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Abstract. We propose a new computational problem called the twin
Diffie-Hellman problem. This problem is closely related to the usual
(computational) Diffie-Hellman problem and can be used in many of the
same cryptographic constructions that are based on the Diffie-Hellman
problem. Moreover, the twin Diffie-Hellman problem is at least as hard as
the ordinary Diffie-Hellman problem. However, we are able to show that
the twin Diffie-Hellman problem remains hard, even in the presence of a
decision oracle that recognizes solutions to the problem — this is a fea-
ture not enjoyed by the ordinary Diffie-Hellman problem. In particular,
we show how to build a certain “trapdoor test” which allows us to effec-
tively answer such decision oracle queries, without knowing any of the
corresponding discrete logarithms. Our new techniques have many appli-
cations. As one such application, we present a new variant of ElGamal
encryption with very short ciphertexts, and with a very simple and tight
security proof, in the random oracle model, under the assumption that
the ordinary Diffie-Hellman problem is hard. We present several other
applications as well, including: a new variant of Diffie and Hellman’s
non-interactive key exchange protocol; a new variant of Cramer-Shoup
encryption, with a very simple proof in the standard model; a new vari-
ant of Boneh-Franklin identity-based encryption, with very short cipher-
texts; a more robust version of a password-authenticated key exchange
protocol of Abdalla and Pointcheval.

1 Introduction

In some situations, basing security proofs on the hardness of the Diffie-Hellman
problem is hindered by the fact that recognizing correct solutions is also appar-
ently hard (indeed, the hardness of the latter problem is the Decisional Diffie-
Hellman assumption). There are a number of ways for circumventing these tech-
nical difficulties. One way is to simply make a stronger assumption, namely, that
the Diffie-Hellman problem remains hard, even given access to a corresponding
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decision oracle. Another way is to work with groups that are equipped with effi-
cient pairings, so that such a decision oracle is immediately available. However,
we would like to avoid making stronger assumptions, or working with specialized
groups, if at all possible.

In this paper, we introduce a new problem, the twin Diffie Hellman problem,
which has the following interesting properties:

– the twin Diffie-Hellman problem can easily be employed in many cryp-
tographic constructions where one would usually use the ordinary Diffie-
Hellman problem, without imposing a terrible efficiency penalty;

– the twin Diffie-Hellman problem is hard, even given access to a correspond-
ing decision oracle, assuming the ordinary Diffie-Hellman problem (without
access to any oracles) is hard.

Using the twin Diffie-Hellman problem, we construct a new variant of ElGa-
mal encryption that is secure against chosen ciphertext attack, in the random
oracle model, under the assumption that the ordinary Diffie-Hellman problem is
hard. Compared to other ElGamal variants with similar security properties, our
scheme is attractive in that it has very short ciphertexts, and a very simple and
tighter security proof.

At the heart of our method is a “trapdoor test” that allows us to implement
an effective decision oracle for the twin Diffie-Hellman problem, without know-
ing any of the corresponding discrete logarithms. This trapdoor test has many
applications, including: a new variant of Diffie and Hellman’s non-interactive
key exchange protocol [10], which is secure in the random oracle model as-
suming the Diffie-Hellman problem is hard; a new variant of Cramer-Shoup
encryption [8] with a very simple security proof, in the standard model, un-
der the hashed decisional Diffie-Hellman assumption; a new variant of Boneh-
Franklin identity-based encryption [5], with very short ciphertexts, and a simple
and tighter security proof in the random oracle model, assuming the bilinear
Diffie-Hellman problem is hard; a very simple and efficient method of securing
a password-authenticated key exchange protocol of Abdalla and Pointcheval [2]
against server compromise, which can be proved secure, using our trapdoor test,
in the random oracle model, under the Diffie-Hellman assumption.

1.1 Hashed ElGamal Encryption and its relation to the
Diffie-Hellman problem

To motivate the discussion, consider the “hashed” ElGamal encryption
scheme [1]. This public-key encryption scheme makes use of a group G of prime
order q with generator g ∈ G, a hash function H, and a symmetric cipher (E,D).
A public key for this scheme is a random group element X, with corresponding
secret key x, where X = gx. To encrypt a message m, one chooses a random
y ∈ Zq, computes

Y := gy, Z := Xy, k := H(Y,Z), c := Ek(m),



and the ciphertext is (Y, c). Decryption works in the obvious way: given the
ciphertext (Y, c), and secret key x, one computes

Z := Y x, k := H(Y, Z), m := Dk(c).

The Diffie-Hellman Assumption. Clearly, the hashed ElGamal encryption
scheme is secure only if it is hard to compute Z, given the values X and Y .
Define

dh(X, Y ) := Z, where X = gx, Y = gy, and Z = gxy. (1)

The problem of computing dh(X, Y ) given random X, Y ∈ G is the DH problem.
The DH assumption asserts that this problem is hard. However, this assumption
is not sufficient to establish the security of hashed ElGamal against a chosen
ciphertext attack, regardless of what security properties the hash function H
may enjoy.

To illustrate the problem, suppose that an adversary selects group elements
Ŷ and Ẑ in some arbitrary way, and computes k̂ := H(Ŷ , Ẑ) and ĉ := Ek̂(m̂) for
some arbitrary message m̂. Further, suppose the adversary gives the ciphertext
(Ŷ , ĉ) to a “decryption oracle,” obtaining the decryption m. Now, it is very
likely that m̂ = m if and only if Ẑ = dh(X, Ŷ ). Thus, the decryption oracle
can be used by the adversary as an oracle to answer questions of the form “is
dh(X, Ŷ ) = Ẑ?” for group elements Ŷ and Ẑ of the adversary’s choosing. In
general, the adversary would not be able to efficiently answer such questions on
his own, and so the decryption oracle is leaking some information about that
secret key x which could conceivably be used to break the encryption scheme.

