
On the Indifferentiability of the Sponge

Construction

Guido Bertoni1, Joan Daemen1, Michaël Peeters2, and Gilles Van Assche1

sponge@noekeon.org

1 STMicroelectronics
2 NXP Semiconductors

Abstract. In this paper we prove that the sponge construction intro-
duced in [4] is indifferentiable from a random oracle when being used
with a random transformation or a random permutation and discuss its
implications. To our knowledge, this is the first time indifferentiability
has been shown for a construction calling a random permutation (in-
stead of an ideal compression function or ideal block cipher) and for a
construction generating outputs of any length (instead of a fixed length).

1 Introduction

All cryptographic hash functions of any significance known today, i.e., MD4,
MD5, the SHA and RIPEMD [15] families and several others, share the same
design paradigm. They all consist of the iterated application of a compression
function. The iteration mechanism is known as Merkle-Damg̊ard [8, 16] and guar-
antees that if the compression function is collision-resistant, the resulting hash
function is collision-resistant. This is a very attractive property as collision-
resistance appears to be one of the most important properties of cryptographic
hash functions. The compression functions of the above mentioned hash func-
tions were designed with collision-resistance in mind. During the last years, with
the recent collision attacks on SHA-1 as culminating point, it has become clear
that designing a compression function that is both collision-resistant and effi-
cient is not an easy task. Moreover, weaknesses have been shown in the Merkle-
Damg̊ard construction itself. While it does guarantee certain properties such as
collision-resistance on the condition that the underlying compression function
has the same property, this is not the case for all properties that are expected
from cryptographic hash functions. A well known example of such a weakness,
discussed in [7], is the insecurity of the MAC function constructed from a Merkle-
Damg̊ard hash function by feeding the latter with the secret key followed by the
message.

In [7] Coron et al. propose a number of variants of the Merkle-Damg̊ard
construction that do not have this and other weaknesses. For each of these con-
structions they provide theorems stating that if the compression function is
constructed using an ideal component, i.e., a finite input length (FIL) random
oracle or an ideal block cipher (used as Davies-Meyer compression function), the

hash function behaves as a random oracle [3] with output truncated to a fixed
length. They present their theorems in the indifferentiability framework that was
introduced by Maurer et al. in [14]. As a (truncated) random oracle has all de-
sired properties that may be expected from a cryptographic hash function, this
provides a direction for the design of hash functions that do not only provide re-
sistance against collision search, but are as strong as a truncated random oracle
with respect to many criteria. Instead of constructing an efficient compression
function that is collision-resistant, one shall now design an efficient function that
behaves as a FIL random oracle, or in other words, a random n + m to n bit
compression function, or an ideal block cipher. In the meanwhile, several other
hash function constructions have been shown to be indifferentiable from a ran-
dom oracle, see for example [2, 6]. Note that indifferentiability is not the only
approach to proving properties of hash function constructions: some authors an-
alyze the properties of the compression function that can be preserved by the
construction [1, 2].

Recently, we introduced a new iterative hash function construction, called
a sponge [4]. It builds upon a fixed-length transformation (i.e., with codomain
equal to domain) or permutation f instead of a compression function and can
generate output strings of infinite length. In [4] we proved that when f is a
random transformation or permutation, the resulting function is only distin-
guishable from a random oracle with probability below N(N + 1)/2c+1, where
N is the number of calls to f (and f−1) and c is a security parameter related to
the size of the domain of f . At first sight, one may consider the indistinguisha-
bility proof as an argument that it behaves as a random oracle with probability
1−N(N +1)/2c+1. However, this is restricted to adversaries that can only query
the sponge function and not f (and f−1). In a concrete hash function, f is pub-
licly specified and this is of limited interest. We also included computations of
the complexity of a number of so-called critical operations and discussed how this
impacts the classical properties expected from hash functions such as collision-
resistance and (2nd)-preimage resistance. However, this does not result in lower
bounds for the security of these properties but rather upper bounds to the reach-
able security level. In this paper we apply the approach of [7] to the sponge con-
struction and demonstrate that the advantage of an adversary in differentiating
the sponge construction from a random oracle is about N(N + 1)/2c+1 if the
underlying f is a random transformation and an even smaller upper bound if it
is a random permutation.

As discussed above, this implies that the sponge construction when calling a
random transformation or permutation has all properties of a random oracle as
long as c is large enough. Hence we are now able to provide the security bounds
for collision-resistance and (2nd)-preimage resistance that are lacking in [4].

There are several iterative hash function constructions that have been shown
to be indifferentiable from a random oracle. However, the sponge construction
has two unique features. First, it can generate long outputs. While other con-
structions can only behave as a random oracle whose output has been truncated
to a fixed length, a random sponge does not have this limitation and may also

2

serve as a reference for stream ciphers. Second, it can be built using a permu-
tation, where both f and f−1 can be queried by the adversary. Paradoxically,
collision-resistance and (2nd)-preimage resistance can be realized by employing
a function that is easy to invert.

