid-Related Multipartite Access Structures

By using the connection between multipartite matroids and discrete polyma-
troids we discussed in the previous section, we present a characterization of
matroid-related multipartite access structures based on discrete polymatroids.
This characterization provides a necessary condition for a multipartite access
structure to be ideal.

For every integer m ≥ 1, we consider the sets Jm = {1, . . . ,m} and J ′
m =

{0, 1, . . . ,m}. Let D ⊂ Zm+ be a discrete polymatroid with ground set Jm and

rank function h : P(Jm) → Z. We say that a discrete polymatroid D′ ⊂ Zm+1
+

with ground set J ′
m completes D if its rank function h′ : P(J ′

m) → Z is such
that h′(X) = h(X) for every X ⊆ Jm while h′({0}) = 1 and h′(J ′

m) = h(Jm).



Since the rank function of D′ is an extension of the one of D, both will be
usually denoted by h. For a polymatroid D′ that completes D, consider the
family ∆(D′) = {X ⊆ Jm : h(X ∪ {0}) = h(X)} ⊆ P(Jm). Given a discrete
polymatroid D with ground set Jm, every completion D′ of D is determined by
∆(D′). The next proposition characterizes the families of subsets ∆ ⊆ P(Jm)
for which there exists D′ with ∆ = ∆(D′). This result will be very useful in the
characterization of ideal tripartite access structures.

Proposition 7. Let D be a discrete polymatroid with ground set Jm and rank

function h. Consider ∆ ⊆ P(Jm). Then there exists a completion D′ of D with

∆ = ∆(D′) if and only if the following conditions are satisfied.

1. The family ∆ is monotone increasing, ∅ /∈ ∆, and Jm ∈ ∆.

2. If X ⊂ Y ⊆ Jm and X /∈ ∆ while Y ∈ ∆, then h(X) < h(Y ).
3. If X,Y ∈ ∆ and X ∩ Y /∈ ∆, then h(X ∪ Y ) + h(X ∩ Y ) < h(X) + h(Y ).

We say that ∆ ⊆ P(Jm) is D-compatible if it satisfies the conditions in
Proposition 7. For every X ⊆ Jm, we define the discrete polymatroid D(X)

with ground set X by D(X) = {u(X) : u ∈ D} ⊂ Z
|X|
+ , and we consider the

set of vectors B(X) ⊂ Zm+ such that u ∈ B(X) if and only if u(X) is a basis
of D(X) and ui = 0 for every i ∈ Jm − X . Finally, for a family ∆ ⊆ P(Jm),
we define G(∆) =

⋃
X∈∆ B(X) ⊂ Zm+ . Our characterization of matroid-related

multipartite access structures is given in the following theorem. Since every
ideal access structure must be matroid-related, this result provides a necessary
condition for a multipartite access structure to be ideal. Moreover, by Theorem 3,
this a a necessary condition for a multipartite access structure to admit a secret
sharing scheme with information rate greater than 2/3.

Theorem 8. Let Π be an m-partition of P and let Γ be a connected Π-partite

access structure on P . Then Γ is matroid-related if and only if there exist a

discrete polymatroid D with ground set Jm and a D-compatible family ∆ ⊆
P(Jm) such that

Γ = {A ⊆ P : Π(A) ≥ u for some vector u ∈ G(∆)},

or, equivalently, the family minΓ of the minimal qualified subsets of Γ is deter-

mined by

Π(minΓ ) =
⋃

X∈∆

{u ∈ B(X) : |u(Y )| < h(Y ) for every Y ∈ ∆ with Y ( X},

where h is the rank function of the discrete polymatroid D.

Proof. Let Π = (P1, . . . , Pm) and Π0 = ({p0}, P1, . . . , Pm) be partitions of the
sets P and Q = P ∪{p0}, respectively. Let M = (Q, r) be a connected Π0-partite
matroid and let D′ = Π0(I) ⊂ Zm+1

+ be the discrete polymatroid with ground
set J ′

m associated with M. Observe that, since M is connected, D′ completes
the discrete polymatroid D = D′(Jm). Consider the matroid-related Π-partite



access structure Γp0(M). We only have to prove that a subset A ⊆ P is in
Γp0(M) if and only if Π(A) ≥ u for some vector u ∈ G(∆(D′)).

