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Abstract. A shuffle of a set of ciphertexts is a new set of ciphertexts with the
same plaintexts in permuted order. Shuffles of homomorphic encryptions are a
key component in mix-nets, which in turn are used in protocols for anonymization
and voting. Since the plaintexts are encrypted it is not directly verifiable whether
a shuffle is correct, and it is often necessary to prove the correctness of a shuffle
using a zero-knowledge proof or argument.
In previous zero-knowledge shuffle arguments from the literature the communi-
cation complexity grows linearly with the number of ciphertexts in the shuffle. We
suggest the first practical shuffle argument with sub-linear communication com-
plexity. Our result stems from combining previous work on shuffle arguments
with ideas taken from probabilistically checkable proofs.
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1 Introduction

A shuffle of ciphertextse1, . . . , eN is a new set of ciphertextsE1, . . . , EN with the
same plaintexts in permuted order. Shuffles are used in many protocols for anonymous
communication and voting. It is usually important to verify the correctness of the shuf-
fle. Take for instance a voting protocol where the ciphertexts are encrypted votes; it
is important to avoid that some of the ciphertexts in the shuffle are substituted with
encryptions of other votes. There has therefore been much research on designing zero-
knowledge arguments3 for the correctness of a shuffle [37, 1, 2, 17, 30, 31, 21, 16, 33, 34,
32, 15, 24, 38].

When designing shuffle arguments, efficiency is a major concern. It is realistic to
have elections with millions of encrypted votes, in which case the statement to be proven
is very large. In this paper, our main goal is to get apracticalshuffle argument with low
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communication complexity. A theoretical solution to this problem would be to use Kil-
ian’s communication-efficient zero-knowledge argument [26] (see also Micali [29]).
This method, however, requires a reduction to Circuit Satisfiability, a subsequent appli-
cation of the PCP-theorem [4, 3, 12], and using a collision-free hash-function to build a
hash-tree that includes the entire PCP. Even with the best PCP constructions known to
date (cf. [7]), such an approach would be inefficient in practice.

OUR CONTRIBUTION. We present a sublinear-communication 7-move public coin per-
fect zero-knowledge argument of knowledge for the correctness of a shuffle of ElGamal
ciphertexts [13]. (The protocol is presented in the common random string model, but can
also be implemented in the plain model at the cost of a slightly higher constant number
of rounds.) All shuffle arguments previously suggested in the literature have communi-
cation complexityΩ(N)κ, whereN is the number of ciphertexts in the shuffle andκ
is a security parameter specifying the finite group over which the scheme works. Our
shuffle argument has communication complexityO(m2 + n)κ for m andn such that
N = mn. (The constant in the expression is low as well, see Section 8 for a more pre-
cise efficiency analysis.) Withm = N1/3 this would give a size ofO(N2/3)κ bits, but
in practice a smaller choice ofm will usually be better for computational reasons. Our
shuffle argument moderately increases the prover’s computational burden and reduces
the amount of communication and the verifier’s computational burden in comparison
with previous work.

For practical purposes it will be natural to use the Fiat-Shamir heuristic [14] (i.e.
compute the verifier’s public-coin challenges using a cryptographic hash-function) to
make our shuffle argument non-interactive. The Fiat-Shamir heuristic justifies reducing
the communication and verifier computation at the cost of increased prover computa-
tion, since the non-interactive shuffle argument needs to be computed only once by the
prover but may be distributed to and checked by many verifiers. Letting the prover do
some extra work in order to reduce the communication and the computational burden
of each verifier is therefore a good trade-off in practice. To the best of our knowledge,
our protocol is the first practical instance of a sublinear-communication argument for
any interesting nontrivial statement.

We have some further remarks on our result. Our technique also applies to other ho-
momorphic cryptosystems, for instance Paillier encryption [35]; a more general treat-
ment of a wider class of homomorphic encryptions can be obtained along the lines of
[21]. For simplicity we focus just on ElGamal encryption in this paper. Similarly to pre-
vious shuffle arguments from the literature, we will present our protocol as anhonest
verifierzero-knowledge argument. There are very efficient standard techniques for con-
verting honest verifier zero-knowledge arguments into fully zero-knowledge arguments
[10, 18, 22].

TECHNIQUES. Our starting point is the honest verifier zero-knowledge shuffle argu-
ment by Groth [21], which builds on ideas by Neff [30]. Borrowing some of the ideas
underlying the PCP theorem, namely the use of Hadamard codes and batch-verification
techniques, we reduce the size of the shuffle argument. We note that unlike Kilian [26]
we do not reduce the shuffle statement to an NP-complete language such as SAT; in-
stead we work directly with the ciphertexts in the shuffle statement. Moreover, while we
use ideas behind the PCP theorem we do not make use of a full-blown PCP. In particu-



lar, our argument avoids any use of linearity testing, low-degree testing, or other forms
of code proximity testing that appear in all known PCPs.

RELATED WORK. Our work was inspired by the recent work of Ishai, Kushile-
vitz, and Ostrovsky [25], which introduced an approach for constructing sublinear-
communication arguments using exponentially long but succinctly described PCPs.
Similarly to [25] we use shorthomomorphiccommitments as the main cryptographic
building block. There are, however, several important differences between our tech-
niques and those from [25]. In particular, the arguments obtained in [25] do not address
our zero-knowledgerequirement (and are only concerned with soundness), they inher-
ently require the verifier to useprivate coins(which are undesirable in the context of
our application), and they employlinearity testingthat subsequently requires soundness
amplification. Finally, the approach of [25] is generic and does not account for the spe-
cial structure of the shuffle problem; this structure is crucial for avoiding an expensive
reduction to SAT.

