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Abstract. We propose a new mode of operati@mciphered CBCfor domain
extension of length-preserving functions (like block ciphers), which varéa-
tion on the popular CBC mode of operation. Our new mode is twice slower than
CBC, but has many (property-preserving) properties not enjoye@BC and
other known modes. Most notably, it yields the first constant-rate Merialput
Length (VIL) MAC from any length preserving Fixed Input Length (FFMAC.
This answers the question of Dodis and Puniya from Eurocrypt 2Q0%heét, our
mode is a secure domain extender for PRFs (with basically the samétygasur
encrypted CBC). This provides a hedge against the security of the biplkr:

if the block cipher is pseudorandom, one gets a VIL-PRF, while if it is “only
predictable, one “at least” gets a VIL-MAC. Additionally, our mode yieldéa
random oracle (and, hence, a collision-resistant hash function) inbmtiated
with length-preserving random functions, or even random permutatiehish
can be queried from both sides). This means that one does not havkey the
block cipher during the computation, which was critically used in most povsvio
constructions (analyzed in the ideal cipher model).

1 Introduction

Modes of operation allow one to build a Variable Input Len@hL) primitive from

a given Fixed Input Length (FIL) primitive. Currently, varits of two popular modes
of operation are used to implements almost all known VIL fiires: the CBC mode,
which operates on length preserving functions (like a blogker), and the Merkle-
Damdard (MD, aka as “cascade”) mode, which operates on a compnesmction. In
practice, the latter compression functibris often implemented out of a block cipher
E via the Davies-Meyers transformh{z,y) = E,(y) ® y. Thus, one way or another,
many useful primitives are built from a block cipher in piaet Unfortunately, we argue
that neither the CBC nor the MD mode are entirely satisfgcamd a new block cipher
mode of operation is needed.

CBC MobDE. Cipher Block Chaining (CBC) is a popular mode of operationdo-
main extension of pseudorandom functions (PRFs) [3], thiosvimg one to build a
MAC (recall that a PRF is a MAC) on roughly? bits by making¢ calls to ann-bit
block cipherE. However, here one must assume thats a PRF, even if finally one
is only interested in getting a MAC. Pseudorandomness is@hratrtonger assumption
than unpredictability (which is all we need from a MAC). Thitsis natural to ask if
the CBC-MAC is secure if the block cipher is “onlyihpredictablein other words, if
CBC is a good domain extender for MACs. Aside from being ofgtbeoretical im-
portance, a positive answer to this question would proviledge against the security



of the block cipherE: if E is pseudorandom, one gets a VIL-PRF, while if it is only
unpredictable, one at least gets a VIL-MAC. Unfortunatély,and Bellare [1] showed
that this is not the cas€This motivates the following central question of this work:

Question 1.Is there a simple and efficient way to build a VIL-MAC from a ¢gh-
preserving MAC (like an unpredictable block cipher)?

This question was recently explicitly addressed by DodisRuniya [14]. They argued
that none of the existing techniques (as opposed to just @&€)a satisfactory answer
to this question (see [14] for a list of many failed approagh&hey also presented
the best-known-to-date solution. The idea is to use thetétaigtwork forw(log \)
rounds (where\ is the security parameter) to get a MAC fr@m to 2n bits. Then one
can safely chop half of the output bits, gettingra— n bit MAC, after which one can
apply any of the known efficient techniques to extend the dowifza “shrinking MAC”

[1, 16]. While elegant, this solution evaluates the given-MAC w(¢log \) times to
extend the domain of the FIL-MAC by a factor &fln contrast, the solution we present
shortly will only use2/ calls.

Coming back to CBC, another drawback of this mode is thatésdwt appear to be
useful for building collision-resistant hash function (BRs) or random oracles (ROs)
from block ciphers, even if the block cipher is modeled asdmai cipher. Indeed, if
the key to the block cipher is fixed and public, it is trivialftod collisions in the CBC
mode, irrespective of the actual cipher.

MD MobDE. Unlike the CBC mode, the MD mode seems to be quite univeasdlyari-
ants of it were successfully used to argue domain extensgts for many properties,
including collision-resistance [11, 18, 21, 8], pseudd@nness [5, 6], unforgeability
[1,16], indifferentiability from a random oracle [10], rdomness extraction [12] and
even “multi-property preservation” [7]. However, whenngsia block cipher, we will
first have to construct a compression from the block ciph&rbeve can apply MD.

One trivial way of doing this would to simply chop part of thetput of E. However,
this is very unsatisfactory on multiple levels. First, thigwe constant efficiency rate for
the cascade construction, one must chop a constant fradttba output bits. However,
already chopping a super-logarithmic number of bits will, o general, preserve the
security of ' as a MAC, making it useless for answering Question 1. Searad for
the case of PRFs and ROs, where chopping a linear fractioitflbes preserve the
corresponding property, one loses a lot in exact secuiitgeghe output is now much
shorter. For example, dropping half of the bits would givela-PRF with efficiency
rate2 and security.? /2"/2 (wherey is the total length of queried messages), compared
to efficiency ratel and security:? /2" achieved by CBC.

As another option, which is what is done in practice, one @@ohstruct the com-
pression function via the Davies-Meyers transfdrte, y) = E,.(y) ®y. For one thing,
this is not very efficient, as it requires one to re-key theklcipher for every call, which
is quite expensive for current block ciphers. (For examglieyinating this inefficiency
was explicitly addressed and left as a challenge by Blackh@m and Shrimpton [9].)
More importantly, however, using the Davies-Meyers cartion requires very strong
assumptions on the block cipher to prove security. Namelg @an either make an

3 Their attack was specific to a two-block CBC, but it is not hard to extend it@nounds.



ad hoc assumption that the Davies-Meyers compressionifumsatisfies the needed
domain extension property (such as being a PRF or a MAC), rondlly prove the
security of the construction in the ideal cipher model. Bothhese options are un-
satisfactory. The first option is provably not substantatgen is the block cipheF

is assumed to be a pseudorandom permutation (PRP): for éxaome can construct
(artificial) PRPs for which the Davies-Meyers constructismot even unpredictable.
As for the second option, it might be acceptable when dealiitig strong properties,
like collision-resistance or indifferentiability, whenis clear that the basic PRP prop-
erty of the block cipher will not be enough [25]. However, & gseudorandomness, or
even unpredictability, going through the ideal cipher angat seems like a very (and
unnecessarily) heavy hammer.

NEw MODE OF OPERATION. The above deficiencies of the CBC and the MD mode
suggest that there might be a need to design a new mode otiopdrased on block ci-
phers, or, more generally, length-preserving (keyed oeyed#t) functions. We propose
such a mode which will satisfy the following desirable prdjes:

— The mode is efficient. If the message lengthlidocks, we evaluate the block cipher
at mostc/ times ( is called theefficiency ratewe will achievec = 2).

— The mode uses a small, constant number of (secret or pulgiperdling on the
application) keys for the block cipher. In particular, orever has to re-key the
block cipher with some a-priori unpredictable value.

— It gives a provably secure VIL-MAC from length-preserving- fMAC, answering
Question 1.

