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Abstract. We propose a new mode of operation,enciphered CBC, for domain
extension of length-preserving functions (like block ciphers), which is avaria-
tion on the popular CBC mode of operation. Our new mode is twice slower than
CBC, but has many (property-preserving) properties not enjoyed by CBC and
other known modes. Most notably, it yields the first constant-rate Variable Input
Length (VIL) MAC from any length preserving Fixed Input Length (FIL) MAC.
This answers the question of Dodis and Puniya from Eurocrypt 2007. Further, our
mode is a secure domain extender for PRFs (with basically the same security as
encrypted CBC). This provides a hedge against the security of the blockcipher:
if the block cipher is pseudorandom, one gets a VIL-PRF, while if it is “only” un-
predictable, one “at least” gets a VIL-MAC. Additionally, our mode yields aVIL
random oracle (and, hence, a collision-resistant hash function) wheninstantiated
with length-preserving random functions, or even random permutations(which
can be queried from both sides). This means that one does not have to re-key the
block cipher during the computation, which was critically used in most previous
constructions (analyzed in the ideal cipher model).

1 Introduction

Modes of operation allow one to build a Variable Input Length(VIL) primitive from
a given Fixed Input Length (FIL) primitive. Currently, variants of two popular modes
of operation are used to implements almost all known VIL primitives: the CBC mode,
which operates on length preserving functions (like a blockcipher), and the Merkle-
Damg̊ard (MD, aka as “cascade”) mode, which operates on a compression function. In
practice, the latter compression functionh is often implemented out of a block cipher
E via the Davies-Meyers transform:h(x, y) = Ex(y) ⊕ y. Thus, one way or another,
many useful primitives are built from a block cipher in practice. Unfortunately, we argue
that neither the CBC nor the MD mode are entirely satisfactory and a new block cipher
mode of operation is needed.

CBC MODE. Cipher Block Chaining (CBC) is a popular mode of operation for do-
main extension of pseudorandom functions (PRFs) [3], thus allowing one to build a
MAC (recall that a PRF is a MAC) on roughlynℓ bits by makingℓ calls to ann-bit
block cipherE. However, here one must assume thatE is a PRF, even if finally one
is only interested in getting a MAC. Pseudorandomness is a much stronger assumption
than unpredictability (which is all we need from a MAC). Thus, it is natural to ask if
the CBC-MAC is secure if the block cipher is “only”unpredictable, in other words, if
CBC is a good domain extender for MACs. Aside from being of great theoretical im-
portance, a positive answer to this question would provide ahedge against the security



of the block cipherE: if E is pseudorandom, one gets a VIL-PRF, while if it is only
unpredictable, one at least gets a VIL-MAC. Unfortunately,An and Bellare [1] showed
that this is not the case.3 This motivates the following central question of this work:

Question 1.Is there a simple and efficient way to build a VIL-MAC from a length-
preserving MAC (like an unpredictable block cipher)?

This question was recently explicitly addressed by Dodis and Puniya [14]. They argued
that none of the existing techniques (as opposed to just CBC)give a satisfactory answer
to this question (see [14] for a list of many failed approaches). They also presented
the best-known-to-date solution. The idea is to use the Feistel network forω(log λ)
rounds (whereλ is the security parameter) to get a MAC from2n to 2n bits. Then one
can safely chop half of the output bits, getting a2n 7→ n bit MAC, after which one can
apply any of the known efficient techniques to extend the domain of a “shrinking MAC”
[1, 16]. While elegant, this solution evaluates the given FIL-MAC ω(ℓ log λ) times to
extend the domain of the FIL-MAC by a factor ofℓ. In contrast, the solution we present
shortly will only use2ℓ calls.

Coming back to CBC, another drawback of this mode is that it does not appear to be
useful for building collision-resistant hash function (CRHFs) or random oracles (ROs)
from block ciphers, even if the block cipher is modeled as an ideal cipher. Indeed, if
the key to the block cipher is fixed and public, it is trivial tofind collisions in the CBC
mode, irrespective of the actual cipher.

MD M ODE. Unlike the CBC mode, the MD mode seems to be quite universal,and vari-
ants of it were successfully used to argue domain extension results for many properties,
including collision-resistance [11, 18, 21, 8], pseudorandomness [5, 6], unforgeability
[1, 16], indifferentiability from a random oracle [10], randomness extraction [12] and
even “multi-property preservation” [7]. However, when using a block cipher, we will
first have to construct a compression from the block cipher before we can apply MD.

One trivial way of doing this would to simply chop part of the output ofE. However,
this is very unsatisfactory on multiple levels. First, to achieve constant efficiency rate for
the cascade construction, one must chop a constant fractionof the output bits. However,
already chopping a super-logarithmic number of bits will not, in general, preserve the
security ofE as a MAC, making it useless for answering Question 1. Second,even for
the case of PRFs and ROs, where chopping a linear fraction of bits does preserve the
corresponding property, one loses a lot in exact security, since the output is now much
shorter. For example, dropping half of the bits would give a VIL-PRF with efficiency
rate2 and securityµ2/2n/2 (whereµ is the total length of queried messages), compared
to efficiency rate1 and securityµ2/2n achieved by CBC.

As another option, which is what is done in practice, one could construct the com-
pression function via the Davies-Meyers transformh(x, y) = Ex(y)⊕y. For one thing,
this is not very efficient, as it requires one to re-key the block cipher for every call, which
is quite expensive for current block ciphers. (For example,eliminating this inefficiency
was explicitly addressed and left as a challenge by Black, Cochran and Shrimpton [9].)
More importantly, however, using the Davies-Meyers construction requires very strong
assumptions on the block cipher to prove security. Namely, one can either make an

3 Their attack was specific to a two-block CBC, but it is not hard to extend it to more rounds.
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ad hoc assumption that the Davies-Meyers compression function satisfies the needed
domain extension property (such as being a PRF or a MAC), or formally prove the
security of the construction in the ideal cipher model. Bothof these options are un-
satisfactory. The first option is provably not substantiated even is the block cipherE
is assumed to be a pseudorandom permutation (PRP): for example, one can construct
(artificial) PRPs for which the Davies-Meyers constructionis not even unpredictable.
As for the second option, it might be acceptable when dealingwith strong properties,
like collision-resistance or indifferentiability, when it is clear that the basic PRP prop-
erty of the block cipher will not be enough [25]. However, to get pseudorandomness, or
even unpredictability, going through the ideal cipher argument seems like a very (and
unnecessarily) heavy hammer.

NEW MODE OF OPERATION. The above deficiencies of the CBC and the MD mode
suggest that there might be a need to design a new mode of operation based on block ci-
phers, or, more generally, length-preserving (keyed or unkeyed) functions. We propose
such a mode which will satisfy the following desirable properties:

– The mode is efficient. If the message length isℓ blocks, we evaluate the block cipher
at mostcℓ times (c is called theefficiency rate; we will achievec = 2).

– The mode uses a small, constant number of (secret or public, depending on the
application) keys for the block cipher. In particular, one never has to re-key the
block cipher with some a-priori unpredictable value.

– It gives a provably secure VIL-MAC from length-preserving FIL-MAC, answering
Question 1.

– It gives a provably secure VIL-PRF from a length-preservingFIL-PRF, therefore
providing the hedge against the security of the block cipherE: if E is pseudoran-
dom, the mode gives a PRF; ifE is only unpredictable, one at least gets a MAC.

– It gives a way to build a VIL-RO (and, hence, a VIL-CRHF) from several random
permutations.

– The mode is elegant and simple to describe.
Of course, simply being a “secure” domain extension for PRF/MAC/RO is not enough:
the exact security achieved by the reduction is a crucial parameter, and we will elaborate
on this later in this section.