2 Preliminaries

2.1 Notation

We letΣN denote the symmetric group on{1, 2, . . . , N}. Given two functionsf, g :
N → [0, 1] we writef(κ) ≈ g(κ) when|f(κ) − g(κ)| = O(κ−c) for every constant
c. We say that the functionf is negligiblewhenf(κ) ≈ 0 and that it isoverwhelming
whenf(κ) ≈ 1.

Algorithms in our shuffle argument will get a security parameterκ as input, which
specifies the size of the group we are working over. Sometimes we for notational sim-
plicity avoid writing this explicitly, assumingκ can be deduced indirectly from other
inputs given to the algorithms.

All our algorithms will be probabilistic polynomial time algorithms. We will assume
that they can sample randomness from sets of the typeZq. We note that such random-
ness can be sampled from a source of uniform random bits in expected polynomial time
(in log q).

We writeA(x; r) = y whenA, on inputx and randomnessr, outputsy. We write
y ← A(x) for the process of picking randomnessr at random and settingy := A(x; r).
We also writey ← S for samplingy uniformly at random from the setS.

When defining security, we assume that there is an adversary attacking our scheme.
This adversary is modeled as a non-uniform polynomial time stateful algorithm. By
stateful, we mean that we do not need to give it the same input twice, it remembers
from the last invocation what its state was. This makes the notation a little simpler,
since we do not need to explicitly write out the transfer of state from one invocation to
the next.

2.2 Group Generation

We will work over a groupGq of a prime orderq. This could for instance be a subgroup
of Z∗

p, wherep is a prime andgcd(q2, p−1) = q; or it could be an elliptic curve group or



subgroup. We will assume the discrete logarithm problem is hard inGq. More precisely,
let G be a generating algorithm that takes a security parameterκ as input and outputs
gk := (q,Gq, g), where byGq we denote a computationally efficient representation of
the group andg is a random generator forGq. The discrete logarithm assumption says
that for any non-uniform polynomial time adversaryA:

Pr
[
(q,Gq, g)← G(1κ);x← Zq;h := gx : A(q,Gq, g, h) = x

]
≈ 0.

(When the randomness ofG is taken from a common random string, the above definition
needs to be strengthened so thatA is given the randomness used byG.)

2.3 Generalized Pedersen Commitment

We will use a variant of the Pedersen commitment scheme [36] that permits making a
commitment to a length-n vector inZn

q rather than a single element ofZq as in Peder-
sen’s original commitment. A crucial feature of this generalization is that the amount
of communication it involves does not grow withn. The generalized scheme proceeds
as follows. The key generation algorithmKcom takes(q,Gq, g) as input and outputs a
commitment keyck := (g1, . . . , gn, h), whereg1, . . . , gn, h are randomly chosen gen-
erators ofGq. The message space isMck := Zn

q , the randomizer space isRck := Zq

and the commitment space isCck := Gq. (The parametern will be given as an addi-
tional input to all algorithms; however, we prefer to keep it implicit in the notation.)

To commit to ann-tuple (m1, . . . ,mn) ∈ Zn
q we pick randomnessr ← Zq and

compute the commitmentC := hr
∏n

i=1 g
mi
i . The commitment is perfectly hiding

since no matter what the messages are, the commitment is uniformly distributed inGq.
The commitment is computationally binding under the discrete logarithm assumption;
we will skip the simple proof.

The commitment keyck will be part of the common random string in our shuffle
argument. We remark that it can be sampled from a random string. We writeC :=
comck(m1, . . . ,mn; r) for making a commitment tom1, . . . ,mn using randomnessr.
The commitment scheme is homomorphic, i.e., for allm1,m

′
1, . . . ,mn,m

′
n, r, r

′ ∈ Zq

we have

comck(m1, . . . ,mn; r)·comck(m′
1, . . . ,m

′
n; r′) = comck(m1+m′

1, . . . ,mm+m′
n; r+r′).

In some cases we will commit to less thann elements; this can be accomplished quite
easily by setting the remaining messages to0.

We will always assume that parties check that commitments are valid, meaning
they check thatC ∈ Gq. If Gq is a subgroup ofZ∗

p this can be done by checking that
Cq = 1, however, batch verification techniques can be used to lower this cost when
we have multiple commitments to check.4 If Gq is an elliptic curve of orderq, then the
validity check just consists of checking thatC is a point on the curve, which is very
inexpensive.

4 See also [21] for a variant of the Pedersen commitment scheme overZ∗
p that makes it possible

to completely eliminate the cost of verifying validity.



2.4 ElGamal Encryption

ElGamal encryption [13] in the groupGq works as follows. The public key ispk :=
y = gx with a random secret keysk := x ← Z∗

q . The message space isMpk := Gq,
the randomizer space isRpk := Zq and the ciphertext space isCpk := Gq × Gq. To
encrypt a messagem ∈ Gq using randomnessR ∈ Zq we compute the ciphertext
Epk(m;R) := (gR, yRm). To decrypt a ciphertext(u, v) we computem = vu−x.

The semantic security of ElGamal encryption is equivalent to the DDH assumption.
Semantic security may be needed for the shuffle itself to be secure; however, the security
of our shuffle argument will rely on the discrete logarithm assumption only. In particu-
lar, our shuffle argument is still sound and zero-knowledge even if the cryptosystem is
insecure or the decryption key has been exposed.