The Strong DH Assumption. Therefore, to establish the security of hashed
ElGamal against chosen ciphertext attack, we need a stronger assumption. For
X, Ŷ , Ẑ ∈ G, define the predicate

dhp(X, Ŷ , Ẑ) := dh(X, Ŷ ) ?= Ẑ.

At a bare minimum, we need to assume that it is hard to compute dh(X, Y ),
given random X, Y ∈ G, along with access to a decision oracle for the predicate
dhp(X, ·, ·), which on input (Ŷ , Ẑ), returns dhp(X, Ŷ , Ẑ). This assumption is
called the strong DH assumption [1].1 Moreover, it is not hard to prove, if H
is modeled as a random oracle, that hashed ElGamal is secure against chosen
ciphertext attack under the strong DH assumption, and under the assumption
that the underlying symmetric cipher is itself secure against chosen ciphertext
attack. This was proved in [1, 21], for a variant scheme in which Y is not included
in the hash; including Y in the hash gives a more efficient security reduction
(see [9]). Note that the strong DH assumption is different (and weaker) than
the so called gap DH assumption [24] where an adversary gets access to a full
decision oracle for the predicate dhp(·, ·, ·), which on input (X̂, Ŷ , Ẑ), returns
dhp(X̂, Ŷ , Ẑ).
1 We remark that in more recent papers the name strong DH assumption also some-

times refers to a different assumption defined over bilinear maps [3]. We follow the
original terminology from [1].



1.2 The Twin Diffie-Hellman Assumptions

For general groups, the strong DH assumption may be strictly stronger than the
DH assumption. One of the main results of this paper is to present a slightly
modified version of the DH problem that is just as useful as the (ordinary) DH
problem, and which is just as hard as the (ordinary) DH problem, even given
access to a corresponding decision oracle. Using this, we get a modified version
of hashed ElGamal encryption which can be proved secure under the (ordinary)
DH assumption, in the random oracle model. This modified system is just a bit
less efficient than the original system.

Again, let G be a cyclic group with generator g, and of prime order q. Let
dh be defined as in (1). Define the function

2dh : G3 → G2

(X1, X2, Y ) 7→ (dh(X1, Y ),dh(X2, Y )).

We call this the twin DH function. One can also define a corresponding twin DH
predicate:

2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2) := 2dh(X1, X2, Ŷ ) ?= (Ẑ1, Ẑ2).

The twin DH assumption states it is hard to compute 2dh(X1, X2, Y ), given
random X1, X2, Y ∈ G. It is clear that the DH assumption implies the twin DH
assumption. The strong twin DH assumption states that it is hard to compute
2dh(X1, X2, Y ), given random X1, X2, Y ∈ G, along with access to a decision
oracle for the predicate 2dhp(X1, X2, ·, ·, ·), which on input (Ŷ , Ẑ1, Ẑ2), returns
2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2).

One of our main results is the following:
Theorem 1. The (ordinary) DH assumption holds if and only if the strong twin
DH assumption holds.
The non-trivial direction to prove is that the DH assumption implies the strong
twin DH assumption.

A Trapdoor Test. While Theorem 1 has direct applications, the basic tool
that is used to prove the theorem, which is a kind of “trapdoor test,” has even
wider applications. Roughly stated, the trapdoor test works as follows: given a
random group element X1, we can efficiently construct a random group element
X2, together with a secret “trapdoor” τ , such that
– X1 and X2 are independent (as random variables), and
– if we are given group elements Ŷ , Ẑ1, Ẑ2, computed as functions of X1 and

X2 (but not τ), then using τ , we can efficiently evaluate the predicate
2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2), making a mistake with only negligible probability.

We note that our trapdoor test actually appears implicitly in Shoup’s DH
self-corrector [28]; apparently, its implications were not understood at the time,
although the techniques of Cramer and Shoup [8] are in some sense an extension
of the idea. Due to space constraints we must defer the details of the connection
between our trapdoor test and Shoup’s DH self-corrector to the full version of
this paper.



1.3 Applications and Results

The twin ElGamal encryption scheme Theorem 1 suggests the following
twin ElGamal encryption scheme. This scheme makes use of a hash function
H and a symmetric cipher (E,D). A public key for this scheme is a pair of
random group elements (X1, X2), with corresponding secret key is (x1, x2), where
Xi = gxi for i = 1, 2. To encrypt a message m, one chooses a random y ∈ Zq,
computes

Y := gy, Z1 := Xy
1 , Z2 := Xy

2 , k := H(Y, Z1, Z2), c := Ek(m),

and the ciphertext is (Y, c). Decryption works in the obvious way: given the
ciphertext (Y, c), and secret key (x1, x2), one computes

Z1 := Y x1 , Z2 := Y x2 , k := H(Y,Z1, Z2), m := Dk(c).

The arguments in [1] and [9] trivially carry over, so that one can easily show that
the twin ElGamal encryption scheme is secure against chosen ciphertext attack,
under the strong twin DH assumption, and under the assumption that (E,D)
is secure against chosen ciphertext attack, if H is modeled as a random oracle.
Again, by Theorem 1, the same holds under the (ordinary) DH assumption.

Note that the ciphertexts for this scheme are extremely compact — no re-
dundancy is added, as in the Fujisaki-Okamoto transformation [11]. Moreover,
the security reduction for our scheme is very tight. We remark that this seems
to be the first DH-based encryption scheme with short ciphertexts. All other
known constructions either add redundancy to the ciphertext [11, 25, 29, 7, 18]
or resort to assumptions stronger than DH [1, 9, 21].