ENCIPHEREDCBC. The mode,enciphered CBC, we present in this paper is a relatively
simple variant of the CBC mode. We first describe our “basic” mode, which works for
domain-extension of MACs, PRFs and ROs, and later show the changes needed to make
it work with (random) permutations as well.4 The basic mode, depicted in Figure 1, con-
sists of three independent length-preserving functionsf1, f2, f3 (either keyed or not,
depending on whether we are in the secret key setting, or in the random oracle model).
First, we define an auxiliary compression functiong(x, y) = f1(x)⊕f2(y). Intuitively,
the key property of this function — which will hold in all our applications — is that it
is weakly collision-resistant (WCR) [1]. This means that, given oracle access tof1 and
f2, it is infeasible to find a collision forg. Then we useg(x, y) as the compression func-
tion in the usual MD mode with strengthening: namely, we apply the Merkle-Damg̊ard

4 In the random permutation model (where there are no secret keys) weneed to worry about the
inverse queries of the attacker. In contrast, in the secret key setting, a PRF is also a PRP, so the
simpler mode already works for the domain extension of MACs and PRFs.
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chaining to the message(x1 . . . xℓ, 〈ℓ〉), where(x1 . . . xℓ) is our original message, and
get outputz. Finally, we outputf3(z) as the value of our (basic) enciphered CBC.5

As we argue, iff1, f2, f3 are three independent (keyed) MACs, then the above con-
struction is a (three-keyed) VIL-MAC, answering Question 1. Also, although about
twice less efficient than CBC, enciphered CBC also preservesthe PRF property. On
the other hand, iff1, f2, f3 are random oracles, then the construction is indifferentiable
from a VIL-RO. Finally, if weassumethat f1 andf2 are such thatg(x, y) above is
collision-resistant, then the mode which outputs the valuez (and notf3(z)) above is
trivially collision resistant, since this is simply the usual MD transform with strength-
ening applied to a FIL-CRHF. Thus, iff3 is “collision-resistant” (either trivially if it is
a permutation, or even computationally), then enciphered CBC gives a VIL-CRHF. Of
course, the assumption ong is not entirely satisfactory, but we argue that it is meaning-
ful in the standard model.

OPTIMIZATIONS. We also show several optimizations of our mode which, whileslightly
less efficient, also work for two, or even one length-preserving round function. We
only mention the two-key mode, since the one-key mode is a bitless “elegant” and
intuitive to describe. The solution we propose (using two functionsf and f ′) is to
view {0, 1}n as the finite fieldGF(2n), and then use the three-key solution with func-
tions f1(x) = f(x), f2(y) = α · f(y) and f3(z) = f ′(z), whereα is any con-
stant inGF(2n) different from0 and 1.6 Then, we show that the resulting function
g(x, y) = f(x) ⊕ α · f(y) is still WCR in all our applications.

Finally, we show how to extent the basic enciphered CBC mode to the case of ran-
dom permutations. As already mentioned in Footnote 4, this is only the issue in the
results concerning the random permutation model, since there the attacker can try to
invert the random permutation. Indeed, the functiong(x, y) = f1(x) ⊕ f2(y) is ob-
viously not collision-resistant (which is crucial for our proof) if theattacker can in-
vert f1 or f2. Our solution is to use the Davies-Meyers transform, but without the key.
Namely, ifπ1 andπ2 are random permutations, we essentially apply the previousmode
to functionsf1(x) = π1(x) ⊕ x andf2(y) = π2(y) ⊕ y. This ensures that the function
g(x, y) = π1(x) ⊕ x ⊕ π2(y) ⊕ y is still WCR, even with the oracle access toπ−1

1

andπ−1
2 . As for the functionf3, it really must look like a random oracle, so we use a

slightly more involved constructionf3(z) = π3(z) ⊕ π−1
3 (z).7 With these definitions

of f1, f2 andf3 usingπ1, π2 andπ3, we get our final enciphered CBC mode on block
ciphers. (As we mentioned, though, the simplified mode already works for the case of
PRFs and MACs.) We believe that optimizations similar to those made to the simplified
mode, might also reduce the number of random permutations below three, but we leave
this question to future work.

5 One can also describe enciphered CBC as “enciphering” the input and the output of the stan-
dard CBC mode applied tof1: we encipher all the input blocks (except the first) withf2, and
the output block — withf3. This (less useful) view explains the name of the mode.

6 We recommend the constant corresponding the the “polynomial”X in GF(2n), since multi-
plication by this polynomial inGF(2n) corresponds to one right shift and one XOR (the latter
only if there is a carry), which is very efficient.

7 This construction is of independent interest since it shows an indifferentiable construction of
ann-to-n-bit random oracle from ann-to-n bit random permutation.
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SECURITY. We will now discuss how the security of our mode for MAC/PRF/RO
compares to known constructions. Recall that a mode of operation has ratec if it makes
cℓ calls to the underlying primitive when given anℓ-block message. We achievec = 2.

We will say that a domain extension for MACs has securityd, if the security of
the mode isǫ · µd whereǫ is the security of the underlying FIL MAC andµ denotes
the total length of the messages an adversary is allowed to query. Our mode achieves
securityd = 4, and this is the first constant-rate construction to achieveany security at
all. ForshrinkingMACs {0, 1}n+k → {0, 1}n, An and Bellare [1] show that a version
of Merkle-Damg̊ard gives a secure domain extension with securityd = 2 (and rate
c = n/k, which is constant ifk = Ω(n)). This security is much better than what
we achieve, but it is unclear how to build a shrinking MACs with good security and
compression efficiency (i.e.,k = Ω(n)) from a length-preserving MAC. Indeed, prior
to this work, the best known construction of Dodis and Puniyabuilds a shrinking MAC
with ratec = ω(log λ) (whereλ is the security parameters) and securityd = 6, which
is inferior to ourc = 2 andd = 4.

As for PRFs, our mode achieves basically the same securityµ2/2n as encrypted
CBC, which is the best security known for constructions which are iterated, stateless
and deterministic. In fact, as discussed in Section 3.3,we will achieve even better exact
security when using PRPs (i.e., block ciphers) in place of length-preserving PRFs.

Similarly to MACs, we will say that a construction of a VIL-ROhas securityd, if
it is µd/2n indifferentiable from a random oracle when instantiated with FIL-ROs or
RPs. With this convention, our construction has securityd = 4. Recently, Maurer and
Tessaro [17] give a pretty involved construction with the optimal security rated → 1
(at the expense of large efficiency ratec = O(1)), while the results of Coron et al. [10]
for domain extension of “shrinking ROs” easily imply (by chopping some output bits
of the length-preserving RO) a range of constructions with efficiency c and security
µ2/2(1−1/c)n. Although approaching securityd = 2 for a large constantc, for c = 2
this gives poorer securityµ2/2n/2 than the securityµ4/2n of enciphered CBC.

In the context of building VIL-CRHFs from length-preserving ROs or RPs, Shrimp-
ton and Stam [24] give a simple construction from ROs withc = 3 and optimald ≈ 2,
while Rogaway and Steinberger [23] recently reported a morecomplicated construction
from RPs withc = 3 and optimald ≈ 2. Additionally, in a companion paper [22] they
showed the necessity of non-trivial efficiency/security tradeoffs for any construction
of VIL-CRHF in the random permutation model. This suggests the existence of similar
(or worse) tradeoffs for the related question of building VIL-RO from length-preserving
FIL-RO (or RP).

