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Abstrat. We develop a new generi long-message seond preimage at-
tak, based on ombining the tehniques in the seond preimage attaks
of Dean [8℄ and Kelsey and Shneier [16℄ with the herding attak of Kelsey
and Kohno [15℄. We show that these generi attaks apply to hash fun-
tions using the Merkle-Damgård onstrution with only slightly more
work than the previously known attak, but allow enormously more on-
trol of the ontents of the seond preimage found. Additionally, we show
that our new attak applies to several hash funtion onstrutions whih
are not vulnerable to the previously known attak, inluding the dithered
hash proposal of Rivest [25℄, Shoup's UOWHF[26℄ and the ROX hash
onstrution [2℄. We analyze the properties of the dithering sequene used
in [25℄, and develop a time-memory tradeo� whih allows us to apply our
seond preimage attak to a wide range of dithering sequenes, inluding
sequenes whih are muh stronger than those in Rivest's proposals. Fi-
nally, we show that both the existing seond preimage attaks [8, 16℄ and
our new attak an be applied even more e�iently to multiple target
messages; in general, given a set of many target messages with a total
of 2R message bloks, these seond preimage attaks an �nd a seond
preimage for one of those target messages with no more work than would
be neessary to �nd a seond preimage for a single target message of 2R

message bloks.
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1 Introdution

A number of reent attaks on hash funtions have highlighted weaknesses of

both spei� hash funtions, and the general Merkle-Damgård onstrution.

Wang et al. [28�31℄, Biham et al. [3℄, Klima [19℄ and Joux et al. [14℄ all show that

di�erential attaks an be used to e�iently �nd ollisions in spei� hash fun-

tions based on the MD4 design, suh as MD5, RIPEMD, SHA-0 and SHA-1. This



type of result is important for at least two reasons. First, ollision resistane is a

required property for a hash funtion, and many appliations of hash funtions

fail when ollisions an be found. Seond, e�iently found ollisions permit ad-

ditional attaks on hash funtions using the Merkle-Damgård onstrution, as in

Joux's [13℄ multiollision attak on asade hashes, and the long-message seond

preimage attaks of Dean [8℄ and Kelsey and Shneier [16℄.

After Kelsey and Shneier published their attak, several researhers pro-

posed a variant of the Merkle-Damgård onstrution, in whih a third input to

the ompression funtion, alled a �dithering sequene� in [25℄ and this paper,

is used to blok the attak. Spei�ally, using a dithering sequene prevents the

onstrution of �expandable messages,� required for both Dean and Kelsey and

Shneier's attaks. In this paper, we develop a new kind of seond preimage

attak, whih applies to some dithered variants of the Merkle-Damgård on-

strution.

1.1 Related Work

The PhD thesis of Dean [8℄ presented a seond preimage attak that works

against a subset of hash funtions using the Merkle-Damgård onstrution.

Kelsey and Shneier [16℄ extended this result to work for all Merkle-Damgård

hashes. For an n-bit hash funtion, their result allows an attaker to �nd a se-

ond preimage of a 2k blok1 target message with k · 2n = 2+1 + 2n−k evaluations

of the ompression funtion. The attak relies on the ability to onstrut an

expandable message, a set of inomplete messages of widely varying length, all

of whih yield the same intermediate hash result. This attak an be seen as a

variant of the long message attak [20℄, in whih the expandable message is used

to arry out the attak despite the Merkle-Damgård strengthening.

Variants of the Merkle-Damgård onstrution that attempt to prelude the

aforementioned seond preimage attaks are the Haifa 2 [23℄ onstrution pro-

posed by Biham and Dunkelman and the �dithered� Merkle-Damgård hash by

Rivest [25℄. Haifa inludes the number of message bits hashed so far in the

message blok. The simplest way to implement Haifa is to shorten eah data

blok by 64 bits, �lling those 64 bits with the 64 bit ounter used internally to

trak the length of the hash input so far. Rivest, on the other hand, introdued a

lever way to derease the number of bits used for this extra input to either 2 or

16, thus inreasing the bandwidth available for atual data, by using a spei�

sequene of values to �dither� the atual inputs. The properties of this sequene

were laimed by Rivest to be su�ient to avoid the seond preimage attak on

the hash funtion.

The herding attak of Kelsey and Kohno [15℄ an be seen as another variant

of the long-message attak. In their attak, the attaker �rst does a large preom-

putation, and then ommits to a hash value h. Later, upon being hallenged with

1 In this paper, we desribe message lengths in terms of message bloks, rather than
bits. Most ommon hash funtions use bloks of length 512 or 1024 bits.

2 We do not have any attaks more e�ient than exhaustive searh on Haifa.



a pre�x P , the attaker onstruts a su�x S suh that hash(P ||S) = h. Their
paper introdued the �diamond struture�, whih is reminisent of a omplete

binary tree. It is a 2`-multiollision in whih eah message in the multiollision

has a di�erent initial haining value, and whih is onstruted in the preompu-

tation step of the attak. The herding attak on an n-bit hash funtion requires

approximately 22n = 3+1 work.

1.2 Our Results

In this paper, we develop a new generi seond preimage attak on Merkle-

Damgård hash funtions and dithered Merkle-Damgård variants, treating the

ompression funtions as blak boxes. Our basi tehnique relies on the diamond

from the herding attak of [15℄. If the diamond is a 2`-multiollision, we obtain a

seond preimage of a message of length 2k bloks with 2n = 2+` = 2+2 +2n−`+2n−k

ompression funtion omputations. The attak is optimized when ℓ ≈ n/3,
yielding an attak of omplexity 5 · 22n = 3+ 2n−k .