ElGamal encryption is homomorphic with entry-wise multiplication in the cipher-
text space. For all(m,R), (m′, R′) ∈Mpk ×Rpk we have

Epk(mm′;R+R′) = (gR+R′
, yR+R′

mm′)

= (gR, yRm) · (gR′
, yR′

m′) = Epk(m;R) · Epk(m′;R′).

We will always assume that the ciphertexts in the shuffle are valid, i.e.,(u, v) ∈
Gq × Gq. Batch verification techniques can reduce the cost of verifying validity when
we have multiple ciphertexts. To further reduce the cost of ciphertext verification, Groth
[21] suggests a variant of ElGamal encryption that makes batch-checking ciphertext
validity faster. Our shuffle argument works also for this variant of ElGamal encryption.

Our shuffle argument works with many types of cryptosystems; the choice of El-
Gamal encryption is made mostly for notational convenience. Our technique can be
directly applied with any homomorphic cryptosystem that has a message space of order
q. We are neither restricted to using the same underlying group(q,Gq, g) as the com-
mitment scheme nor restricted to using ElGamal encryption or variants thereof. Using
techniques from [21] it is also possible to generalize the shuffle argument to work for
cryptosystems that do not have message spaces of orderq. This latter application does
require a few changes to the shuffle argument though and does increase the complexity
of the shuffle argument, but the resulting protocol still has the same sub-linear asymp-
totic complexity.

2.5 Special Honest Verifier Zero-Knowledge Arguments of Knowledge

We will assume there is a setup algorithmG that generates some setup information
gk. This setup information could for instance be a description of a group that we will
be working in. Consider a pair of probabilistic polynomial time interactive algorithms
(P, V ) called the prover and the verifier. They may have access to a common random
stringσ generated by a probabilistic polynomial time key generation algorithmK. We
consider a polynomial time decidable ternary relationR. For an elementx we callw a
witness if(gk, x, w) ∈ R. We define a corresponding group-dependent languageLgk

consisting of elementsx that have a witnessw such that(gk, x, w) ∈ R. We writetr←
〈P (x), V (y)〉 for the public transcript produced byP andV when interacting on inputs
x andy together with the randomness used byV . This transcript ends withV either



accepting or rejecting. We sometimes shorten the notation by saying〈P (x), V (y)〉 = b
if V ends by accepting,b = 1, or rejecting,b = 0.

Definition 1 (Argument). The triple(K,P, V ) is called anargumentfor relationR
with setupG if for all non-uniform polynomial time interactive adversariesA we have

Completeness:

Pr
[
gk ← G(1κ);σ ← K(gk); (x,w)← A(gk, σ) :

(gk, x, w) /∈ R or 〈P (gk, σ, x, w), V (gk, σ, x)〉 = 1
]
≈ 1.

Computational soundness:

Pr
[
gk ← G(1κ);σ ← K(gk);x← A(gk, σ) :

x /∈ Lgk and〈A, V (gk, σ, x)〉 = 1
]
≈ 0.

Definition 2 (Public coin argument).An argument(K,P, V ) is public coinif the ver-
ifier’s messages are chosen uniformly at random independently of the messages sent by
the prover and the setup parametersgk, σ.

We define special honest verifier zero-knowledge (SHVZK) [9] for a public coin
argument as the ability to simulate the transcript for any set of challenges without access
to the witness.

Definition 3 (Perfect special honest verifier zero-knowledge).The public coin ar-
gument(K,P, V ) is called a special honest verifier zero-knowledge argument forR
with setupG if there exists a probabilistic polynomial time simulatorS such that for all
non-uniform polynomial time adversariesA we have

Pr
[
gk ← G(1κ);σ ← K(gk); (x,w, ρ)← A(gk, σ);

tr← 〈P (gk, σ, x, w), V (gk, σ, x; ρ)〉 : (gk, x, w) ∈ R andA(tr) = 1
]

= Pr
[
gk ← G(1κ);σ ← K(gk); (x,w, ρ)← A(gk, σ);

tr← S(gk, σ, x, ρ) : (gk, x, w) ∈ R andA(tr) = 1
]
.

We remark that there are efficient techniques to convert SHVZK arguments into
zero-knowledge arguments for arbitrary verifiers in the common random string model
[10, 18, 22]. In this paper, we will therefore for simplicity focus just on the special
honest verifier zero-knowledge case.

WITNESS-EXTENDED EMULATION. We shall define an argument of knowledge5

through witness-extended emulation, the name taken from Lindell [28]. Whereas Lin-
dell’s definition pertains to proofs of knowledge in the plain model, we will adapt his

5 The standard definition ofproofsof knowledge by Bellare and Goldreich [5] does not apply in
our setting, since we work in the common random string model and are interested inarguments
of knowledge. See Damgård and Fujisaki [11] for a discussion of this issue.



definition to the setting of public coin arguments in the common random string model.
Informally, our definition says: given an adversary that produces an acceptable argu-
ment with probabilityε, there exists an emulator that produces a similar argument with
probabilityε, but at the same time provides a witness.

Definition 4 (Witness-extended emulation). We say the public coin argument
(K,P, V ) has witness-extended emulation if for all deterministic polynomial timeP ∗

there exists an expected polynomial time emulatorE such that for all non-uniform poly-
nomial time adversariesA we have

Pr
[
gk ← G(1κ);σ ← K(gk); (x, s)← A(gk, σ);

tr← 〈P ∗(gk, σ, x, s), V (gk, σ, x)〉 : A(tr) = 1
]

≈ Pr
[
gk ← G(1κ);σ ← K(gk); (x, s)← A(gk, σ);

(tr, w)← E〈P∗(gk,σ,x,s),V (gk,σ,x)〉(gk, σ, x) :

A(tr) = 1 and if tr is accepting then(gk, x, w) ∈ R
]
,

whereE has access to a transcript oracle〈P ∗(gk, σ, x, s), V (gk, σ, x)〉 that can be
rewound to a particular round and run again with the verifier using fresh randomness.