— It gives a provably secure VIL-PRF from a length-preseniilg-PRF, therefore
providing the hedge against the security of the block cighieif £ is pseudoran-
dom, the mode gives a PRF;#f is only unpredictable, one at least gets a MAC.

— It gives a way to build a VIL-RO (and, hence, a VIL-CRHF) froevsral random
permutations.

— The mode is elegant and simple to describe.

Of course, simply being a “secure” domain extension for RIRXZ/RO is not enough:
the exact security achieved by the reduction is a cruciarpater, and we will elaborate
on this later in this section.

ENncIPHEREDCBC. The modegnciphered CBCwe presentin this paper is a relatively
simple variant of the CBC mode. We first describe our “basiote which works for
domain-extension of MACs, PRFs and ROs, and later show theges needed to make
it work with (random) permutations as wélThe basic mode, depicted in Figure 1, con-
sists of three independent length-preserving functifings, f3 (either keyed or not,
depending on whether we are in the secret key setting, oeiraihdom oracle model).
First, we define an auxiliary compression functign, y) = f1(z) ® f2(y). Intuitively,
the key property of this function — which will hold in all oupplications — is that it
is weakly collision-resistant (WCR) [1]. This means thatiegi oracle access tf and
f2, itis infeasible to find a collision fog. Then we useg(z, y) as the compression func-
tion in the usual MD mode with strengthening: namely, we ppipé Merkle-Dam@grd

4 In the random permutation model (where there are no secret keyserkto worry about the
inverse queries of the attacker. In contrast, in the secret key settilRf; &sRlso a PRP, so the
simpler mode already works for the domain extension of MACs and PRFs.



chaining to the messade; ...z, (¢)), where(z; ... x,) is our original message, and
get outputz. Finally, we outputfs(z) as the value of our (basic) enciphered CBC.

As we argue, iff1, fs, f3 are three independent (keyed) MACs, then the above con-
struction is a (three-keyed) VIL-MAC, answering QuestianAlso, although about
twice less efficient than CBC, enciphered CBC also presethe$RF property. On
the other hand, ify, fs, f3 are random oracles, then the construction is indifferelgia
from a VIL-RO. Finally, if weassumethat f; and f, are such thay(z,y) above is
collision-resistant, then the mode which outputs the valdand notf;(z)) above is
trivially collision resistant, since this is simply the @adtD transform with strength-
ening applied to a FIL-CRHF. Thus, f§ is “collision-resistant” (either trivially if it is
a permutation, or even computationally), then enciphe®@ Gives a VIL-CRHF. Of
course, the assumption gris not entirely satisfactory, but we argue that it is meaning
ful in the standard model.

OPTIMIZATIONS. We also show several optimizations of our mode which, wdliggtly
less efficient, also work for two, or even one length-preisgrround function. We
only mention the two-key mode, since the one-key mode is éb# “elegant” and
intuitive to describe. The solution we propose (using twoctions f and f’) is to
view {0, 1}™ as the finite fieldGF(2™), and then use the three-key solution with func-
tions fi(z) = f(x), fo(y) = o - f(y) and f3(z) = f/(z), wherea is any con-
stant inGIF(2") different from0 and 1.6 Then, we show that the resulting function
g(z,y) = f(z) ® o f(y) is still WCR in all our applications.

Finally, we show how to extent the basic enciphered CBC modked case of ran-
dom permutations. As already mentioned in Footnote 4, thisnly the issue in the
results concerning the random permutation model, since tthe attacker can try to
invert the random permutation. Indeed, the functidn,y) = fi(z) @ f2(y) is ob-
viously not collision-resistant (which is crucial for our proof) if tregtacker can in-
vert f; or fo. Our solution is to use the Davies-Meyers transform, bulhexit the key.
Namely, ifm; andmrs are random permutations, we essentially apply the previmde
to functionsf (x) = m1(x) ® z and f2(y) = m2(y) @ y. This ensures that the function
g(x,y) = m(z) ® x ® ma(y) ® y is still WCR, even with the oracle accessp*
andm, . As for the functionfs, it really must look like a random oracle, so we use a
slightly more involved constructioffis(2) = m3(z) ® 73 ' (2).” With these definitions
of f1, fo and f3 usingmy, my andxs, we get our final enciphered CBC mode on block
ciphers. (As we mentioned, though, the simplified mode diremorks for the case of
PRFs and MACs.) We believe that optimizations similar tsthmade to the simplified
mode, might also reduce the number of random permutatidos/tibree, but we leave
this question to future work.

® One can also describe enciphered CBC as “enciphering” the input araithut of the stan-
dard CBC mode applied tf : we encipher all the input blocks (except the first) wjth and
the output block — withfs. This (less useful) view explains the name of the mode.

5 We recommend the constant corresponding the the “polynomiiali GF(2"), since multi-
plication by this polynomial irGIF(2™) corresponds to one right shift and one XOR (the latter
only if there is a carry), which is very efficient.

7 This construction is of independent interest since it shows an inditiatea construction of
ann-to-n-bit random oracle from an-to-n bit random permutation.



SECURITY.  We will now discuss how the security of our mode for MAC/PR&/
compares to known constructions. Recall that a mode of tipariaas rate: if it makes
¢/ calls to the underlying primitive when given &fblock message. We achieve= 2.

We will say that a domain extension for MACs has secudityf the security of
the mode is - 4% wheree is the security of the underlying FIL MAC and denotes
the total length of the messages an adversary is allowedery.g@ur mode achieves
securityd = 4, and this is the first constant-rate construction to achéeyesecurity at
all. ForshrinkingMACs {0, 1}"** — {0,1}", An and Bellare [1] show that a version
of Merkle-Damgrd gives a secure domain extension with secufity: 2 (and rate
¢ = n/k, which is constant ift = (2(n)). This security is much better than what
we achieve, but it is unclear how to build a shrinking MACshwifood security and
compression efficiency (i.ek, = 2(n)) from a length-preserving MAC. Indeed, prior
to this work, the best known construction of Dodis and Publyiéds a shrinking MAC
with ratec = w(log \) (where\ is the security parameters) and secudity: 6, which
is inferior to ourc = 2 andd = 4.

As for PRFs, our mode achieves basically the same sequitjty” as encrypted
CBC, which is the best security known for constructions \utace iterated, stateless
and deterministic. In fact, as discussed in Section 3.3,ille@ghieve even better exact
security when using PRPs (i.e., block ciphers) in place ngtle-preserving PRFs.

Similarly to MACs, we will say that a construction of a VIL-R@as securityl, if
it is u¢/2" indifferentiable from a random oracle when instantiatethvflL-ROs or
RPs. With this convention, our construction has secutity 4. Recently, Maurer and
Tessaro [17] give a pretty involved construction with théiropl security ratel — 1
(at the expense of large efficiency rate- O(1)), while the results of Coron et al. [10]
for domain extension of “shrinking ROs” easily imply (by g@mng some output bits
of the length-preserving RO) a range of constructions wititiency ¢ and security
p?/20=1/n  Although approaching security = 2 for a large constant, for ¢ = 2
this gives poorer security? /2"/2 than the security:* /2" of enciphered CBC.