In [4] our main goal was to define a reference for security properties of hash
designs. With our indifferentiability result, we prove that the resistance of the
sponge construction calling a random transformation or permutation is as good
as that of a random oracle, lower bounded by about N(N + 1)/2c+1. This coin-
cides with what is presented in [4] as the flat sponge claim. Despite our original
intention in [4], we argue that the sponge construction can lead to practical
hash function designs. First of all, as mentioned in [4], the support for long
outputs is a useful feature for a hash function when being used as a mask gener-
ating function (MGF) or a key derivation function (KDF). Second, instead of a
collision-resistant compression function (Merkle-Damg̊ard) or a random-looking
compression function or ideal block cipher (as in [7]), it takes the design of a
random-looking permutation. As a good block cipher should behave as a set of
(independent and) random-looking permutations, hash function design can now
benefit from insights gained in block cipher design. However, as opposed to a
block cipher, a permutation has no key schedule and has not the concerns that
come with it such as its computational overhead and possible related-key weak-
nesses. This makes in our opinion the sponge construction a very interesting
alternative to the constructions based on a compression function.

The remainder of this paper is organized as follows. Section 2 gives a short
introduction to indifferentiability applied to hash function constructions and is
followed by Section 3 that defines and discusses the sponge construction in the
indifferentiability setting. Section 4 gives the actual proofs and finally Section 5
discusses its implications.

2 Indifferentiability from a random oracle

Indifferentiability deals with the interaction between systems where the objective
is to show that two systems cannot be told apart by an adversary able to query
both systems but not knowing a priori which system is which. For hash function
constructions, a random oracle serves as an ideal system.

We use the definition of random oracle from [3]. A random oracle, denoted
RO, takes as input binary strings of any length and returns for each input a
random infinite string, i.e., it is a map from Z∗

2 to Z∞
2 , chosen by selecting each

bit of RO(x) uniformly and independently, for every x. In [7] and other papers
on the subject, one does not consider indifferentiability from a random oracle,
but rather a random oracle with output truncated to a fixed number of bits.

The indifferentiability framework was introduced by Maurer et al. in [14]
and is an extension of the classical notion of indistinguishability. Coron et al.
applied it to iterated hash function constructions in [7] and demonstrated for
a number of iterated hash function constructions that they are indifferentiable
from a random oracle if the compression function is a random FIL oracle. In

3

Fig. 1. The differentiability setup

this section we give a brief introduction to these subjects; for a more in-depth
treatment, we refer to the original papers.

In the context of iterated hashing the adversary shall distinguish between two
systems that each have two components, as illustrated in Figure 1. The system
at the left is the combination of the ideal compression function F and the hash
function construction C. The adversary can make queries to both components
separately, where the latter in turn calls the former to construct its responses.
This is denoted by C[F]. These are the two different interfaces to the system to
the left.

The system at the right consists of a random oracle (with truncated output)
RO providing the same interface as C[F]. To be indifferentiable from the system
at the left, the system at the right also needs a subsystem offering the same
interface to the adversary as the ideal compression function F . This is called a
simulator P and its role is to simulate the ideal compression function F so that
no distinguisher can tell whether it is interacting with the system at the left or
with the one at the right. The output of P should look consistent with what the
distinguisher can obtain from the random oracle RO as if P was F and RO was
C[F]. To achieve that, the simulator can query the random oracle, denoted by
P [RO]. Note that the simulator does not see the distinguisher’s queries to the
random oracle.

Indifferentiability of C[F] from a random oracle RO is now satisfied if there
exists a simulator P such that no distinguisher can tell the two systems apart
with non-negligible probability, based on their responses to queries it may send.
We repeat here the definition as given in [7] where the hash function construction
is called Turing machine C, the ideal compression function is called ideal primitive
F and the random oracle is called ideal primitive G.

Definition 1 ([7]). A Turing machine C with oracle access to an ideal primitive
F is said to be (tD, tS , q, ε) indifferentiable from an ideal primitive G if there

4

Fig. 2. The padded sponge construction

exists a simulator P [G], such that for any distinguisher D it holds that:

|Pr [D[C[F],F] = 1] − Pr [D[G,P [G]] = 1] | < ε. (1)

The simulator has oracle access to G and runs in time at most tS. The distin-
guisher runs in time at most tD and makes at most q queries. Similarly, C[F]
is said to be indifferentiable from G if ε is a negligible function of the security
parameter k.

Now, it is shown in [14] that if C[F] is indifferentiable from a random oracle,
then C[F] can replace the random oracle in any cryptosystem, and the resulting
cryptosystem is at least as secure in the ideal compression function model as in
the random oracle model. This is much stronger than the indistinguishability of
C[F] from a random oracle, which just merely means that an attacker that can
query C[F], but has no direct access to F , cannot distinguish it from a random
oracle. As said, for hash function constructions indistinguishability makes little
sense as, for any concrete hash function, the compression function F is public
and hence accessible to the adversary.