To summarize this discussion, we designed the first mode of operationsimultane-
ouslysatisfying several demanding properties, some of which were never satisfied be-
fore (even in isolation). We conjecture thatany such mode must require some non-trivial
tradeoff between efficiency and security. Our specific mode, while simple and elegant,
might not give such optimal tradeoffs. In particular, its security of “only” µ4/2n for the
case or ROs andǫ ·µ4 for MACs is particularly unsatisfying to make it useful in practice
(wheren = 128; note thatǫ ≥ 2−n). It is an interesting open question to understand
the optimal efficiency/security tradeoffs, and to potentially improve upon our specific
enciphered CBC mode of operation.
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2 Preliminaries

We assume that the reader is familiar with the basic securitydefinitions for MACs,
PRFs, CRHFs and indifferentiability from RO. We use exact security definitions for
each of these primitives.

MACS AND PRFS. The security of a MAC is measured via its resistance to existential
forgery underchosen message attack(see [3]). A function familyF is a (t, q, µ, ǫ)-
secure MAC if the success probability of any attacker with running timet, number
of queriesq and total message lengthµ is at mostǫ. Similarly, the security of PRFs
is measured in terms of its indistinguishability from a truly random function under a
chosen message attack, and a(t, q, µ, ǫ)-secure PRF is similarly defined.

INDIFFERENTIABILITY FROM RANDOM ORACLE. We follow the definitions of [10]
for indifferentiability of a construction from an ideal primitive F (which will be a ran-
dom oracle in this paper). A constructionC, that has oracle access to ideal primitiveG,
is (tD, tS , q, µ, ǫ)-indifferentiable from another ideal primitiveF , if there is aG sim-
ulatorS that runs in time at mosttS , such that any attackerD with running timetD,
number of queriesq and total query lengthµ can distinguish theF model (with access
toF andS) from theG model (with access toC andG) with advantage at mostǫ.

COLLISION RESISTANCE. A function family F is (t, ǫ)-secure CRHF family, if the
advantage of any attacker running in timet to find a collision for anf sampled at
random fromF , is at mostǫ.

3 Three-key enciphered CBC construction

In this section, we will define the three-key enciphered CBC mode of operation and
analyze its security under various notions.

First, we make some auxiliary definitions. Given two length-preserving functions
f1, f2 : {0, 1}n → {0, 1}n, we define the shrinkingXOR compression function,
g[f1, f2], from 2n bits to n bits by g[f1, f2](x1 ‖ x2)

def
= f1(x1) ⊕ f2(x2), where

x1, x2 ∈ {0, 1}n. Given this function, we define theXOR hash function G[f1, f2] to
be simply the cascade construction applied to the XOR compression function. Namely,
given inputx = x1 ‖ . . . ‖ xℓ, wherexi ∈ {0, 1}n, we let

G[f1, f2](x1 ‖ . . . ‖ xℓ)
def
= g[f1, f2](xℓ ‖ g[f1, f2](. . . g[f1, f2](x2 ‖ x1) . . .))

THE CONSTRUCTION. The new mode of operation,H[f1, f2, f3], uses three length-
preserving functionsf1, f2, f3 : {0, 1}n → {0, 1}n and takes a variable-length input
x = x1 ‖ . . . ‖ xℓ (wlog, we assume the length to be a multiple ofn; if not, then a suit-
able encoding scheme can be used to achieve this, such as appending a1 followed by
0s). It simply applies the XOR hash functionG[f1, f2] described above to a suffix-free
encoding of the input, followed by the third length-preserving functionf3. The particu-
lar suffix-free encoding we use isMerkle-Damg̊ard (MD) strengthening[11, 18], where
one simply appends the input length〈ℓ〉 to the input. The resulting mode, depicted in
Figure 1, is calledenciphered CBC mode, and it is defined as:

H[f1, f2, f3](x1 ‖ . . . ‖ xℓ) = f3(G[f1, f2](x1 ‖ . . . ‖ xℓ ‖ 〈ℓ〉))
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x1 x2 x3 xℓ 〈ℓ〉

f2 f2 f2 f2

⊕ ⊕ ⊕ ⊕

f1 f1 f1 f1 f3

Fig. 1.The basic three-key enciphered CBC constructionH[f1, f2, f3].

3.1 VIL-MAC from length-preserving FIL-MAC

In this section we will prove, that unlike plain CBC, the enciphered CBC (cf. Figure 1)
does give a secure VIL-MAC when instantiated with a length preserving MACs (here
denotedfk1

, fk2
, fk3

to emphasize the secret keysk1, k2, k3). We will use an elegant
methodology of An and Bellare [1] which they used to analyze their NI Construction
of a VIL-MAC from a shrinking FIL-MAC. However, we will see that it will be useful
in our setting as well. In brief, the methodology introduceda notion ofweak collision-
resistance(WCR) and essentially reduced the construction of a VIL-MAC to that of a
FIL-WCR. Details follow.

WEAK COLLISION-RESISTANCE (WCR). Consider a keys family of functionsF =
{fk}, and the following attack game involving this function family. An attackerA gets
oracle access tofk (for randomk) and returns a pair of messagesm 6= m′ in the
domain ofF . The attackerA wins if these message collide:fk(m) = fk(m′). The
function familyF is said to be a(t, q, µ, ε)-secure WCRfunction family if the success
probability of any attacker with running timet, number of queriesq and total message
lengthµ is at mostε.

FROM WCR TO MAC. The methodology of An and Bellare [1] utilized the notion of
WCR via the following reasoning (which we immediately attempt to apply to the case
of enciphered CBC).

Step 1: The composition of a FIL-MACfk and a WCR functionhk′ is a secure
MAC fk(hk′(·)) (Lemma 4.2 [1]). Applied to enciphered CBC, wherefk3

is a FIL-
MAC, it means that it suffices to show that the XOR hash function G[fk1

, fk2
], with

suffix-free inputs, is a VIL-WCR.
Step 2: The cascade construction, with suffix-free inputs, appliedto a FIL-WCR

function gives a VIL-WCR function (Lemma 4.3 [1]). In our case, the XOR hash func-
tion is exactly the required cascade construction applied to the XOR compression func-
tion g[fk1

, fk2
]. Thus, it suffices to show that the latter is FIL-WCR.

Step 3: Build a FIL-WCR. In the case of the NI Construction of [1], one needed
to build a FIL-WCR from a shrinking MAC, which was easy to do: any shrinking FIL-
MAC is FIL-WCR (Lemma 4.4 [1]). Applied to our setting, it would suffice to show
that the XOR compression functionfk1

(x1)⊕ fk2
(x2) is a FIL-MAC. However, this is

easily seen to be false: for example, the XOR of its outputs applied to inputs(x1 ‖ x2),
(x1 ‖ x′

2), (x′

1 ‖ x2) and (x′

1 ‖ x′

2) is always0n, which easily leads to a forgery.
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Despite this “setback”, we give a direct proof that the XOR compression function is a
FIL-WCR, despite not being a FIL-MAC. And this is all we need.
Lemma 1. Let f : {0, 1}κ × {0, 1}n → {0, 1}n be a family of functions. Define the
function familyg[fk1

, fk2
](x1 ‖ x2)

def
= fk1

(x1)⊕ fk2
(x2). If the function familyf is a

(t, q, qn, ǫ)-secure MAC family, theng[fk1
, fk2

] is a(t′, q, 2qn, ǫ · q4/2)-secure WCR
family, wheret′ = t − O(qn).
Proof: Let A be an adversary which finds a collision forg[fk1

, fk2
] with probability

ǫ′ (if k1, k2 are uniformly random). From such anA we will construct a new adversary
B which is basically as efficient asA, and which forgesf with probability at least
2ǫ′/q4. Instead only givingA access tog[fk1

, fk2
], we allowA to makeq queries to

fk1
andfk2

respectively, but we require this queries are made alternately, i.e. after a
query tofkb