In the context of building VIL-CRHFs from length-presergiROs or RPs, Shrimp-
ton and Stam [24] give a simple construction from ROs with 3 and optimald ~ 2,
while Rogaway and Steinberger [23] recently reported a rooneplicated construction
from RPs withc = 3 and optimald ~ 2. Additionally, in a companion paper [22] they
showed the necessity of non-trivial efficiency/securigdeoffs for any construction
of VIL-CRHF in the random permutation model. This suggelsésdxistence of similar
(or worse) tradeoffs for the related question of buildingARO from length-preserving
FIL-RO (or RP).

To summarize this discussion, we designed the first mode efatipnsimultane-
ouslysatisfying several demanding properties, some of whictewewer satisfied be-
fore (even inisolation). We conjecture ttaty such mode must require some non-trivial
tradeoff between efficiency and securi®ur specific mode, while simple and elegant,
might not give such optimal tradeoffs. In particular, itswsty of “only” /2" for the
case or ROs and x* for MACs is particularly unsatisfying to make it useful irgatice
(wheren = 128; note thate > 27 ™). It is an interesting open question to understand
the optimal efficiency/security tradeoffs, and to potdhtisnprove upon our specific
enciphered CBC mode of operation.



2 Preliminaries

We assume that the reader is familiar with the basic secdsgfinitions for MACs,
PRFs, CRHFs and indifferentiability from RO. We use exacusi¢gy definitions for
each of these primitives.

MACSs AND PRFs. The security of a MAC is measured via its resistance to entstl
forgery underchosen message atta¢ee [3]). A function familyF is a (¢, g, p, €)-
secure MAC if the success probability of any attacker withning timet¢, number
of queriesq and total message lengthis at moste. Similarly, the security of PRFs
is measured in terms of its indistinguishability from a yruandom function under a
chosen message attack, and.a, i, ¢)-secure PRF is similarly defined.

INDIFFERENTIABILITY FROM RANDOM ORACLE. We follow the definitions of [10]
for indifferentiability of a construction from an ideal pritive F (which will be a ran-
dom oracle in this paper). A constructi@h that has oracle access to ideal primitive
is (tp,ts, q, i, €)-indifferentiable from another ideal primitiv&, if there is aG sim-
ulator S that runs in time at mosts, such that any attackdp with running timetzp,
number of querieg and total query lengtjp can distinguish thé& model (with access
to F and.S) from theG model (with access t6' andG) with advantage at most

CoLLISION RESISTANCE A function family F is (¢, €)-secure CRHF family, if the
advantage of any attacker running in timéo find a collision for anf sampled at
random fromF’, is at mosk.

3 Three-key enciphered CBC construction

In this section, we will define the three-key enciphered CB&enof operation and
analyze its security under various notions.

First, we make some auxiliary definitions. Given two lengtkeserving functions
fi, f2 + {0,1}" — {0,1}", we define the shrinkinkOR compression function
glf1, f2], from 2n bits to n bits by g[f1, fo](z1 || 22) £ fi(z1) ® fa(x2), where
x1,z9 € {0,1}™. Given this function, we define théOR hash function G[f1, f2] to
be simply the cascade construction applied to the XOR cossje function. Namely,
giveninputz = x; || ... || x¢, wherez; € {0,1}", we let

Glfv, fal(@r || - | we) = glfy, fol (e || glfvs fo (- glfr, Fol (@2 [ 21) )

THE CONSTRUCTION The new mode of operatiol{[f1, f2, f3], uses three length-
preserving functiond, f2, f3 : {0,1}™ — {0,1}" and takes a variable-length input
x=ux1] ...| x¢ (wlog, we assume the length to be a multiplewff not, then a suit-
able encoding scheme can be used to achieve this, such awdappal followed by
0s). It simply applies the XOR hash functid#{f,, f>] described above to a suffix-free
encoding of the input, followed by the third length-presegfunction f3. The particu-
lar suffix-free encoding we useliderkle-Damgird (MD) strengtheningl1, 18], where
one simply appends the input lengtt} to the input. The resulting mode, depicted in
Figure 1, is calleénciphered CBC modand it is defined as:

H{fy, fa, fol @y || - [ we) = f3(GLf fal (o |- (e | (6)))
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Fig. 1. The basic three-key enciphered CBC construcfiiif, f2, f3].

3.1 VIL-MAC from length-preserving FIL-MAC

In this section we will prove, that unlike plain CBC, the gutotred CBC (cf. Figure 1)
does give a secure VIL-MAC when instantiated with a lengi@sprving MACs (here
denotedfy,, fr,, fr, t0 emphasize the secret kelys k2, k3). We will use an elegant
methodology of An and Bellare [1] which they used to analymsrtNI Construction
of a VIL-MAC from a shrinking FIL-MAC. However, we will see #t it will be useful
in our setting as well. In brief, the methodology introdueedotion ofweak collision-
resistancg WCR) and essentially reduced the construction of a VIL-MAGHat of a
FIL-WCR. Details follow.

WEAK COLLISION-RESISTANCE(WCR). Consider a keys family of functions =
{fr}, and the following attack game involving this function faniAn attackerA gets
oracle access tg, (for randomk) and returns a pair of messages # m’ in the
domain of F. The attackerd wins if these message collidgi(m) = fr(m’). The
function family F is said to be dt, ¢, i, €)-secure WCRunction family if the success
probability of any attacker with running time number of querieg and total message
lengthyu is at most.

FrRoM WCR 17O MAC. The methodology of An and Bellare [1] utilized the natiof
WCR via the following reasoning (which we immediately attérngpapply to the case
of enciphered CBC).

Step 1: The composition of a FIL-MACf;, and a WCR functiorhy is a secure
MAC fi(hi(-)) (Lemma 4.2 [1]). Applied to enciphered CBC, whefg is a FIL-
MAC, it means that it suffices to show that the XOR hash fumctit fy, , fx,], with
suffix-free inputs, is a VIL-WCR.

Step 2: The cascade construction, with suffix-free inputs, appleed FIL-WCR
function gives a VIL-WCR function (Lemma 4.3 [1]). In our cafee XOR hash func-
tion is exactly the required cascade construction apptig¢de XOR compression func-
tion g[fx, , fx,]- Thus, it suffices to show that the latter is FIL-WCR.

Step 3:Build a FIL-WCR. In the case of the NI Construction of [1], oneeded
to build a FIL-WCR from a shrinking MAC, which was easy to doyarinking FIL-
MAC is FIL-WCR (Lemma 4.4 [1]). Applied to our setting, it walikuffice to show
that the XOR compression functigiy, (z1) @ fx,(z2) is a FIL-MAC. However, this is
easily seen to be false: for example, the XOR of its outpuplieghto inputs(z; || z2),
(1 || 25), (2} || z2) and (2} || =5) is always0™, which easily leads to a forgery.



Despite this “setback”, we give a direct proof that the XORnhpoession function is a
FIL-WCR, despite not being a FIL-MAC. And this is all we need.

Lemmal. Let f : {0,1}* x {0,1}" — {0,1}"™ be a family of functions. Define the
function family g[fe,, fi,] (@1 || 22) = fa, (21) ® fr, (22). If the function family f is a
(t,q, qn, €)-secure MAC family, thew[fx,, fx,] is a(t', q, 2qn, € - ¢*/2)-secure WCR
family, wheret’ =t — O(¢n).