3 The sponge construction

3.1 Definition

In this section we define the sponge construction. Our definition is a special case
of the more general definition in [4]. To simplify the presentation, we restrict
the input and output of the sponge to binary strings instead of a more general
alphabet. Our indifferentiability result can however easily be extended to the
generic definition. The (padded) sponge construction is illustrated in Figure 2.

In the sequel, we generally denote by x a message in Z∗
2, and by p a sequence

of blocks of r bits each (i.e., p ∈ Zr
2
∗), indexed from 0 to |p| − 1, with |p| the

number of r-bit blocks of p.

Definition 2. For positive integers r, c, a sponge function S[F] maps binary
strings with length a multiple of r to binary strings of any requested length, i.e.,
Zr

2
∗ to Z∞

2 . A sponge calls a transformation F operating on Zr+c
2 = Zr

2 × Zc
2

as described in Algorithm 1. Here c is called the capacity and r is called the

5

bitrate3 of the sponge. The (group) operation ⊕ denotes the bitwise addition of
r-bit blocks and 0r is the all-zero block, the neutral element of this group. The
input p to a sponge function must consist of one or more blocks and shall not
have 0r as last block, i.e., |p| > 0 and p|p|−1 6= 0r.

Algorithm 1 The sponge construction S[F]

Input p = p0p1 . . . p|p|−1 and requested length n

Require: |p| ≥ 1 and p|p|−1 6= 0r

Output z ∈ Zn
2

s = (sa, sc) = (0r, 0c)
for i = 0 to |p| − 1 do

(sa, sc) = F(sa ⊕ pi, sc)
end for

for i = 0 to dn

r
e − 1 do

Append sa to the output
(sa, sc) = F(sa, sc)

end for

Discard the last rdn

r
e − n bits

3.2 Graph representation of sponge operation

In [4] we used a graph representation to prove bounds on success probability of
generating collisions. We adopt this graph representation in the specification of
our simulators. In our discussions on the graphs, we need to clearly distinguish
between the first r bits and the last c bits of an r + c-bit variable s. For this, we
again use the notation of [4]: A = Zr

2 and C = Zc
2 and we call the first r bits of

s its A-part sa, and the last c bits its C-part sc.
We consider the transformationF as a directed graph whose vertex set (called

nodes) is A×C and whose edges are (s,F(s)). It has both 2r+c nodes and edges.
From the node graph, we derive the (directed) supernode graph, with vertex set
(called supernodes) equal to C. In this graph, an edge (sc, tc) is in the edge set if
and only if ∃sa, ta such that ((sa, sc), (ta, tc)) is an edge in the node graph. The
set of supernodes is a partition of the nodes where a supernode contains the 2r

nodes with the same C-part.
The sponge construction operates on a chaining variable s and its operation

can be seen as a walk through the node graph of the chaining variable. We denote
the chaining variable before processing pi by si. Its initial value is s0 = (0r, 0c).
Then for each block pi, it performs a two-step transition. First, it moves to the
node s′ within the same supernode with s′a = si,a ⊕ pi, and then it follows the
edge starting from s′, arriving in si+1. After processing all blocks of p it is in

3 The bitrate r is not to be confused with rate meaning the number of block cipher
calls it takes to implement the compression function, as in, e.g., [12].

6

node s|p|. Then it gives out the A-part of s|p| as z0. For each additional block zi

produced, it follows the edge from s|p|+i−1 arriving in s|p|+i and gives out the
A-part of the latter as zi. Note that this can be considered a special case of the
above two-step transition if we extend p with blocks p|p|+i = 0r for all i ≥ 0.
Clearly, the chaining variable si is completely determined by the first i blocks
of p. We call this a path to si. Or more exactly:

Definition 3 ([4]). First, the empty string is a path to the node (0r, 0c). Then,
if p is a path to node s = (sa, sc) and there is an edge ((sa ⊕a, sc), t) in the node
graph, p′ = pa is a path to node t.

Note that although a path completely determines a node, there may be many
paths to a node.

It follows from the above that zj of z = S[F](p) is the A-part of the node
with path p0rj. And so, given a path p (different from 0rj) to a node s, one
can find its A-part by a call to the sponge construction. We have sa = zj with
z = S[F](p′) and p′ and j given by p = p′0rj such that p′ is a valid sponge input,
i.e., |p′| > 0 and p′|p′|−1 6= 0r. For a path of form 0rj there is no such p′ and
hence the sponge construction cannot be queried to obtain sa.