Our attak is slightly more expensive than the k · 2n = 2+1 + 2n−k omplexity

from [16℄ (for SHA-1, in whih n = 160 and k = 55, the Kelsey-Shneier attak
omplexity is about 2105 work whereas ours is approximately 2109). However, the
new attak an be applied to Merkle-Damgård variants for whih the attak of

[16℄ is impossible. Our result also permits the attaker to leave most of the target

message intat in the seond preimage, or to arbitrarily hoose the ontents

of roughly the �rst half of the seond preimage, while leaving the remainder

idential to the target message.

We an also apply our new seond preimage attak to the dithered Merkle-

Damgård hash variant of [25℄, exploiting the fat that the dithering sequenes

have many repetitions of some subsequenes. For Rivest's proposed 16-bit dither-

ing sequene, the attak requires 2n = 2+` = 2+2 + (8ℓ+ 32768) · 2n−k + 2n−` work,

whih for SHA-1 is approximately 2120 . This is slightly worse than the attaks

against the basi Merkle-Damgård onstrution but it is still muh smaller than

the 2160 seurity whih was expeted for the dithered onstrution. We show

that the seurity of a dithered Merkle-Damgård hash is dependent on the num-

ber of distint ℓ-letter subwords in the dithering sequene, and that the sequene

hosen by Rivest is very suseptible to our attak.

We also show that the attak on dithered hashes is subjet to a time-memory

tradeo� that enables the onstrution of seond preimages for any dithering input

de�ned over a small alphabet with only a small amount of online omputation

after an expensive preomputation stage.

We further apply our attak to a one way hash funtion designed by Shoup [26℄,

whih has some similarities with dithered hashing. The attak applies as well to

onstrutions that derive from this design, suh as ROX [2℄. Our tehnique yields

the �rst published attak against these partiular hash funtions. This addition-

ally proves that Shoup's seurity bound is tight, sine there is asymptotially

only a fator of O (k) between his bound and our attak's omplexity.

Finally, we show that both the original seond-preimage attak of [8, 16℄

and our attak an be extended to the ase in whih there are multiple target



messages. In general, �nding a seond preimage for any one of 2t target messages

of length 2k bloks eah requires approximately the same work as �nding a single

seond preimage for a message of 2k+t bloks.

1.3 Organization of the Paper

We desribe our attak against the Merkle-Damgård onstrution in setion 2.

We introdue some terminology and desribe the dithered Merkle-Damgård on-

strution in setion 3, and then we extend our attak to takle dithered Merkle-

Damgård in setion 4. We apply it to Rivest's onrete proposal, as well as to

some of the variations that he suggested. In setion 5, we show that our attak

works also against Shoup's UOWHF onstrution. We onlude with setion 6,

where we show how the seond preimage attak may be applied to �nding a

seond preimage for one of a large set of target messages.

2 A New Generi Seond Preimage Attak

2.1 The Merkle-Damgård onstrution

We �rst desribe brie�y the lassial Merkle-Damgård onstrution. An iterated

hash funtion H F :f0; 1g� ! f0; 1g n is built by iterating a basi ompression

funtion F :f0; 1gm � f0; 1gn ! f0; 1g n . The hash proess works as follows:

� Pad and split a message M into r bloks x 1; : : : ; xr
of m bits eah.

� Set h0 to the initialization value I V .

� For eah message blok i ompute h
i
= F (h

i−1; xi).
� Output H F (M ) = h

r
.

The padding is usually done by appending a single '1' bit followed by as

many '0' bits as needed to omplete an m-bit blok. Merkle [21℄ and Damgård

[7℄ independently proved in 1989 that making the binary enoding of the message

length part of the padding improves the seurity of the onstrution: with this so-

alled strengthening, the sheme is proven to be Collision-Resistane Preserving,

in the sense that a ollision in the hash funtion H F would imply a ollision in

the ompression funtion F . As a side e�et, the strengthening de�nes a limit

over the maximal size of the messages that an be proessed. In most deployed

hash funtions, this limit is 264 bits, or equivalently 255 512-bit bloks. In the

sequel, we denote the maximal number of admissible bloks by 2k .

2.2 Seond Preimage Attak on Merkle-Damgård hash

We now desribe a new tehnique to �nd seond preimages on a Merkle-Damgård

hash. It relies heavily on the �diamond struture� introdued by Kelsey and

Kohno [15℄.

A diamond of size ℓ is a multiollision that has the shape of a omplete

onverging binary tree of depth ℓ, with 2` leaves (hene we often refer to it



as a ollision tree). Its nodes are labelled by haining values over n bits, and

its edges are labelled by message bloks over m bits, whih map between the

haining values at the two ends of the edge by the ompression funtion. Thus,

from any one of the 2` leaves, there is a path labelled by ℓ message bloks that

leads to the same target value h
T
labelling the root of the tree.

Let M be a target message of length 2k bloks. The main idea of our attak

is that onneting a message to a ollision tree an be done in less than 2n

work. Moreover, onneting the root of the tree to one of the 2k haining values

enountered during the omputation of H F (M ) takes only 2n−k ompression

funtion alls. The attak works in 4 steps as desribed in �gure 1.

1. Preproessing step: ompute a ollision tree of depth ℓ with an arbitrary target
value hT . Note that this has to be done only one, and an be reused when om-
puting seond preimages of multiple messages.

2. Connet the target hT to some haining value in the message M . This an be
done by generating random message bloks B, until F( hT , B) = hi0 for some i0 ,
ℓ + 1 ≤ i0 <

∣

∣M
∣

∣. Let B0 be a message blok satisfying this ondition.
3. Generate an arbitrary pre�x P of size i0 − ℓ − 1 bloks whose hash is one of the

haining values labelling a leaf. Let h = HF
( P) be this value, and let T be the

hain of ℓ bloks traversing the tree from h to hT .
4. Form a message M ′

= P ||T ||B0 ||xi0+1
. . . x

2k
.