The twin DH key-exchange protocol In their paper [10], Diffie and Hell-
man presented the following simple, non-interactive key exchange protocol. Al-
ice chooses a random x ∈ Zq, computes X := gx ∈ G, and publishes the pair
(Alice, X) is a public directory. Similarly, Bob chooses a random y ∈ Zq, com-
putes Y := gy ∈ G, and publishes the pair (Bob, Y ) in a public directory. Alice
and Bob may compute the shared value Z := gxy ∈ G, as follows: Alice retrieves
Bob’s entry from the directory and computes Z as Y x, while Bob retrieves Alice’s
key X, and computes Z as Xy. Before using the value Z, it is generally a good
idea to hash it, together with Alice’s and Bob’s identities, using a cryptographic
hash function H. Thus, the key that Alice and Bob actually use to encrypt data
using a symmetric cipher is k := H(Alice, Bob, Z).

Unfortunately, the status of the security of this scheme is essentially the same
as that of the security of hashed ElGamal against chosen ciphertext attack, if we
allow an adversary to place arbitrary public keys in the public directory (without
requiring some sort of “proof of possession” of a secret key).

To avoid this problem, we define the twin DH protocol, as follows: Alice’s
public key is (X1, X2), and her secret key is (x1, x2), where Xi = gxi for i = 1, 2;
similarly, Bob’s public key is (Y1, Y2), and his secret key is (y1, y2), where Yi = gyi



for i = 1, 2; their shared key is

k := H(Alice, Bob,dh(X1, Y1),dh(X1, Y2),dh(X2, Y1),dh(X2, Y2)),

where H is a hash function. Of course, Alice computes the 4-tuple of group
elements in the hash as

(Y x1
1 , Y x1

2 , Y x2
1 , Y x2

2 ),

and Bob computes them as

(Xy1
1 , Xy2

1 , Xy1
2 , Xy2

2 ).

Using the “trapdoor test,” it is a simple matter to show that the twin DH
protocol satisfies a natural and strong definition of security, under the (ordinary)
DH assumption, if H is modeled as a random oracle.

A variant of Cramer-Shoup encryption We present a variant of the public-
key encryption scheme by Cramer and Shoup [8]. Using our trapdoor test, along
with techniques originally developed for identity-based encryption [3], we give
an extremely simple proof of its security against chosen-ciphertext attack, in the
standard model, under the Decisional DH assumption [12]: given X and Y , it is
hard to distinguish dh(X, Y ) from Z, for random X, Y, Z ∈ G. In fact, our proof
works under the weaker hashed Decisional DH assumption: given X and Y , it is
hard to distinguish H(dh(X, Y )) from k, for random X, Y ∈ G, and random k in
the range of H. Note that the original Cramer-Shoup scheme cannot be proved
secure under this weaker assumption — their security relies in an essential way
on the Decisional DH assumption.

As a simple extension of this idea, we can obtain a new analysis of a scheme
given in [17]. There, a variant of the Kurosawa-Desmedt encryption scheme
is given and proved secure under the decisional DH assumption. Our analysis
provides further theoretical understanding. Due to space constraints we must
defer the details of this construction to the full version of this paper.

Obviously, our variants are secure under the DH assumption if H is modeled
as a random oracle. We also note that by using the Goldreich-Levin theorem,
a simple extension of our scheme, which is still fairly practical, can be proved
secure against chosen ciphertext attack under the DH assumption.

The observation that a variant of the Cramer-Shoup encryption scheme can
be proved secure under the hashed Decisional DH assumption was also made
by Brent Waters, in unpublished work (personal communication, 2006) and in-
dependently by Goichiro Hanaoka and Kaoru Kurosawa, also in unpublished
work [16].

Identity-based encryption Strong versions of assumptions also seem neces-
sary to analyze some identity-based encryption (IBE) schemes that use bilinear
pairings. As a further contribution, we give a twin version of the bilinear DH
(BDH) assumption and prove that the (interactive) strong twin BDH assumption
is implied by the standard BDH assumption.



The well-known IBE scheme of Boneh and Franklin [5] achieves security
against chosen ciphertext, in the random oracle model, by applying the Fujisaki-
Okamoto transformation. Our techniques give a different scheme with shorter
ciphertexts, and a tighter security reduction. The same technique can also be
applied to the scheme by Kasahara and Sakai [27] which is based on a stronger
bilinear assumption but has improved efficiency.

Other applications Our twinning technique and in particular the trapdoor
test can be viewed as a general framework that allows to “update” a protocol
Π whose security relies on the strong DH assumption to a protocol Π ′ that has
roughly the same complexity as Π, but whose security is solely based on the
DH assumption. Apart from the applications mentioned above, we remark that
this technique can also be applied to the undeniable signatures and designated
confirmer signatures from [24] and the key-exchange protocols from [19].

As another application of our trapdoor test, one can easily convert the
very elegant and efficient protocol of Abdalla and Pointcheval [2] for password-
authenticated key exchange, into a protocol that provides security against server
compromise, without adding any messages to the protocol, and still basing the
security proof, in the random oracle model, on the DH assumption. For lack of
space, this application will be further discussed in the full version.

2 A trapdoor test and a proof of Theorem 1

It is not hard to see that the strong twin DH implies the DH assumption. To prove
that the DH implies the strong twin DH assumption, we first need our basic tool,
a “trapdoor test”. Its purpose will be intuitively clear in the proof of Theorem 1:
in order to reduce the strong twin DH assumption to the DH assumption, the
DH adversary will have to answer decision oracle queries without knowing the
discrete logarithms of the elements of the strong twin DH problem instance. This
tool gives us a method for doing so.