3.3 The padded sponge construction

The sponge construction S[F](p) only supports input strings p ∈ Zr
2
∗ where p is

not the empty string and has last block different from 0r. To allow the input to
be any binary string in Z∗

2, one needs to define an injective mapping pad(x) that
converts any binary string x to a valid sponge input. The simplest such mapping
pad(x) consists in padding the string with a single bit 1 and a number w of
zeroes with 0 ≤ w < r so that pad(x) contains a multiple of r bits. To indicate
the sponge construction including the padding operation, we use the symbol S′:

S′[F](x) , S[F](pad(x)).

3.4 The distinguisher’s setting

We give proofs of indifferentiability for the cases that F is a random trans-
formation or a random permutation. A random transformation (permutation)
operating on a certain domain is a transformation selected randomly and uni-
formly from all transformations (permutations) operating on that domain.

The adversary shall distinguish between two systems using their responses
to sequences of queries. At the left is the system (S′[F],F). The padded sponge
construction S′[F] provides one interface denoted by H, taking a binary string
x ∈ Z∗

2 and an integer n and returning a binary string y ∈ Zn
2 , the sponge output

truncated to n bits. If F is a random transformation it has a single interface
F1 which takes as input an element s of Zr+c

2 and returns t = F(s), an element
of the same set. If F is a random permutation, it has an additional interface
F−1 that implements the inverse of F . Note that the sponge construction in
Algorithm 1 only uses the interface F1.

7

At the right is the system (RO,P [RO]). It offers the same interface as the
left system, i.e., RO provides the interface H and returns an output truncated
to the requested length. We define two simulators, one for the case of a ran-
dom transformation and another one for the case of a random permutation.
The transformation simulator provides a single interface F1. The permutation
simulator provides both interfaces F1 and F−1.

Let X be either (S′[F],F) or (RO,P [RO]). The sequence of queries Q to X
consist of a sequence of queries to the interface H, denoted Q0 and a sequence of
queries to the interface F1 (and F−1), denoted Q1. Q0 is a sequence of couples
(x, n), with x ∈ Z∗

2 and n a positive integer. Q1 is a sequence of couples (s, b)
with s ∈ Zr+c

2 and b either 1 or −1, indicating whether the interface F1 or F−1

is addressed. In the case that F is a transformation, b is restricted to 1.

3.5 The cost of queries

Definition 1 suggests expressing an upper bound to the advantage of a distin-
guisher in terms of the number of queries q. The bounds provided in [7] however
also make use of parameter `, the maximum input length of the queries. In our
bounds we use another measure for the query complexity which is more natural
when applied to the sponge construction. We call this measure cost and denote
it by N . The cost N of queries to a system X is the total number of calls to F
or F−1 it would yield if X = (F ,S′[F]), either directly due to queries Q1, or
indirectly via queries Q0 to S′[F]. The cost of a sequence of queries is fully de-
termined by their number and their input and output lengths. Each query to F1

or F−1 contributes 1 to the cost. A query to H with an `-bit input contributes
b `

r
c+ dn

r
e to the cost (assuming the simple padding of Section 3.3 is used). Our

bounds in terms of cost are comparable to those of [7]: for a fixed output size,
as considered in [7], N is an affine function of q and q`.

In the sequel, we consider the indifferentiability as in Definition 1 but with
the cost N replacing the number of queries q and their maximum length `.

4 Indifferentiability proofs

4.1 The simulators we use in our proofs

We define simulators for the case that F is a random transformation and for the
case of a random permutation. In both cases, the simulator should behave as a
deterministic function and give responses to queries Q1 that in combination with
the responses to queries Q0 to the random oracle shall minimize the probability
that the system (RO,P [RO]) can be distinguished from a system (S′[F],F). In
this section we informally explain how our simulators work.

A simulator keeps track of the queries it received and the responses it returned
in a graph, very similar to the graphs discussed in Section 3.2. The only difference
is that initially the simulator graph has no edges and for each new query F1(s)
(or F−1(s)) the simulator generates a response t and adds the edge (s, t) (or

8

Fig. 3. Example of simulator graph. The rooted supernodes are in bold. Paths are
indicated in italic next to the nodes having a path.

(t, s)). Note that using the responses of the simulator to its queries, the adversary
can fully reconstruct the simulator graph.

In order to motivate the design of the simulators, we now discuss properties
of this graph that it has at any moment during or after the queries, using an
example depicted in Figure 3.

For a subset of the nodes in the simulator graph, the adversary knows a path.
From Definition 3, it is clear that these are the nodes that have an incoming edge
and are in a supernode that can be reached from supernode 0c by following the
directed edges from supernode to supernode. For this purpose, we define the set
of rooted supernodes R as the subset of C containing 0c and all the supernodes
accessible from it through the supernode graph. By extension, we say that a node
s = (sa, sc) is rooted if sc ∈ R. So the adversary knows paths to all rooted nodes
that have an incoming edge from another rooted node, plus the empty path of

9

the (0r, 0c) node. For each of these rooted nodes it can query the interface H
of the system hoping to reveal an inconsistency, which is evidence that it is not
(S′[F],F). We call sponge-consistent the responses to a sequence of queries Q
that do not result in such inconsistency.