Fig. 1: Summary of the attak on lassi Merkle-Damgård.

Messages M 0 and M are of equal length and hash to the same value, before

strengthening, so they produe the same hash value despite the Merkle-Damgård

strengthening.

A ollision tree of depth ℓ an be onstruted with time and spae omplexity

2
n

2
+

ℓ

2
+2 (see [15℄ for details). The seond step of the attak an be arried out

with 2n−k work, and the third one with 2n−` work. The total time omplexity

of the attak is then: 2
n

2
+

ℓ

2
+2 + 2n−k + 2n−`. This quantity beomes minimal

when ℓ = (n � 2)/3, and in this setting, the total ost of our attak is about

5 · 22n = 3+ 2n−k .

2.3 Comparison With Kelsey and Shneier

On the original Merkle-Damgård onstrution, the attak of [16℄ is more e�ient

than ours (on SHA-1, they an �nd a seond preimage of a message of size 255

with 2105 work, whereas we need 2109 alls to the ompression funtion to obtain

the same result).

However, our tehnique gives the adversary more ontrol on the seond preim-

age, sine she an typially hoose about the �rst half of the message in an arbi-

trary way. For example, she ould hoose to repliate most of the target message,

leading to a seond preimage that di�ers from the original by only k+2 bloks.



The main apparent di�erene between the two tehniques is that the attak

of Kelsey and Shneier relies on expandable messages. An expandable message

M is a family of messages with di�erent number of bloks but with the same

hash when the �nal length blok is not inluded in the omputation. Their attak

onstruts suh an expandable message in time k · 2n = 2+ 1. Our attak an also

be viewed as a new, more �exible tehnique to build expandable messages, by

hoosing a pre�x of the appropriate length and onneting it to the ollision

tree. This an be done in time 2n = 2+ k = 2+ 2+2n−k . Altough it is more expensive,

this new tehnique an be adapted to work even when an additional dithering

input is given, as we will demonstrate in the sequel.

3 Dithered Hashing

The general idea of dithered hashing is to perturb the hashing proess by using an

additional input to the ompression funtion, formed by the onseutive elements

of a �xed dithering sequene. This gives the attaker less ontrol over the input

of the ompression funtion, and makes the hash of a message blok dependent

on its position in the whole message. In partiular, the goal of dithering is to

prevent attaks based on expandable messages.

Sine the dithering sequene z has to be at least as long as the maximal

number of bloks in any message that an be proessed by the hash funtion,

it is reasonable to onsider in�nite sequenes as andidates for z. Let A be a

�nite alphabet, and let the dithering sequene z be an eventually in�nite word

over A . Let z[i] denote the i-th element of z. The dithered Merkle-Damgård

onstrution is obtained by setting h
i
= F (h

i−1;xi;z [i]) in the de�nition of the

Merkle-Damgård sheme.

3.1 Words and Sequenes

Notations and Terminology. Let ! be a word over the �nite alphabet A . The

dot operator denotes onatenation. If ! an be written as ! = x:y:z (where

x,y or z an be empty), we say that x is a pre�x of ! and that y is a fator

(or subword) of !. A �nite word ! is a square if it an be written as ! = x:x,
where x is not empty. A �nite word ! is an abelian square if it an be written as

! = x:x 0 where x0 is a permutation of x (i.e., a reordering of the letters of x). A
word is said to be square-free (resp. abelian square-free) if none of its fators is

a square (resp. an abelian square). Note that abelian square-free words are also

square-free.

An In�nite Abelian Square-Free Sequene. In 1992, Keränen [17℄ exhib-

ited an in�nite abelian square-free word k over a four-letter alphabet (there are

no in�nite abelian square-free words over a ternary alphabet). In this paper, we

all this in�nite abelian square-free word the Keränen sequene. Details about

this onstrution an be found in [17, 18, 25℄.



Sequene Complexity. The number of fators of a given size of an in�nite

word gives an intuitive notion of its omplexity : a sequene is more omplex (or

riher) if it possesses a large number of di�erent fators. We denote by Fact z(ℓ)
the number of fators of size ℓ of the sequene z.

3.2 Rivest's Proposals.

Keränen-DMD. Rivest suggested to diretly use the Keränen sequene as a

soure of dithering inputs. The dithering inputs are taken from the alphabet

A = fa;b;c;dg, and an be enoded by two bits. The number of data bits in

the input of the ompression funtion is thus redued by only two bits, whih

improves the hashing e�ieny (ompared to longer enodings of dither inputs).

It is possible to generate the Keränen sequene online, one symbol at a time, in

logarithmi spae and onstant amortized time.

Rivest's Conrete Proposal. Rivest's onrete proposal is referred to as

DMD-CP (Dithered Merkle-Damgård � Conrete Proposal). To speed up the

generation of the dithering sequene, Rivest proposed a slightly modi�ed sheme,

in whih the dithering symbols are 16-bit wide. If the message M is rbloks long,
then for 1 � i<r the i-th dithering symbol has the form:

(

0;k
[⌊

i/213
⌋]

;i mod 2 13
)

2 f0;1g � A � f0;1g 13

The idea is to inrement the ounter for eah dithering symbol, and to shift

to the next letter in the Keränen sequene, only when the ounter over�ows. This

�diluted� dithering sequene an essentially be generated 213 times faster than

the Keränen sequene. The last dithering symbol has a di�erent form (reall that

m is the number of bits in a message blok):

(1;|M| mod m) 2 f0;1g � f0;1g 15

4 Seond Preimage Attaks on Dithered Merkle-Damgård

In this setion, we present the �rst known seond preimage attak on Rivest's

dithered Merkle-Damgård onstrution. In setion 4.1, we adapt the attak of

setion 2 to Keränen-DMD, obtaining seond preimages in time (k + 40:5) ·
2n−k +3 . We then apply the extended attak to DMD-CP, obtaining seond

preimages with about 2n−k +15 evaluations of the ompression funtion. We show

some examples of sequenes whih make the orresponding dithered onstru-

tions immune to our attak. This notably overs the ase of Haifa [23℄. Lastly,

in setion 4.2 we present a variation of the attak, whih inludes an expensive

preproessing, but whih is able to ope with sequenes of high omplexity over

a small alphabet with a very small online ost.