, A must make a query tofk3−b
(note that such anA can trivially simulate

q queries tog[fk1
, fk2

]). Moreover we assume that ifx1‖x2, x
′

1‖x
′

2 is A’s final output,
then A always made thefk1

queriesx1, x
′

1 and thefk2
queriesx2, x

′

2 (this can be
done wlog. if we allowA two extra queries tofk1

andfk2
respectively). AssumeA is

successful, and finds a collisionx1‖x2 6= x′

1‖x
′

2 for g[fk1
, fk2

]. We say that a query
x (say tofk1

) is a winner query, if it is the first query where for someb, c, d, the pair
x‖b 6= c‖d is a collision forg[fk1

, fk2
] andA already knows (i.e. made the queries)

fk2
(b), fk1

(c), fk2
(d). Note that ifA found a collision, then it must have made a winner

query. Our attackerB, which must forgefk (for some random unknownk) is now
defined as follows. FirstB flips a random coinr ∈ {1, 2}, and samples a random key
k′ for f . Now B letsA attackfk1

, fk2
, wherefk = fkr

andfk′ = fk3−r
. During the

attack, for a randomi, 2 ≤ i ≤ q, B stops whenA makes thei’th queryx to fkr
and

“guesses” that this will be the winning query. ThenB randomly chooses three already
made queriesb, c, d, conditioned onx‖b 6= c‖d (hoping thatx‖b, c‖d is a collision), and
guesses the forgeryρ := fk3−r

(b) ⊕ fkr
(c) ⊕ fk3−r

(d) for fkr
= fk for the message

x. Note thatρ is a good forgery forfk = fkr
, if x‖b, c‖d is indeed a collision for

g[fkr
, fk3−r

]. ThusB will be successful ifA makes a winning query (which happens
with probabilityǫ′), and moreoverB correctly guessesr (i.e. whether the winning query
will be a f1 or f2 query), the indexi of the winning query and also the three other
queries involved. The probability of all that guesses beingcorrect is at least2ǫ′/q4.
By assumption (on the security off as a MAC) we have2ǫ′/q4 ≤ ǫ, thus the success
probability ofB must be at mostǫ · q4/2 as claimed.

Combining this result with the Lemmas 4.2 and 4.3 from [1], weimmediately get
Theorem 1. Let f : {0, 1}κ × {0, 1}n → {0, 1}n be a (t, q, qn, ε)-secure length-
preserving FIL-MAC. ThenH[fk1

, fk2
, fk3

](.) (wherek1, k2, k3 is the secret key) is a
(t′, q, qn, ε · q4)-secure variable input-length MAC, wheret′ = t − O(qn).

3.2 VIL-RO from length-preserving FIL-RO

In this section we show that the enciphered CBC mode providesa domain extension for
length-preserving ROs (in the sense of [10]).

Theorem 2. Consider three length-preserving ROsf1, f2, f3 : {0, 1}n → {0, 1}n.
Then the enciphered CBC constructionH[f1, f2, f3] is (tD, tS , q, µ, ǫ)-indifferentiable
from a VIL-RO. HeretS = O(q2) , ǫ = O((q + µ)4/2n) andtD is arbitrary.
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One might hope that the proof of this theorem can be given by using the corresponding
indifferentiability result of Coron et al [10] for the NMAC construction. However, this
intuition turns out to be incorrect since in order to use the result of [10], we will need
to show that theXOR compression functiong[f1, f2] is indifferentiable from a FIL-RO
from 2n bits ton bits. But this is clearly false, since for threen-bit input blocksx, y, y′,
we can see thatg[f1, f2](x ‖ y) ⊕ g[f1, f2](x ‖ y′) is independent of then-bit blockx
which is certainly not true for an ideal FIL-RO!

Hence we give a direct proof for this result. In the proof, we need to construct a
FIL-RO simulator that responds to the queries made by the indifferentiability attacker
A to the FIL-ROsf1, f2 andf3 in the VIL-RO model. Roughly speaking, the simulator
responds tof1 and f2 queries at random and hopes that no collisions occur for the
input tof3 in the last round of the enciphered CBC construction. If no such collisions
occur, then it can adjust its response tof3 queries to match the VIL-RO output on the
corresponding variable-length input (which it finds by searching through its previous
responses).
Proof: We will prove the indifferentiability of the enciphered CBCmode of operation
H[f1, f2, f3] from a variable input-length random oracle (VIL-RO)F : {0, 1}∗ →
{0, 1}n, in the random oracle model for the underlying fixed input-length functions
f1, f2, f3 : {0, 1}n → {0, 1}n. The proof consists of two parts: the description of the
FIL-RO simulator and the proof of indifferentiability.
The Simulator. The simulatorS responds to queries of the form(i, x), wherei ∈
{1, 2, 3} andx ∈ {0, 1}n. In particular, the responsey ∈ {0, 1}n of the simulatorS to
a query(i, x) will be interpreted as the outputfi(x) by the distinguisher, i.e.y = fi(x).
The simulator also maintains a tableT consisting of entries of the form(i, x, y), for
each query(i, x) that it responded to with the outputy.

f1 QUERIES. In response to a query of the form(1, x), the simulatorS looks up its
table for an entry of the form(1, x, y). If it finds such an entry, then it responds with
the outputy recorded in this tuple, otherwise it responds to this query by choosing an
outputy that is uniformly distributed over{0, 1}n and records the tuple(1, x, y) in its
tableT .

f2 QUERIES. The simulator responds to queries of the form(2, x) in the same way as
it responds tof1 queries, i.e. first looking up its table for a matching tuple(2, x, y), else
responding with a fresh uniformly distributed outputy.

f3 QUERIES. In response to queries of the form(3, x), the simulator needs to check if
there is a variable length inputX, such that it needs to be consistent with the VIL-RO
outputF (X) on this input. It firsts looks up its tableT to find out if there is a matching
tuple (3, x, y) corresponding to a duplicate query, in which case it responds with y.
Otherwise, it looks up the tableT for a sequence of tuples(1, x1

1, y
1
1) . . . (1, x1

i , y
1
i ) and

(2, x2
1, y

2
1) . . . (2, x2

i , y
2
i ), that satisfy the following conditions:

(a) Forj = 2 . . . i, it holds thatx1
j = y1

j−1 ⊕ y2
j−1.

(b) For the last tuples(1, x1
i , y

1
i ) and(2, x2

i , y
2
i ), it holds that the currentf3 inputx =

y1
i ⊕ y2

i .
(c) The bit stringx1

1 ‖ x2
1 ‖ . . . ‖ x2

i is such thatx2
i = 〈i〉. That is, it should be the

output of Merkle-Damg̊ard strengthening applied to a valid input.
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If the simulator finds such a sequence of tuples, then it queries the VIL-ROF to find
out the outputy = F (x1

1 ‖ x2
1 ‖ . . . ‖ x2

i−1) and responds to the query(3, x) with the
outputy, and records the tuple(3, x, y) in its tableT . If it does not find such a sequence
of tuples then it responds with a uniformly random outputy ∈ {0, 1}n and records
(3, x, y) in T .

The proof of indifferentiability is postponed to the full version of this paper [13].

3.3 VIL-PRF from length-preserving FIL-PRF

If we remove thef2 boxes in our enciphered CBC mode of operation (cf. Figure 1),
we get a well known mode of operation calledencrypted CBC, which is known to be
a good domain extension for PRFs [19, 20]. The security of encrypted CBC (i.e. the
distinguishing advantage from a uniformly random function, URF) when instantiated
with two PRFs is(µ2/2n + 2ǫ), whereµ is the total length (inn bit blocks) of the
messages queried andǫ is a term that accounts for the insecurity of the underlying PRF.
It is not surprising that our enciphered CBC mode is almost assecure, as the application
of f2 (not present in the usual encrypted CBC mode) does not affectthe security by
much.

