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Abstract. We describe efficient formulas for computing pairings on or-
dinary elliptic curves over prime fields. First, we generalize lazy reduction
techniques, previously considered only for arithmetic in quadratic exten-
sions, to the whole pairing computation, including towering and curve
arithmetic. Second, we introduce a new compressed squaring formula for
cyclotomic subgroups and a new technique to avoid performing an in-
version in the final exponentiation when the curve is parameterized by a
negative integer. The techniques are illustrated in the context of pairing
computation over Barreto-Naehrig curves, where they have a particu-
larly efficient realization, and are also combined with other important
developments in the recent literature. The resulting formulas reduce the
number of required operations and, consequently, execution time, im-
proving on the state-of-the-art performance of cryptographic pairings by
28%-34% on several popular 64-bit computing platforms. In particular,
our techniques allow to compute a pairing under 2 million cycles for the
first time on such architectures.

Key words: Efficient software implementation, explicit formulas, bilin-
ear pairings.

1 Introduction

The performance of pairing computation has received increasing interest in the
research community, mainly because Pairing-Based Cryptography enables ef-
ficient and elegant solutions to several longstanding problems in cryptography
such as Identity-Based Encryption [1,2], powerful non-interactive zero-knowledge
proof systems [3] and communication-efficient multi-party key agreements [4].
Recently, dramatic improvements over the figure of 10 million cycles presented
in [5] made possible to compute a pairing at the 128-bit security level in 4.38
million cycles [6] when using high-speed vector floating-point operations, and
? This work was completed while these authors were at the University of Waterloo.



2.33 million cycles [7] when the fastest integer multiplier available in Intel 64-bit
architectures is employed.

This work revisits the problem of efficiently computing pairings over large-
characteristic fields and improves the state-of-the-art performance of crypto-
graphic pairings by a significant margin. First of all, it builds on the latest
advancements proposed by several authors:

– The Optimal Ate pairing [8] computed entirely on twists [9] with simpli-
fied final line evaluations [6] over a recently-introduced subclass [10] of the
Barreto-Naehrig (BN) family of pairing-friendly elliptic curves [11].

– The implementation techniques described by [7] for accelerating quadratic
extension field arithmetic, showing how to reduce expensive carry handling
and function call overheads.

On the other hand, the following new techniques are introduced:

– The notion of lazy reduction, usually applied for arithmetic in quadratic
extensions in the context of pairings, as discussed in [12], is generalized to
the towering and curve arithmetic performed in the pairing computation.
In a sense, this follows a direction opposite to the one taken by other au-
thors. Instead of trying to encode arithmetic so that modular reductions are
faster [13,6], we insist on Montgomery reduction and focus our efforts on re-
ducing the need of computing reductions. Moreover, for dealing with costly
higher-precision additions inserted by lazy reduction, we develop a flexible
methodology that keeps intermediate values under Montgomery reduction
boundaries and maximizes the use of operations without carry checks. The
traditional operation count model is also augmented to take into account
modular reductions individually.

– Formulas for point doubling and point addition in Jacobian and homoge-
neous coordinates are carefully optimized by eliminating several commonly
neglected operations that are not inexpensive on modern 64-bit platforms.

– The computation of the final exponentiation is improved with a new set of
formulas for compressed squaring and efficient decompression in cyclotomic
subgroups, and an arithmetic trick to remove a significant penalty incurred
when computing pairings over curves parameterized by negative integers.

The described techniques produce significant savings, allowing our illustrative
software implementation to compute a pairing under 2 million cycles and improve
the state-of-the-art timings by 28%-34% on several different 64-bit computing
platforms. Even though the techniques are applied on pairings over BN curves
at the 128-bit security level, they can be easily extended to other settings using
different curves and higher security levels [14].

This paper is organized as follows. Section 2 gives an overview of Miller’s
Algorithm when employed for computing the Optimal Ate pairing over Barreto-
Naehrig curves. Section 3 presents the generalized lazy reduction technique and
its application to the improvement of towering arithmetic performance. Different
optimizations to curve arithmetic, including the application of lazy reduction,
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are discussed in Section 4. Section 5 describes our improvements on the final
exponentiation. Section 6 summarizes operation counts and Section 7 describes
our high-speed software implementation and comparison of results with the pre-
viously fastest implementation in the literature. Section 8 concludes the paper.

2 Preliminaries

An admissible bilinear pairing is a non-degenerate efficiently-computable map
e : G1 ×G2 → GT , where G1 and G2 are additive groups of points in an elliptic
curve E and GT is a subgroup of the multiplicative group of a finite field. The
core property of map e is linearity in both arguments, allowing the construction
of novel cryptographic schemes with security relying on the hardness of the
Discrete Logarithm Problem in G1,G2 and GT .

Barreto and Naehrig [11] described a parameterized family of elliptic curves
Eb : y

2 = x3+b, b 6= 0 over a prime field Fp, p = 36u4+36u3+24u2+6u+1, with
prime order n = 36u4+36u3+18u2+6u+1, where u ∈ Z is an arbitrary integer.
This family is rather large and easy to generate [10], providing a multitude
of parameter choices; and, having embedding degree k = 12, is well-suited for
computing asymmetric pairings at the 128-bit security level [12]. It admits several
optimal derivations [8] of different variants of the Ate pairing [15] such as R-
ate [16], Optimal Ate [8] and χ-ate [17].

Let E[n] be the subgroup of n-torsion points of E and E′ : y2 = x3 +
b/ξ be a sextic twist of E with ξ not a cube nor a square in Fp2 . For the
clear benefit of direct benchmarking, but also pointing that performance among
variants is roughly the same, we restrict the discussion to computing the Optimal
Ate pairing defined as in [6]:

aopt : G2 ×G1 → GT

(Q,P )→ (fr,Q(P ) · l[r]Q,πp(Q)(P ) · l[r]Q+πp(Q),−π2
p(Q)(P ))

p12−1
n ,

where r = 6u + 2 ∈ Z; the map πp : E → E is the Frobenius endomorphism
πp(x, y) = (xp, yp); groups G1,G2 are determined by the eigenspaces of πp as
G1 = E[n] ∩ Ker(πp − [1]) = E(Fp)[n] and G2 as the preimage E′(Fp2)[n] of
E[n] ∩ Ker(πp − [p]) ⊆ E(Fp12)[n] under the twisting isomorphism ψ : E′ → E;
the group GT is the subgroup of n-th roots of unity µn ⊂ F∗p12 ; fr,Q(P ) is
a normalized function with divisor (fr,Q) = r(Q) − ([r]Q) − (r − 1)(O) and
lQ1,Q2