Theorem 2 (Trapdoor Test). Let G be a cyclic group of prime order q, gen-
erated by g ∈ G. Suppose X1, r, s are mutually independent random variables,
where X1 takes values in G, and each of r, s is uniformly distributed over Zq,
and define the random variable X2 := gs/Xr

1 . Further, suppose that Ŷ , Ẑ1, Ẑ2 are
random variables taking values in G, each of which is defined as some function
of X1 and X2. Then we have:

(i) X2 is uniformly distributed over G;
(ii) X1 and X2 are independent;
(iii) if X1 = gx1 and X2 = gx2 , then the probability that the truth value of

Ẑr
1 Ẑ2 = Ŷ s (2)

does not agree with the truth value of

Ẑ1 = Ŷ x1 ∧ Ẑ2 = Ŷ x2 (3)



is at most 1/q; moreover, if (3) holds, then (2) certainly holds.

Proof. Observe that s = rx1 + x2. It is easy to verify that X2 is uniformly
distributed over G, and that X1, X2, r are mutually independent, from which (i)
and (ii) follow. To prove (iii), condition on fixed values of X1 and X2. In the
resulting conditional probability space, r is uniformly distributed over Zq, while
x1, x2, Ŷ , Ẑ1, and Ẑ2 are fixed. If (3) holds, then by multiplying together the
two equations in (3), we see that (2) certainly holds. Conversely, if (3) does not
hold, we show that (2) holds with probability at most 1/q. Observe that (2) is
equivalent to

(Ẑ1/Ŷ x1)r = Ŷ x2/Ẑ2. (4)

It is not hard to see that if Ẑ1 = Ŷ x1 and Ẑ2 6= Ŷ x2 , then (4) certainly does not
hold. This leaves us with the case Ẑ1 6= Ŷ x1 . But in this case, the left hand side
of (4) is a random element of G (since r is uniformly distributed over Zq), but
the right hand side is a fixed element of G. Thus, (4) holds with probability 1/q
in this case.

Using this tool, we can easily prove Theorem 1. So that we can give a concrete
security result, let us define some terms. For an adversary B, let us define his DH
advantage, denoted AdvDHB,G, to be the probability that B computes dh(X, Y ),
given random X, Y ∈ G. For an adversary A, let us define his strong twin
DH advantage, denoted Adv2DHA,G, to be the probability that A computes
2dh(X1, X2, Y ), given random X1, X2, Y ∈ G, along with access to a decision
oracle for the predicate 2dhp(X1, X2, ·, ·, ·), which on input Ŷ , Ẑ1, Ẑ2, returns
2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2).

Theorem 1 is a special case of the following:

Theorem 3. Suppose A is a strong twin DH adversary that makes at most Qd

queries to its decision oracle, and runs in time at most τ . Then there exists a
DH adversary B with the following properties: B runs in time at most τ , plus
the time to perform O(Qd log q) group operations and some minor bookkeeping;
moreover,

Adv2DHA,G ≤ AdvDHB,G + Qd/q.

In addition, if B does not output “failure,” then its output is correct with prob-
ability at least 1− 1/q.

Proof. Our DH adversary B works as follows, given a challenge instance (X, Y ) of
the DH problem. First, B chooses r, s ∈ Zq at random, sets X1 := X and X2 :=
gs/Xr

1 , and gives A the challenge instance (X1, X2, Y ). Second, B processes each
decision query (Ŷ , Ẑ1, Ẑ2) by testing if Ẑ1Ẑ

r
2 = Ŷ s holds. Finally, if and when

A outputs (Z1, Z2), B tests if this output is correct by testing if Z1Z
r
2 = Y s

holds; if this does not hold, then B outputs “failure,” and otherwise, B outputs
Z1. The proof is easily completed using Theorem 2.



3 Twin ElGamal encryption

3.1 Model and security

We recall the definition for chosen ciphertext security of a public-key encryption
scheme, denoted PKE. Consider the usual chosen ciphertext attack game, played
between a challenger and a adversary A:

1. The challenger generates a public key/secret key pair, and gives the public
key to A;

2. A makes a number of decryption queries to the challenger; each such query
is a ciphertext Ĉ; the challenger decrypts Ĉ, and sends the result to A;

3. A makes one challenge query, which is a pair of messages (m0,m1); the
challenger chooses b ∈ {0, 1} at random, encrypts mb, and sends the resulting
ciphertext C to A;

4. A makes more decryption queries, just as in step 2, but with the restriction
that Ĉ 6= C;

5. A outputs b̂ ∈ {0, 1}.

The advantage AdvCCAA,PKE is defined to be |Pr[b̂ = b]−1/2|. The scheme PKE
is said to be secure against chosen ciphertext attack if for all efficient adversaries
A, the advantage AdvCCAA,PKE is negligible.

If we wish to analyze a scheme PKE in the random oracle model, then hash
functions are replaced by random oracle queries as appropriate, and both chal-
lenger and adversary are given access to the random oracle in the above attack
game. We write AdvCCAro

A,PKE for the corresponding advantage in the random
oracle model.

If SE = (E,D) is a symmetric cipher, then one defines security against chosen
ciphertext attack in exactly the same way, except that in step 1 of the above
attack game, the challenger simply generates a secret key and step 2 of the
above attack game is left out. The advantage AdvCCAA,SE is defined in exactly
the same way, and SE is said to be secure against chosen ciphertext attack if for
all efficient adversaries A, the advantage AdvCCAA,SE is negligible.

The usual construction of a chosen-ciphertext secure symmetric encryption
scheme is to combine a one-time pad and a message-authentication code (MAC).
We remark that such schemes do not necessarily add any redundancy to the
symmetric ciphertext. In fact, Phan and Pointcheval [26] showed that a strong
PRP [13] directly implies a length-preserving chosen-ciphertext secure symmet-
ric encryption scheme that avoids the usual overhead due to the MAC. In prac-
tice one can use certain modes of operation (e.g., CMC [15]) to encrypt large
messages. The resulting scheme is chosen-ciphertext secure provided that the
underlying block-cipher is a strong PRP.