4.1 Adapting the Attak to Dithered Merkle-Damgård

Let us now assume that the hashing algorithm uses a dithering sequene z. When

building the ollision tree, we must hoose whih dithering symbols to use. A

simple solution is to use the same dithering symbol for all the edges at the same

depth in the tree. A tuple of ℓ letters is then required to build the ollision tree.

We will also need an additional letter to onnet the tree to the message M.
This way, in order to build a ollision tree of depth ℓ, we have to �x a word !
of size ℓ+ 1, use ![i]as the dithering symbol of depth i, and use the last letter

of ! to realize the onnetion.

The dithering sequene makes the hash of a blok dependent on its position

in the whole message. Therefore, the ollision tree an be onneted to its target

only at ertain positions, namely, at the positions where ! and z math. The

set of positions in the message where this is possible is then given by:

Range=
n

i2 N

�

�

�

(

ℓ+ 1 � i
)

^
(

z[i� ℓ]:::z[i]= !
)

o

:

Note that �nding a onneting blok B 0 in the seond step de�nes the length

of the pre�x that is required. If i0 2 Range, it will be possible to build the

seond preimage. Otherwise, another blok B 0 has to be found.

To make sure that Range is not empty, ! has to be a fator of z. Ideally, !
should be the fator of length ℓ+1 whih ours most frequently in z, as the ost

of the attak ultimately depends on the number of onneting bloks tried before

�nding a useful one (with i0 2 Range). What is the probability that a fator !
appears at a random position in z? Although this is highly sequene-dependent,

it is possible to give a generi lower bound: in the worst ase, all fators of size

ℓ + 1 appear in z with the same frequeny. In this setting, the probability that

a randomly hosen fator of size ℓ+ 1 in z is the word ! is 1/Fact z(ℓ+ 1).
The main property of z in�uening the ost of our attak is its omplexity

(whih is related to its min-entropy), whereas its repetition-freeness in�uenes

the ost of Kelsey and Shneier type attaks.

1. Choose the most frequent fator ! of z, with |! | =ℓ +1.
2. Build a ollision tree of depth ℓ using ! as the dithering symbols in all the leaf-to-

root paths. Let hT be the target value of the tree.
3. Find a onneting blok B0 mapping hT to anyone of the hi (say hi0

), by using
! [ℓ]as the dithering letter. Repeat until io 2 Rang e .

4. Carry the remaining steps of the attak as desribed in Fig. 1.

Fig. 2: Summary of the attak when a dithering sequene z is used.

The ost of �nding this seond preimage for a given sequene z, in the worst-

ase situation where all fators appear with the same frequeny, is given by:

2
n

2
+

ℓ

2
+2 + Fact z(ℓ+ 1) · 2n−k + 2n−`:



Cryptanalysis of Keränen-DMD. The ost of the extended attak against

Keränen-DMD depends on the omplexity of the sequene k. Sine it has a very

regular struture, k has an unusually low omplexity.

Lemma 1. For ℓ � 85, we have:

Fact k (ℓ) � 8 · ℓ+ 332:

Despite being strongly repetition-free, the sequene k o�ers an extremely

weak seurity level against our attak. We illustrate this by evaluating the ost

of our attak on Keranen-DMD:

2
n

2
+

ℓ

2
+2 + (8 · ℓ+ 340) · 2n−k + 2n−`:

If n is of the same order than about 3k, then the �rst term of this sum is

of the same order than the other two, and if n � 3k then it an simply be

negleted. We will use this approximation several times in the sequel. By setting

ℓ = k � 3, the total ost of the attak is about: (k+40:5) · 2n−k +3 whih is muh

smaller than 2n in spite of the dithering.

Cryptanalysis of DMD-CP. We now apply the attak to Rivest's onrete

proposal. We �rst need to evaluate the omplexity of its dithering sequene.

Reall from setion 3.2 that it is based on the Keränen sequene, but that we

move on to the next symbol of the sequene only when a 13 bit ounter over�ows.

The original motivation was to redue the ost of the dithering, but it has the

unintentional e�et of inreasing the resulting sequene omplexity. However, it

is possible to prove that this e�et is quite small:

Lemma 2. Let c denote the sequene obtained by diluting k with a 13-bit ounter.

Then for every 0 � ℓ <2 13, we have:

Fact c(ℓ) = 8 · ℓ+ 32760:

The dilution does not generate a sequene of a higher asymptoti omplexity:

it is still linear in ℓ, even though the onstant term is bigger due to the ounter.

The ost of the attak is therefore:

2
n

2
+

ℓ

2
+2 + (8 · ℓ+ 32768) · 2n−k + 2n−`:

Again, if n is greater than about 3k, the best value of ℓ is k � 3, and the

omplexity of the attak is then approximately: (k + 4094) · 2n−k +3 ' 2n−k +15 :
For settings orresponding to SHA-1, a seond preimage an be omputed in

time 2120 .