We will now explain why our simulators generate sponge-consistent responses
(up to 2c queries Q1). Whenever a simulator receives a query F1(s) with s rooted,
it will result in an image t with known path. Therefore, the simulator constructs
the A-part of t to be sponge-consistent by querying RO using the path to t
(except for the all-zero path). When the simulator receives a query F1(s) with
s not rooted, no path to the image t is known and it chooses t randomly from
all the nodes (with no incoming edge, if F is a random permutation).

The idea is that the simulators are designed so that a call to F1(s) results only
in the path of a single node becoming known, that of t = F(s) if s is rooted.
For that, when selecting tc for a rooted node s, they exclude the supernodes
with outgoing edges (cases a and c in Figure 3). Additionally, they avoid the
occurrence of nodes with multiple paths. For that, when selecting tc for a rooted
node s, they exclude the rooted supernodes (case b in Figure 3) and those with
outgoing edges (case c in Figure 3). The permutation simulator avoids paths of
nodes becoming known as a result of a call to F−1(s) altogether by excluding
rooted supernodes when selecting tc.

Let O be the set of supernodes with an outgoing edge. When the simulator
receives a query F1(s) with s a rooted node and all supernodes are rooted or have
an outgoing edge, i.e., if R ∪O = C, it can no longer ensure sponge-consistency
and we call the simulator saturated. As every query to the simulator adds at
most one edge and that hence R ∪ O can be extended by at most 1 per query,
this cannot happen before 2c queries.

4.2 When being used with a random transformation

The simulator for the case that F is a random transformation is given in Algo-
rithm 2. We prove the indifferentiability by means of a series of lemmas and a
final theorem.

Lemma 1. To every node in the simulator graph there is at most one path,
unless the simulator is saturated.

Proof. First, we show that the rooted supernodes in the supernode graph form a
tree. When no edges exist, this is indeed the case. The only way to create a new
rooted node is by calling F1(s) with s rooted. Assuming the simulator is not
saturated, this happens only in first part of Algorithm 2 (lines 4–12), if s is rooted
and has no outgoing edge. The new edge only adds a single supernode to R as
the simulator selects it from the supernodes with no outgoing edges. Moreover,
the new edge cannot arrive in a rooted supernode (because the simulator selects
tc from C \R) or in a supernode from which a rooted supernode can be reached
(because the simulator select tc from the supernodes with no outgoing edges).

10

Algorithm 2 The transformation simulator P [RO]

1: Interface F1, taking node s as input
2: if node s has no outgoing edge then

3: if node s is rooted AND R ∪ O 6= C (no saturation) then

4: Construct path to t: find path to s, append sa and call the result p

5: Write p as p = p′0rj where p′ does not end with 0r

6: if p′ can be unpadded into x then

7: Assign to ta the value zj with z = RO(x)
8: else

9: Choose ta randomly and uniformly
10: end if

11: Choose tc randomly and uniformly from C \ (R ∪ O)
12: Let t = (ta, tc)
13: else

14: Choose t randomly and uniformly from all nodes
15: end if

16: Add an edge from s to t

17: end if

18: return the node t at the end of the outgoing edge from s

Then, for two connected supernodes (sc, tc), there exists only one edge in
the simulator graph of the form ((sa, sc), (ta, tc)). This is because the simulator
chooses a distinct C-part for each new rooted node (unless it is saturated).

Finally, since A is a group, each r-bit block of the path is uniquely determined
by the transitions on the A-part of the nodes. ut

For a given set of queries Q and their responses X (Q), we define the sponge
consistency as the property that the responses to Q0 are equal to those that
one would obtain by applying the sponge construction from the responses to Q1

(when the queries Q1 suffice to perform this calculation), i.e., that X (Q0) =
S′[X (Q1)](Q0). By construction, the queries, and their responses, made to the
system (S′[F],F) are sponge-consistent. For the sponge-consistency of the queries,
and their responses, made to (RO,P [RO]), we refer to the following lemma.

Lemma 2. Given queries to the simulator P [RO] described in Algorithm 2 and
to RO, it returns sponge-consistent responses, unless the simulator is saturated.

Proof. The adversary can check by querying the random oracle for sponge-
consistency for every node s in the simulator graph to which it knows the path
p. The all-zero path does not correspond to a block that can be output by the
sponge construction, so without loss of generality we assume that p 6= 0rj.

Given the path p to the node s, its A-part must be equal to zj with z =
RO(x), where pad(x) = p′ and p′ is a valid sponge input given by p = p′0rj. As
Lemma 1 says, there is only a single path to any rooted node in the simulator
graph, and thus the simulator guarantees this equality for the response t to every
query to F1(s) with s a rooted node, as long as it is not saturated.