(P ) is the line arising in the addition of Q1 and Q2 evaluated at point P .
Miller [18,19] proposed an algorithm that constructs fr,P in stages by using a

double-and-add method. When generalizing the denominator-free version [20] of
Miller’s Algorithm for computing the pairing aopt with the set of implementation-
friendly parameters suggested by [10] at the 128-bit security level, we obtain
Algorithm 1. For the BN curve we have E : y2 = x3+2, u = −(262+255+1) < 0.
In order to accommodate the negative r (line 9 in Algorithm 1), it is required
to compute a cheap negation in G2 to make the final accumulator T the result
of [−|r|]Q, and an expensive inversion in the big field GT to obtain the correct
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pairing value f−|r|,Q(P ) = (f|r|,Q(P ))
−1, instead of the value f|r|,Q(P ) produced

at the end of the algorithm. The expensive inversion will be handled later at
Section 5 with the help of the final exponentiation.

Algorithm 1 Optimal Ate pairing on BN curves (generalized for u < 0).

Input: P ∈ G1, Q ∈ G2, r = |6u+ 2| =
∑log2(r)

i=0 ri2
i

Output: aopt(Q,P )

1: T ← Q, f ← 1
2: for i = blog2(r)c − 1 downto 0 do
3: f ← f2 · lT,T (P ), T ← 2T
4: if ri = 1 then
5: f ← f · lT,Q(P ), T ← T +Q
6: end for
7: Q1 ← πp(Q), Q2 ← π2

p(Q)
8: if u < 0 then
9: T ← −T, f ← f−1

10: end if
11: f ← f · lT,Q1(P ), T ← T +Q1

12: f ← f · lT,−Q2(P ), T ← T −Q2

13: f ← f (p12−1)/n

14: return f

3 Tower Extension Field Arithmetic

Miller’s Algorithm [18,19] employs arithmetic in Fp12 during the accumulation
steps (lines 3,5,11-12 in Algorithm 1) and at the final exponentiation (line 13
in the same algorithm). Hence, to achieve a high-performance implementation
of pairings it is crucial to perform arithmetic over extension fields efficiently. In
particular, it has been recommended in [21] to represent Fpk with a tower of
extensions using irreducible binomials. Accordingly, in our targeted setting we
represent Fp12 using the flexible towering scheme used in [22,5,7,10] combined
with the parameters suggested by [10]:

– Fp2 = Fp[i]/(i2 − β), where β = −1.
– Fp4 = Fp2 [s]/(s2 − ξ), where ξ = 1 + i.
– Fp6 = Fp2 [v]/(v3 − ξ), where ξ = 1 + i.
– Fp12 = Fp4 [t]/(t3 − s) or Fp6 [w]/(w2 − v).

It is possible to convert from one towering Fp2 → Fp6 → Fp12 to the other
Fp2 → Fp4 → Fp12 by simply permuting the order of coefficients. The choice
p ≡ 3 (mod 4) accelerates arithmetic in Fp2 , since multiplications by β = −1
can be computed as simple subtractions [10].

3.1 Lazy Reduction for Tower Fields

The concept of lazy reduction goes back to at least [23] and has been advan-
tageously exploited by many works in different scenarios [24,25,12]. Lim and
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Hwang [24] showed that multiplication in Fpk , when Fpk = Fp[x]/(xk − w) is
seen as a direct extension over Fp via the irreducible binomial (xk − w) with
w ∈ Fp, can be performed with k reductions modulo p. In contrast, it would nor-
mally require either k2 reductions using conventional multiplication, or k(k+1)/2
reductions using Karatsuba multiplication. Lazy reduction was first employed in
the context of pairing computation by [12] to eliminate reductions in Fp2 multi-
plication. If one considers the tower Fp → Fp2 → Fp6 → Fp12 , then this approach
requires 2 ·6 ·3 = 36 reductions modulo p, and 3 ·6 ·3 = 54 integer multiplications
for performing one multiplication in Fp12 ; see [12,5,7].

In this section, we generalize the lazy reduction technique to towering-friendly
fields Fpk , k = 2i3j , i ≥ 1, j ≥ 0, conveniently built with irreducible bino-
mials [26]. We show that multiplication (and squaring) in a tower extension
Fpk only requires k reductions and still benefits from different arithmetic op-
timizations available in the literature to reduce the number of subfield mul-
tiplications or squarings. For instance, with our approach one now requires
2 · 3 · 2 = 12 reductions modulo p and 54 integer multiplications using the
tower Fp → Fp2 → Fp6 → Fp12 to compute one multiplication in Fp12 ; or 12
reductions modulo p and 36 integer multiplications to compute one squaring in
Fp12 . Although wider in generality, these techniques are analyzed in detail in the
context of Montgomery multiplication and Montgomery reduction [27], which
are commonly used in the context of pairings over ordinary curves. We explicitly
state our formulas for the towering construction Fp → Fp2 → Fp6 → Fp12 in
Section 3.3. To remove ambiguity, the term reduction modulo p always refers to
modular reduction of double-precision integers.

Theorem 1. Let k = 2i3j, i, j ∈ Z and i ≥ 1, j ≥ 0. Let

Fp = Fpk0 → Fpk1 = Fp2 → · · · → Fpki+j−2 → Fpki+j−1 → Fpki+j = Fpk

be a tower extension, where each extension Fpk`+1/Fpk` is of degree either 2 or
3, which can be constructed using a second degree irreducible binomial x2 − β`,
β` ∈ Fpk` , or a third degree irreducible binomial x3 − β`, β` ∈ Fpk` , respectively.
Suppose that β` can be chosen such that, for all a ∈ Fpk` , a · β` can be computed
without any reduction modulo p. Then multiplication in Fpk can be computed
with 3i6j integer multiplications and k = 2i3j reductions modulo p for any k.

Proof. We prove this by induction on i+ j. The base case is i+ j = 1 (i = 1 and
j = 0). That is, k = 2, and we have a tower Fp → Fp2 with Fp2 = Fp[x]/(x2−β).
For any a = a0 + a1x, b = b0 + b1x ∈ Fp2 , ai, bi ∈ Fp, we can write

a · b = (a0b0 + a1b1β) + ((a0 + a1)(b0 + b1)− a0b0 − a1b1)x,

which can be computed with 3 integer multiplications and 2 reductions modulo
p (note that we ignore multiplication by β, by our assumption).