Theorem 3. Let f : {0, 1}κ × {0, 1}n → {0, 1}n be a(t, µ, µn, ǫ)-secure FIL-PRF
family. ThenH[fk1

, fk2
, fk3

](.) is a (t′, q, µn, 2µ2/2n + 3ǫ)-secure VIL-PRF family
wheret′ = t − O(qn).

We will not formally prove this theorem, but just explain howit follows from the known
(t′, q, µn, µ2/2n+2ǫ) security of the encrypted CBC-MAC (under the same assumption
on the PRF like in the theorem). The main observation here is that we can turn any
distinguisherD for enciphered CBC into a distinguisherD′ for encrypted CBC, by
simply sampling some keyk2 at random, and then enciphering withfk2

(except the
first block) the queries made byD, before forwarding them to the oracle ofD′. If the
oracle ofD′ is encryptedCBC, then the oracle’s answers lookexactlyas if they were
computed by anencipheredCBC. In the ideal experiment, where the oracle ofD′ is
a VIL-URF, the oracle’s answers still look uniformly random, even if the input is first
applied tofk2

, unlessD makes two queries containing blocksx 6= x′ which collide
on fk2

. The probability of that happening can be upper bounded byµ2/2n + ǫ, asfk2

can be distinguished from a URF with advantage at mostǫ, and the probability to find
a collision for a URF with range{0, 1}n making µ queries is at mostµ2/2n. This
µ2/2n + ǫ accounts for the gap in the security for enciphered CBC (as inthe theorem)
and encrypted CBC (as mentioned above).

IMPROVING THE BOUND FOR BLOCK CIPHERS. As just explained, the gap in the
security of encrypted and enciphered CBC is bounded by the probability that one can
find a collision for the PRFfk2

. Thus, if fk2
is a permutation (where there are no

collisions), (t, q, µn, δ)-security for encrypted CBC implies basically the same(t −
O(µn), q, µn, δ) security for enciphered CBC. This observation is useful, asin prac-
tice the PRF is usually instantiated by a block cipher, whichis a permutation. And
further, for the encrypted CBC mode of operation, one can prove much better bounds
than(µ2/2n + 2ǫ) if both fk1

andfk2
are assumed to be pseudorandom permutations
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(PRPs) [4, 20] as opposed to PRFs. Thus, this better bounds for encrypted CBC translate
directly to our mode of operation. To state the improved bounds, one must assume an
upper boundℓ on the length ofeachmessage queried by the distinguisher (this should
not be a problem in practice, as the bound can be exponential). Let q be the number of
queries the adversary is allowed to make, then if no messagesis longer thanℓ ≤ 2n/4

(and thus the total lengthµ is at mostℓq), the security of encrypted CBC instantiated
with PRPs isq2ℓΘ(1/ ln ln ℓ)/2n (plus someǫ term accounting for the insecurity of the
PRP). With the stronger condition thatℓ ≤ 2n/8, one gets an even strongerO(q2/2n)
bound [20], which is tight up to a constant factor. Note that this is much better than
theO(q2ℓ2/2n) bound implied by Theorem 3, and in particular is independentof the
message lengthℓ.

3.4 Collision Resistance of Enciphered CBC

Now we discuss the collision-resistance of the enciphered CBC mode of operation. Note
that the problem of constructing variable input-length CRHFs from length-preserving
collision-resistant (CR) functions does not make much sense, since it is trivial to con-
struct length-preserving CR functions (such as the identity function). However, as dis-
cussed in the introduction, we can make the following simpleobservation about the
enciphered CBC mode of operation.

Lemma 2. Consider three length-preserving functionsf1, f2 andf3 on n bits. If the
XOR compression functiong[f1, f2] and the functionf3 are collision-resistant, then
the enciphered CBC mode of operation,H[f1, f2, f3], is collision-resistant as well.

This observation is a simple consequence of the result of Merkle-Damg̊ard [11, 18],
since we already use a suffix-free encoding the the enciphered CBC mode. Notice that
assuming that a length-preserving functionf3 is a CRHF is a very mild requirement,
since any permutation trivially satisfies this property. Thus, we the main assumption we
need is that the XOR of functionsf1 andf2 is a CRHF. Of course, in the random oracle
model, it is well known the the XOR of two random oracles is collision-resistant (in
fact, in this setting we showed in Section 3.2 that the enciphered CBC mode even gives
a VIL-RO, let alone a “mere” VIL-CRHF).

Our point is that it is not essential to make idealized assumptions on the functionsf1

andf2 to prove collision resistance of the constructiong[f1, f2]. For instance, consider
any finite fieldF for which thediscrete logarithmproblem is hard, and whose elements
can be naturally encoded as binary strings. Define the functionsf1, f2 : {0, 1}n →
{0, 1}n asf1(x) = genx

1 andf2(x) = genx
2 , wheregen1 andgen2 are two generators

of F. Further, let us replace the XOR operation ing[f1, f2] by a field-multiplication over
F. Then we get a new functiong(x ‖ y) = genx

1 · geny
2 which is provably collision-

resistant under the discrete log assumption. Coupled with the RO justification, this ex-
ample suggests that our assumption ong[f1, f2] is not too unreasonable.

We stress, though, that the XOR compression function is definitely not collision-
resistant whenf1 andf2 are (public) randompermutations, as any two pairs(x, y),
(x′, f−1

2 (f1(x) ⊕ f2(y) ⊕ f1(x
′))) give a collision. Indeed, as we explain next, our

mode has to be slightly modified to handle the case of random permutations.
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x1 x2 x3 xℓ 〈ℓ〉

π2 π2 π2 π2

⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕

π1 π1 π1 π1 π−1

3
π3

⊕ ⊕ ⊕ ⊕

Fig. 2.The “enhanced” three-key enciphered CBC constructionH∗[π1, π2, π3] which is a domain
extender for random oracles, even if instantiated with randompermutations.

4 A Block Cipher based Mode of Operation

So far we described the enciphered CBC mode for three length-reserving functions.
But, as already mentioned at the end of Section 3.4 and in Footnote 4, we need to mod-
ify our basic mode in order for it to work with permutations in“unkeyed” settings,
such as indifferentiability from RO and collision-resistance. In the “keyed” settings,
i.e. for MACs and PRFs, replacing the functions with permutations does not make a
qualitative difference (up to a birthday bound), since a PRPis also a PRF. Thus, the
enciphered CBC construction works for domain extension of MACs and PRFs even
if one uses a block cipher to implement the these primitives.However, even in these
cases the construction may have slightly different (up to a birthday bound) exact se-
curity. For instance, as discussed for the case of PRFs in Section 3.3, the enciphered
CBC construction has actuallybetterexact security if permutations are used instead of
functions.

“ENHANCED” ENCIPHERED CBC. We now described the (enhanced) enciphered
CBC mode of operation based on three permutationsπ1, π2 andπ3. While this more
complicated mode is only needed for the “unkeyed” settings (RO and CRHF), we will
see that it still works for the “keyed” settings (PRF and MAC), although under slightly
stronger assumptions than before. The mode is depicted in Figure 2 and is denoted
H∗[π1, π2, π3]. We observe that this enhanced mode ispreciselythe basic enciphered
CBC constructionH[f1, f2, f3] with length-preserving functionsf1, f2 andf3 defined
as follows:fi(x) = πi(x) ⊕ x for i = 1, 2, andf3(x) = π3(x) ⊕ π−1

3 (x). The reason
for this choice will become clear in the sequel, when we discuss why this “enhanced”
mode works for building VIL-RO and VIL-CRHF.

4.1 Collision Resistance from Random Permutations

Using Lemma 2, in order to argue the collision-resistance ofthe enhanced mode, it suf-
fices to argue the collision resistance of the XOR compression functionf(x)⊕ f2(y) =
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π1(x)⊕ x⊕ π2(y)⊕ y, and the functionf3(x) = π3(x)⊕ π−1
3 (x), even if the attacker

can invertπ1, π2 andπ3. In the standard model, we will have to simply make these (un-
usual but not unreasonable) assumptions for whatever public permutations we end up
using. However, we must first justify that these assumption at least hold in the random
permutation model. We start with the XOR compression function.