Proof: Let A be an adversary which finds a collision f@if%, , fx,] with probability

¢’ (if ki1, ko are uniformly random). From such ahwe will construct a new adversary
B which is basically as efficient ad, and which forgesf with probability at least
2¢'/q*. Instead only giving4 access tqy[f, , fx,], We allow A to makeq queries to
fr, and fr, respectively, but we require this queries are made altelyyate. after a
query tofy,, A must make a query té,, , (note that such ar can trivially simulate

q queries tqy| fx, , fx,])- Moreover we assume thataf, ||x2, 2 ||z} is A’s final output,
then A always made thef,, querieszy,z} and thefy, querieszs,z) (this can be
done wlog. if we allowA two extra queries t¢, and fi, respectively). Assumé is
successful, and finds a collisian ||z # ||z} for g[fx,, fx,]. We say that a query
x (say tofx,) is a winner query, if it is the first query where for some, d, the pair
x||b # c||d is a collision forg|f,, fx,] and A already knows (i.e. made the queries)
Jr (D), fre, (€), fr,(d). Note that ifA found a collision, then it must have made a winner
query. Our attackeB, which must forgef;, (for some random unknowh) is now
defined as follows. FirsB flips a random coin- € {1, 2}, and samples a random key
k' for f. Now B lets A attack fy, , fi,. wheref,, = fi. and fr = fi, .. During the
attack, for a random, 2 < i < ¢, B stops whemd makes the'th query z to f; and
“guesses” that this will be the winning query. Th8wrandomly chooses three already
made queries, ¢, d, conditioned orx||b # ¢||d (hoping thatz||b, ¢||d is a collision), and
guesses the forgemy := fi, . (b) & fi,.(c) ® fi,_.(d) for fi,. = fi for the message
x. Note thatp is a good forgery forf, = fi,, if z||b,c||d is indeed a collision for
9l Sk, , frs_,]- Thus B will be successful ifA makes a winning query (which happens
with probabilitye’), and moreoveB correctly guesses(i.e. whether the winning query
will be a f; or f; query), the index of the winning query and also the three other
queries involved. The probability of all that guesses baingect is at leaske’ /q*.
By assumption (on the security gfas a MAC) we havee’/q¢* < ¢, thus the success
probability of B must be at most - ¢*/2 as claimed. g

Combining this result with the Lemmas 4.2 and 4.3 from [1],imenediately get
Theorem 1. Let f : {0,1}* x {0,1}" — {0,1}" be a(t,q, gn,e)-secure length-
preserving FIL-MAC. ThetH [fx, , fx,, fxs](.) (Whereky, ko, ks is the secret key) is a
(t',q,qn, e - ¢*)-secure variable input-length MAC, whete= t — O(gn).

3.2 VIL-RO from length-preserving FIL-RO

In this section we show that the enciphered CBC mode proddksnain extension for
length-preserving ROs (in the sense of [10]).

Theorem 2. Consider three length-preserving R@s, fo, f3 : {0,1}" — {0,1}".
Then the enciphered CBC constructifiilfi, fo, f3] is (tp, ts, g, 1, €)-indifferentiable
from a VIL-RO. Hergs = O(¢?) , e = O((q + p)*/2") andtp is arbitrary.



One might hope that the proof of this theorem can be given mgubke corresponding
indifferentiability result of Coron et al [10] for the NMAComstruction. However, this
intuition turns out to be incorrect since in order to use #wutt of [10], we will need
to show that theXOR compression functigyifi, f2] is indifferentiable from a FIL-RO
from 2n bits ton bits. But this is clearly false, since for threebit input blocksz, v, v/,
we can see that[f1, f2](x || v) @ g[f1, f2](z || ¥') is independent of the-bit block
which is certainly not true for an ideal FIL-RO!

Hence we give a direct proof for this result. In the proof, veed to construct a
FIL-RO simulator that responds to the queries made by thiffénentiability attacker
Ato the FIL-ROsf1, f> andf3 in the VIL-RO model. Roughly speaking, the simulator
responds tof; and f, queries at random and hopes that no collisions occur for the
input to f3 in the last round of the enciphered CBC construction. If nchseollisions
occur, then it can adjust its responseftoqueries to match the VIL-RO output on the
corresponding variable-length input (which it finds by sbarg through its previous
responses).

Proof: We will prove the indifferentiability of the enciphered CBfiode of operation
H{f1, fo, f3] from a variable input-length random oracle (VIL-R®) : {0,1}* —
{0,1}", in the random oracle model for the underlying fixed inputgléh functions
f1, f2, f3 : {0,1}™ — {0,1}". The proof consists of two parts: the description of the
FIL-RO simulator and the proof of indifferentiability.

The Simulator. The simulatorS responds to queries of the for(w, =), wherei €
{1,2,3} andz € {0, 1}"™. In particular, the responsee {0, 1}"™ of the simulatorS to

a query(i, z) will be interpreted as the outpyfit(x) by the distinguisher, i.e; = f;(x).
The simulator also maintains a talfeconsisting of entries of the forrfi, x, y), for
each query(i, z) that it responded to with the outpuyt

f1 QUERIES In response to a query of the forf, x), the simulatorS looks up its
table for an entry of the fornil, z, y). If it finds such an entry, then it responds with
the outputy recorded in this tuple, otherwise it responds to this qugrghmosing an
outputy that is uniformly distributed ovef0, 1}" and records the tupl@, x,y) in its
table7.

f2 QUERIES The simulator responds to queries of the fafinz) in the same way as
it responds tgf; queries, i.e. first looking up its table for a matching tug@er, y), else
responding with a fresh uniformly distributed output

f3 QUERIES In response to queries of the fori®, =), the simulator needs to check if
there is a variable length inpX, such that it needs to be consistent with the VIL-RO
outputF'(X) on this input. It firsts looks up its tablg to find out if there is a matching
tuple (3, z,y) corresponding to a duplicate query, in which case it respamith y.
Otherwise, it looks up the tabiE for a sequence of tuplés, z1,41) ... (1,2}, y}) and
(2,22, 4%)...(2,22,y?), that satisfy the following conditions:

(a) Forj =2...4,itholds thatr} =y} , & y? .
(b) For the last tupleél, z},y!) and(2, 27, y?), it holds that the currenf; inputx =
1 2
Y; Dy;-
(c) The bit stringz] || % || ... || 27 is such thate? = (). That is, it should be the
output of Merkle-Dam@rd strengthening applied to a valid input.



If the simulator finds such a sequence of tuples, then it ga¢he VIL-ROF to find
out the outpuyy = F(z} || 2% || ... || #2_,) and responds to the quefy, =) with the
outputy, and records the tuplg, «, y) in its table7 . If it does not find such a sequence
of tuples then it responds with a uniformly random outpuge {0,1}™ and records
(3,z,y)inT.