Next, consider

Fp → Fp2 → · · · → Fpki+j → Fpki+j+1 ,
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where ki+j+1 = 2i+13j , or ki+j+1 = 2i3j+1. In the former case, let Fpki+j+1 =

Fpki+j [x]/(x
2−β) and a = a0+a1x, b = b0+b1x ∈ Fpki+j+1 , ai, bi ∈ Fpki+j . Then

a · b = (a0b0 + a1b1β) + [(a0 + a1)(b0 + b1)− a0b0 − a1b1]x, (1)

which can be computed with 3 multiplications in Fpki+j , namely a0b0, a1b1β
and (a0 + a1)(b0 + b1) (again, we ignore multiplication by β). By the induction
hypothesis, each multiplication in Fpki+j requires 3i6j integer multiplications,
and 2i3j reductions modulo p. Also, three reductions modulo p, when computing
a0b0, a1b1β and (a0+a1)(b0+b1), can be minimized to two reductions modulo p
(see (1)). Hence, multiplication in Fpki+j+1 can be computed with 3·3i6j = 3i+16j

integer multiplications and 2 · 2i3j = 2i+13j reductions modulo p.
The latter case, ki+j+1 = 2i3j+1, can be proved similarly, by considering

Fpki+j+1 = Fpki+j [x]/(x
3 − β), and the Karatsuba multiplication formula for

degree 3 extensions instead of (1). �

It is also straightforward to generalize the procedure above to any formula
other than Karatsuba which also involves only sums (or subtractions) of products
of the form

∑
±aibj , with ai, bj ∈ Fpkl , such as complex squaring or the Chung-

Hasan asymmetric squaring formulas [28].
For efficiency purposes, we suggest a different treatment for the highest layer

in the tower arithmetic. Theorem 1 implies that reductions can be completely
delayed to the end of the last layer by applying lazy reduction, but in some
cases (when the optimal k is already reached and no reductions can be saved)
it will be more efficient to perform reductions immediately after multiplications
or squarings. This will be illustrated with the computation of squaring in Fp12
in Section 3.3.

In the Miller Loop, reductions can also be delayed from the underlying Fp2
field during multiplication and squaring to the arithmetic layer immediately
above (i.e., the point arithmetic and line evaluation). Similarly to the tower
extension, on this upper layer reductions should only be delayed in the cases
where this technique leads to fewer reductions. For details, see Section 4.

There are some penalties when delaying reductions. In particular, single-
precision operations (with operands occupying n = ddlog2 pe/we words, where
w is the computer word-size) are replaced by double-precision operations (with
operands occupying 2n words). However, this disadvantage can be minimized
in terms of speed by selecting a field size smaller than the word-size boundary
because this technique can be exploited more extensively for optimizing double-
precision arithmetic.

3.2 Selecting a Field Size Smaller than the Word-Size Boundary

If the modulus p is selected so that l = dlog2 pe < N , where N = n · w, n is
the exact number of words required to represent p, i.e., n = dl/we, and w is
the computer word-size, then several consecutive additions without carry-out in
the most significant word (MSW) can be performed before a multiplication of
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the form c = a · b, where a, b ∈ [0, 2N − 1] such that c < 22N . In the case of
Montgomery reduction, the restriction is given by the upper bound c < 2N · p.
Similarly, when delaying reductions the result of a multiplication without reduc-
tion has maximum value (p− 1)2 < 22N (assuming that a, b ∈ [0, p]) and several
consecutive double-precision additions without carry-outs in the MSW (and, in
some cases, subtractions without borrow-outs in the MSW) can be performed
before reduction. When using Montgomery reduction up to ∼ b2N/pc additions
can be performed without carry checks.

Furthermore, cheaper single- and double-precision operations exploiting this
“extra room” can be combined for maximal performance. The challenge is to
optimally balance their use in the tower arithmetic since both may interfere
with each other. For instance, if intermediate values are allowed to grow up
to 2p before multiplication (instead of p) then the maximum result would be
4p2. This strategy makes use of cheaper single-precision additions without carry
checks but limits the number of double-precision additions that can be executed
without carry checks after multiplication with delayed reduction. As it will be
evident later, to maximize the gain obtained with the proposed methodology
one should take into account relative costs of operations and maximum bounds.

In the case of double-precision arithmetic, different optimizing alternatives
are available. Let us analyze them in the context of Montgomery arithmetic.
First, as pointed out by [7], if c > 2N · p, where c is the result of a double-
precision addition, then c can be restored with a cheaper single-precision sub-
traction by 2N ·p (note that the first half of this value consists of zeroes only).
Second, different options are available to convert negative numbers to positive
after double-precision subtraction. In particular, let us consider the computa-
tion c = a + l · b, where a, b ∈ [0,mp2], m ∈ Z+ and l < 0 ∈ Z s.t. |lmp| < 2N ,
which is a recurrent operation (for instance, when l = β). For this operation, we
have explored the following alternatives, which can be integrated in the tower
arithmetic with different advantages:

Option 1: r = c+ (2N · p/2h), r ∈ [0,mp2 + 2N · p/2h], h is a small integer s.t.∣∣lmp2∣∣ < 2N · p/2h < 2N · p−mp2.
Option 2: if c < 0 then r = c+ 2N · p, r ∈ [0, 2N · p].
Option 3: r = c− lmp2, r ∈ [0, (|l|+ 1)mp2], s.t. (|l|+ 1)mp < 2N .
Option 4: if c < 0 then r = c− lmp2, r ∈ [0, |lmp2|].

In particular, Options 2 and 4 require conditional checks that make the corre-
sponding operations more expensive. Nevertheless, these options may be valuable
when negative values cannot be corrected with other options without violating
the upper bound. Also note that Option 2 can make use of a cheaper single-
precision subtraction for converting negative results to positive. Options 1 and
3 are particularly efficient because no conditional checks are required. Moreover,
if l is small enough (and h maximized for Option 1) several following operations
can avoid carry checks. Between both, Option 1 is generally more efficient be-
cause adding 2N · p/2h requires less than double-precision if h ≤ w, where w is
the computer word-size.
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Next, we demonstrate how the different design options discussed in this sec-
tion can be exploited with a clever selection of parameters and applied to dif-
ferent operations combining single- and double-precision arithmetic to speed up
the extension field arithmetic.