3.2 Security of the Twin ElGamal scheme

We are now able to establish the security of the twin ElGamal encryption scheme
described in §1.3, which we denote PKE2dh. The security will be based on the



strong twin DH assumption, of course, and this allows us to borrow the “ora-
cle patching” technique from previous analyses of hashed ElGamal encryption
based on the strong DH assumption. We stress, however, that unlike previous
applications of this technique, the end result is a scheme based on the original
DH assumption.

Theorem 4. Suppose H is modeled as a random oracle and that the DH as-
sumption holds. Then PKE2dh is secure against chosen ciphertext attack.

In particular, suppose A is an adversary that carries out a chosen ciphertext
attack against PKE2dh in the random oracle model, and that A runs in time τ ,
and makes at most Qh hash queries and Qd decryption queries. Then there exists
a DH adversary Bdh and an adversary Bsym that carries out a chosen ciphertext
attack against SE, such that both Bdh and Bsym run in time at most τ , plus the
time to perform O((Qh + Qd) log q) group operations; moreover,

AdvCCAro
A,PKE2dh

≤ AdvDHBdh,G + AdvCCABsym,SE + Qh/q.

Given the equivalence between the strong 2DH and the DH assumption from
Theorem 1, the proof of Theorem 4 is quite standard, but must be deferred to
the full version.

Instantiating PKE2dh with a length-preserving chosen-ciphertext secure sym-
metric encryption scheme, we obtain a DH-based chosen-ciphertext secure en-
cryption scheme with the following properties.

Optimal ciphertext overhead. The ciphertext overhead, i.e. ciphertext size
minus plaintext size, is exactly one group element, which is optimal for Diffie-
Hellman based schemes. For concreteness, for κ = 128 bit security, a typical
implementation in elliptic curve groups gives a concrete ciphertext overhead
of 256 bits.

Encryption/decryption efficiency. Encryption needs three exponentiations
in G, one of which is to the fixed-base g (that can be shared among many
public-keys). Decryption only needs one sequential exponentiation in G to
compute Y x1 and Y x2 simultaneously, which is nearly as efficient as one
single exponentiation (see, e.g., [23]).

4 Non-interactive key exchange

In this section we give a model and security definition for non-interactive key
exchange and then analyze the twin DH protocol from section §1.3. Strangely,
after the seminal work of Diffie and Hellman on this subject, it does not seem to
have been explored further in the literature, except in the identity-based setting.

4.1 Model and security

A non-interactive key exchange scheme KE consists of two algorithms: one for key
generation and one for computing paired keys. The key generation algorithm is



probabilistic and outputs a public key/secret key pair. The paired key algorithm
takes as input an identity and public key along with another identity and a
secret key, and outputs a shared key for the two identities. Here, identities are
arbitrary strings chosen by the users, and the key authority does not generate
keys itself but acts only as a phonebook.

For security we define an experiment between a challenger and an adversary
A. In this experiment, the challenger takes a random bit b as input and answers
oracle queries for A until A outputs a bit b̂. The challenger answers the following
types of queries for A:

Register honest user ID. A supplies a string id . The challenger runs the key
generation algorithm to generate a public key/secret key pair (pk, sk) and
records the tuple (honest, id ,pk, sk) for later. The challenger returns pk to
A.

Register corrupt user ID. In this type of query, A supplies both the string
id and a public key pk. The challenger records the tuple (corrupt, id ,pk) for
later.

Get honest paired key. Here A supplies two identities id , id ′ that were reg-
istered as honest users. Now the challenger uses the bit b: if b = 0, the
challenger runs the paired key algorithm using the public key for id and the
secret key for id ′. If b = 1, the challenger generates a random key, records it
for later, and returns that to the adversary. To keep things consistent, the
challenger returns the same random key for the set {id , id ′} every time A
queries for their paired key (perhaps in reversed order).

Get corrupt paired key. Here A supplies two identities id , id ′, where id was
registered as corrupt and id ′ was registered as honest. The challenger runs
the paired key algorithm using the public key for id and the secret key for
id ′ and returns the paired key.

When the adversary finally outputs b̂, it wins the experiment if b̂ = b. For
an adversary A, we define its advantage AdvKAA,KE in this experiment to be
|Pr[b̂ = b] − 1/2|. When a hash function is modeled as a random oracle in the
experiment, we denote the adversary’s advantage by AdvKAro

A,KE. We say that
a non-interactive key-exchange scheme KE is secure against active attacks if for
all efficient adversaries A, the advantage AdvKAro

A,KE is negligible.
We note that in the ideal version of the experiment above (when b = 1), the

challenger returns the same random key for the honest paired key queries for
(id , id ′) and (id ′, id). This essentially means that there should be no concept
of “roles” in the model and that protocols should implement something like a
canonical ordering of all the identities to implicitly define roles if needed.

4.2 Security of the twin DH protocol

As stated above, we can prove the twin DH protocol secure under the DH as-
sumption using our trapdoor test. We denote the twin DH protocol by KA2dh.
A complete proof will be given in the full version.



Theorem 5. Suppose H is modeled as a random oracle and that the DH as-
sumption holds. Then KA2dh is secure against active attacks.

In particular, suppose A is an adversary that attacks KA2dh in the random
oracle model, and that A runs in time τ , and makes at most a total of Q oracle
queries of all types. Then there exists a DH adversary Bdh that runs in time at
most τ plus the time to perform O(Q log q) group operations; moreover,

AdvKAro
A,KA2dh

≤ 2AdvDHBdh,G + 4Q/q.