The proof of indifferentiability is postponed to the fullngion of this paper [13[]

3.3 VIL-PRF from length-preserving FIL-PRF

If we remove thef; boxes in our enciphered CBC mode of operation (cf. Figure 1),
we get a well known mode of operation calledcrypted CBCwhich is known to be

a good domain extension for PRFs [19, 20]. The security ofygrted CBC (i.e. the
distinguishing advantage from a uniformly random functioiiRF) when instantiated
with two PRFs is(u?/2" + 2¢), wherey is the total length (im bit blocks) of the
messages queried ands a term that accounts for the insecurity of the underlyiRdrP
Itis not surprising that our enciphered CBC mode is almoskasre, as the application
of f5 (not present in the usual encrypted CBC mode) does not dfiecsecurity by
much.

Theorem 3. Let f : {0,1}" x {0,1}" — {0,1}" be a(t, i, un, €)-secure FIL-PRF
family. ThenH [f,, fr,, frs](.) is @ (t', q, un, 2u? /2™ + 3¢)-secure VIL-PRF family
wheret’ =t — O(gn).

We will not formally prove this theorem, but just explain havollows from the known
(t', q, un, u? /2" +2¢) security of the encrypted CBC-MAC (under the same assumptio
on the PRF like in the theorem). The main observation herhaswe can turn any
distinguisherD for enciphered CBC into a distinguishé&F for encrypted CBC, by
simply sampling some key, at random, and then enciphering wifl, (except the
first block) the queries made by, before forwarding them to the oracle b¥. If the
oracle of D’ is encryptedCBC, then the oracle’s answers loekactlyas if they were
computed by arencipheredCBC. In the ideal experiment, where the oraclel¥fis
a VIL-UREF, the oracle’s answers still look uniformly randpaven if the input is first
applied tof,, unlessD makes two queries containing blocks# =’ which collide
on f3,. The probability of that happening can be upper bounded®®" + ¢, as fx,
can be distinguished from a URF with advantage at mopahd the probability to find
a collision for a URF with rangg0, 1} making 1 queries is at most?/2". This
u?/2™ + € accounts for the gap in the security for enciphered CBC (#iseintheorem)
and encrypted CBC (as mentioned above).

IMPROVING THE BOUND FOR BLOCK CIPHERS As just explained, the gap in the
security of encrypted and enciphered CBC is bounded by thieafility that one can
find a collision for the PRFfy,. Thus, if f;, is a permutation (where there are no
collisions), (¢, q, un, 6)-security for encrypted CBC implies basically the sathe-
O(un), ¢, un, d) security for enciphered CBC. This observation is usefuipgsrac-

tice the PRF is usually instantiated by a block cipher, whicla permutation. And
further, for the encrypted CBC mode of operation, one cangmuch better bounds
than(u?/2" + 2¢) if both fi, and f, are assumed to be pseudorandom permutations
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(PRPs) [4, 20] as opposed to PRFs. Thus, this better boundadoypted CBC translate
directly to our mode of operation. To state the improved lfsyuione must assume an
upper bound on the length okachmessage queried by the distinguisher (this should
not be a problem in practice, as the bound can be exponemhtély be the number of
queries the adversary is allowed to make, then if no messag@sger thary < 27/4
(and thus the total length is at most/q), the security of encrypted CBC instantiated
with PRPs isg?¢®(1/1nIn8) /o (plus somee term accounting for the insecurity of the
PRP). With the stronger condition théat< 2"/, one gets an even strongefq?/2")
bound [20], which is tight up to a constant factor. Note thas$ is much better than
the O(¢¢?/2") bound implied by Theorem 3, and in particular is independéithe
message length

3.4 Collision Resistance of Enciphered CBC

Now we discuss the collision-resistance of the enciphe®2@ @ode of operation. Note
that the problem of constructing variable input-length Gi8Hrom length-preserving
collision-resistant (CR) functions does not make much egesisce it is trivial to con-
struct length-preserving CR functions (such as the idefuitction). However, as dis-
cussed in the introduction, we can make the following simgliservation about the
enciphered CBC mode of operation.

Lemma 2. Consider three length-preserving functiofis f> and f3 on n bits. If the
XOR compression functiog[fi, f2] and the functionfs are collision-resistant, then
the enciphered CBC mode of operatidfif1, f2, f3], is collision-resistant as well.

This observation is a simple consequence of the result okltddamgard [11, 18],
since we already use a suffix-free encoding the the encigh@B& mode. Notice that
assuming that a length-preserving functifnis a CRHF is a very mild requirement,
since any permutation trivially satisfies this propertyu$hwe the main assumption we
need is that the XOR of functiong and f5 is a CRHF. Of course, in the random oracle
model, it is well known the the XOR of two random oracles islis@n-resistant (in
fact, in this setting we showed in Section 3.2 that the eraripth CBC mode even gives
a VIL-RO, let alone a “mere” VIL-CRHF).

Our pointis that it is not essential to make idealized asgiamp on the functiong;
and f> to prove collision resistance of the constructigfi,, f2]. For instance, consider
any finite fieldF for which thediscrete logarithnproblem is hard, and whose elements
can be naturally encoded as binary strings. Define the fumglf;, f> : {0,1}" —
{0,1}™ asfi(z) = gent and fa(x) = gen3, wheregen, andgens, are two generators
of F. Further, let us replace the XOR operatiowjif;, f2] by a field-multiplication over
F. Then we get a new function(z || y) = gen? - geny which is provably collision-
resistant under the discrete log assumption. Coupled W&#HRO justification, this ex-
ample suggests that our assumptiorydfi, f2] is not too unreasonable.

We stress, though, that the XOR compression function is itlefimot collision-
resistant whery; and f> are (public) randonpermutationsas any two pairgz,y),
(', f5 1 (fi(z) @ foly) @ f1(2)))) give a collision. Indeed, as we explain next, our
mode has to be slightly modified to handle the case of randemygations.
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Fig. 2. The “enhanced” three-key enciphered CBC constructitiir,, 72, 3] which is a domain
extender for random oracles, even if instantiated with randermutations

4 A Block Cipher based Mode of Operation

So far we described the enciphered CBC mode for three lemg#rving functions.
But, as already mentioned at the end of Section 3.4 and imBt®#, we need to mod-
ify our basic mode in order for it to work with permutations ‘inkeyed” settings,
such as indifferentiability from RO and collision-resista. In the “keyed” settings,
i.e. for MACs and PREFs, replacing the functions with perrtiates does not make a
qualitative difference (up to a birthday bound), since a PR&so a PRF. Thus, the
enciphered CBC construction works for domain extension &g and PRFs even
if one uses a block cipher to implement the these primititéesvever, even in these
cases the construction may have slightly different (up tartadiay bound) exact se-
curity. For instance, as discussed for the case of PRFs itio8e23, the enciphered
CBC construction has actualbetterexact security if permutations are used instead of
functions.

“ENHANCED” ENCIPHERED CBC. We now described the (enhanced) enciphered
CBC mode of operation based on three permutations, andxs. While this more
complicated mode is only needed for the “unkeyed” settiff3 &nd CRHF), we will
see that it still works for the “keyed” settings (PRF and MA@&Ithough under slightly
stronger assumptions than before. The mode is depictedgiwrd-i2 and is denoted
H*[m, 72, m3). We observe that this enhanced modensciselythe basic enciphered
CBC constructiond [f1, f2, f3] with length-preserving functionf, f» and f5 defined

as follows: fi(z) = m;(z) @ = fori = 1,2, and f3(x) = m3(x) © 75 *(2). The reason
for this choice will become clear in the sequel, when we disauhy this “enhanced”
mode works for building VIL-RO and VIL-CRHF.