3.3 Analysis for Selected Parameters

For our illustrative analysis, we use the tower Fp2 → Fp6 → Fp12 constructed
with the irreducible binomials described at the beginning of this section. When
targeting the 128-bit security level, single- and double-precision operations are
defined by operands with sizes N = 256 and 2N = 512, respectively. For our
selected prime, dlog2 pe = 254 and 2N · p ≈ 6.8p2. Notation is fixed as following:
(i) +,−,× are operators not involving carry handling or modular reduction for
boundary keeping; (ii) ⊕,	,⊗ are operators producing reduced results through
carry handling or modular reduction; (iii) a superscript in an operator is used
to denote the extension degree involved in the operation; (iv) notation ai,j is
used to address j-th subfield element in extension field element ai; (v) lower
case t and upper case T variables represent single- and double-precision integers
or extension field elements composed of single and double-precision integers,
respectively. The precision of the operators is determined by the precision of
the operands and result. Note that, as stated before, if c > 2N · p after adding
c = a + b in double-precision, we correct the result by computing c − 2N · p.
Similar to subtraction, we refer to the latter as “Option 2”.

The following notation is used for the cost of operations: (i) m, s, a denote
the cost of multiplication, squaring and addition in Fp, respectively; (ii) m̃, s̃, ã, ĩ
denote the cost of multiplication, squaring, addition and inversion in Fp2 , respec-
tively; (iii) mu, su, r denote the cost of unreduced multiplication and squaring
producing double-precision results, and modular reduction of double-precision
integers, respectively; (iv) m̃u, s̃u, r̃ denote the cost of unreduced multiplication
and squaring, and modular reduction of double-precision elements in Fp2 , respec-
tively. For the remainder of the paper, and unless explicitly stated otherwise, we
assume that double-precision addition has the cost of 2a and 2ã in Fp and Fp2 ,
respectively, which approximately follows what we observe in practice.

We will now illustrate a selection of operations for efficient multiplication
in Fp12 , beginning with multiplication in Fp2 . Let a, b, c ∈ Fp2 such that a =
a0 + a1i, b = b0 + b1i, c = a · b = c0 + c1i. The required operations for computing
Fp2 multiplication are detailed in Algorithm 2. As explained in Beuchat et al. [7,
Section 5.2], when using the Karatsuba method and ai, bi ∈ Fp, c1 = (a0 +
a1)(b0 + b1) − a0b0 − a1b1 = a0b1 + a1b0 < 2p2 < 2N · p, additions are single-
precision, reduction after multiplication can be delayed and hence subtractions
are double-precision (steps 1-3 in Algorithm 2). Obviously, these operations do
not require carry checks. For c0 = a0b0 − a1b1, c0 is in interval [−p2, p2] and
a negative result can be converted to positive using Option 1 with h = 2 or
Option 2, for which the final c0 is in the range [0, (2N · p/4)+ p2] ⊂ [0, 2N · p] or
[0, 2N · p], respectively (step 4 in Algorithm 2). Following Theorem 1, all reduc-
tions can be completely delayed to the next arithmetic layer (higher extension
or curve arithmetic).
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Algorithm 2Multiplication in Fp2 without reduction (×2, cost m̃u = 3mu+8a)
Input: a = (a0 + a1i) and b = (b0 + b1i) ∈ Fp2

Output: c = a · b = (c0 + c1i) ∈ Fp2

1: T0 ← a0 × b0, T1 ← a1 × b1, t0 ← a0 + a1, t1 ← b0 + b1
2: T2 ← t0 × t1, T3 ← T0 + T1

3: T3 ← T2 − T3

4: T4 ← T0 	 T1 (Option 1 or 2)
5: return c = (T4 + T3i)

Let us now define multiplication in Fp6 . Let a, b, c ∈ Fp6 such that a =
(a0+a1v+a2v

2), b = (b0+ b1v+ b2v
2), c = a · b = (c0+ c1v+ c2v

2). The required
operations for computing Fp6 multiplication are detailed in Algorithm 3. In this
case, c0 = v0+ξ[(a1+a2)(b1+b2)−v1−v2], c1 = (a0+a1)(b0+b1)−v0−v1+ξv2
and c2 = (a0+a2)(b0+b2)−v0−v2+v1, where v0 = a0b0, v1 = a1b1 and v2 = a2b2.
First, note that the pattern sx = (ai + aj)(bi + bj) − vi − vj repeats for each
cx, 0 ≤ x ≤ 2. After multiplications using Alg. 2 with Option 1 (h = 2), we
have vi,0, vj,0 ∈ [0, (2N · p/4) + p2] and vi,1, vj,1 ∈ [0, 2p2] (step 1 of Alg. 3).
Outputs of single-precision additions of the forms (ai + aj) and (bi + bj) are in
the range [0, 2p] and hence do not produce carries (steps 2, 9 and 17 of Alg. 3).
Corresponding Fp2 multiplications rx = (ai + aj)(bi + bj) using Alg. 2 with
Option 2 give results in the ranges rx,0 ∈ [0, 2N · p] and rx,1 ∈ [0, 8p2] (steps
3, 10 and 18). Although max(rx,1) = 8p2 > 2N · p, note that 8p2 < 22N and
sx,1 = ai,0bj,1 + ai,1bj,0 + aj,0bi,1 + aj,1bi,0 ∈ [0, 4p2] since sx = aibj + ajbi.
Hence, for 0 ≤ x ≤ 2, double-precision subtractions for computing sx,1 using
Karatsuba do not require carry checks (steps 4 and 6, 11 and 13, 19 and 21).
For computing sx,0 = rx,0 − (vi,0 + vj,0), addition does not require carry check
(output range [0, 2(2N · p/4+p2)] ⊂ [0, 2N · p]) and subtraction gives result in the
range [0, 2N · p] when using Option 2 (steps 5, 12 and 20). For computing c0,
multiplication by ξ, i.e., S0 = ξs0 involves the operations S0,0 = s0,0 − s0,1 and
S0,1 = s0,0 + s0,1, which are computed in double-precision using Option 2 to
get the output range [0, 2N · p] (step 7). Similarly, final additions with v0 require
Option 2 to get again the output range [0, 2N · p] (step 8). For computing c1,
S1 = ξv2 is computed as S1,0 = v2,0 − v2,1 and S1,1 = v2,0 + v2,1, where the
former requires a double-precision subtraction using Option 1 (h = 1) to get
a result in the range [0, 2N · p/2 + 2N · p/4 + p2] ⊂ [0, 2N · p] (step 14) and the
latter requires a double-precision addition with no carry check to get a result
in the range [0, (2N · p/4) + 3p2] ⊂ [0, 2N · p] (step 15). Then, c1,0 = s1,0 + S1,0

and c1,1 = s1,1 + S1,1 involve double-precision additions using Option 2 to
obtain results in the range [0, 2N · p] (step 16). Results c2,0 = s2,0 + v1,0 and
c2,1 = s2,1 + v1,1 require a double-precision addition using Option 2 (final
output range [0, 2N · p], step 22) and a double-precision addition without carry
check (final output range [0, 6p2] ⊂ [0, 2N · p], step 23), respectively. Modular
reductions have been delayed again to the last layer Fp12 .
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Algorithm 3 Multiplication in Fp6 without reduction (×6, cost of 6m̃u + 28ã)
Input: a = (a0 + a1v + a2v