11

We also need to show that no path is assigned to a node unless its A-part is
chosen by the lines 6–9 of Algorithm 2. Indeed, the supernode tc (at line 11) is
the only supernode that becomes rooted due to the query. This is because the
simulator excludes supernodes with outgoing edges in the selection of tc (as long
as the simulator is not saturated).

It follows that the simulator guarantees sponge-consistency for all queries Q
up to saturation. ut

Lemma 3. Any sequence of queries Q0 up to cost 2c can be converted to a
sequence of queries Q1 where Q1 gives at least the same amount of information
to the adversary and has no higher cost than Q0.

Proof. A query in Q0 consists of an input x and a length n. Let p = pad(x)0rdn

r
e

and we can now convert this query into |p| queries to F1. Let s0 = (0r, 0c) and
si+1 = F1(si,a ⊕ pi, si,a) for 0 ≤ i < |p| be the responses to the new queries. As
Lemma 2 says that all queries up to cost 2c are sponge-consistent, the output
to the original (x, n) query consists of the concatenation of the A-parts of s|p|
to s|p|+dn

r
e−1 truncated to n bits. By the definition of the cost of queries, the

original query in Q0 has cost |p| and it results in |p| queries in Q1, each one with
cost 1.

This process can be repeated for all queries in Q0 resulting in a sequence
of queries Q1 with the same cost. If there are queries in Q0 with inputs having
common prefixes, these can give rise to the same queries in Q1 resulting in a
reduction in cost. ut

Lemma 4. The advantage of an adversary in distinguishing between F and
P [RO] with the responses to a sequence of N < 2c queries Q1 is upper bounded
by:

fT(N) = 1 −
N
∏

i=1

(

1 −
i

2c

)

.

Proof. The advantage is defined as

Adv(A) = |Pr[A[F] = 1] − Pr[A[P [RO]] = 1]|

The response sequence x to a sequence of N different queries is a sequence of N
values in A×C. We can provide an upper bound of the advantage by computing
the probability distributions of the outcomes of the queries to F on the one hand
and to P [RO] on the other. The optimal adversary gives back 1 for the response
sequence x if Pr(x|F) > Pr(x|P [RO]) and 0 otherwise, yielding the following
upper bound:

Adv(A) ≤
1

2

∑

x

|Pr(x|F) − Pr(x|P [RO])|, (2)

where the righthand side of this equation is known as the variational distance.
Since F is a transformation over A × C chosen randomly and uniformly, the
responses to the different queries are independent and uniformally distributed
over A × C. It follows that all (2r2c)N possible outcomes are all equiprobable.

12

By inspecting Algorithm 2, the simulator always returns uniform values for
the A-part of the image. For the C-part, the simulator chooses it non-uniformly
only if the pre-image s is rooted. To obtain the greatest possible variational dis-
tance, the optimum strategy consists in creating N rooted nodes. As a response
to the first query, it may return all values but 0r. At each subsequent query, one
value of C is added to R, and thus for each query, the simulator returns a C-part
value different from 0r and all previous ones. Note that by restricting N < 2c

the simulator will not be saturated. Using this strategy gives us an upper bound
on the variational distance. So for the simulator, there are (2r)N (2c − 1)(N)

(where a(n) denotes a!/(a − n)!) possible responses with different C-parts, each
with equal probability ((2r)N (2c − 1)(N))

−1, and the (2r)N ((2c)N − (2c − 1)(N))
others have probability 0. This gives:

Adv(A) ≤ 1 −
(2c − 1)(N)

(2c)N
= 1 −

N
∏

i=1

(

1 −
i

2c

)

. (3)

ut

We have now all ingredients to prove the following theorem.

Theorem 1. A padded sponge construction calling a random transformation,
S′[F], is (tD, tS , N, ε)-indistinguishable from a random oracle, for any tD, tS =
O(N2), N < 2c and any ε with ε > fT(N).

Proof. As discussed in Lemma 3 we can construct from a set of query sequences
Q0, Q1 an equivalent sequence of queries Q1′ ◦Q1 with no higher cost and giving
at least the same information. So, without loss of generality, we only need to

consider adversaries using queries Q
1

= Q1′ ◦ Q1 and their response X (Q
1
) and

no queries Q0.

For any fixed query Q
1
, we look at the problem of distinguishing the random

variable F(Q
1
) from the random variable P [RO](Q

1
). For a sequence of queries

Q
1

with cost N , Lemma 4 upper bounds the advantage of such an adversary to
fT(N).

We have tS = O(N2) as for each query to the simulator with s rooted, it
must find the path to s and send a query to the random oracle of cost equal to
the length of the path to s. The length of the path to s it upper bounded by N ,
the total number of rooted supernodes in the simulator graph. ut

If N is significantly smaller than 2c, we can use the approximation 1−x ≈ e−x

for x � 1 to simplify the expression for fT(N):

fT(N) ≈ 1 − e−
N(N+1)

2c+1 <
N(N + 1)

2c+1
. (4)

4.3 When being used with a random permutation

The simulator for the case that F is a random permutation is given in Algo-
rithm 3. We now can prove indifferentiability using a series of similar lemmas.