Countermeasures. Even though the dilution does not inrease the asymptoti

omplexity of a sequene, the presene of a ounter inreases the omplexity of

the attak. If we simply used a ounter over i bits as the dithering sequene,



the number of fators of size ℓ would be Fact(ℓ) = 2 i (as long as i � ℓ). The

omplexity of the attak would then beome: 2
n

2
+

ℓ

2
+2 + 2n−k +i + 2n−`:

In pratie, the dominating term is 2n−k +i . By taking i= k, we would obtain

a sheme whih is resistant to our attak. This is essentially the hoie made by

the designers of Haifa [23℄, but suh a dithering sequene onsumes k bits of

bandwidth. Note that as long as the ounter does not over�ow, no variation of

the attak of Kelsey and Shneier an be applied to the dithered onstrution.

Using a ounter (i.e., a big alphabet) is a simple way to obtain a dither-

ing sequene of high omplexity. An other, somewhat orthogonal, possibility to

improve the resistane of Rivest's dithered hashing to our attak is to use a

dithering sequene of high omplexity over a small alphabet (to preserve band-

width). In appendix A we show that there is an abelian square-free sequene

over 6 letters with omplexity greater than 2` = 2. Then, with ℓ = 2k/3, the total
ost of the online attak is about 2n−2k = 3.

Another possible way to improve the resistane of Rivets's onstrution against

our attak is to use a pseudo random sequene over a small alphabet. Even

though it may not be repetition-free, its omplexity is almost maximal. Suppose

the alphabet has size
�

�A
�

�= 2i. Then the expeted number of ℓ-letter fators in a

pseudo random word of size 2k is lower-bounded by: 2i �̀ ·
(

1� exp � 2k−i �̀

)

(refer

to [12℄, theorem 2, for a proof of this laim)). The total optimal ost of the online

attak is then at least 2n−k = (i +1)+2 and is obtained with ℓ = k/(i+ 1). With

8-bit dithering symbols and if k = 55, as in the SHA family, the omplexity of

the attak is 2n−5 .

4.2 A Generi Attak on any Dithering Sheme With a Small

Alphabet

The attaks desribed so far exploited the low omplexity of Rivest's spei�

dithering sequenes. In this setion we show that the weakness is more general,

and that after an O (2n ) preproessing, seond preimages an be found for mes-

sages of length 2k � 2n = 4 in O
(

22�(n−k )= 3
)

time and spae for any dithering

sequene (even of maximal omplexity) if the dithering alphabet is small. Se-

ond preimages for longer messages an be found in max
(

O
(

2k
)

;O
(

2n = 2
))

time

and min
(

O
(

2n−k

)

;O
(

2n = 2
))

memory.

Outline of the Attak. The new attak an be viewed as a type of time-

memory tradeo�. For any given ompression funtion, we preompute a �xed

data struture whih an then be used to �nd additional preimages for any

dithering sequene and any given message of su�ient length. In the attak

we will need to �nd onneting bloks leading from the message to our data

struture and from our data struture to the message. The data struture will

allow us to generate a sequene of bloks of the required length, leading from

the entry point to the exit point, using the given dithering sequene.



A simple struture of this type is the kite generator3 whih will allow us to

�nd a seond preimage for a message made of O
(

2k
)

message bloks in time

max
(

O
(

2k
)

;O
(

2(n−k)=2
))

and O
(�

�A
�

�· 2n−k

)

spae. Note that for the SHA-1

parameters of n = 160 and k = 55, the time omplexity of the new attak

is 255 , whih is just the time needed to hash the original message. However,

the size of the kite generator for the above parameters exeeds 2110 . The kite

generator is a labelled direted graph whose 2n−k verties are labelled by some

easily reognized subset of the haining values that inludes the IV (e.g., the

tiny fration of hash values whih are extremely lose to IV ). Eah direted

edge (whih an be traversed in both diretions) is labelled by one letter �
from the dithering alphabet and one message blok x, and it leads from vertex

h1 to vertex h2 if F (h 1; x; �) = h2. Eah vertex in the generator should have

exatly two outgoing edges labelled by eah dithering letter, and thus the expeted

number of ingoing edges labelled by eah letter is also 2. The generator is highly

onneted in the sense that there is an exponentially large diverging binary tree

with any desired dithering sequene starting at any vertex, and an exponentially

large onverging tree 4 with any desired dithering sequene (whose degrees are

not always 2) ending at most verties. It an be viewed as a generalization of

the ollision tree of Kelsey and Kohno [15℄, whih is a single tree with a single

root in only the onverging diretion and with no dithering labels.

One omputed (during an unbounded preomputation stage), we an use

the generator to �nd a seond preimage for any given message M with 2 k bloks

and any dithering sequene. We �rst hash the long input M to �nd (with high

probability) some intermediate hash value h
i
whih appears in the generator.

We then use the generator to replae the �rst i bloks in the message by a

di�erent set of i bloks. We start from the generator vertex labelled by IV , and
follow some path in the generator of length i � (n � k) whih has the desired

dithering sequene (there are exponentially many paths we an hoose from). It

leads to some hash value h
t
in the generator. We then evaluate the full diverging

tree of depth (n � k)/2 and the desired dithering sequene starting at h
t
, and

the full onverging tree of depth (n � k)/2 and the desired dithering sequene

ending at h
i
. Sine the number of leaves in eah tree is O

(

2(n−k)=2
)

and they

3 We all it a kite generator sine we use it to generate kites of the form

Message

h1 h2kh2IV hi(· · ·) (· · ·)

hiIV ht

= =

Fig. 3: A Kite

4 See [10℄ for a formal justi�ation of this laim.



are labelled by only 2n−k possible values, we expet by the birthday paradox to

�nd a ommon haining value among the two sets of leaves. We an now ombine

the long random hain of length i � (n � k) with the two short tree hains of

length (n � k)/2 to �nd a kite-shaped struture of the same length i and with

the same dithering sequene as the original message between the two haining

values IV and h
i
. Note that the ommon leaf of the two trees an be found with

no additional spae by using a variant of Pollard's rho method whih traverses

pseudo-randomly hosen paths in the two trees until it yles.