5 A variant of the Cramer-Shoup encryption scheme

5.1 The (Twin) DDH assumption

Let G be a group of order q and let g be a random generator. Distinguishing
the two distributions (X, Y,dh(X, Y )) and (X, Y, Z) for random X, Y, Z ∈ G
is the Decision Diffie-Hellman (DDH) problem. The DDH assumption states
that the DDH problem is hard. As a natural decision variant of the Twin
DH problem, the Twin DDH problem is distinguishing the two distributions
(X1, X2, Y,dh(X1, Y )) and (X1, X2, Y, Z) for random X1, X2, Y, Z ∈ G. The
Strong Twin DDH assumption states that the Twin DDH problem is hard, even
given access to a decision oracle for the predicate for 2dhp(X1, X2, ·, ·, ·), which
on input (Ŷ , Ẑ1, Ẑ2) returns 2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2). (Note the value dh(X2, Y )
is never provided as input to the distinguisher since otherwise the Strong Twin
DDH assumption could trivially broken using the 2dhp oracle.)

We also consider a potentially weaker “hashed variants” of the above two
assumptions. For a hash function H : G → {0, 1}κ, the Hashed DDH problem is
to distinguish the two distributions (X, Y,H(dh(X, Y )) and (X, Y, k), for random
X, Y ∈ G and k ∈ {0, 1}κ. The Hashed DDH assumption states that the Hashed
DDH problem is hard. In the same way, we can consider the Strong Twin Hashed
DDH assumption.

We stress that the (Strong Twin) Hashed DDH assumption simplifies to the
(Strong Twin) DDH assumption when H is the identity. Furthermore, there are
natural groups (such as non-prime-order groups) where the DDH problem is
known to be easy yet the Hashed DDH problem is still assumed to be hard for
a reasonable choice of the hash function [12]. If H is modeled as random oracle
then the Hashed DDH and the DH assumption become equivalent.

Using the trapdoor test in Theorem 2, we can prove an analog of Theorem 3.

Theorem 6. The (Hashed) DDH assumption holds if and only if the Strong
Twin (Hashed) DDH assumption holds. In particular, suppose A is a Strong
Twin (Hashed) DDH adversary that makes at most Qd queries to its decision
oracle, and runs in time at most τ . Then there exists a (Hashed) DDH adversary
B with the following properties: B runs in time at most τ , plus the time to perform
O(Qd log q) group operations and some minor bookkeeping; moreover,

Adv2DDHA,G ≤ AdvDDHB,G + Qd/q.



5.2 A variant of the Cramer-Shoup scheme

We now can consider the following encryption scheme which we call PKEecs. This
scheme makes use of a symmetric cipher (E,D) and a hash function T : G → Zq

which we assume to be target collision-resistant [9]. A public key for this scheme
is a tuple of random group elements (X1, X̃1, X2, X̃2), with corresponding secret
key (x1, x̃1, x2, x̃2), where Xi = gxi and X̃i = gx̃i for i = 1, 2. To encrypt a
message m, one chooses a random y ∈ Zq, computes

Y := gy, t := T(Y ), Z1 := (Xt
1X̃1)y, Z2 := (Xt

2X̃2)y, k := H(Xy
1 ), c := Ek(m),

and the ciphertext is (Y,Z1, Z2, c). Decryption works as follows: given the ci-
phertext (Y, Z1, Z2, c), and secret key (x1, x̃1, x2, x̃2), one computes t := T(Y )
and checks if

Y x1t+x̃1 = Z1 and Y x2t+x̃2 = Z2. (5)

If not (we say the ciphertext is not consistent), reject; otherwise, compute

k := H(Y x1), m := Dk(c).

We remark that since |G| = |Zq| = q, hash function T could be a bijection.
See [6] for efficient constructions for certain groups G.

Relation to Cramer-Shoup. Our scheme is very similar to the one by Cramer
and Shoup [8]. Syntactically, the difference is that in Cramer-Shoup the value
Z1 is computed as Z1 = Xy

3 (where X3 is another random group element in
the public key) and t is computed as t = T(Y, Z1). However, our variant allows
for a simple security proof based on the Hashed DDH assumption whereas for
the Cramer-Shoup scheme only a proof based on the DDH assumption is known
(and the currently known proofs do not allow for it).

5.3 Security

We now show that, using the trapdoor test, PKEecs allows for a very elementary
proof under the Hashed DDH assumption. We stress that are security proof is
not in the random oracle model.

Theorem 7. Suppose T is a target collision resistant hash function. Further,
suppose the Hashed DDH assumption holds, and that the symmetric cipher SE =
(E,D) is secure against chosen ciphertext attack. Then PKEecs is secure against
chosen ciphertext attack.

In particular, suppose A is an adversary that carries out a chosen cipher-
text attack against PKEecs and that A runs in time τ , and makes at most Qd

decryption queries. Then there exists a Hashed DDH adversary Bddh, an adver-
sary Bsym that carries out a chosen ciphertext attack against SE, and a TCR
adversary Btcr such that both Bddh, Bsym and Btcr run in time at most τ , plus
the time to perform O(Qd log q) group operations; moreover,

AdvCCAA,PKEfcs ≤ AdvDDHBddh,G,H + AdvCCABsym,SE + AdvTCRBtcr,T + Qd/q.



Proof. We proceed with a sequence of games.

Game 0. Let Game 0 be the original chosen ciphertext attack game, and let S0

be the event that b̂ = b in this game.