2) and b = (b0 + b1v + b2v
2) ∈ Fp6

Output: c = a · b = (c0 + c1v + c2v
2) ∈ Fp6

1: T0 ← a0 ×2 b0, T1 ← a1 ×2 b1, T2 ← a2 ×2 b2 (Option 1, h = 2)
2: t0 ← a1 +

2 a2, t1 ← b1 +
2 b2

3: T3 ← t0 ×2 t1 (Option 2)
4: T4 ← T1 +

2 T2

5: T3,0 ← T3,0 	 T4,0 (Option 2)
6: T3,1 ← T3,1 − T4,1

7: T4,0 ← T3,0 	 T3,1, T4,1 ← T3,0 ⊕ T3,1 (≡ T4 ← ξ · T3) (Option 2)
8: T5 ← T4 ⊕2 T0 (Option 2)
9: t0 ← a0 +

2 a1, t1 ← b0 +
2 b1

10: T3 ← t0 ×2 t1 (Option 2)
11: T4 ← T0 +

2 T1

12: T3,0 ← T3,0 	 T4,0 (Option 2)
13: T3,1 ← T3,1 − T4,1

14: T4,0 ← T2,0 	 T2,1 (Option 1, h = 1)
15: T4,1 ← T2,0 + T2,1 (steps 14-15 ≡ T4 ← ξ · T2)
16: T6 ← T3 ⊕2 T4 (Option 2)
17: t0 ← a0 +

2 a2, t1 ← b0 +
2 b2

18: T3 ← t0 ×2 t1
19: T4 ← T0 +

2 T2

20: T3,0 ← T3,0 	 T4,0 (Option 2)
21: T3,1 ← T3,1 − T4,1

22: T7,0 ← T3,0 ⊕ T1,0 (Option 2)
23: T7,1 ← T3,1 + T1,1

24: return c = (T5 + T6v + T7v
2)

Finally, let a, b, c ∈ Fp12 such that a = a0 + a1w, b = b0 + b1w, c = a · b =
c0 + c1w. Algorithm 4 details the required operations for computing multipli-
cation. In this case, c1 = (a0 + a1)(b0 + b1) − a1b1 − a0b0. At step 1, Fp6 mul-
tiplications a0b0 and a1b1 give outputs in range ⊂ [0, 2N · p] using Algorithm 3.
Additions a0+a1 and b0+ b1 are single-precision reduced modulo p so that mul-
tiplication (a0+a1)(b0+b1) in step 2 gives output in range ⊂ [0, 2N · p] using Al-
gorithm 3. Then, subtractions by a1b1 and a0b0 use double-precision operations
with Option 2 to have an output range [0, 2N · p] so that we can apply Mont-
gomery reduction at step 5 to obtain the result modulo p. For c0 = a0b0+va1b1,
multiplication by v, i.e., T = v ·v1, where vi = aibi, involves the double-precision
operations T0,0 = v2,0−v2,1, T0,1 = v2,0+v2,1, T1 = v0 and T2 = v1, all performed
with Option 2 to obtain the output range [0, 2N · p] (steps 6-7). Final addition
with a0b0 uses double-precision withOption 2 again so that we can apply Mont-
gomery reduction at step 9 to obtain the result modulo p. We remark that, by
applying the lazy reduction technique using the operation sequence above, we
have reduced the number of reductions in Fp6 from 3 to only 2, or the number
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of total modular reductions in Fp from 54 (or 36 if lazy reduction is employed
in Fp2) to only k = 12.

Algorithm 4 Multiplication in Fp12 (×12, cost of 18m̃u + 6r̃ + 110ã)
Input: a = (a0 + a1w) and b = (b0 + b1w) ∈ Fp12

Output: c = a · b = (c0 + c1w) ∈ Fp12

1: T0 ← a0 ×6 b0, T1 ← a1 ×6 b1, t0 ← a0 ⊕6 a1, t1 ← b0 ⊕6 b1
2: T2 ← t0 ×6 t1
3: T3 ← T0 ⊕6 T1 (Option 2)
4: T2 ← T2 	6 T3 (Option 2)
5: c1 ← T2 mod6 p
6: T2,0,0 ← T1,2,0 	 T1,2,1, T2,0,1 ← T1,2,0 ⊕ T1,2,1 (Option 2)
7: T2,1 ← T1,0, T2,2 ← T1,1 (steps 6-7 ≡ T2 ← v · T1)
8: T2 ← T0 ⊕6 T2 (Option 2)
9: c0 ← T2 mod6 p
10: return c = (c0 + c1w)

As previously stated, there are situations when it is more efficient to perform
reductions right after multiplications and squarings in the last arithmetic layer of
the tower construction. We illustrate the latter with squaring in Fp12 . As shown
in Algorithm 5, a total of 2 reductions in Fp6 are required when performing Fp6
multiplications in step 4. If lazy reduction was applied, the number of reduc-
tions would stay at 2, and worse, the total cost would be increased because some
operations would require double-precision. The reader should note that the ap-
proach suggested by [10], where the formulas in [28] are employed for computing
squarings in internal cubic extensions of Fp12 , saves 1m̃ in comparison with Al-
gorithm 5. However, we experimented such approach with several combinations
of formulas and towering, and it remained consistently slower than Algorithm 5
due to an increase in the number of additions.