We think of s as being the state ofP ∗, including the randomness. Then we have an
argument of knowledge in the sense that the emulator can extract a witness wheneverP ∗

is able to make a convincing argument. This shows that the definition implies soundness.
We remark that the verifier’s randomness is part of the transcript and the prover is
deterministic. So combining the emulated transcript withgk, σ, x, s gives us the view
of both the prover and the verifier and at the same time gives us the witness.

Damg̊ard and Fujisaki [11] have suggested an alternative definition of an argument
of knowledge in the presence of a common random string. Witness-extended emulation
as defined above implies knowledge soundness as defined by them [22].

THE FIAT-SHAMIR HEURISTIC. The Fiat-Shamir heuristic [14] can be used to make
public coin SHVZK arguments non-interactive. In the Fiat-Shamir heuristic the veri-
fier’s challenges are computed by applying a cryptographic hash-function to the tran-
script of the protocol. Security can be formally argued in the random oracle model [6],
in which the hash-function is modeled as a completely random function that returns
a random string on each input it has not been queried before. While the Fiat-Shamir
heuristic is not sound in general [19], it is still commonly believed to be a safe practice
when applied to “natural” protocols.

2.6 Problem Specification and Setup

We will construct a 7-move public coin perfect SHVZK argument for the relation

R =
{

(gk = (q,Gq, g), (pk = y, e1, . . . , eN , E1, . . . , EN ), (π,R1, . . . , RN ))
∣∣∣

y ∈ Gq ∧ π ∈ ΣN ∧R1, . . . , RN ∈ Rpk ∧ ∀i : Ei = eπ−1(i)Epk(1;Ri)
}
.



In our SHVZK argument, the common random stringσ will be generated as a pub-
lic key (g1, . . . , gn, h) for the n-element Pedersen commitment scheme described in
Section 2.3. Depending on the applications, there are many possible choices for who
generates the commitment key and how this generation is done. For use in a mix-net,
we could for instance imagine that there is a setup phase, where the mix-servers run a
multi-party computation protocol to generate the setup and the commitment key. An-
other option is to let the verifier generate the common random string, since it is easy to
verify whether a commitment key is valid or not. This option yields an 8-move (honest-
verifier zero-knowledge) argument in the plain model.6

2.7 Polynomial Identity Testing

For completeness we state a variation of the well-known Schwartz-Zippel lemma that
we use several times in the paper.

Lemma 1 (Schwartz-Zippel).Letp be a non-zero multivariate polynomial of degreed
overZq, then the probability ofp(x1, . . . , xν) = 0 for randomly chosenx1, . . . , xν ←
Zq is at mostd/q.

The Schwartz-Zippel lemma is frequently used in polynomial identity testing. Given
two multi-variate polynomialsp1 and p2 we can test whetherp1(x1, . . . , xν) −
p2(x1, . . . , xν) = 0 for randomx1, . . . , xν ← Zq. If the two polynomials are iden-
tical this will always be true, whereas if the two polynomials are different then there is
only probabilitymax(d1, d2)/q for the equality to hold.

3 Product of Committed Elements

Consider a sequence of commitmentsA1, . . . , Am and a valuea ∈ Zq. We will give an
SHVZK argument of knowledge of{aij}m,n

i=1,j=1 and{ri}mi=1 such that

A1 = comck(a11 , a12 , . . . , a1n ; r1)
...

Am = comck(am1 , am2 , . . . , amn ; rm)
and a =

m∏
i=1

n∏
j=1

aij mod q.

The argument is of sub-linear size; the prover will sendm2 commitments and2n el-
ements fromZq, whereN = mn is the total number of committed elementsaij . For
m = N1/3 this gives a size ofO(N2/3)κ bits.

6 We can also get full zero-knowledge in the plain model. The verifier picks the common random
string as above and also picks an additional key for a trapdoor commitment scheme. The
verifier then makes engages in a zero-knowledge proof of knowledge of the trapdoor. We can
now use the standard techniques for converting honest verifier zero-knowledge arguments to
full zero-knowledge arguments [10, 18, 22]. By running the two proofs in parallel, the round
complexity is only 8. Note, however, that since the verifier must know the secret trapdoor of
the additional commitment scheme, the protocol is no longer public coin.



The argument is quite complex so let us first describe some of the ideas that go
into it. In our argument, the prover will prove knowledge of the contents of the com-
mitments. For the sake of simplicity we will first describe the argument assuming the
prover knows the contents of the commitments and by the computational binding prop-
erty of the commitment scheme is bound to these values. We will also for the sake of
simplicity just focus on soundness and later when giving the full protocol add extra parts
that will give us honest verifier zero-knowledge and witness-extended emulation. (Note
that even completeness and soundness alone are nontrivial to achieve when considering
sublinear communicationarguments.)

Consider first commitmentsA1, . . . , Am as described above. The verifier will pick
a random challenges1, . . . , sm. By the homomorphic property

m∏
i=1

Asi
i = comck(

m∑
i=1

siai1, . . . ,
m∑

i=1

siain;
m∑

i=1

siri).

In our argument the prover will open this commitment multi-exponentiation asf1 :=∑m
i=1 siai1, . . . , fn :=

∑m
i=1 siain, z :=

∑m
i=1 siri.