Lemma 3. For two independent permutationsπ1, π2, the XOR compression function
g[f1, f2] (with f1 andf2 as defined above) is(t, ǫ)-collision-resistant in the random
permutation model forπ1 andπ2. Hereǫ = q4/2n if the attacker makes at mostq ≤
min(t, 2n−1) random permutation queries.

Proof: Let A be any collision-finding attacker who outputs a collision(x1 ‖ x2), (x
′

1 ‖
x′

2). When the attacker makes its forward queryx to πi (herei = 1, 2) or a backward
queryy to π−1

i , we will record a tuple(i, x, pii(x)) or (i, pi−1
i (y), y) to a special ta-

ble T . Wlog, we assume thatA does not make redundant queries and that, at the the
end of the game,T contains all the “collision-relevant” values(1, x1, y1 = π1(x1),
(1, x′

1, y
′

1 = π1(x
′

1), (2, x2, y2 = π2(x2), (2, x′

2, y
′

2 = π1(x
′

2). This means that instead
of havingA output a collision, we can declareA victorious ifT contains4 (not neces-
sarily distinct) tuples, as above, such thatx1 ⊕ y1 ⊕ x2 ⊕ y2 = x′

1 ⊕ y′

1 ⊕ x′

2 ⊕ y′

2. To
complete the proof, we will argue, by induction on0 ≤ j ≤ q, that afterA makes his
first j queries, the probability thatT will contain the required4-tuple is at mostj4/2n.

Consider query numberj + 1. Wlog, assume it is toπ1 or π−1
1 . Then, eitherT

already contained the colliding4-tuple before this query was made (which, by induc-
tion, happens with probability at mostj4/2n), or the answer to the current queryj + 1,
together with3 prior queries, resulted in the colliding equation. Let us fixany one of
these at mostj3 choices of3 prior queries. Once this choice is fixed, it defines a unique
answer to queryj + 1 which will result in collision. Indeed, if the queryj + 1 is to
π1(x1), and the3 prior table values are(1, x′

1, y
′

1), (2, x2, y2), (2, x′

2, y
′

2), then the only
answery1 which will result in collision is equal toy1 = x1⊕x′

1⊕y′

1⊕x2⊕y2⊕x′

2⊕y′

2.
Similarly, if the query was toπ−1

1 (y1), then the only answerx1 resulting in a collision
is x1 = y1 ⊕ x′

1 ⊕ y′

1 ⊕ x2 ⊕ y2 ⊕ x′

2 ⊕ y′

2. However, since the total number of queries
j ≤ 2n−1, for each fresh query there are at least2n − j ≥ 2n−1 equally likely answers.
Thus, the chance that a random such answer will “connect” with a given subset of3
prior queries is at most1/2n−1.

Overall, the get that the probability that there will be a collision in T after j + 1
queries is at mostj4/2n + j3/2n−1 < (j + 1)4/2n, completing the proof.

Next, we need to prove the collision resistance of the constructionf3(x) = π3(x)⊕
π−1

3 (x) in the random permutation model. However, this will trivially follow from a
much stronger result we prove in the upcoming Lemma 4, which will be needed to
prove the indifferentiability of our mode from a VIL-RO.

4.2 Building VIL-RO from Random Permutations

In this section we argue that the enhanced enciphered CBC mode gives a VIL-RO in
therandom permutationmodel forπ1, π2, π3. The actual proof (and the exact security)
of this result is quite similar to the proof of Theorem 2. Therefore, instead of repeat-
ing the (long) proof of this result, we will only (semi-informally) highlight the key
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new ingredients of the proof which we must address in the random permutation model.
Concentrating on these ingredients will also help us to “de-mystify” why we defined
the functionsf1, f2, f3 in the way we did.

RANDOM ORACLE FROMRANDOM PERMUTATION. The most modular way to extend
Theorem 2 to the random permutation model would be to show howto implement (in
the indifferentiability framework) a length-preserving RO from an RP, and then use
the general composition theorem in the indifferentiability framework (see [10]). And,
indeed, it turns out that this is precisely what we did for thefunction f3 (but not f1

andf2; stay tuned) by defining it asπ3 ⊕ π−1
3 . Intuitively, f3 must really look like a

full-fledged FIL-RO in the proof of Theorem 2. The security ofthis construction for
f3 is of independent interest, since it builds a FIL-RO from an RP, and follows from
the following Lemma (which also implies thatf3 is collision-resistant in the random
permutation model):

Lemma 4. Let π : {0, 1}n → {0, 1}n be a permutation. Then the constructionf [π]
def
=

π ⊕ π−1 is (tD, tS , q, µ,O(q2/2n))-indifferentiable from a length-preserving FIL-RO
onn bits in therandom permutation modelfor π (heretD is arbitrary andtS = O(qn)).

Proof: We will show that the constructionf [π] is indifferentiable from a FIL-RO
F : {0, 1}n → {0, 1}n in the random permutation model forπ : {0, 1}n → {0, 1}n.
The proof consists of two parts: a description of the RP simulatorS and the proof of
indifferentiability.
The Simulator. The simulatorS responds to queries of the form(i, x), for i = −1,+1
andx ∈ {0, 1}n. The distinguisher interprets the response of the simulator to a query
(+1, x) (resp.(−1, x)) as the (resp. inverse) permutation outputπ(x) (resp.π−1(x)).
The simulator maintains a tableT of permutation input-output pairs(x, y) such that,
either it responded withy to a query(+1, x) or with x to a query(−1, y). On a query
(+1, x) (resp.(−1, y)), S first searches its tableT for a pair(x, y′) (resp.(x′, y)) and
if it finds such a pair then it responds withy′ (resp.y).

On a new query(+1, x), the simulator searches its table for a pair of the form(x′, x)
(i.e.x was an earlier RP output). If it finds such a pair, then it queries the FIL-ROF to
find the outputF (x). It then responds with the outputy = x′ ⊕ F (x), and records the
pair (x, y) in its tableT .

On a new query(−1, y), the simulator searches its table for a pair of the form(y, y′)
(i.e. y was an earlier RP input). If it finds such a pair, then it queries the FIL-ROF to
find the outputF (y). It then responds with thex = y′ ⊕F (x) to the query, and records
the pair(x, y) in its tableT .

The proof of indifferentiability is postponed to the full version of this paper [13].

Of course, we could have the above Lemma to definef1 andf2 as well, but this
would double the efficiency rate of our enhanced mode from2 to 4. Instead, we observe
that in the proof of Theorem 2, we “only” need the functionsf1 andf2 to be such that
the XOR compression functiong[f1, f2] is what we callextractable.8

8 Technically, we need the whole XOR hash functionG[f1, f2] to be extractable, but it is easy
to see that this is implied by the extractability of the compression functiong[f1, f2]. In this
case, if the XOR Hash function is extractable and the attacker makes an oracle callf3(y), the
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EXTRACTABILITY . Informally, a hash functiongf built from some oraclef is ǫ-
extractable (whereǫ could depend on some other parameters), if there exists and ex-
tractorExt such that no attackerA can “fool” Ext with probability more thanǫ in the
following game.A is given oracle access tof and outputs a valuey. Ext takesy and
the oracle queries thatA made tof so far, and attempts to outputs a preimagex of y
undergf . ThenA is allowed to run some more (making more calls tof ) and outputs its
own preimagex′ of y. ThenA “fools” Ext if gf (x′) = y butx 6= x′.