13

Algorithm 3 The permutation simulator P [RO]

Interface F1, taking node s as input
if node s has no outgoing edge then

if node s is rooted AND R ∪ O 6= C (no saturation) then

Construct path to t: find path to s, append sa and call the result p

Write p as p = p′0rj where p′ does not end with 0r

if p′ can be unpadded into x then

Assign to ta the value zj with z = RO(x)
else

Choose ta randomly and uniformly
end if

Choose tc randomly and uniformly from C \ (R ∪ O) and such that (ta, tc) has
no incoming edge yet
Let t = (ta, tc)

else

Choose t randomly and uniformly from all nodes that have no incoming edge
yet

end if

Add an edge from s to t

end if

return the node t at the end of the outgoing edge from s

Interface F−1, taking node s as input
if node s has no incoming edge then

Choose ta randomly and uniformly
Choose tc randomly and uniformly from C\R and such that (ta, tc) has no outgoing
edge yet
Let t = (ta, tc)
Add an edge from t to s

end if

return the node t at the beginning of the incoming edge into s

14

The proofs of Lemma 1 and Lemma 2 are valid for the permutation simulator
with respect to all calls to F1 but do naturally not consider calls to F−1. The
proofs can simply be extended to the permutation simulator case by noting that
the F−1 interface of the simulator excludes rooted nodes in the selection of the
response, implying that a call to F−1 cannot lead to new rooted nodes and
hence also not to new paths. The proof of Lemma 3 is valid for the permutation
simulator as it is. Finally, the output produced by the interfaces F1 and F−1

are consistent, i.e., if F1(s) = t then F−1(t) = s and vice-versa.
Instead of Lemma 4 we now have the following lemma.

Lemma 5. The advantage of an adversary in distinguishing F and P [RO] with
the responses to a sequence of N < 2c queries Q1 is upper bounded by:

fP(N) = 1 −

N−1
∏

i=0

(

1 − i+1
2c

1 − i
2r2c

)

.

Proof. The proof is similar to that of Lemma 4. Since F is a permutation over
A × C chosen randomly and uniformly, the only limitation is that for the i-th
query, the image (or preimage) shall not be equal to any of the found images (or
preimage), resulting in (2r2c) − i possibilities. This leads to (2r2c)(N) possible
outcomes each with probability ((2r2c)(N))

−1 and (2r2c)N − (2r2c)(N) outcomes
with probability 0.

From inspecting Algorithm 3 if follows that the adversary obtains the greatest
possible variational distance when he creates N rooted nodes. This leads to the
same distribution as for the transformation simulator. The possible outcomes
of the permutation simulator are a subset of the possible outcomes for F . This
gives:

Adv(A) ≤ 1 −
(2r)N (2c − 1)(N)

(2r2c)(N)
= 1 −

N−1
∏

i=0

(

1 − i+1
2c

1 − i
2r2c

)

. (5)

ut

These lemmas and proofs result in the following theorem, where the proof is
similar to that of Theorem 1.

Theorem 2. A padded sponge construction calling a random permutation, S′[F],
is (tD, tS , N, ε)-indistinguishable from a random oracle, for any tD, tS = O(N2),
N < 2c and and for any ε with ε > fP(N).

If N is significantly smaller than 2c, fP (N) can be approximated closely by:

fP (N) ≈ 1 − e−
(1−2−r)N2+(1+2−r)N

2c+1 <
(1 − 2−r)N2 + (1 + 2−r)N

2c+1
. (6)

Note that using a random permutation results in a better bound than using a
random transformation. By assigning distinct C-part values of rooted nodes, the
simulators tend to generate an output distribution which is closer to that of a
permutation than to that of a transformation.

15

5 Discussion and conclusions

We have proven that the sponge construction calling a random transformation
or permutation is indifferentiable from a random oracle and obtained concrete
bounds. Here, the security parameter is the capacity c and not the output length
of the hash function. Note that other constructions also consider the size of the
internal state as a security parameter, e.g., [13].

One may ask the question: what does this say about resistance to classical
attacks such as collision-resistance, including multicollisions [9], (2nd) preimage
resistance, including long-message attacks [10] and herding [11]? In general, it
is expected that a hash function offers the same resistance as would a random
oracle, truncated to the hash function’s output length n. The success probability
after q queries is about q2/2n+1 for generating collisions and q/2n for generating
a (2nd) preimage. The sponge construction does not have a fixed output length.
However, when a hash function with the sponge construction is used in an ac-
tual cryptographic scheme, its output will be truncated. Our indifferentiability
bounds in terms of the capacity c permit to express up to which output length
n such a hash function may offer the expected resistance. For example, it offers
collision resistance (as a truncated random oracle would) for any output length
smaller than the capacity and (2nd) preimage resistance for any output length
smaller than half the capacity. In other words, when for instance c = 512, a ran-
dom sponge offers the same resistance as a random oracle but with a maximum
of 2256 in complexity.