Consider now the case where we have three sets of commitments
{Ai}mi=1, {B`}m`=1, {Ci`}m,m

i=1,`=1 containing respectively m × n matrices
A,B and m2 × n matrix C. The verifier will choose random challenges
s1, . . . , sm, t1, . . . , tm ← Zq. The prover can open the commitment products∏m

i=1A
si
i ,
∏m

`=1B
t`

` ,
∏m

i=1

∏m
`=1 C

sit`

i` as described above. This gives us for each of
then columns

fj :=
m∑

i=1

siaij , Fj :=
m∑

`=1

t`b`j , φj :=
m∑

i=1

m∑
`=1

sit`ci`j .

In our proofs the verifier will check for each column thatφj = fjFj . These checks can
be seen as quadratic equations in variabless1, . . . , sm, t1, . . . , tm of the form

(
m∑

i=1

siaij)(
m∑

`=1

t`b`j) =
m∑

i=1

m∑
`=1

sit`ci`j .

If ci`j = aijb`j for all i, `, j the check will always pass, whereas if this is not the case,
then by the Schwartz-Zippel lemma there is overwhelming probability over the choice
of s1, . . . , sm, t1, . . . , tm that the check will fail. (This type of checking is also used in
the Hadamard-based PCP of Arora et al. [3].) We therefore have an argument forCii

being a commitment to{aijbij}nj=1. The commitmentsCi` for i 6= ` are just fillers that
make the argument work, we will not need them for anything else. In the argument we
only revealO(n) elements inZq to simultaneously proveN = mn equalitiesciij =
aijbij ; this is what will give us sub-linear communication complexity.

Let us now explain how we choose the matrixB. For 1 ≤ I ≤ m, 1 ≤ J ≤ n
we setbIJ :=

∏I−1
i=1

∏n
j=1 aij ·

∏J
j=1 aIj . This means thatB is a matrix chosen

such thatbij is the previous element in the matrixB multiplied with aij . In particular,
we havebmn =

∏m
i=1

∏n
j=1 aij = a. In addition, we will have an extra column with

b10 := 1 and for1 < i ≤ m : bi0 := bi−1,n. In other words, the0th column vector



is thenth column vector ofB shifted one step down. The prover will make a separate
set ofm commitmentsB′

1, . . . , B
′
m to this column. ChoosingB′

1 := comck(1; 0) it
is straightforward to verify thatb10 = 1. To show that the rest of the0th column is
correctly constructed the prover will open

∏m−1
`=2 (B′

`)
t`−1 to the messageFn−tma. The

linear equations give us
∑m−1

`=2 t`−1b`0 + tma =
∑m

`=1 t`b`n, which by the Schwartz-
Zippel lemma has negligible probability of being true unlessbmn = a andb`+1,0 = b`n
for 1 ≤ ` < m.

We have now describedB extended with a0th column vector. WritẽB for the matrix
with the0th column and the firstn−1 columns ofB. We will apply theA,B,C matrix
argument we described before to the matricesA, B̃, C, where we use commitments
Cii := Bi. This argument demonstrates for each1 ≤ j ≤ n that bij = aijbi,j−1.
Putting everything together we now have:b10 = 1, bij = aijbi,j−1, bi0 = bi−1,n and
bmn = a, which is sufficient to conclude thata =

∏m
i=1

∏n
j=1 aij .

We will now describe the full protocol. The most significant change from the de-
scription given above is that we now add also elementsa0j , b0j that are chosen at
random to the matrices. The role of these elements is to give honest verifier zero-
knowledge. The prover reveals elements of the formfj := a0j +

∑m
i=1 siaij and

Fj := b0j +
∑m

`=1 t`b`j , which reveal nothing about
∑m

i=1 siaij and
∑m

`=1 t`b`j when
a0j andb0j are random.

Initial message:
a01, . . . , a0n ← Zq ; r0 ← Rck ; A0 := comck(a01, a02, . . . , a0n; r0)
For1 ≤ I ≤ m, 1 ≤ J ≤ n : bIJ :=

∏I−1
i=1

∏n
j=1 aij ·

∏J
j=1 aIj

b01, . . . , b0n ← Zq ; rb0, rb1 . . . , rbm ← Rck

B0 := comck(b01 , b02, , . . . , b0n ; rb0)
B1 := comck(b11 , b12 , . . . , b1n ; rb1)

...
Bm := comck(bm1 , bm2 , . . . , bmn ; rbm)

Defineb10 := 1, b20 := b1n, . . . , bm0 := bm−1,n

r′2, . . . , r
′
m ← Rck ; B′

2 := comck(b20; r′2), . . . , B
′
m := comck(bm0; r′m)

b00 ← Zq ; r′0 ← Rck ; B′
0 := comck(b00; r′0)

r̂ ← Rck ; B̂ := comck(b0n; r̂)
For0 ≤ i, ` ≤ m : ri` ← Rck and for1 ≤ i ≤ m : rii := rbi.
For0 ≤ i, ` ≤ m :

Ci` := comck(ai1b`0, . . . , ainb`,n−1; ri`)

Sincebij = aijbi,j−1 andrii = rbi we have for1 ≤ i ≤ m thatCii = Bi.
Send(A0, B0, B