4.1 Collision Resistance from Random Permutations

Using Lemma 2, in order to argue the collision-resistandd®enhanced mode, it suf-
fices to argue the collision resistance of the XOR compredsiaction f(z) © fa(y) =

12



(%) @ x @ T (y) ® vy, and the functiorys(z) = m3(z) ® 73 *(x), even if the attacker
can invertr,, o andrs. In the standard model, we will have to simply make these (un-
usual but not unreasonable) assumptions for whatevergpbtmutations we end up
using. However, we must first justify that these assumpttdaast hold in the random
permutation model. We start with the XOR compression fuomcti

Lemma 3. For two independent permutations, 72, the XOR compression function
glf1, f2] (with f; and f, as defined above) i&, €)-collision-resistant in the random
permutation model forr; andm,. Heree = ¢*/2" if the attacker makes at mogt<
min(¢, 2" 1) random permutation queries.

Proof: Let A be any collision-finding attacker who outputs a collisien || z2), («} |
x%). When the attacker makes its forward querto m; (herei = 1,2) or a backward
queryy to m; *, we will record a tuple(i, z, pi;(x)) or (i,pi; *(y),y) to a special ta-
ble T'. Wlog, we assume that does not make redundant queries and that, at the the
end of the gameT contains all the “collision-relevant” valugd, z1,y1 = m1(x1),
(L2, y; = m(2}), (2,22, y2 = ma(x2), (2,24, y4 = m1(x%). This means that instead
of having A output a collision, we can declarkvictorious if T' containst (not neces-
sarily distinct) tuples, as above, such thatb y; © 2 B ya = 2] By} & xh B yb. To
complete the proof, we will argue, by induction 6r< 5 < ¢, that afterA makes his
first j queries, the probability th&t will contain the required-tuple is at mosjj* /2.

Consider query numbet + 1. Wlog, assume it is ter; or 7r; *. Then, eitherT
already contained the collidingrtuple before this query was made (which, by induc-
tion, happens with probability at mogt/2"), or the answer to the current queiry- 1,
together with3 prior queries, resulted in the colliding equation. Let usdiny one of
these at most? choices of3 prior queries. Once this choice is fixed, it defines a unique
answer to query + 1 which will result in collision. Indeed, if the query+ 1 is to
m1(x1), and the3 prior table values arél, =}, y1), (2, 22, y2), (2, 25, y5), then the only
answery; which will resultin collision is equal tg, = z1 &) &y} Dr2 By BrhSYs.
Similarly, if the query was tOrfl(yl), then the only answer; resulting in a collision
isz1 =y D) DY Dy B ah P yh. However, since the total number of queries
j < 2n~1 for each fresh query there are at le2ist- j > 27! equally likely answers.
Thus, the chance that a random such answer will “connecti wigiven subset of
prior queries is at mosit/2" 1.

Overall, the get that the probability that there will be alisan in T" after j + 1
queries is at most* /2" + j3 /271 < (j + 1)*/2", completing the proof. g

Next, we need to prove the collision resistance of the canstm f3(x) = 73(z) &
73 () in the random permutation model. However, this will triyalollow from a
much stronger result we prove in the upcoming Lemma 4, whighbs needed to
prove the indifferentiability of our mode from a VIL-RO.

4.2 Building VIL-RO from Random Permutations

In this section we argue that the enhanced enciphered CB@ wgigds a VIL-RO in
therandom permutatiomodel forr, 7o, 3. The actual proof (and the exact security)
of this result is quite similar to the proof of Theorem 2. Téfere, instead of repeat-
ing the (long) proof of this result, we will only (semi-infoially) highlight the key
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new ingredients of the proof which we must address in theaamgermutation model.
Concentrating on these ingredients will also help us torfgestify” why we defined
the functionsfy, fo, f3 in the way we did.

RANDOM ORACLE FROMRANDOM PERMUTATION. The most modular way to extend
Theorem 2 to the random permutation model would be to showtbamplement (in
the indifferentiability framework) a length-preservingdRrom an RP, and then use
the general composition theorem in the indifferentiapifiemework (see [10]). And,
indeed, it turns out that this is precisely what we did for thection f; (but not f;
and f,; stay tuned) by defining it as; ® 7r3‘1. Intuitively, f3 must really look like a
full-fledged FIL-RO in the proof of Theorem 2. The securitytbis construction for
f3 is of independent interest, since it builds a FIL-RO from & Bnd follows from
the following Lemma (which also implies thg} is collision-resistant in the random
permutation model):

def

Lemma4. Letr : {0,1}" — {0, 1}" be a permutation. Then the constructigjr]
@ n tis(tp,ts,q, u, O(¢?/2™))-indifferentiable from a length-preserving FIL-RO
onn bits in therandom permutation modé&r = (heret, is arbitrary ands = O(gn)).

Proof: We will show that the constructioff[x] is indifferentiable from a FIL-RO
F :{0,1}"™ — {0,1}™ in the random permutation model for: {0,1}" — {0,1}".
The proof consists of two parts: a description of the RP sitaulS and the proof of
indifferentiability.

The Simulator. The simulatorS responds to queries of the forfh =), fori = —1,+1
andz € {0,1}". The distinguisher interprets the response of the simutata query
(+1,2) (resp.(—1,z)) as the (resp. inverse) permutation outpit) (resp.m—*(x)).
The simulator maintains a tabfE of permutation input-output pairs, y) such that,
either it responded witly to a query(+1, z) or with = to a query(—1,y). On a query
(+1,z) (resp.(—1,y)), S first searches its tabl& for a pair(x,y’) (resp.(z’,y)) and
if it finds such a pair then it responds with (resp.y).

On anew query+1, x), the simulator searches its table for a pair of the ferm)
(i.e.x was an earlier RP output). If it finds such a pair, then it qeeethe FIL-ROF' to
find the outputF'(x). It then responds with the outpyt= =’ ¢ F(x), and records the
pair (z,y) in its table7 .

On anew query—1, y), the simulator searches its table for a pair of the fgmy’)
(i.e.y was an earlier RP input). If it finds such a pair, then it quetie FIL-ROF to
find the outputF'(y). It then responds with the = 3’ ¢ F(z) to the query, and records
the pair(z,y) in its table7 .