AdvCCAA,PKEfcs = |Pr[S0]− 1/2|. (6)

Game 1 Let Game 1 be like Game 0, but with the following difference. Game 1
aborts if the adversary, at any time, makes a decryption query containing a
Ŷ such that Ŷ 6= Y and T(Ŷ ) = T(Y ) where Y comes from the challenge
ciphertext. Using a standard argument from [9] it is easy to show that

|Pr[S1]− Pr[S0]| ≤ AdvTCRBtcr,T. (7)

Game 2. Let Game 2 be as Game 1 with the following differences. For comput-
ing the public-key the experiment picks x1, x2, y, a1, a2 ∈ Zq at random and
computes X1 = gx1 , X2 = gx2 , and Y = gy. Next, it computes t := T(Y )
and

X̃1 := X−t
1 ga1 , X̃2 := X−t

2 ga2 .

Note that the way the public-key is setup uses a technique to prove selective-
ID security for IBE schemes [3].
The challenge ciphertext (Y, Z1, Z2, c) for message mb is computed as

t := T(Y ), Z1 := Y a1 , Z2 := Y a2 , k := H(Xy
1 ), c := Ek(mb). (8)

This is a correctly distributed ciphertext for mb and randomness y = logg(Y )
since, for i = 1, 2, (Xt

i X̃i)y = (Xt−t
i gai)y = (gai)y = Y ai = Zi. We can

assume (Y, Z1, Z2, k) to be computed in the beginning of the experiment
since they are independent of m0,m1.
A decryption query for ciphertext (Ŷ , Ẑ1, Ẑ2, ĉ) is answered as follows. Com-
pute t̂ = T(Ŷ ). If t = t̂ then verify consistency by checking if Z1 = Ẑ1 and
Z2 = Ẑ2. If the ciphertext is consistent then use the challenge key k defined
in (8) to decrypt ĉ. If t 6= t̂ then proceed as follows. For i = 1, 2, compute
Z̄i = (Ẑi/Ŷ ai)1/(t̂−t). Consistency of the ciphertext is verified by checking if

Ŷ x1 = Z̄1 and Ŷ x2 = Z̄2. (9)

Let ŷ = logg Ŷ . The value Ẑi was correctly generated iff Ẑi = (X t̂
i X̃i)ŷ =

(X t̂−t
i gai)ŷ = (Ŷ xi)t̂−t · Ŷ ai which is equivalent to Z̄i = Ŷ xi . Hence, (9)

is equivalent to the test from the original scheme (5). If the ciphertext is
consistent then one can use the symmetric key k̂ = H(Z̄1) = H(Ŷ x1) to
decrypt ĉ and return m̂ = Dk̂(ĉ).
Let S2 be the event that b̂ = b in this game. As we have seen,

Pr[S2] = Pr[S1]. (10)



Game 3. Let Game 3 be as Game 2 with the only difference that the value k
to compute that challenge ciphertext is now chosen at random from G. We
claim that

|Pr[S3]− Pr[S2]| ≤ Adv2DDHB2ddh,G,H, (11)

where B2ddh is an efficient Strong Twin Hashed DDH adversary that makes at
most Qd queries to the decision oracle. B2ddh is defined as follows. Using the
values (X1, X2, Y, k) from its challenge (where either k = H(dh(X1, Y )) or k
is random), adversary B2ddh runs (without knowing x1, x2, y) the experiment
as described in Game 2 using k as the challenge key in (8) to encrypt mb.
Note that the only point where Games 2 and 3 make use of x1 and x2 is the
consistency check (9) which B2ddh equivalently implements using the 2dhp
oracle, i.e. by checking if

2dhp(X1, X2, Ŷ , Z̄1, Z̄2)

holds. We have that if k = H(dh(X1, Y )) ∈ {0, 1}κ, this perfectly simulates
Game 2, whereas if k ∈ {0, 1}κ is random this perfectly simulates Game 3.
This proves (11).
Finally, it is easy to see that in Game 3, the adversary is essentially playing
the chosen ciphertext attack game against SE. Thus, there is an efficient
adversary Bsym such that

|Pr[S3]− 1/2| = AdvCCABsym,SE. (12)

The theorem now follows by combining (6)–(12) with Theorem 6.

5.4 A variant with security from the DH assumption

We now consider a slight variant of the scheme PKEecs that uses the Goldreich-
Levin bit [14, 13] to achieve security based on the (standard) DH assumption.

Let ν = O(log κ) be some integer that divides the security parameter κ and
set ` = κ/ν. Let the public key now contain the 2` + 3 group elements Y and
Xi = gxi , X̃i = gx̃i , for i = 1, . . . , ` + 1. Furthermore, it contains a sufficiently
large random bit-strings R to extract the Diffie-Hellman hard-core bits (a string
of length ` · 2κ is sufficient). To encrypt a message m, one chooses a random
y ∈ Zq, computes Y := gy and Zi := (Xt

i X̃i)y, for i = 1, . . . , ` + 1, where
t = T(Y ). As before, the function of Z`+1 is the consistency check. From each of
the ` unique Diffie-Hellman keys ki = H(Xy

i ) ∈ {0, 1}κ (i = 1, . . . , `) and parts of
R we can now extract a ν = κ/` simultaneous hard-core bits k′i ∈ {0, 1}ν . Finally,
a concatenation of all k′i yields a k-bit symmetric key k ∈ {0, 1}κ that is used
to encrypt m as c = Ek(m). The ciphertext is (Y, Z1, . . . , Z`+1, c). Decryption
first verifies consistency of (Y, Z1, . . . , Z`+1) by checking if Y xit+x̃i = Zi, for all
i = 1, . . . , ` + 1. Then the key k is reconstructed from the unique Diffie-Hellman
keys ki = H(Y xi) as in encryption.

For concreteness we can consider a security parameter of κ = 128 bits and set
ν = log2(κ) = 7, which means the ciphertext overhead consists of 128/7+2 ≈ 20



group elements which account for 20 · 256 ≈ 5000 bits when implemented on
elliptic curves. Note that this is less than two standard RSA moduli for the
same security level (3072 bits each, for κ = 128).