′
0, B

′
2, . . . , B

′
m, B̂, C00, . . . , Cmm) to the verifier

Challenge: s1, . . . , sm, t1, . . . , tm ← Zq

Answer:
For 1 ≤ j ≤ n : fj := a0j +

∑m
i=1 siaij ; Fj := b0j +

∑m
`=1 t`b`j ; F0 :=

b00 +
∑m

`=1 t`b`0



z := r0 +
∑m

i=1 siri ; zb := rb0 +
∑m

`=1 t`rb` ; z′ := r′0 +
∑m

`=2 t`r
′
` ; ẑ :=

r̂ +
∑m

`=2 t`−1r
′
`

zab := r00 +
∑m

i=1 siri0 +
∑m

`=1 t`r0` +
∑m

i=1

∑m
`=1 sit`ri`

Send(f1, . . . , fn, F0, . . . , Fn, z, zb, z
′, ẑ, zab) to the verifier

Verification:
CheckA0

∏m
i=1A

si
i = comck(f1, . . . , fn; z)

For1 ≤ ` ≤ m setB` := c``. CheckB0

∏m
`=1B

t`

` = comck(F1, . . . , Fn; zb)
SetB′

1 := comck(1; 0). CheckB′
0

∏m
`=1(B

′
`)

t` = comck(F0; z′).
CheckB̂

∏m
`=2(B

′
`)

t`−1 = comck(Fn − tma; ẑ)
Check

C00 ·
m∏

i=1

Csi
i0 ·

m∏
`=1

Ct`

0` ·
m∏

i=1

m∏
`=1

Csit`

i` = comck(f1F0, . . . , fnFn−1; zab)

Theorem 1. The protocol described above is a 3-move public-coin perfect SHVZK ar-
gument of knowledge ofaij andri such thata =

∏m
i=1

∏n
j=1 aij and for all i we have

Ai = comck(ai1, . . . , ain; ri).

The proof can be found in the full paper [23].

4 Committed Permutation of Known Elements

Consider a vector of commitmentsB1, . . . , Bm and a set of values{aij}m,n
i=1,j=1. In this

section we will give an argument of knowledge ofπ ∈ ΣN and{ri}mi=1 such that:

B1 = comck(aπ−1(11) , aπ−1(12) , . . . , aπ−1(1n) ; r1)
...

Bm = comck(aπ−1(m1) , aπ−1(m2) , . . . , aπ−1(mn) ; rm)

(Here we identify[N ] with [m]× [n].)
Our argument uses Neff’s idea [30], which is to let the verifier pick a valuex at

random and let the prover argue that the committed valuesbij satisfy
∏m

i=1

∏n
j=1(x−

bij) =
∏m

i=1

∏n
j=1(x−aij). If the committedbij are a permutation ofaij this equation

holds, since polynomials are invariant under permutation of their roots. On the other
hand, ifbij are not a permutation ofaij , then by the Schwartz-Zippel lemma there is
negligible chance over the choice ofx for the equality to hold.

Initial challenge: x← Zq

Answer: DefineB′
1 := comck(x, . . . , x; 0)B−1

1 , . . . , B′
m := comck(x, . . . , x; 0)B−1

m

anda :=
∏m

i=1

∏n
j=1(x− aij).

Make a 3-move argument of knowledge of openings ofB′
1, . . . , B

′
m such that the

product of all the entries isa.

Theorem 2. The protocol is a 4-move public coin perfect SHVZK argument of knowl-
edge ofaij , ri, π such thatBi := comck(aπ−1(i1), . . . , aπ−1(in); ri).

We refer to the full paper [23] for a proof.



5 Multi-exponentiation to Committed Exponents

Consider a set of commitmentsA1, . . . , Am, a matrix of ciphertextsE11, . . . , Emn and
a ciphertextE. In this section we will give an argument of knowledge of{aij}m,n

i=1,j=1,
{ri}mi=1 andR such that:

A1 = comck(a11 , a12 , . . . , a1n ; r1)
...

Am = comck(am1 , am2 , . . . , amn ; rm)
and E = Epk(1;R)

m∏
i=1

n∏
j=1

E
aij

ij .

The argument will containm2 commitments,m2 ciphertexts andn elements inZq,
whereN = mn. Choosingm = N1/3 gives a communication complexity ofO(N2/3)κ
bits.

When describing the idea, let us first just consider how to get soundness and ig-
nore the issue of zero-knowledge for a moment. In the argument, the prover will prove
knowledge of the committed exponents, so let us from now on assume the committed
values are well-defined. The prover can computem2 ciphertexts

Di` =
n∏

j=1

E
aij

`j .

We haveE = Epk(1;R)
∏m

i=1Dii = Epk(1;R)
∏m

i=1

∏n
j=1E

aij

ij . IgnoringR that
can be dealt with using standard zero-knowledge techniques all that remains is for the
verifier to be convincedDi` have been correctly computed. For this purpose the verifier
will select challengest1, . . . , tm ← Zq at random. The prover will open

∏m
i=1A

ti
i to the

valuesf1 :=
∑m

i=1 tiai1, . . . , fn :=
∑m

i=1 tiain. The verifier now checks for each1 ≤
` ≤ m that

∏n
j=1E

fj

`j =
∏m

i=1D
ti

i`. Writing this out we have
∏m

i=1(
∏n

j=1E
aij

`j )ti =∏m
i=1D

ti

i`. Sinceti are chosen at random, there is overwhelming probability for one of
these checks to fail unless for alli, ` we haveDi` =

∏n
j=1E

aij

`j .
In the argument, we wish to have honest verifier zero-knowledge. We will there-

fore multiply theDi` ciphertexts with random encryptions to avoid leaking information
about the exponents. This, however, makes it possible to encrypt anything inDi`, so
to avoid cheating we commit to the plaintexts of those random encryptions and use the
commitments to prove that they all cancel out against each other.