The proof of indifferentiability is postponed to the fullngion of this paper [13[]

Of course, we could have the above Lemma to definand f> as well, but this
would double the efficiency rate of our enhanced mode f2dod. Instead, we observe
that in the proof of Theorem 2, we “only” need the functigfisand f to be such that
the XOR compression functiay{f;, f2] is what we callextractable®

8 Technically, we need the whole XOR hash functi@ffi, f2] to be extractable, but it is easy

to see that this is implied by the extractability of the compression fungtign f2]. In this
case, if the XOR Hash function is extractable and the attacker makesae ca#l f5(y), the
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EXTRACTABILITY. Informally, a hash functioy/ built from some oraclef is e-
extractable (where could depend on some other parameters), if there exists»and e
tractor Ext such that no attacket can “fool” Ext with probability more thar in the
following game.A is given oracle access fpand outputs a valug. Ext takesy and
the oracle queries that made tof so far, and attempts to outputs a preimagef y
underg’. ThenA is allowed to run some more (making more callgjand outputs its
own preimage:’ of y. ThenA “fools” Ext if g/ (2') = y butx # 2’

Coming back to our situation, whefe= (f1, fo) andg’ = g[f1, f2](z1 || z2) =
fi(z1) @ f2(x2), we only need to argue the extractability of this constarcin the
random permutation model, when we defifiér) = m;(x) & x. The extractor for this
construction is defined naturally: given search the list ofd’s queries for a pair of
inputs/outputsz1, y1), (z2,y2) to 7 andms, respectively, such that = =1 @ y1 @
xo @ yo. If exactly one such pair is found, output= z; || z2, else fail. The security
of this extractor is given below.

Lemma 5. For two independent permutations, 72, the XOR compression function
glf1, f2] (with f; and f» as defined above) is extractable in the random permutation
model formy andms. In particular, if the attacker makes at mggtermutation queries,

it can fool the above extractor with probability at mtg? /2").

We remark that extractability can be viewed as a slight gtifeming of collision-
resistance: indeed, finding a collision allows one to ttiyiool any extractor with
probability at least /2. Not surprisingly, the proof of this Lemma is only margiall
harder than the proof of Lemma 3. Omitting details, we useptioef of Lemma 3 to
argue that the extractor will never find more than one preavafg throughA’s oracle
queries. And if at most one such preimage is found, a similguraent can show that
the chance of the attacker to find a different preimagef y is at mosig?/2".

This completes our high-level argument why the enhancegpkerd CBC mode
yields a VIL-RO (and also explains our definition ff, f2, f3 in terms ofry, mo, 73).

4.3 Reuvisiting Security for PRFs and MACs

Although the basic enciphered CBC mode already works forcdse of PRFs and
MACs, even when permutations are used, we argue that theneathanode continues
to work for these settings as well. First, note that ifs a PRF (resp. MAC), then the
constructionw(z) @ z| is also a PRF (resp. MAC) with the same exact security. Thus,
we do not need to make any stronger assumptions;oand m, than what we made
on f; and f,. However, in order to prove that = 73 @ 75 ' is a PRF (resp. MAC),
we will need to make slightly stronger assumptionmnthan being the “usual” PRF
(resp. MAC). In some sense, this is expected since an invgrsgy tors is used in
the construction itself. Luckily, the extra assumptionsieed are quite standard and
widely believed to hold for current block ciphers. Specificdor the case of PRFs we
require thatrs is a(strong) pseudorandom permutation (SPRiR)., it remains a PRP
even if the attacker can make both the forward and the inwgusées. Similarly, for
the case of MACs, we need to assume thats a(strong) unpredictable permutation

Simulator can extract the preimage= (z1 ...z.) of y and “define” f3(y) = F(y), where
Fis the VIL-RO.
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(sUP) i.e., a permutation for which no attacker can produce a-{nigial) forgery
even if given oracle access to both the forward and the isvgueries. The proof of
this simple lemma will be given in the full version.

Lemma 6. Let IT = {m;}, be a family of permutations, and define the family=
{ fi }» of length-preserving functions b, (z) = 74 (z) ® 7, *(x). ThenF is a

— (t,q, 1, e + O(q*/2"™))-secure PRF if1 is a(t + O(qn), 2q, 24, €)-secure sPRP.
— (t,q, 11, O(e - ¢*))-secure MAC ifIl is a(t + O(qn), 2q, 2u, €)-secure sUP.

We remark that for the case of MACs, the exact security-gf might sound alarming,
especially when combining this with the statement of Theofe where there is an
additional loss of the* factor. However, a closer look at the proof of Theorem 1 risvea
that the exact security of the enciphered CBC is actually @tey + (e1 + €2) - ¢*,
wheree; is the security off;. Coupled with the above Lemma, we get security® +

(€1 + €2) - ¢* (wheree is the security of SUR3, ande,, e, are the securities of MACs
T and7r2).

5 Two-key enciphered CBC construction

In this section we show that it is possible to instantiate (thessic) enciphered CBC
mode using only two independent length-preserving funstio

A first natural idea is to define the functigi in the three-key version using the
function f;. For example, we can makig = f>. However, in this case it is easy to see
that the resulting mode is insecure for all the securityangticonsidered in this paper.
This is because the resulting XOR compression fundsigh, f1] becomes a constant
function0™ on any “symmetric” inpufz || ). Luckily, we show that this problem can
be resolved by instantiating with a different multiple off;!

THE CONSTRUCTION Consider a functiorf : {0,1}" — {0,1}". We can view the
inputs/outputs off as elements of the fiel@F(2"), and the bit-by-bit XOR operation
becomes addition over the fie@F (2™). Let « be any element of this field other than
or 1. Then we define the function and f> in the enciphered CBC mode of operation
H([f1, fa, f3] as follows: fo(-) = f(-) andfi(-) = o - f(-). We still use a different FIL
function ' as the third functiorys in the constructior [f1, fa, f5].

This defines the new XOR compression functignf] asga[f](z1 || z2) £ f(x1)®
(o« f(z2)). Intuitively, the key point we will repeatedly use in our &rses is that the
function g, [f] is still WCR (or even extractable in the RO model) wherZ {0,1}.
We also denote the corresponding XOR hash functio@ gg], and our new mode of
operation using two functiong and /" asH,[f, f'], where:

Holf [l || ) & f (Galfl@y || - (e || ()

The construction is illustrated in Figure 3. We will now aywd its security for
various security notions.

5.1 Two-key enciphered CBC is MAC preserving

In the full version of the paper we prove the following lemma.
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Fig. 3. The two-key enciphered CBC constructiéh,[f, f'].

Lemma 7. If the function family f is (¢, 2q, 2¢qn, €)-secure MAC family, thew,,[f] is
a(t',q,2qn,e- 32 - q*)-secure WCR family, wher& =t — O(qn).

As explained in Section 3.1, we can now use Lemma 7 along véthrhas 4.2 and 4.3
from [1] to get the following Theorem.

Theorem 4. Let f : {0,1}" x {0,1}" — {0,1}" be a(t,2u,2un, c)-secure length-
preserving FIL-MAC. The#l,,[fx, fx](.) (Wherek, k' is the secret key) is@’, ¢, un, e
33 - u*)-secure variable input-length MAC, whette= ¢t — O(un) andgq is arbitrary.

5.2 VIL-RO using the two-key construction

We now show that given two independent FIL-RQY’ : {0,1}" — {0,1}", the two-
key enciphered CBC constructidt, [f, /'] is indifferentiable from a VIL-ROF'. The
proof of indifferentiability for this construction is sifair to the corresponding proof for
the three FIL-RO enciphered CBC construction. The onlyedéfce is in the way the
simulator searches for a variable length input where it tigted to be consistent with
the VIL-RO, when responding to A query. We give a proof of this lemma in the full
version of this paper [13].