In the full version we show that the above scheme is chosen-ciphertext secure
under the DH assumption. The proof uses a hybrid argument in connection with
the trapdoor test from Theorem 2. Furthermore, it uses the Goldreich-Levin
construction to extract ν = O(log(κ)) hard-core bits out of each Diffie-Hellman
key. The security reduction is polynomial-time but due to the generic hard-core
construction it is not very tight.

6 Identity Based Encryption

In this section we show how to apply the trapdoor test in Theorem 2 to identity-
based encryption in pairing groups. We give a bilinear version of the strong
twin DH problem and show that it can be reduced to the standard bilinear DH
problem. We then use this assumption to construct a new IBE scheme that we
call twin Boneh-Franklin below. The end result is a chosen ciphertext secure
IBE scheme based on bilinear DH with one group element of overhead in the
ciphertexts and a tighter reduction than the original scheme on which it is based.

6.1 A new bilinear assumption

In groups equipped with a pairing ê : G×G → GT , we can define the function

bdh(X, Y,W ) := Z, where X = gx, Y = gy, W = gw, and Z = ê(g, g)wxy.

Computing bdh(X, Y,W ) using random X, Y,W ∈ G is the bilinear DH (or
BDH) problem. The BDH assumption states that computing the BDH problem
is hard. We define a predicate

bdhp(X, Ŷ , Ŵ , Ẑ) := bdh(X, Ŷ , Ŵ ) ?= Ẑ.

We can also consider the BDH problem where, in addition to random
(X, Y,W ), one is also given access to an oracle that on input (Ŷ , Ŵ , Ẑ) re-
turns bdhp(X, Ŷ , Ŵ , Ẑ). The strong BDH assumption [22] states that the BDH
problem remains hard even with the help of the oracle.

For reasons similar to the issue with hashed ElGamal encryption, the strong
BDH assumption seems necessary to prove the CCA security of the basic ver-
sion [22] of the original Boneh-Franklin IBE [5]. We can repeat the above idea
and define the twin BDH problem, where one must compute 2bdh(X1, X2, Y,W )
for random X1, X2, Y, W , where we define

2bdh(X1, X2, Y,W ) := (bdh(X1, Y,W ),bdh(X2, Y,W )).

Continuing as above, the strong twin BDH problem is the same as the twin BDH
problem but with a suitably defined decision oracle. In this case define the pred-
icate

2bdhp(X1, X2, Ŷ , Ŵ , Ẑ1, Ẑ2) := 2bdh(X1, X2, Ŷ , Ŵ ) ?= (Ẑ1, Ẑ2),



and the decision oracle takes input (Ŷ , Ŵ , Ẑ1, Ẑ2) and returns
2bdhp(X1, X2, Ŷ , Ŵ , Ẑ1, Ẑ2). The strong twin BDH assumption states that the
BDH problem is still hard, even with access to the decision oracle.

Finally, we will need a slight generalization of the trapdoor test in Theorem 2.
It is easy to check that the theorem is still true if the elements Ŷ , Ẑ1, Ẑ2 are in
a different cyclic group of the same order (we will take them in the range group
of the pairing). With this observation, we can prove an analog of Theorem 3.

Theorem 8. Suppose A is a strong twin BDH adversary that makes at most
Qd queries to its decision oracle, and runs in time at most τ . Then there exists
a BDH adversary B with the following properties: B runs in time at most τ , plus
the time to perform O(Qd log q) group operations and some minor bookkeeping;
moreover,

Adv2BDHA,G ≤ AdvBDHB,G + Qd/q.

In addition, if B does not output “failure,” then its output is correct with prob-
ability at least 1− 1/q.

6.2 Twin Boneh-Franklin

For model and security definitions of IBE we refer the reader to [5]. Theorem 8
admits a simple analysis of the following IBE scheme, which we call the twin
Boneh-Franklin IBE scheme. This scheme will use two hash functions, H (which
outputs symmetric keys) and G (which outputs group elements), and a symmetric
cipher (E,D). A system public key is a pair of group elements (X1, X2), where
Xi = gxi for i = 1, 2. The system private key is (x1, x2), which are selected at
random from Zq by the setup algorithm. The secret key for an identity id ∈
{0, 1}∗ is (S1, S2) = (G(id)x1 ,G(id)x2). To encrypt a message m for identity id ,
one chooses y ∈ Zq and random and sets

Y := gy, Z1 := ê(G(id), X1)y, Z2 := ê(G(id), X2)y,

k := H(id , Y, Z1, Z2), c := Ek(m).

The ciphertext is (Y, c). To decrypt using the secret key (S1, S2) for id , one
computes

Z1 := ê(S1, Y ), Z2 := ê(S2, Y ), k := H(id , Y, Z1, Z2), m := Dk(c).

We shall denote this scheme IBE2dh. Now we can essentially borrow the anal-
ysis of the original Boneh-Franklin scheme under the strong BDH assumption
[22], except now we prove that the scheme is secure against chosen ciphertext
attack under the strong twin BDH assumption. By Theorem 8, we get that the
above IBE scheme is CCA secure under the BDH assumption if the symmetric ci-
pher is secure and the hash functions are treated as random oracles. The security
reduction here enjoys the same tightness as the reduction given in [22], which is
tighter than the original analysis of the Boneh-Franklin scheme. Again, for space
reasons we will give a complete statement of this result and the corresponding
proof (which is mostly standard) in the full version.



We remark that our ideas can also be applied to the IBE scheme from Sakai-
Kasahara [27]. The resulting IBE scheme is more efficient but its security can
only be proved based on the q-BDHI assumption [4].
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