Initial message:
a01, . . . , a0n ← Zq ; r0 ← Rck ; A0 = comck(a01, a02, . . . , a0n; r0)
b01, . . . , bmm ← Zq ; r01, . . . , rmm ← Rck ; bmm := −

∑m−1
i=1 bii ; rmm :=

−
∑m−1

i=1 rii

C01 := comck(b01; r01) . . . C0m := comck(b0m; r0m)
...

...
Cm1 := comck(bm1; rm1) . . . Cmm := comck(bmm; rmm)



R01, . . . , Rmm ← Rpk ;Rmm := R−
∑m−1

i=1 Rii

D01 := Epk(gb01 ;R01)
∏n

j=1E
a0j

1j · · · D0m := Epk(gb0m ;R0m)
∏n

j=1E
a0j

mj
...

...
Dm1 := Epk(gbm1 ;Rm1)

∏n
j=1E

amj

1j · · · Dmm := Epk(gbmm ;Rmm)
∏n

j=1E
amj

mj

Send(A0, C01, . . . , Cmm, D01, . . . , Dmm) to the verifier
Challenge: t1, . . . , tm ← Zq

Answer:
For1 ≤ j ≤ n : fj := a0j +

∑m
i=1 tiaij ; z := r0 +

∑m
i=1 tiri

For 1 ≤ ` ≤ m : F` := b0` +
∑m

i=1 tibi` ; z` := r0` +
∑m

i=1 tiri` ; Z` :=
R0` +

∑m
i=1 tiRi`

Send(f1, . . . , fn, F1, . . . , Fm, z, z1, . . . , zm, Z1, . . . , Zm) to the verifier
Verification:

CheckA0

∏m
i=1A

ti
i = comck(f1, . . . , fn; z)

For1 ≤ ` ≤ m check

C0`

m∏
i=1

Cti

i` = comck(F`; z`) and Epk(gF` ;Z`)
n∏

j=1

E
fj

`j = D0`

m∏
i=1

Dti

i`

Check
∏m

i=1 Cii = comck(0; 0)
CheckE =

∏m
i=1Dii

Theorem 3. The protocol above is a 3-move public coin perfect SHVZK argument of
knowledge ofa11, . . . , amn, r1, . . . , rm, R so E = Epk(1;R)

∏m
i=1

∏n
j=1E

aij

ij and
Ai = comck(ai1, . . . , ain; ri).

We refer to the full paper [23] for the proof.

6 Shuffle Argument

Given ciphertexts{eij}m,n
i=1,j=1 and {Eij}m,n

i=1,j=1 we will give an argument of
knowledge ofπ ∈ ΣN and {Rij}m,n

i=1,j=1 such that for alli, j we haveEij =
eπ−1(ij)Epk(1;Rij). The most expensive components of the argument will be a prod-
uct of committed elements argument and a multi-exponentiation to committed elements
argument described in the previous sections. The total size of the argument is therefore
O(m2 + n)κ bits, whereN = mn. With m = N1/3 this gives an argument of size
O(N2/3)κ bits.

The argument proceeds in seven steps. First the prover commits to the permutation
π, by making a commitment to1, . . . , N in permuted order. Then the verifier picks
challengess1, . . . , sm, t1, . . . , tn at random. The prover commits to the challengessitj
in permuted order. The prover now proves that she has committed tositj permuted in
the same order as the permutation committed to in the initial commitment. The point of
the argument is that since the permutation is committed before seeing the challenges, the
prover has no choice in creating the commitment, the random challenges have already
been assigned unique slots in the commitment.



The other part of the argument is to use the committed exponentiation technique to
show that

∏m
i=1

∏n
j=1 e

sitj

ij = Epk(1;R)
∏m

i=1

∏n
j=1E

sitj

π(ij) for some knownR. If we

look at the plaintext, this implies
∏m

i=1

∏n
j=1m

sitj

ij =
∏m

i=1

∏n
j=1M

sitj

π(ij). With the
permutation fixed before the challenges are chosen at random there is overwhelming
probability that the argument fails unless for alli, j we haveMij = mπ−1(ij).

Initial message: The prover setsaπ(ij) := m(i − 1) + j. The prover picks
ra1, . . . , ram ← Rck and sets

A1 := comck(a11 , a12 , . . . , a1n ; ra1)
...

Am := comck(am1 , am2 , . . . , amn ; ram)

First challenge: s1, . . . , sm, t1, . . . , tn ← Zq

First answer: We definebπ(ij) := sitj . The prover picksrb1, . . . , rbn ← Rck and sets

B1 := comck(b11 , b12 , . . . , b1n ; rb1)
...

Bm := comck(bm1 , bm2 , . . . , bmn ; rbm)

Second challenge:λ← Zq

Answer: Make a 4-move argument of knowledge ofπ ∈ ΣN and openings of
Aλ

1B1, . . . , A
λ
mBm so they contain a permutation of theN valuesλ(m(i − 1) +

j) + sitj . Observe, the first move of this argument can be made in parallel with the
second challenge so we only use three additional moves.
Make a 3-move argument of knowledge ofbij , rbi, R so

B1 = comck(b11 , b12 , . . . , b1n ; rb1)
...

Bm = comck(bm1 , bm2 , . . . , bmn ; rbm)

and
m∏

i=1

n∏
j=1

e
sitj

ij = Epk(1;R)
m∏

i=1

n∏
j=1

E
bij

ij .

Theorem 4. The protocol is a 7-move public coin perfect SHVZK argument of knowl-
edge ofπ ∈ Σ andRij ∈ Rpk soEij = eπ−1(ij)Epk(1;Rij).

We refer to the full paper [23] for the proof.