Coming back to our situation, wheref = (f1, f2) andgf = g[f1, f2](x1 ‖ x2) =
f1(x1) ⊕ f2(x2), we only need to argue the extractability of this construction in the
random permutation model, when we definefi(x) = πi(x) ⊕ x. The extractor for this
construction is defined naturally: giveny, search the list ofA’s queries for a pair of
inputs/outputs(x1, y1), (x2, y2) to π1 andπ2, respectively, such thaty = x1 ⊕ y1 ⊕
x2 ⊕ y2. If exactly one such pair is found, outputx = x1 ‖ x2, else fail. The security
of this extractor is given below.

Lemma 5. For two independent permutationsπ1, π2, the XOR compression function
g[f1, f2] (with f1 andf2 as defined above) is extractable in the random permutation
model forπ1 andπ2. In particular, if the attacker makes at mostq permutation queries,
it can fool the above extractor with probability at mostO(q4/2n).

We remark that extractability can be viewed as a slight strengthening of collision-
resistance: indeed, finding a collision allows one to trivially fool any extractor with
probability at least1/2. Not surprisingly, the proof of this Lemma is only marginally
harder than the proof of Lemma 3. Omitting details, we use theproof of Lemma 3 to
argue that the extractor will never find more than one preimage ofy throughA’s oracle
queries. And if at most one such preimage is found, a similar argument can show that
the chance of the attacker to find a different preimagex′ of y is at mostq2/2n.

This completes our high-level argument why the enhanced enciphered CBC mode
yields a VIL-RO (and also explains our definition off1, f2, f3 in terms ofπ1, π2, π3).

4.3 Revisiting Security for PRFs and MACs

Although the basic enciphered CBC mode already works for thecase of PRFs and
MACs, even when permutations are used, we argue that the enhanced mode continues
to work for these settings as well. First, note that ifπ is a PRF (resp. MAC), then the
construction[π(x) ⊕ x] is also a PRF (resp. MAC) with the same exact security. Thus,
we do not need to make any stronger assumptions onπ1 andπ2 than what we made
on f1 andf2. However, in order to prove thatf3 = π3 ⊕ π−1

3 is a PRF (resp. MAC),
we will need to make slightly stronger assumption onπ3 than being the “usual” PRF
(resp. MAC). In some sense, this is expected since an inversequery toπ3 is used in
the construction itself. Luckily, the extra assumptions weneed are quite standard and
widely believed to hold for current block ciphers. Specifically, for the case of PRFs we
require thatπ3 is a (strong) pseudorandom permutation (sPRP): i.e., it remains a PRP
even if the attacker can make both the forward and the inversequeries. Similarly, for
the case of MACs, we need to assume thatπ3 is a (strong) unpredictable permutation

Simulator can extract the preimagex = (x1 . . . xℓ) of y and “define”f3(y) = F (y), where
F is the VIL-RO.
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(sUP): i.e., a permutation for which no attacker can produce a (non-trivial) forgery
even if given oracle access to both the forward and the inverse queries. The proof of
this simple lemma will be given in the full version.

Lemma 6. Let Π = {πk}k be a family of permutations, and define the familyF =
{fk}k of length-preserving functions byfk(x) = πk(x) ⊕ π−1

k (x). ThenF is a

– (t, q, µ, ǫ + O(q2/2n))-secure PRF ifΠ is a(t + O(qn), 2q, 2µ, ǫ)-secure sPRP.
– (t, q, µ,O(ǫ · q2))-secure MAC ifΠ is a(t + O(qn), 2q, 2µ, ǫ)-secure sUP.

We remark that for the case of MACs, the exact security ofǫ · q2 might sound alarming,
especially when combining this with the statement of Theorem 1, where there is an
additional loss of theq4 factor. However, a closer look at the proof of Theorem 1 reveals
that the exact security of the enciphered CBC is actually at most ǫ3 + (ǫ1 + ǫ2) · q4,
whereǫi is the security offi. Coupled with the above Lemma, we get securityǫ · q2 +
(ǫ1 + ǫ2) · q

4 (whereǫ is the security of sUPπ3, andǫ1, ǫ2 are the securities of MACs
π1 andπ2).

5 Two-key enciphered CBC construction

In this section we show that it is possible to instantiate the(basic) enciphered CBC
mode using only two independent length-preserving functions.

A first natural idea is to define the functionf2 in the three-key version using the
functionf1. For example, we can makef2 = f2. However, in this case it is easy to see
that the resulting mode is insecure for all the security notions considered in this paper.
This is because the resulting XOR compression functiong[f1, f1] becomes a constant
function0n on any “symmetric” input(x ‖ x). Luckily, we show that this problem can
be resolved by instantiatingf2 with a different multiple off1!

THE CONSTRUCTION. Consider a functionf : {0, 1}n → {0, 1}n. We can view the
inputs/outputs off as elements of the fieldGF(2n), and the bit-by-bit XOR operation
becomes addition over the fieldGF(2n). Let α be any element of this field other than0
or 1. Then we define the functionsf1 andf2 in the enciphered CBC mode of operation
H[f1, f2, f3] as follows:f2(·)

def
= f(·) andf1(·)

def
= α · f(·). We still use a different FIL

functionf ′ as the third functionf3 in the constructionH[f1, f2, f3].
This defines the new XOR compression functiongα[f ] asgα[f ](x1 ‖ x2)

def
= f(x1)⊕

(α · f(x2)). Intuitively, the key point we will repeatedly use in our analyses is that the
function gα[f ] is still WCR (or even extractable in the RO model) whenα 6∈ {0, 1}.
We also denote the corresponding XOR hash function asGα[f ], and our new mode of
operation using two functionsf ′ andf ′ asHα[f, f ′], where:

Hα[f, f ′](x1 ‖ . . . ‖ xℓ)
def
= f ′ (Gα[f ](x1 ‖ . . . ‖ xℓ ‖ 〈ℓ〉))

The construction is illustrated in Figure 3. We will now analyze its security for
various security notions.

5.1 Two-key enciphered CBC is MAC preserving

In the full version of the paper we prove the following lemma.
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x1 x2 x3 xℓ 〈ℓ〉

f f f f

⊙ α ⊙ α ⊙ α ⊙ α

⊕ ⊕ ⊕ ⊕

f f f f f ′

Fig. 3. The two-key enciphered CBC constructionHα[f, f ′].

Lemma 7. If the function familyf is (t, 2q, 2qn, ǫ)-secure MAC family, thengα[f ] is
a (t′, q, 2qn, ǫ · 32 · q4)-secure WCR family, wheret′ = t − O(qn).

As explained in Section 3.1, we can now use Lemma 7 along with Lemmas 4.2 and 4.3
from [1] to get the following Theorem.

Theorem 4. Let f : {0, 1}κ × {0, 1}n → {0, 1}n be a(t, 2µ, 2µn, ε)-secure length-
preserving FIL-MAC. ThenHα[fk, fk′ ](.) (wherek, k′ is the secret key) is a(t′, q, µn, ε·
33 · µ4)-secure variable input-length MAC, wheret′ = t − O(µn) andq is arbitrary.

5.2 VIL-RO using the two-key construction

We now show that given two independent FIL-ROsf, f ′ : {0, 1}n → {0, 1}n, the two-
key enciphered CBC constructionHα[f, f ′] is indifferentiable from a VIL-ROF . The
proof of indifferentiability for this construction is similar to the corresponding proof for
the three FIL-RO enciphered CBC construction. The only difference is in the way the
simulator searches for a variable length input where it might need to be consistent with
the VIL-RO, when responding to af ′ query. We give a proof of this lemma in the full
version of this paper [13].

Theorem 5. Consider two length-preserving functionsf, f ′ : {0, 1}n → {0, 1}n. Then
the new enciphered CBC constructionRO2[f, f ′] is (tD, tS , q, µ, ǫ)-indifferentiable
from a random oracle in the FIL-RO model forf and f ′. Here tS = O(q2), ǫ =
O((q + µ)4/2n) and the result holds for anytD.