This attak an be applied with essentially the same omplexity even when

the IV is not known during the preomputation stage (e.g., when it is time

dependent). When we hash the original long message, we have to �nd two in-

termediate hash values h
i
and h

j
(instead of IV and h

i
) whih are ontained in

the generator and onnet them by a properly dithered kite-shaped struture of

the same length.

The main problem of this tehnique is that for the typial ase in whih

k < n/2, it uses more spae than time, and if we try to equalize them by

reduing the size of the kite generator, we are unlikely to �nd any ommon

haining values between the given message and the generator. Finding a way

to onnet the generator bak into the message will require 2n−k+1 additional

steps, whih will make the time omplexity too high. To bypass this di�ulty,

we will use the lassi time-memory tradeo� of Hellman tables.

Hellman's TMTO attak. Time/memory Tradeo�s (TMTO) were �rst in-

trodued in 1980 by Hellman [11℄. The idea is to improve brute fore attaks

by trading time for memory when inverting a funtion f : f0; 1gn ! f0; 1g n .

Suppose we have an image element y and wish to �nd a pre-image x 2 f −1(y).
One extreme would be to go over all possible elements x until we �nd one suh

that f(x) = y, while the other extreme would be to pre-ompute a huge table

ontaining pairs (x; f(x)) sorted by the seond element. Hellman's idea was to

onsider what happens when applying f iteratively. We start at a random el-

ement x0 and ompute x
i+1 = f(x

i
) for t steps saving only the start and end

points of the generated hain (x0; xt). We repeat this proess with di�erent ini-

tial points and generate a total of c hains. Now on input y we start generating

a hain starting from y and hek if we reah one of the saved endpoints. If we

have, we generate the orresponding hain, starting from the original starting

point and hope to �nd a preimage of y. Notie that as the number of hains c
inreases beyond 2n /t2, the ontribution from additional hains dereases with

the number of hains. To ounter this birthday paradox e�et, Hellman sug-

gested to onstrut a number of tables, eah using a slightly di�erent funtion

f
i
, suh that knowing a preimage of y under f

i
implies knowing suh a preimage

under f . Hellman's original suggestion, whih works well in pratie, was to use

f
i
(x) = f(x � i). Thus if we reate d = 2 n=3 tables eah with a di�erent f

i
,

suh that eah table ontains c = 2n=3 hains of length t = 2n=3 , about 88%

of the 2n points will be overed by at least one table. Notie that the running



time of Hellman's algorithm is t · d = 22n=3 while the memory requirement is

d · c = 22n=3 .

The Attak. As mentioned above, we need to �nd a linking blok from the kite-

generator to the message when its size is too small to have a ommon point. To

solve this problem, we denote one of the verties in the kite-generator by N and

onstrut for eah � 2 A a set of d Hellman tables with c hains, eah of length

t, suh that t · c · d = 2n−k by iterating the basi funtion f
�
(x) = F (N; x; �).

During the online phase, for eah intermediate hash value h
i
in the message, we

use the set of tables orresponding to the dithering harater � used to reah h
i

and try to �nd a blok leading from the spei�ed vertex N to h
i
using �. Sine

the tables over approximately 2n−k elements, the probability of �nding suh a

blok for h
i
is 2−k . As the message is of length 2k , we expet to �nd on average

one onneting h
i
. Notie that although we reate hains for the Hellman tables,

they do not orrespond to the hain of hash values of a message, and thus we

do not have to use the orret dithering sequene along these paths. The only

purpose of the hains is to invert the funtion f
�
and thereby �nd a single blok

linking N to one of the intermediate hash values along the given message.

Now that we have a method for onneting a predetermined hash value N to

a message, we an replae the role of the kite-generator of �nding a pre�x whih

ends at N with a simpler onstrution. Sine we were not onstrained in our

hoie of N we an simplify the kite generator to the single point IV with a self

loop for eah dithering symbol � 2 A. During the preproessing, we exhaustively
searh for eah � 2 A a blok x

�
suh that F (IV; x

�
; �) = IV . Given suh self

loops, we use in eah step the blok x
�
orresponding to the urrent dithering

symbol � and thus we an generate a message of any length starting and ending

with IV . This IV serves as the point N in Hellman's algorithm. Note that this

onstrution does not have the advantage of the original kite generator that IV
an be unknown during the preproessing stage.

Combining the two steps, we �rst �nd a linking blok from IV to one of

the intermediate hash values of the message using the orret dithering symbol.