Algorithm 5 Squaring in Fp12 (cost of 12m̃u + 6r̃ + 73ã)
Input: a = (a0 + a1w) ∈ Fp12

Output: c = a2 = (c0 + c1w) ∈ Fp12

1: t0 ← a0 ⊕6 a1, t1,0,0 ← a1,2,0 	 a1,2,1, t1,0,1 ← a1,2,0 ⊕ a1,2,1
2: t1,1 ← a1,0, t1,2 ← a1,1 (steps 2-3 ≡ t1 ← v · a1)
3: t1 ← a0 ⊕6 t1
4: c1 ← (a0 ×6 a1) mod6 p, t0 ← (t0 ×6 t1) mod6 p
5: t1,0,0 ← c1,2,0 	 c1,2,1, t1,0,1 ← c1,2,0 ⊕ c1,2,1
6: t1,1 ← c1,0, t1,2 ← c1,1 (steps 6-7 ≡ t1 ← v · c1)
7: t1 ← t1 ⊕6 c1
8: c0 ← t0 	6 t1, c1 ← c1 ⊕6 c1
9: return c = (c0 + c1w)
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4 Miller Loop

In this section, we present our optimizations to the curve arithmetic. To be
consistent with other results in the literature, we do not distinguish between
simple- and double-precision additions in the formulas below.

Recently, Costello et al. [9, Section 5] proposed the use of homogeneous coor-
dinates to perform the curve arithmetic entirely on the twist. Their formula for
computing a point doubling and line evaluation costs 2m̃+7s̃+23ã+4m+1mb′ .
The twisting of point P , given in our case by (xP /w

2, yP /w
3) = (xP

ξ v
2, yPξ vw),

is eliminated by multiplying the whole line evaluation by ξ and relying on the
final exponentiation to eliminate this extra factor [9]. Clearly, the main draw-
back of this formula is the high number of additions. We present the following
revised formula:

X3 = X1Y1
2

(
Y 2
1 − 9b′Z2

1

)
, Y3 =

[
1
2

(
Y 2
1 + 9b′Z2

1

)]
− 27b′2Z4

1 , Z3 = 2Y 3
1 Z1,

l = (−2Y1Z1yP )vw +
(
3X2

1xP
)
v2 + ξ

(
3b′Z2

1 − Y 2
1

)
.

(2)
This doubling formula gives the cost of 3m̃ + 6s̃ + 17ã + 4m + mb′ + mξ.

Moreover, if the parameter b′ is cleverly selected as in [10], multiplication by
b′ can be performed with minimal number of additions and subtractions. For
instance, if one fixes b = 2 then b′ = 2/(1+ i) = 1− i. Accordingly, the following
execution has a cost of 3m̃+ 6s̃+ 19ã+ 4m (note that computations for E and
l0,0 are over Fp and yP = −yP is precomputed):

A = X1 · Y1/2, B = Y 2
1 , C = Z2

1 , D = 3C, E0 = D0 +D1,

E1 = D1 −D0, F = 3E, X3 = A · (B − F ), G = (B + F )/2,

Y3 = G2 − 3E2, H = (Y1 + Z1)
2 − (B + C),

Z3 = B ·H, I = E −B, J = X2
1

l0,0,0 = I0 − I1, l0,0,1 = I0 + I1, l1,1 = H · yP , l0,2 = 3J · xP .

(3)

We point out that in practice we have observed that m̃− s̃ ≈ 3ã. Hence, it is
more efficient to compute X1Y1 directly than using (X1 + Y1)

2, B and J . If this
was not the case, the formula could be computed with cost 2m̃+7s̃+23ã+4m.

Remarkably, the technique proposed in Section 3 for delaying reductions can
also be applied to the point arithmetic over a quadratic extension field. Reduc-
tions can be delayed to the end of each Fp2 multiplication/squaring and then
delayed further for those sums of products that allow reducing the number of
reductions. Although not plentiful (given the nature of most curve arithmetic for-
mulas which have consecutive and redundant multiplications/squarings), there
are a few places where this technique can be applied. For instance, doubling
formula (2) requires 25 Fp reductions (3 per Fp2 multiplication using Karatsuba,
2 per Fp2 squaring and 1 per Fp multiplication). First, by delaying reductions
inside Fp2 arithmetic the number of reductions per multiplication goes down to
only 2, with 22 reductions in total. Moreover, reductions corresponding to G2
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and 3E2 in Y3 (see execution (3)) can be further delayed and merged, elimi-
nating the need of two reductions. In total, the number of reductions is now
20. Similar optimizations can be applied to other point/line evaluation formu-
las (see extended version [29] for optimizations to formulas using Jacobian and
homogeneous coordinates).

For accumulating line evaluations into the Miller variable, Fp12 is repre-
sented using the towering Fp2 → Fp4 → Fp12 and a special (dense×sparse)-
multiplication costing 13m̃u + 6r̃ + 61ã is used. During the first iteration of the
loop, a squaring in Fp12 can be eliminated since the Miller variable is initialized
as 1 (line 1 in Algorithm 1) and a special (sparse×sparse) multiplication costing
7m̃u+5r̃+30ã is used to multiply the first two line evaluations, resulting in the
revised Algorithm 6. This sparser multiplication is also used for multiplying the
two final line evaluations in step 10 of the algorithm.

5 Final Exponentiation

The fastest way known for computing the final exponentiation is described
in [30]. The power p

12−1
n is factored into an easy exponent (p6−1) which requires

a conjugation and an inversion; another easy exponent (p2 +1) which requires a
p2-power Frobenius and a multiplication; and a hard exponent (p4 − p2 + 1)/n
which can be performed in the cyclotomic subgroup Gφ6

(Fp2). For computing
this last power, one can write the hard exponent as follows [12]:

(p4 − p2 + 1)/n = λ3p
3 + λ2p

2 + λ1p+ λ0,

where

λ3(u) = 1 , λ2(u) = 6u2 + 1,

λ1(u) = −36u3 − 18u2 − 12u+ 1 , λ0(u) = −36u3 − 30u2 − 18u− 2,

and compute the individual powers by a multi-addition chain, requiring three
consecutive exponentiations by the absolute value of the curve parameter |u|, 13
multiplications, 4 squarings, 4 p-power Frobenius, 2 p2-power Frobenius and a
single p3-power Frobenius in Fp12 . These powers of Frobenius can be efficiently
computed with the formulas in [7]. In the following subsections, we explain how
to remove the expensive inversion in Fp12 mentioned at the end of Section 2; and
how the cyclotomic subgroup structure allows faster compressed squarings and
consequently faster exponentiation by |u|.