Consider a vector u = (u1, . . . , um) ∈ G(∆(D′)) and A ⊆ P with Π(A) ≥ u.
Then there existsX ⊆ Jm such that X ∈ ∆(D′) and u(X) is a basis of D(X). We
can suppose thatX = {1, . . . , r}, and hence u = (u1, . . . , ur, 0, . . . , 0). Consider a
subset B ⊆ A with Π(B) = u. Since Π0(B) = ũ = (0, u1, . . . , ur, 0, . . . , 0) ∈ D′,
we deduce that B is an independent set of the matroid M. On the other hand,
Π0(B ∪ {p0}) = (1, u1, . . . , ur, 0, . . . , 0) /∈ D′ because ũ(X) is a basis of D′(X)
and h(X ∪ {0}) = h(X). Therefore, B ∪ {p0} is a dependent set of M. This,
together with the independence of B, implies that B ∈ Γp0(M) and, hence,
A ∈ Γp0(M).

Let A ⊆ P be a minimal qualified subset of Γp0(M) and let X = {i ∈ Jm :
A ∩ Pi 6= ∅}. We can suppose that X = {1, . . . , r}. Consider u = Π0(A) =
(0, u1, . . . , ur, 0, . . . , 0). Observe that u ∈ D′ because A is an independent set
of M. The proof is concluded by checking that X ∈ ∆(D′) and that u(X) is
a basis of D′(X). If, on the contrary, u(X) is not a basis of D′(X), we can
suppose without loss of generality that v = (0, u1 + 1, u2, . . . , ur, 0, . . . , 0) ∈ D′.
Since A is a minimal qualified subset of Γp0(M), the set A ∪ {p0} is a circuit
of M and, hence, B = (A ∪ {p0}) − {p1} is an independent set of M for ev-
ery p1 ∈ A ∩ P1. Therefore, w = Π0(B) = (1, u1 − 1, u2, . . . , ur, 0, . . . , 0) ∈ D′.
Since |v| > |w|, there exists x ∈ D′ with w < x ≤ w ∨ v. This implies that
x = (1, u1, u2, . . . , ur, 0, . . . , 0) = Π0(A ∪ {p0}) ∈ D′, a contradiction. There-
fore, u(X) is a basis of D′(X), and this implies h(X ∪ {0}) = h(X) because
(1, u1, u2, . . . , ur, 0, . . . , 0) /∈ D′. Hence, X ∈ ∆(D′). ut

The condition in Theorem 8 seems very involved and difficult to check. Nev-
ertheless, as we see in the following corollaries and examples, it provides useful
tools to check that a given multipartite access structure is not ideal. An impor-
tant point to be taken into account is that, given a connected matroid-related
multipartite access structure Γ , the discrete polymatroid D and the family of
subsets ∆ whose existence is proved in Theorem 8 are univocally determined.
Effectively, since Γ is connected and matroid-related, there exists a unique ma-
troid M with Γ = Γp0(M), which determines D and ∆. Therefore, we can write
D(Γ ) and ∆(Γ ) to represent these objects. For a partition Π = (P1, . . . , Pm) of a
set P , the support of a subset A ⊆ P is supp(A) = {i ∈ Jm : A∩Pi 6= ∅} ⊆ Jm.
Observe that, if Γ is a matroid-related Π-partite access structure, then ∆(Γ ) =
supp(Γ ) = {supp(A) : A ∈ Γ}.

Corollary 9. Let Γ be a matroid-related m-partite access structure. For every

X ⊆ Jm, all minimal qualified subsets A ∈ minΓ with supp(A) = X have the

same cardinality.

Example 10. Let Γ be a 4-partite access structure with Π(minΓ ) = {(2, 2, 1, 1),
(1, 3, 1, 2), (2, 1, 2, 1), (1, 1, 2, 2)}. From Corollary 9, Γ is not matroid-related, and
hence it is not ideal. Moreover, by Theorem 3, its optimal information rate is at
most 2/3.



Corollary 11. Let Γ be a connected matroid-related m-partite access structure

and consider the discrete polymatroid D = D(Γ ) and the D-compatible family

∆ = ∆(Γ ). Let h be the rank function of D. For every X ∈ ∆ and A ⊆
⋃
i∈X Pi,

if |A| = h(X) and |A ∩ (
⋃
i∈Y Pi)| ≤ h(Y ) for all Y ⊆ X, then A ∈ Γ .

Example 12. Let Γ be a quadripartite access structure such that

Π(minΓ ) = {u ∈ Z4
+ : (1, 1, 1, 1) ≤ u ≤ (3, 4, 4, 4) and |u| = 8} ∪ {(4, 0, 0, 0)}.