A function with the sponge construction can be used to build a MAC function
(by just pre-pending the key to the input) or, thanks to its long output, to build
a synchronous stream cipher (by taking as input the concatenation of a key and
an IV). Alternatively, the sponge construction can be used as a reference for
expressing security claims when building new such designs.

Note that the bounds we have provided only hold when the sponge construc-
tion makes use of a random transformation or random permutation. When a
concrete transformation or permutation is taken, no such bounds can be given.
See for example [5] and also [14] for discussions on this subject. However, our
bounds do say that using the sponge construction excludes generic attacks with

a success probability higher than the maximum of our bound N(N+1)
2c+1 and the

success probability the attack would have for a random oracle. By generic at-
tacks we mean here attacks such as those described in [9–11], that do not exploit
specific properties of the transformation or permutation used but only properties
of the construction.

References

1. E. Andreeva, G. Neven, B. Preneel, and T. Shrimpton, Seven-property-preserving

hashing: ROX, Advances in Cryptology – Asiacrypt 2007 (K. Kurosawa, ed.),
LNCS, no. 4833, Springer-Verlag, 2007, pp. 130–146.

16

2. M. Bellare and T. Ristenpart, Multi-property-preserving hash domain extension

and the EMD transform, Advances in Cryptology – Asiacrypt 2006 (X. Lai and
K. Chen, eds.), LNCS, no. 4284, Springer-Verlag, 2006, pp. 299–314.

3. M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing

efficient protocols, ACM Conference on Computer and Communications Security
1993 (ACM, ed.), 1993, pp. 62–73.

4. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, Sponge functions, Ecrypt
Hash Workshop 2007, May 2007, also available as public comment to NIST from
http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/2007 May.html.

5. R. Canetti, O. Goldreich, and S. Halevi, The random oracle methodology, revisited,
Proceedings of the 30th Annual ACM Symposium on the Theory of Computing,
ACM Press, 1998, pp. 209–218.

6. D. Chang, S. Lee, M. Nandi, and M. Yung, Indifferentiable security analysis of

popular hash function with prefix-free padding, Advances in Cryptology – Asiacrypt
2006 (X. Lai and K. Chen, eds.), LNCS, no. 4284, Springer-Verlag, 2006, pp. 283–
298.

7. J. Coron, Y. Dodis, C. Malinaud, and P. Puniya, Merkle-Damg̊ard revisited: How

to construct a hash function, Advances in Cryptology – Crypto 2005 (V. Shoup,
ed.), LNCS, no. 3621, Springer-Verlag, 2005, pp. 430–448.

8. I. Damg̊ard, A design principle for hash functions,, Advances in Cryptology –
Crypto ’89 (G. Brassard, ed.), LNCS, no. 435, Springer-Verlag, 1989, pp. 416–427.

9. A. Joux, Multicollisions in iterated hash functions. Application to cascaded con-

structions, Advances in Cryptology – Crypto 2004 (M. Franklin, ed.), LNCS, no.
3152, Springer-Verlag, 2004, pp. 306–316.

10. J. Kelsey and B. Schneier, Second preimages on n-bit hash functions for much less

than 2n work, Advances in Cryptology – Eurocrypt 2005 (R. Cramer, ed.), LNCS,
no. 3494, Springer-Verlag, 2005, pp. 474–490.

11. T. Kohno and J. Kelsey, Herding hash functions and the Nostradamus attack,
Advances in Cryptology – Eurocrypt 2006 (S. Vaudenay, ed.), LNCS, no. 4004,
Springer-Verlag, 2006, pp. 222–232.

12. H. Kuwakado and M. Morii, Indifferentiability of single-block-length and rate-

1 compression functions, Cryptology ePrint Archive, Report 2006/485, 2006,
http://eprint.iacr.org/.

13. S. Lucks, A failure-friendly design principle for hash functions, Advances in Cryp-
tology – Asiacrypt 2005 (B. Roy, ed.), LNCS, no. 3788, Springer-Verlag, 2005,
pp. 474–494.

14. U. Maurer, R. Renner, and C. Holenstein, Inidifferentiability, impossibility results

on reductions, and applications to the random oracle methodology, Theory of Cryp-
tography - TCC 2004 (Moni Naor, ed.), Lecture Notes in Computer Science, no.
2951, Springer-Verlag, 2004, pp. 21–39.

15. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of applied cryp-

tography, CRC Press, 1997.
16. R. Merkle, One way hash functions and DES, Advances in Cryptology – Crypto

’89 (G. Brassard, ed.), LNCS, no. 435, Springer-Verlag, 1989, pp. 428–446.

17