5.1 Removing the Inversion Penalty

From Algorithm 1, the Optimal Ate pairing when u < 0 can be computed as

aopt(Q,P ) =
[
g−1 · h

] p12−1
n , (4)

with r = 6u+2, g = f|r|,Q(P ) and h = l[−|r|]Q,πp(Q)(P ) · l[−|r|Q]+πp(Q),−π2
p(Q)(P ).

Lemma 1 below allows one to replace the expensive inversion g−1 with a simple
conjugation with no change in the result. This is depicted in line 9 of Algorithm 6.
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Lemma 1. The pairing aopt(Q,P ) can be computed as
[
gp

6 · h
] p12−1

n

, with g, h
defined as above.

Proof. By distributing the power (p12 − 1)/n in terms g, h in Equation (4):

aopt(Q,P ) = g
1−p12

n · h
p12−1

n = g
(1−p6)(1+p6)

n · h
p12−1

n

= g
(p12−p6)(1+p6)

n · h
p12−1

n = g
p6(p6−1)(p6+1)

n · h
p12−1

n =
[
gp

6

· h
] p12−1

n

�

5.2 Computing u-th powers in Gφ6(Fp2)

Let

g =

2∑
i=0

(g2i + g2i+1s)t
i ∈ Gφ6

(Fp2) and g2 =

2∑
i=0

(h2i + h2i+1s)t
i

with gi, hi ∈ Fp2 . In [31], it was shown that one can compress g to C(g) =
[g2, g3, g4, g5], and the compressed representation of g2 is computed as C(g2) =
[h2, h3, h4, h5], where hi is computed as follows:

h2 = 2(g2 + 3ξB4,5),

h4 = 3(A2,3 − (ξ + 1)B2,3)− 2g4,

h3 = 3(A4,5 − (ξ + 1)B4,5)− 2g3,

h5 = 2(g5 + 3B2,3),
(5)

where Ai,j = (gi + gj)(gi + ξgj) and Bi,j = gigj . The above formula requires
4 multiplications in Fp2 . Considering the lazy reduction technique discussed in
Section 3.3, we propose another formula that is slightly faster and has a cost of
6s̃u + 4r̃ + 31ã. The formula is given as follows:

h2 = 2g2 + 3(S4,5 − S4 − S5)ξ,

h4 = 3(S2 + S3ξ)− 2g4,

h3 = 3(S4 + S5ξ)− 2g3,

h5 = 2g5 + 3(S2,3 − S2 − S3),
(6)

where Si,j = (gi + gj)
2 and Si = g2i ; also see extended version [29] for the

correctness of our formula and an explicit implementation.
When g is raised to a power via a square-and-multiply exponentiation algo-

rithm, full representation of elements (decompression) is required because, if C
is used as the compression map, it is not known how to perform multiplication
given the compressed representation of elements. Given a compressed represen-
tation of g ∈ Gφ6

(Fp2) \ {1}, C(g) = [g2, g3, g4, g5], the decompression map D is
evaluated as follows (see [31] for more details):

D([g2, g3, g4, g5]) = (g0 + g1s) + (g2 + g3s)t+ (g4 + g5s)t
2,{

g1 =
g25ξ+3g24−2g3

4g2
, g0 = (2g21 + g2g5 − 3g3g4)ξ + 1, if g2 6= 0;

g1 = 2g4g5
g3

, g0 = (2g21 − 3g3g4)ξ + 1, if g2 = 0.
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In particular, g|u| can be computed in three steps:

1. Compute C(g2i) for 1 ≤ i ≤ 62 using (6) and store C(g255) and C(g262).
2. Compute D(C(g255)) = g2

55

and D(C(g262)) = g2
62

.
3. Compute g|u| = g2

62 · g255 · g.

Step 1 requires 62 squarings in Gφ6
(Fp2). Using Montgomery’s simultane-

ous inversion trick [32], Step 2 requires 9m̃ + 6s̃ + 22ã + ĩ. Step 3 requires 2
multiplications in Fp12 . The total cost is:

Exp = 62 · (6s̃u + 4r̃ + 31ã) + (9m̃+ 6s̃+ 22ã+ ĩ) + 2 · (18m̃u + 6r̃ + 110ã)

= 45m̃u + 378s̃u + 275r̃ + 2164ã+ ĩ,

Granger-Scott’s [33] formula for squaring can be implemented at a cost of
9s̃u + 6r̃ + 46ã if lazy reduction techniques are employed. With this approach,
an exponentiation costs:

Exp′ = 62 · (9s̃u + 6r̃ + 46ã) + 2 · (18m̃u + 6r̃ + 110ã)

= 36m̃u + 558s̃u + 399r̃ + 3072ã.

Hence, the faster compressed squaring formulas reduce by 33% the number
of squarings and by 30% the number of additions in Fp2 .

Algorithm 6 Revised Optimal Ate pairing on BN curves (generalized for u < 0).

Input: P ∈ G1, Q ∈ G2, r = |6u+ 2| =
∑log2(r)

i=0 ri2
i

Output: aopt(Q,P )

1: d← lQ,Q(P ), T ← 2Q, e← 1
2: if rblog2(r)c−1 = 1 then e← lT,Q(P ), T ← T +Q
3: f ← d · e
4: for i = blog2(r)c − 2 downto 0 do
5: f ← f2 · lT,T (P ), T ← 2T
6: if ri = 1 then f ← f · lT,Q(P ), T ← T +Q
7: end for
8: Q1 ← πp(Q), Q2 ← π2

p(Q)

9: if u < 0 then T ← −T, f ← fp6

10: d← lT,Q1(P ), T ← T +Q1, e← lT,−Q2(P ), T ← T −Q2, f ← f · (d · e)
11: f ← f (p6−1)(p2+1)(p4−p2+1)/n

12: return f

6 Computational Cost

We now consider all the improvements described in the previous sections and
present a detailed operation count. Table 1 shows the exact operation count for
each operation executed in Miller’s Algorithm.
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Table 1. Operation counts for arithmetic required by Miller’s Algorithm. (†) Work [7]
counts these additions in a different way. Considering their criteria, costs for multipli-
cation and squaring in Fp2 are 3mu + 2r + 4a and 2mu + 2r + 2a, respectively.