We claim that Γ is not matroid-related. Assume the Γ is matroid-related and
consider D = D(Γ ) and ∆ = ∆(Γ ). Observe that min∆ = {{1}}. In addition,
from Theorem 8, if u ∈ B(J4), then u ∈ Π(minΓ ) or there exist Y ( J4 and
v ∈ B(Y ) such that v < u and v ∈ Π(minΓ ). Therefore, the family of bases of D
is B = B(J4) = {u ∈ Z4

+ : (1, 1, 1, 1) ≤ u ≤ (4, 4, 4, 4) and |u| = 8}. Moreover,
h(X) = max{|u(X)| : u ∈ D} = max{|u(X)| : u ∈ B} for every X ⊆ J4.
Therefore, h(X) = 4 if |X | = 1, and h(X) = 6 if |X | = 2, and h(X) = 7 if
|X | = 3, and h(J4) = 8. Since {1, 2} ∈ ∆, by Corollary 11, (3, 3, 0, 0) ∈ Π(Γ ), a
contradiction.

6 Representable Multipartite Matroids

Let K be a field, E a K -vector space, and V1, . . . , Vm subspaces of E. It is
not difficult to check that the mapping h : P(Jm) → Z defined by h(X) =
dim(

∑
i∈X Vi) is the rank function of a discrete polymatroid D ⊂ Zm+ . In this

situation, we say that D is K -linearly representable and the subspaces V1, . . . , Vm
are a K-linear representation of D. The main result of this section is the following
theorem.

Theorem 13. Let M = (Q, r) be a Π-partite matroid such that |Q| = n and

r(M) = k. Let D = Π(I) be its associated discrete polymatroid. If M is K-

linearly representable, then so is D. In addition, if D is K -representable, then M
is L-linearly representable for every field extension L of K such that |L| >

(
n
k

)
·k.

The first claim in the statement is not difficult to prove. LetΠ = (Q1, . . . , Qr)
be a partition of Q and let M = (Q, r) be a Π-partite matroid with r(M) = k
and |Q| = n. Consider the discrete polymatroid D = Π(I) ⊂ Zm+ and its rank
function h : P(Jm) → Z. Suppose that M is represented over the field K by a
matrix M . For every i ∈ Jm, consider the subspace Vi spanned by the columns of
M corresponding to the points in Qi. Then h(X) = r(∪i∈XQi) = dim(

∑
i∈X Vi)

for every X ⊆ Jm. Therefore, the subspaces V1, . . . , Vm are a K-representation
of the discrete polymatroid D.

The proof for the second claim in the theorem is much more involved and
needs several partial results. Clearly, it is enough to prove that, for every finite
field with |K| >

(
n
k

)
· k, the matroid M is K-linearly representable if the discrete

polymatroid D = Π(I) is K-linearly representable.
Assume that |K| >

(
n
k

)
·k and that D is K -linearly representable. Then there

exists a K -linear representation of D consisting of subspaces V1, . . . , Vm of the



K -vector space E = Kk, where k = h(Jm) = r(M). The proof of the following
lemma is not given here due to space limitations. It will be included in the full
version of the paper.

Lemma 14. For every basis u of D, there exists a basis B = B1 ∪ · · · ∪ Bm
of the vector space E such that Bi ⊂ Vi and |Bi| = ui for every i ∈ Jm, and

Bi ∩ Bj = ∅ if i 6= j.

For every i ∈ Jm, take ki = dimVi and ni = |Qi|. Then n = n1 + · · · + nm.
Consider the space M of all k×n matrices over K of the form (M1|M2| · · · |Mm),
where Mi is a k × ni matrix whose columns are vectors in Vi. Observe that
the columns of every matrix M ∈ M can be indexed by the elements in Q,
corresponding the columns of Mi to the points in Qi. The proof of Theorem 13
is concluded by proving that there exists a matrix M ∈ M whose columns are a
K-linear representation of the matroid M.

Lemma 15. If A ⊆ Q is a dependent subset of the matroid M, then, for every

M ∈ M, the columns of M corresponding to the elements in A are linearly

dependent.

Proof. Since u = Π(A) /∈ D, there exists X ⊆ Jm such that |u(X)| > h(X) =
dim(

∑
j∈X Vj). Then the columns of M corresponding to the elements in A ∩

(∪j∈XQj) must be linearly dependent. ut

Therefore, Lemma 17 concludes the proof of Theorem 13. The following tech-
nical lemma is needed to prove it. Recall that, over a finite field K, there exist
nonzero polynomials p ∈ K[X1, . . . , XN ] onN variables such that p(x1, . . . , xN ) =
0 for every (x1, . . . , xN ) ∈ KN .