5.3 VIL-PRF using the two-key construction

Recall that to prove that the three-key enciphered CBCH[f1, f2, f3] is a good domain
extender of PRFs, we reduced its security to the security of encrypted CBC, by simply
simulating the invocations off2 (which are present in the enciphered, but not in the
encrypted CBC mode). This does not work forHα[f, f ′], as we can’t simulatef because
we do not know its key (in the three key case,f2 andf1 used independent keys, so this
was possible). So one has to do a direct proof. In the full version of this paper we prove
the following Theorem (we give a high level sketch of the proof in Section 6.3).
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Theorem 6. Letf : {0, 1}κ × {0, 1}n → {0, 1}n be a(t, 2µ, 2µn, ǫ)-secure FIL-PRF
family. ThenHα[fk, fk′ ](.) (wherek, k′ is the secret key) is a(t′, q, µn, 4µ2/2n + 2ǫ)-
secure VIL-PRF family wheret′ = t − O(µn).

5.4 CRHF using the two-key construction

In order to prove the collision-resistance of the two-function constructionHα[f, f ′], we
essentially need to show that the XOR compression functiongα[f ] is collision-resistant,
since it is trivial to find a length-preserving collision-resistant functionf ′ and we use
MD strengthening in this construction (similar to Lemma 2).If we make a suitably
strong assumption (for instance,f is a FIL-RO), then we can show thatgα[f ] is a FIL-
RO. We give a proof of this lemma in the full version of this paper.

Lemma 8. Let f : {0, 1}n → {0, 1}n be a length preserving function. The XOR
compression functiongα[f ] is (t, ǫ)-secure collision resistant function in the FIL-RO
model forf . Hereǫ = O(q4/2n), whereq is the number of FIL-RO queries made by
the attacker tof .

6 Single-key enciphered CBC Construction

Finally, we show how to further optimize our mode to use only asingle length-preserving
function f . The first natural idea is to start with the two-key mode from the previous
section, and then simply make the second functionf ′ = f . It is easy to see that this does
not affect the collision-resistance much (since the “outerfunction” f ′ did not do any-
thing there anyway). Unfortunately, this change makes our mode insecure. In essence,
the reason is due to the fact that our (suffix-free) encoding is not prefix-free, and so
called “extension attacks” become possible. (This is quiteanalogous to the usual CBC-
MAC [3] and cascade constructions [5] which are only secure for prefix-free inputs.)

CONSTRUCTION FORPRFS AND MACS. Luckily, it turns out that if instead of ap-
pending the input length, we prepend it (to get aprefix-free encoding) then the resulting
construction can be proven secure (withf ′ = f ) for the “keyed” setting of MACs and
PRFs. The resulting construction, depicted in Figure 4 and denotedHα[f ], is formally
defined below:

Hα[f ](x1 ‖ . . . ‖ xℓ)
def
= f (Gα[f ](〈ℓ〉 ‖ x1 ‖ . . . ‖ xℓ)

CONSTRUCTION FORVIL-RO. Unfortunately, the above construction is still notenough
for the question of building a VIL-RO from a single FIL-RO. Tohandle this case as well,
we need to modify the two-key construction as follows:

1. Instead of settingf ′ = f , we use the Davies-Mayers-type constructionf ′(x) =
f(x) ⊕ x.

2. We still keep the suffix-free encoding (by appending the number of blocks to the
input), but now also ensure the prefix-free encoding by prepending the number of
blocks to the input.
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〈ℓ〉 x1 x2 xℓ−1 xℓ

f f f f

⊙ α ⊙ α ⊙ α ⊙ α

⊕ ⊕ ⊕ ⊕

f f f f f

Fig. 4.The single-key enciphered CBC constructionHα[f ] for constructing MAC and PRF.

〈ℓ〉 x1 x2 xℓ 〈ℓ〉

f f f f

⊙ α ⊙ α ⊙ α ⊙ α

⊕ ⊕ ⊕ ⊕

f f f f

f

⊕

Fig. 5.The “enhanced” single-key enciphered CBC constructionHα[f ]′ for constructing RO.

We call this final constructionHα[f ]′ (see Figure 5), and formally define it on input
X = x1 ‖ . . . ‖ xℓ as follows:

Hα[f ]′(X)
def
= f(Gα[f ](〈ℓ〉 ‖ X ‖ 〈ℓ〉)) ⊕ Gα[f ](〈ℓ〉 ‖ X ‖ 〈ℓ〉)

We remark that although this final constructionHα[f ]′ is defined for building VIL-
RO (for which the simpler constructionHα[f ] is not enough), it is easy to extend the
MAC/PRF security ofHα[f ] to show thatHα[f ]′ also works for the case of MACs
and PRFs. For the sake of elegance, though, we only analyze the simpler variantHα[f ]
when studying the domain extension of PRFs and MACs.

6.1 Single-key VIL-MAC construction

To prove that the one-key enciphered CBCHα[f ] is a good domain extension for
MACs, we cannot apply the methodology of An and Bellare (as explained in Section
3.1) that we used for the three and the two key construction. Recall that in this method-
ology, one first proves that the construction (ignoring the last invocation off ) is weakly
collision resistant, and then the final application off (with an independent key) gives
us the MAC property. InHα[f ] there is no final invocation off with an independent
key. Instead, in the full version of the paper, we give a direct reduction to prove the
following Theorem.
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Theorem 7. If the function familyf is a(t, 3µ, 3µn, ǫ)-secure MAC family, thenHα[fk],
wherek is the secret key, is a(t′, q, µn, ǫ · 49 · µ4)-secure MAC wheret′ = t − O(µn)
andq is arbitrary.

6.2 Single-key VIL-RO construction

As discussed above, the single-function RO constructionHα[f ]′ is slightly different
from the MAC and PRF case. We show that this construction is indifferentiable from a
VIL-RO. The formal proof of this theorem is more involved than the two/three FIL-RO
case. In particular, the proof of indifferentiability crucially uses the “extractability” of
the Davies-Meyer construction in the end of the “enhanced” enciphered CBC construc-
tion. We defer the formal proof to the full version of this paper [13].

Theorem 8. Consider a length-preserving functionf : {0, 1}n → {0, 1}n. Then the
single-function RO constructionHα[f ]′ is (tD, tS , q, , µ, ǫ)-indifferentiable from a ran-
dom oracle in the FIL-RO model forf . HeretS = O(q2), ǫ = O((q +µ)4/2n) and the
result holds for anytD.

6.3 Single-key VIL-PRF construction

We prove that our single-key enciphered CBC constructionHα[f ] is a secure domain
extension for PRFs by adapting the proof for “plain” prefix-free CBC of Maurer (The-
orem 6 in [15]). The situation here is somewhat more complicated than in the three and
two key cases considered so far. There, security can be proven using the following high
level idea: first one proves that the construction (ignoringthe final invocation off ) is
(computationally) almost universal (see [2]); i.e. any twofixedmessages are unlikely
to collide. And this is enough to prove security because of a final invocation of an in-
dependent PRF. ForHα[f ], this proof idea does not directly work, as there is no final
invocation with anf using an independent key. Fortunately, one can use a powerful
theorem (Theorem 2 from [15]) to still argue security in our setting as well. Details are
deferred to the full version [13].

Theorem 9. Letf : {0, 1}κ × {0, 1}n → {0, 1}n be a(t, 3µ, 3µn, ǫ)-secure FIL-PRF
family. ThenHα[fk](.) (wherek is the secret key) is a(t′, q, µn, 9µ2/2n + 2ǫ)-secure
VIL-PRF family wheret′ = t − O(µn).
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