7 Efficient Verification

The small size of the argument gives a corresponding low cost of verification. There are,
however,2N ciphertexts that we must exponentiate in the verification. In this section
we show that the verifier computation can be reduced to making multi-exponentiations
of the ciphertexts to small exponents.



7.1 Prover-Assisted Multi-exponentiation

In our shuffle argument, the verifier has to compute
m∏

i=1

n∏
j=1

e
sitj

ij .

The prover can assist this computation by computingD1, . . . , Dn asDj :=
∏m

i=1 e
si
ij .

The verifier can then compute
m∏

i=1

n∏
j=1

e
sitj

ij =
m∏

j=1

D
tj

j .

What remains is for the verifier to check that the ciphertexts are correct, which can be
done by verifying

n∏
j=1

D
αj

j =
m∏

i=1

(
n∏

j=1

e
αj

ij )si

for randomly chosenαj . Since the check is done off-line, the verifier can use small ex-
ponentsαj , say,32-bit exponents. This trick reduces the amount of verifier computation
that is needed for computing

∏m
i=1

∏n
i=1 e

sitj

ij to onem-exponentiation to exponents
from Zq andm+ 1 n-exponentiations to small exponents.

Whenm is small, this strategy may actually end up increasing the communication
complexity of the shuffle. However, the exact same method can be employed when we
let the verifier compute thetj-values as products then products ofψ1, . . . , ψn1 and
τ1, . . . , τn2 wheren = n1n2. If we choosen2 =

√
N for instance, we get that the

prover only sends
√
N ciphertexts to the verifier. The verifier then makes

√
N -multi-

exponentiations to small exponentsα1, . . . , α√N .

7.2 Randomized Verification

In the argument for multi-exponentiation to committed exponents, the verifier must
checkm equalities of the form

Epk(gF` ;Z`)
n∏

j=1

E
fj

`j = D0`

m∏
i=1

Dti

i`.

This can be done off-line in a randomized way by pickingα1, . . . , αm at random and
testing whether

Epk(g
∑m

`=1 α`F` ;
m∑

`=1

α`Z`)
n∏

j=1

(
m∏

`=1

Eα`

`j

)fj

=
m∏

`=1

Epk(gF` ;Z`)
n∏

j=1

E
fj

`j

α`

=
m∏

`=1

Dα`

0`

m∏
i=1

(
m∏

`=1

Dα`

i`

)ti

.

This way, we maken m-multi-exponentiations to small exponentsα` and onen-multi-
exponentiation to larger exponentsfj .



8 Comparison

Let us compare our shuffle argument with the most efficient arguments for correctness
of a shuffle of ElGamal ciphertexts in the literature. Furukawa and Sako [17] suggested
an efficient argument for correctness of a shuffle based on committing to a permutation
matrix. This scheme was further refined by Furukawa [15]. We will use Groth and
Lu’s [24] estimates for the complexity of Furukawa’s scheme. Neff [30, 31] gave an
efficient interactive proof for correctness of a shuffle. Building on those ideas Groth
[21] suggested a perfect SHVZK argument for correctness of a shuffle. Our shuffle
argument builds on Neff’s and Groth’s schemes.

We will compare the schemes using an elliptic curve of prime orderq. We use
|q| = 256 so SHA256 can be used to choose the public coin challenges. We measure
the communication complexity in bits and measure the prover and verifier computation
in single exponentiations. By this we mean that in all schemes, we count the cost of a
multi-exponentiation ton exponents asn single exponentiations. We compare the most
efficient shuffle arguments in Table 1. Section 7 offer a couple of speedup techniques.

Elliptic curve Furukawa-SakoGroth Furukawaproposed
Group order:|q| = 256 [17] [21] [15, 24]
Prover (single expo.) 8N 6N 7N 3mN + 5N
Verifier (single expo.) 10N 6N 8N 4N + 3n
Prover’s communication (bits)1280N 768N 768N 768m2 + 768n
Rounds 3 7 3 7

Table 1.Comparison of shuffle arguments forN = mn ElGamal ciphertexts.

If we employ the randomization techniques from Section 7 then the prover’s cost in-
creases by2N exponentiations, whereas the verifier’s complexity reduces to4N small
exponentiations andm2 + 3n exponentiations to full size exponents fromZq.

For all schemes it holds that multi-exponentiation techniques can reduce their cost,
see e.g. Lim [27]. We refer to the full paper of Groth [21] for a discussion of random-
ization techniques and other tricks that can be used to reduce the computational com-
plexity of all the shuffle arguments. An additional improvement of our scheme is to let
the prover assist the verifier in computing the multi-exponentiation

∏m
i=1

∏n
j=1 e

sitj

ij ,
see Section 7. Table 2 has back-of-the-envelope estimates when we compare an op-
timized version of our scheme to that of Groth [21]. We assume that we are shuffling
N = 100, 000 ElGamal ciphertexts with parametersm = 10, n = 10, 000 soN = mn.
We count the computational cost in the number of multiplications. In parenthesis we
are giving timing estimates assuming the use of equipment where a multiplication takes
1µs, which is conservative given today’s equipment. We only count the cost of the shuf-
fle argument in Table 2, not the cost of computing the shuffle or the size of the shuffle
(51 Mbits).



Groth [21] proposed
Prover’s computation 18 · 106 mults (18 sec.)143 · 106 mults (143 sec.)
Verifier’s computation 14 · 106 mults (14 sec.) 5 · 106 mults ( 5 sec.)
Prover’s communication77 Mbits 8 Mbits

Table 2.Comparison of shuffle arguments for100, 000 ElGamal ciphertexts.
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