Lemma 16. Let p ∈ K[X1, . . . , XN ] be a nonzero polynomial on N variables

of degree d < |K|. Then, there exists a point (x1, . . . , xN ) in KN such that

p(x1, . . . , xN ) 6= 0.

Lemma 17. There exists a matrix M ∈ M such that, for every basis B ⊆ Q of

the matroid M, the corresponding columns of M are linearly independent.

Proof. By fixing a basis of Vi for every i ∈ Jm, we obtain one-to-one mappings
φi : Kki → Vi ⊆ Kk. Let N =

∑m

i=1 kini. By using the mappings φi, we can
construct a one-to-one mapping Ψ : KN = (Kk1)n1 × · · · × (Kkm)nm → M. That
is, by choosing an element in KN , we obtain ni vectors in Vi for every i ∈ Jm.
For every basis B ⊆ Q of the matroid M, we consider the mapping fB : KN → K

defined by fB(x) = det(Ψ(x)B), where Ψ(x)B is the square submatrix of Ψ(x)
formed by the k columns corresponding to the elements in B. Clearly, fB is a
polynomial on at most N variables and of degree k, because every entry of the
matrix Ψ(x)B is linear, that is, an homogeneous polynomial of degree 1. Let B
be a basis of M and u = Π(B) ∈ Zm+ . From Lemma 14, there exists a basis of

Kk of the form B̃ = B1 ∪ · · · ∪Bm with Bi ⊂ Vi and |Bi| = ui for every i ∈ Jm.

By placing the vectors in B̃ in the suitable positions in a matrix M ∈ M, we



can find a vector xB ∈ KN such that fB(xB) 6= 0, and hence the polynomial fB
is nonzero for every basis B of M. Therefore, if B(M) is the family of bases of
the matroid M, the polynomial f =

∏
B∈B(M) fB is a nonzero polynomial on N

variables of degree at most
(
n
k

)
·k < |K|, because |B(M)| ≤

(
n
k

)
. From Lemma 16,

there exists a point x0 ∈ KN such that f(x0) 6= 0, and hence fB(x0) 6= 0 for
every basis B of M. Clearly, the matrix Ψ(x0) is the one we are looking for. ut

7 Tripartite Access Structures

In this section, we apply our general results on ideal multipartite access struc-
tures to completely characterize the ideal tripartite access structures. The char-
acterization of ideal bipartite access structures was done previously in [28], but
only partial results [2, 10, 12] were known about the tripartite case.

We begin by characterizing the matroid-related tripartite access structures.
Afterwards, we prove that all matroids related to those access structures are rep-
resentable. Therefore, all matroid-related tripartite access structures are vector
space access structures, and hence ideal. We obtain in this way a characteri-
zation of the ideal tripartite access structures. In addition, as a consequence
of Theorem 3, the optimal information rate of every non-ideal tripartite access
structure is at most 2/3.

7.1 Characterizing Matroid-Related Tripartite Access Structures

The values of a rank function h : P(J3) → Z of a discrete polymatroid D with
ground set J3 will be denoted by ri = h({i}), where i ∈ J3, and si = h({j, k}) if
{i, j, k} = J3, and s = h(J3). Given integer values ri, si, and s, they univocally
determine a discrete polymatroid with ground set J3 if and only if, for every
i, j, k with {i, j, k} = J3,

1. s > 0, and 0 ≤ ri ≤ sj ≤ s, and
2. si ≤ rj + rk , and s ≤ si + ri, and s+ ri ≤ sj + sk.

Let D be a discrete polymatroid with ground set J3. From Proposition 7, a family
∆ ⊆ P(J3) is D-compatible if and only if the following conditions are satisfied
for every i, j, k with {i, j, k} = J3.

1. ∆ is monotone increasing, ∅ /∈ ∆, and J3 ∈ ∆.
2. ri > 0 if {i} ∈ ∆, and ri < sj if {i} /∈ ∆ and {i, k} ∈ ∆, and si < s if

{j, k} /∈ ∆.
3. si < rj + rk if {{j}, {k}} ⊂ ∆.
4. s+ ri < sj + sk if {i} /∈ ∆ and {{i, j}, {i, k}} ⊂ ∆.
5. s < si + ri if {{i}, {j, k}} ⊂ ∆.