Then, using the IV self loops, we onstrut a pre�x of the required length linking

bak to IV . During the preproessing, the ost of onstruting the Hellman tables

is
�

�A
�

�· t · c · d = O
(�

�A
�

�· 2n−k

)

time and
�

�A
�

�· c · d spae, while onstruting the

IV self loops takes O
(�

�A
�

�· 2n
)

time and
�

�A
�

� spae. As the ost of �nding the

self loops is the dominating fator, the total time used in the preproessing

phase is O
(�

�A
�

�· 2n
)

and the total spae used is
�

�A
�

�· c · d. In the online phase,

generating the pre�x takes time O
(

2k
)

and �nding a linking blok to one of the

2k intermediate hash values takes time O
(

2k · t · d
)

, so the total time spent in

the online phase is O
(

2k · t · d
)

. For onstant sized alphabets this leads to the

following omplexities: for k � n/4, a tradeo� balaning the time and memory

osts is t = 2(n−k)=3 ; c = 2(n+2k)=3 ; d = 2(n−4k)=3 giving total time and memory

omplexities of O
(

22�(n−k)=3
)

. For n/4 < k � n/2 the balaned time/memory

tradeo� is ahieved by using for eah � a single table with parameters c = 2n=2

and t = 2n=2−k giving a �at time and memory omplexities of O
(

2n=2
)

. For



a non-onstant sized alphabet A, the general time-memory tradeo� urve is

T · M 2 · 22k = 22n ·
�

�A
�

�

2
for k � n/4and T � 2 2k .

5 An Attak on Shoup's UOWHF

In this setion, we show that our attak is generi enough to be applied against

hash funtions enjoying a di�erent seurity property, namely Universal One-

Way Hash Funtions (UOWHF). A UOWHF is a family of hash funtions H
for whih any omputationally bounded adversary A wins the following game

with negligible probability. First A hooses a message M , then a key K is hosen

at random and given to A. The adversary wins if she violates the Target Collision
Resistane (TCR) of H , that is if she generates a message M 0 di�erent from M
that ollides with M for the key K (i.e., suh that H

K
(M ) = H

K
(M 0) with

M 6= M 0).

Shoup [26℄ proposed a simple onstrution for a UOWHF that hashes mes-

sages of arbitrary size, given a UOWHF that hashes messages of �xed size. It

is a Merkle-Damgård-like mode of operation, but before every iteration, one of

several possible masks is XORed to the haining value. The number of masks is

logarithmi in the length of the hashed message, and the order in whih they

are used is arefully hosen to maximize the seurity of the sheme. This is

reminisent of dithered hashing, exept that here the dithering proess does not

derease the bandwidth available to atual data.

We �rst desribe brie�y Shoup's onstrution, and then show how our attak

an be applied against it. The omplexity of the attak demonstrates that for

this partiular onstrution, Shoup's seurity bound is nearly tight.

5.1 Desription

This onstrution has some similarities with Rivest's dithered hashing. It starts

from a universal one way ompression funtion F that is keyed by a key K ,
F
K
: f0; 1g

m

� f0; 1g
n

! f0; 1g
n

. This ompression funtion is then iterated, as

desribed below, to obtain a variable input length UOWHF H F

K

.

The sheme uses a set of masks �0; : : : ; �k−1 (where 2k � 1 is the length of

the longest possible message), eah one of whih is a random n-bit string. The
key of the whole iterated funtion onsists of K and of these masks. After eah

appliation of the ompression funtion, a mask is XORed to the haining value.

The order in whih the masks are applied is de�ned by a spei�ed sequene over

the alphabet A = f0; : : : ; k � 1g. The sheduling sequene is z[i] = �2(i), for
1 � i � 2 k , where �2(i) denotes the largest integer � suh that 2� divides i.
Let M be a message that an be split into r bloks x 1; : : : ; xr

and let h0 be an

arbitrary n-bit string. We de�ne h
i
= F

K

(

h
i−1 � � �2(i)

; x
i

)

, and H F

K

(M ) = h
r
.

5.2 An Attak Mathing the Seurity Bound

In [26℄, Shoup proves the following seurity result:



Theorem 1 (Main result of [26℄). If an adversary is able to break the target

ollision resistane of H F with probability � in time T , then one an onstrut

an adversary that breaks the target ollision resistane of F in time T , with

probability �/2k .

In this setion we show that this bound is almost tight. First, we give an

alternate de�nition of the dithering sequene z. We de�ne:

u
i
=

(

0 if i = 1,

u
i−1:(i � 1):u

i−1 otherwise.

As an example, we have u4 = 010201030102010. It is lear that |u
i
| = 2i �1,

and it is easy to show that for all i, u
i
is a pre�x of z. The dithering sequene is

thus simply u
k
.

The most frequently-ourring fator of size ℓ < 2 k in z is the pre�x of size ℓ
of z. It is a pre�x of u

j
with j = dlog

2
(ℓ+ 1)e, and u

j
itself ours about 2k−j

times in z = u
k
. The probability for a random fator of z of size ℓ to be exatly

this andidate is equal to the number of ourrenes of this andidate divided by

the number of ℓ-bit strings in z. Thus this probability is 2
k−j

2k−`

. This an in turn

be lower-bounded by: 2−j � 1

2( ` + 1)
. Our attak an be applied against the TCR

property of H F as desribed above. Choose at random a (long) target message

M . One the key is hosen at random, build a ollision tree using a pre�x of z of

size ℓ for the dithering, and ontinue as desribed in setion 4. The ost of the

attak is then:

T = 2
n

2
+

ℓ

2
+ 2 + 2(ℓ+ 1) · 2n−k + 2n−`:

This attak breaks the target ollision resistane with probability nearly 1.
Therefore, with Shoup's result, one an onstrut an adversary A against F
with running time T and probability of suess 1/2k . If F is a blak box, the

best attak against F 's TCR property is the exhaustive searh. Thus, the best

attaker in time T against F has suess probability T /2n . When n � 3k, T '
(2k + 3) · 2n−k (with ℓ = k � 1), and thus the best adversary running in time

T has suess probability O
(

k/2k
)

when suess probability of A is 1/2 k . This

implies that there is no attak better than ours by a fator greater than O (k)
or, in other words, there is only a fator O (k) between Shoup's seurity proof

and our attak.