Theorem 5. Consider two length-preserving functiofisf’ : {0,1}" — {0,1}"™. Then
the new enciphered CBC constructi®O2[f, f'] is (tp,ts, g, 1, €)-indifferentiable
from a random oracle in the FIL-RO model fgrand f’. Herets = O(¢?), € =
O((q + p)*/2™) and the result holds for any.

5.3 VIL-PRF using the two-key construction

Recall that to prove that the three-key enciphered GB@,, f2, f3] is a good domain
extender of PRFs, we reduced its security to the securithofypted CBC, by simply
simulating the invocations of; (which are present in the enciphered, but not in the
encrypted CBC mode). This does not work fé%[ f, f’], as we can’t simulatg because
we do not know its key (in the three key cageand f; used independent keys, so this
was possible). So one has to do a direct proof. In the fullieersf this paper we prove
the following Theorem (we give a high level sketch of the fiadSection 6.3).
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Theorem 6. Let f : {0,1}* x {0,1}" — {0,1}"™ be a(t, 2u, 2un, €)-secure FIL-PRF
family. ThenH,, [f, fr/](.) (Wherek, k' is the secret key) is &', ¢, un, 42 /2™ + 2¢)-
secure VIL-PRF family wheré =t — O(un).

5.4 CRHF using the two-key construction

In order to prove the collision-resistance of the two-fimetonstructiord,, [f, f'], we
essentially need to show that the XOR compression fungtifi is collision-resistant,
since it is trivial to find a length-preserving collisionsistant functionf’ and we use
MD strengthening in this construction (similar to Lemma R)we make a suitably
strong assumption (for instancgjs a FIL-RO), then we can show that[f] is a FIL-
RO. We give a proof of this lemma in the full version of this pap

Lemma8. Let f : {0,1}™ — {0,1}" be a length preserving function. The XOR
compression functiog,,[f] is (¢, €)-secure collision resistant function in the FIL-RO
model for f. Heree = O(q*/2"), whereq is the number of FIL-RO queries made by
the attacker tg'.

6 Single-key enciphered CBC Construction

Finally, we show how to further optimize our mode to use orgingle length-preserving
function f. The first natural idea is to start with the two-key mode frdma previous
section, and then simply make the second funcfioa: f. Itis easy to see that this does
not affect the collision-resistance much (since the “oftection” f’ did not do any-
thing there anyway). Unfortunately, this change makes camlerinsecure. In essence,
the reason is due to the fact that our (suffix-free) encodsngoit prefix-free, and so
called “extension attacks” become possible. (This is cuitalogous to the usual CBC-
MAC [3] and cascade constructions [5] which are only secargfefix-free inputs.)

CONSTRUCTION FORPRFs AND MACSs. Luckily, it turns out that if instead of ap-
pending the input length, we prepend it (to ggrrefix-free encodingthen the resulting
construction can be proven secure (with= f) for the “keyed” setting of MACs and
PRFs. The resulting construction, depicted in Figure 4 avbtedH , [f], is formally
defined below:

Ho[f)(zy || | @) E f(Gal 10O @y |- || z¢)

CONSTRUCTION FORVIL-RO. Unfortunately, the above construction is still motough
for the question of building a VIL-RO from a single FIL-RO. fiandle this case as well,
we need to modify the two-key construction as follows:

1. Instead of setting” = f, we use the Davies-Mayers-type constructjt) =
f(z) ® .

2. We still keep the suffix-free encoding (by appending theber of blocks to the
input), but now also ensure the prefix-free encoding by preipg the number of
blocks to the input.
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Fig. 5. The “enhanced” single-key enciphered CBC constructirf]’ for constructing RO.

We call this final constructio,,[f] (see Figure 5), and formally define it on input
X =u|...]| «¢ as follows:

Ha[f)'(X) = F(Gal 100 | X 11 (6) @ Gal A1) | X | (6))

We remark that although this final constructiéh,[f]’ is defined for building VIL-
RO (for which the simpler constructioH,, [f] is not enough), it is easy to extend the
MAC/PRF security ofH,[f] to show thatH,[f]" also works for the case of MACs
and PRFs. For the sake of elegance, though, we only analgzértipler variant{,, [ f]
when studying the domain extension of PRFs and MACs.

6.1 Single-key VIL-MAC construction

To prove that the one-key enciphered CBL,[f] is a good domain extension for
MACs, we cannot apply the methodology of An and Bellare (gdared in Section
3.1) that we used for the three and the two key constructienalRthat in this method-
ology, one first proves that the construction (ignoring t invocation off) is weakly
collision resistant, and then the final applicationfofwith an independent key) gives
us the MAC property. I, [f] there is no final invocation of with an independent
key. Instead, in the full version of the paper, we give a direduction to prove the
following Theorem.
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Theorem 7. If the function familyf is a(t, 3u, 3un, €)-secure MAC family, theH, [ fx],
wherek is the secret key, is @', ¢, un, € - 49 - u*)-secure MAC wheré =t — O(un)
andgq is arbitrary.

6.2 Single-key VIL-RO construction

As discussed above, the single-function RO constructignf]’ is slightly different
from the MAC and PRF case. We show that this constructiondiferentiable from a
VIL-RO. The formal proof of this theorem is more involved thidne two/three FIL-RO
case. In particular, the proof of indifferentiability cralty uses the “extractability” of
the Davies-Meyer construction in the end of the “enhancedighered CBC construc-
tion. We defer the formal proof to the full version of this papl3].

Theorem 8. Consider a length-preserving functigh: {0,1}™ — {0,1}". Then the
single-function RO constructioH,, [f]" is (tp, ts, g, , i1, €)-indifferentiable from a ran-
dom oracle in the FIL-RO model fgt. Herets = O(¢?), e = O((¢+ p)*/2") and the
result holds for any p.

6.3 Single-key VIL-PRF construction

We prove that our single-key enciphered CBC constructirif] is a secure domain
extension for PRFs by adapting the proof for “plain” prefigd CBC of Maurer (The-
orem 6 in [15]). The situation here is somewhat more comfdit¢han in the three and
two key cases considered so far. There, security can bemprsieg the following high
level idea: first one proves that the construction (ignothmg final invocation off) is
(computationally) almost universal (see [2]); i.e. any fin@d messages are unlikely
to collide. And this is enough to prove security because ofia finvocation of an in-
dependent PRF. Fdi,[f], this proof idea does not directly work, as there is no final
invocation with anf using an independent key. Fortunately, one can use a pdwerfu
theorem (Theorem 2 from [15]) to still argue security in oetting as well. Details are
deferred to the full version [13].

Theorem 9. Let f : {0,1}* x {0,1}" — {0,1}"™ be a(t, 3u, 3un, €)-secure FIL-PRF
family. ThenH,,[fx](.) (wherek is the secret key) is &', q, un, 9u? /2" + 2¢)-secure
VIL-PRF family where’ = ¢t — O(un).

AcknowledgmentsWe would like the thank Dan Boneh, Marc Fischlin and Phillip
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