From Theorem 8, a tripartite access structure Γ is matroid-related if and only
if there exist integers ri, si, s and a family ∆ ⊆ J3 in the above conditions such
that a subset A ⊆ P is in Γ if and only if Π(A) ≥ u for some u ∈

⋃
X∈∆ B(X),

where



– B(J3) = {v ∈ Zm+ : (s− s1, s− s2, s− s3) ≤ v ≤ (r1, r2, r3) and |v| = s},
– B({1, 2}) = {v ∈ Zm+ : (s3 − r2, s3 − r1, 0) ≤ v ≤ (r1, r2, 0) and |v| = s3},
– B({1}) = {(r1, 0, 0)},

and the other sets B(X) are defined symmetrically.

7.2 All Matroid-Related Tripartite Access Structures Are Ideal

Let D be a discrete polymatroid with ground set J3 that is represented over the
field K by three subspaces V1, V2, V3 of a vector space E. If ri, si and s are the
integer values of the rank function of D, then ri = dimVi for every i ∈ J3, and
si = dim(Vj + Vk) if {i, j, k} = J3, and s = dim(V1 + V2 + V3). If {i, j, k} = J3,
consider ti = rj + rk − si = dim(Vj ∩ Vk). Observe that t = dim(V1 ∩ V2 ∩ V3) is
not determined in general by D. That is, there can exist different representations
of D with different values of t. Nevertheless, there exist some restrictions on this
value. Of course, t ≤ ti for every i ∈ J3. In addition, since (V1∩V3)+(V2 ∩V3) ⊆
(V1 + V2)∩ V3, we have that dim((V1 + V2)∩ V3)− dim((V1 ∩ V3) + (V2 ∩ V3)) =∑
si−

∑
ri−(s−t) ≥ 0. Therefore, max{0, s−

∑
si+

∑
ri} ≤ t ≤ min{t1, t2, t3}.

The proof of the following result will appear in the full version of the paper.

Proposition 18. Let D be a discrete polymatroid with ground set J3. Consider

an integer t such that max{0, s −
∑
si +

∑
ri} ≤ t ≤ min{t1, t2, t3} and take

` =
∑
si −

∑
ri − (s − t). Let K be a field with |K| > s3 + `. Then there

exists a K-representation of D given by subspaces V1, V2, V3 ⊆ E = Ks with

dim(V1 ∩ V2 ∩ V3) = t.

As a consequence of Proposition 18, every discrete polymatroid with ground
set Jm with m ≤ 3 is representable over fields of all characteristics. This and
Theorem 13 implies that every m-partite matroid with m ≤ 3 is representable
over fields of all characteristics.

Theorem 19 concludes the characterization of ideal tripartite access struc-
tures. This result is not a direct consequence of Proposition 18, because the
matroids that define tripartite access structures are in general quadripartite, be-
ing one of the parts formed by a single point. Therefore, Theorem 19 is proved by
showing that every discrete polymatroid D′ with ground set J ′

3 and h({p0}) = 1
is linearly representable over finite fields of every characteristic. We sketch in
the following the proof of this fact. First, a linear representation of the discrete
polymatroid D = D′(J3), whose existence is given by Proposition 18, is consid-
ered. Afterwards, we have to check that it is possible to find a vector x0 such
that the subspace V0 = 〈x0〉, together with the subspaces V1, V2, V3 representing
D = D′(J3), form a linear representation of D′. This is done by a case-by-case
analysis depending on the family ∆(D′), and in every case a suitable represen-
tation of D has to be chosen.

Theorem 19. Every matroid-related tripartite access structure is ideal. More

specifically, every matroid-related tripartite access structure is a vector space

access structure over finite fields of all positive characteristics.



Example 20. We prove that the tripartite access structure Γ with

Π(minΓ ) = {(3, 0, 0), (2, 0, 4), (2, 4, 2), (2, 3, 3), (1, 4, 3), (1, 3, 4)}.

is ideal. Assuming that this is so, we determine D = D(Γ ) and ∆ = ∆(Γ ).
Observe that ∆ = supp(Γ ) = {{1}, {1, 2}, {1, 3}, J3}, and hence Π(minΓ ) ⊆
B({1})∪B({1, 2})∪B({1, 3})∪B(J3). It is easy to see that r1 = 3, r2 = r3 = 4,
s2 = 6 and s = 8. Since there is not any minimal subset in B({1, 2}), it follows
that B({1, 2}) has only one element (s3 − r2, r2, 0) = (r1, s3 − r1, 0), which does
not correspond to any minimal qualified subset, and hence s3 = 7. All subsets
in B(J3) have at least one participant in the first partition, so s − s1 = 1 and
s1 = 7. Since the parameters satisfy the above restrictions and Γ coincides with
the access structure determined by these parameters, Γ is a matroid-related
access structure. Therefore, it is a vector space access structure by Theorem 19.
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