The ROX onstrution by [2℄, whih also uses the Shoup's mask sequene to

XOR with the haining values is suseptible to the same type of attak, whih

is also provably near-optimal.

5.3 Comparing the Shoup and Rivest Dithering Tehniques

An intriguing onnetion between Shoup's and Rivest's ideas shows up as soon

as we notie that the sheduling sequene z hosen by Shoup is abelian square-

free. In fat, one year after Shoup's onstrution was published, Mironov [22℄

proved that an even stronger notion of repetition-freeness was neessary: z is,



and has to be, even-free. A word is even-free if all of its non-empty fators ontain

at least one letter an odd number of times. Note that all even-free words are

abelian square-free. We believe that the role these non-trivial sequenes play in

iterated onstrutions in ryptography (suh as hashing) has yet to be ompletely

understood.

6 Seond Preimage Attak with Multiple Targets

Both the older generi seond preimage results of [8, 16℄ and our results an be

applied e�iently to multiple target messages. The work needed for these attaks

depends on the number of intermediate hash values of the target message, as this

determines the work needed to �nd a linking message from the ollision tree (our

attak) or expandable message ([8, 16℄). A set of 2R messages, eah of 2K bloks,

has the same number of intermediate hash values as a single message of 2R +K

bloks, and so the di�ulty of �nding a seond preimage for one of a set of 2R

suh messages is no greater than that of �nding a seond preimage for a single

2R +K blok target message. In general, for the older seond preimage attaks,

the total work to �nd one seond preimage falls linearly in the number of target

messages; for our attak, it falls linearly so long as the total number of bloks

2R satis�es R < (n � 4)/3.
Consider for example an appliation whih has used SHA-1 to hash 230 dif-

ferent messages, eah of 220 message bloks. Finding a seond preimage for a

given one of these messages using the attak of [16℄ requires about 2141 work.

However, �nding a seond preimage for any one of these of these 230 target

messages requires 2111 work. (Naturally, the attaker annot ontrol for whih

target message he �nds a seond preimage.)

This works beause we an onsider eah intermediate hash value in eah

message as a potential target to whih the root of the ollision tree (or an

expandable message) an be onneted, regardless of the message it belongs

to, and regardless of its length. One we onnet to an intermediate value, we

have to determine to whih partiuliar target message it belongs. Then we an

ompute the seond preimage of that message. Using similar logi, we an extend

our attak on Rivest's dithered hashes, Shoup's UOWHF, and the ROX hash

onstrution to apply to multiple target messages.

This observation is important for two reasons: First, simply restriting the

length of messages proessed by a hash funtion is not su�ient to blok the long

message attak; this is relevant for determining the neessary seurity parameters

of future hash funtions. Seond, this observation allows long-message seond

preimage attaks to be applied to target messages of pratial length. A seond

preimage attak whih is feasible only for a message of 250 bloks has no pratial
relevane, as there are probably no appliations whih use messages of that

length. A seond preimage attak whih an be applied to a large set of messages

of, say, 224 bloks, might have some pratial impat. While the omputational

requirements of these attaks are still infeasible, this observation shows that the

attaks an apply to messages of pratial length.
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A Some Sequene-Complexity Related Results

Sequenes Generated by Morphisms. We say that a funtion � :A � ! A �

is a morphism if for all words x and y, �(x:y) = �(x):�(y). A morphism is then

entirely determined by the images of the individuals letters. A morphism is said

to be r-uniform (with r 2 N) if for all word x, |�(x)| = r · |x|. If, for a given

letter � 2 A , we have �(�) = �:x for some word x, then � is non-erasing for

�. Given a morphism � and an initialization letter �, let u
n
denote the n-th

iterate of � over �: u
n
= �n (�). If � is r-uniform (with r � 2) and non-erasing

for �, then u
n
is a strit pre�x of u

n + 1, for all n 2 N. Let �1 (�) denote the



limit of this sequene: it is the only �xed point of � that begins with the letter

�. Suh in�nite sequenes are alled uniform tag sequenes [5℄ or r-automati

sequenes [1℄. Beause they have a very regular struture, there is a spetaular

result [5℄ regarding the omplexity of in�nite sequenes generated by uniform

morphisms:

Theorem 2 (Cobham, 1972). Let z be an in�nite sequene generated by an

r-uniform morphism, and assume that the alphabet size
�

�A
�

� is onstant. Then z

has linear omplexity:

Fact z(ℓ) � r · |A| 2 · ℓ:

It is worth mentioning that similar results exist in the ase of sequenes

generated by non-uniform morphisms [24, 9℄, although the upper bound an be

quadrati in ℓ. Sine the Kera�nen sequene is 85-uniform [17, 18, 25℄, the result of

theorem 2 gives: Fact k (ℓ) � 1360 · ℓ. This upper-bound is relatively rough, and

for partiular values of ℓ, it is possible to obtain a muh better approximation,

suh as the one given in lemma 1 (whih is tight). The interested reader should

onsult the full version of this paper.

There are Abelian Square-Free Sequenes of Exponential Complexity

It is indeed possible to onstrut an in�nite abelian square-free sequene of

exponential omplexity, although we do not know how to do it without slightly

enlarging the alphabet.

We start with the abelian square-free Kera�nen sequene k over fa;b;c;dg,
and with another sequene u over f0;1g that has an exponential omplexity.

Suh a sequene an be built for example by onatenating the binary enoding

of all the onseutive integers. Then we an reate a sequene ~z over the union

alphabet A = fa;b;c;d;0;1g by interleaving k and u : ~z = k[1]:u[1]:k[2]:u[2]::::.
The resulting shu�ed sequene inherits both properties: it is still abelian square-

free, and has a omplexity of order 

(

2`=2
)

.