E′(Fp2 )-Arithmetic Operation Count
Doubling/Eval. 3m̃u + 6s̃u + 8r̃ + 22ã+ 4m
Addition/Eval. 11m̃u + 2s̃u + 11r̃ + 12ã+ 4m

p-power Frobenius 6mu + 4r + 18a
p2-power Frobenius 2m+ 2a

Negation ã
Fp2 -Arithmetic Operation Count
Add./Sub./Neg. ã = 2a

Conjugation a

Multiplication m̃ = m̃u + r̃ = 3mu + 2r + 8a†

Squaring s̃ = s̃u + r̃ = 2mu + 2r + 3a†

Multiplication by β a
Multiplication by ξ 2a

Inversion ĩ

Fp12 -Arithmetic Operation Count
Add./Sub. 6ã

Conjugation 3ã
Multiplication 18m̃u + 6r̃ + 110ã
Sparse Mult. 13m̃u + 6r̃ + 61ã
Sparser Mult. 7m̃u + 5r̃ + 30ã

Squaring 12m̃u + 6r̃ + 73ã
Cyc. Squaring 9s̃u + 6r̃ + 46ã

Comp. Squaring 6s̃u + 4r̃ + 31ã
Simult. Decomp. 9m̃+ 6s̃+ 22ã+ ĩ
p-power Frobenius 15mu + 10r + 46a
p2-power Frobenius 10m+ 2ã

Inversion 25m̃u + 9s̃u + 24r̃
+112ã+ ĩ

For the selected parameters and with the presented improvements, the Miller
Loop in Algorithm 6 executes 64 point doublings with line evaluations, 6 point
additions with line evaluations (4 inside Miller Loop and 2 more at the final
steps), 1 negation in Fp2 to precompute yP , 1 p-power Frobenius, 1 p2-power
Frobenius and 2 negations in E(Fp2); and 1 conjugation, 1 multiplication, 66
sparse multiplications, 2 sparser multiplications and 63 squarings in Fp12 . The
cost of the Miller Loop is:

ML = 64 · (3m̃u + 6s̃u + 8r̃ + 22ã+ 4m) + 6 · (11m̃u + 2s̃u + 11r̃ + 12ã+ 4m)

+ ã+ 6mu + 4r + 18a+ 2m+ 2a+ 2ã+ 3ã+ (18m̃u + 6r̃ + 110ã)

+ 66 · (13m̃u + 6r̃ + 61ã) + 2 · (7m̃u + 5r̃ + 30ã) + 63 · (12m̃u + 6r̃ + 73ã)

= 1904m̃u + 396s̃u + 1368r̃ + 10281ã+ 282m+ 6mu + 4r + 20a.

The final exponentiation executes in total 1 inversion, 4 conjugations, 15
multiplications, 3 u-th powers, 4 cyclotomic squarings, 5 p-power Frobenius, 3
p2-power Frobenius:

FE = 25m̃u + 9s̃u + 24r̃ + 112ã+ ĩ+ 4 · 3ã+ 15 · (18m̃u + 6r̃ + 110ã)

+ 3 · Exp+ 4 · (9s̃u + 6r̃ + 46ã) + 5 · (15mu + 10r + 46a) + 3 · (10m+ 2ã)

= 430m̃u + 1179s̃u + 963r̃ + 8456ã+ 4̃i+ 30m+ 75mu + 50r + 230a.

Table 2 gives a first-order comparison between our implementation and the
best implementation available in the literature of the Optimal Ate pairing at the
128-bit security level in the same platform. For the related work, we suppose
that lazy reduction is always used in Fp2 and then each multiplication or squar-
ing essentially computes a modular reduction (that is, m̃ = m̃u + r̃ = 3mu + 2r
and s̃ = s̃u + r̃ = 2mu + 2r). Note that our generalization of the lazy reduc-
tion techniques to the whole pairing computation brings the number of modu-
lar reductions from the expected 7818 (if lazy reduction was only used for Fp2
arithmetic) to just 4662, avoiding more than 40% of the total required modu-
lar reductions. The number of multiplications is also reduced by 13% and the
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number of additions is increased by 26% due to lazy reduction trade-offs. Our
operation count for the pairing computation is apparently more expensive than
Pereira et al. [10]. However, the reader should note that, when we consider the
real cost of additions in Fp, we cannot exploit the squaring formula in Fp12 by
[28] (see Section 3.3) and a point doubling formula with fewer multiplications
(see Section 4), given the significant increase in the number of additions.

Table 2. Comparison of operation counts for different implementations of the Optimal
Ate pairing at the 128-bit security level.

Work Phase Operations in Fp2 Operations in Fp

Beuchat et al.[7]
ML 1952(m̃u + r̃) + 568(s̃u + r̃) + 6912ã 6992mu + 5040r
FE 403(m̃u + r̃) + 1719(s̃u + r̃) + 7021ã 4647mu + 4244r

ML+FE 2355(m̃u + r̃) + 2287(s̃u + r̃) + 13933ã 11639mu + 9284r

This work
ML 1904m̃u + 396s̃u + 1368r̃ + 10281ã 6504mu + 2736r
FE 430m̃u + 1179s̃u + 963r̃ + 8456ã 3648mu + 1926r

ML+FE 2334m̃u + 1575s̃u + 2331r̃ + 18737ã 10152mu + 4662r

7 Implementation Results

A software implementation was realized to confirm the performance benefits re-
sulting from the introduced techniques. We implemented Fp2 arithmetic directly
in Assembly, largely following advice from [7] to optimize carry handling and
eliminate function call overheads. Higher-level algorithms were implemented us-
ing the C programming language compiled with the GCC compiler using -O3
optimization level. Table 3 presents the relevant timings in millions of cycles.
Basic Implementation employs homogeneous projective coordinates and lazy re-
duction below Fp2 . Faster arithmetic in cyclotomic subgroups accelerates the
Basic Implementation by 5%-7% and, in conjunction with generalized lazy re-
duction, it improves the Basic Implementation by 18%-22%.

Table 3. Cumulative performance improvement when using new arithmetic in cyclo-
tomic subgroups (Section 5.2) and generalized lazy reduction (Section 3.1) on several
Intel and AMD 64-bit architectures. Improvements are calculated relatively to the Basic
Implementation. Timings are presented in millions of clock cycles.

This work
Method Phenom II Impr. Core i5 Impr. Opteron Impr. Core 2 Impr.

Basic Implementation 1.907 - 2.162 - 2.127 - 2.829 -
Cyclotomic Formulas 1.777 7% 2.020 7% 2.005 6% 2.677 5%
Lazy Reduction 1.562 18% 1.688 22% 1.710 20% 2.194 22%

Table 4 compares our implementation with related work. To ensure that ma-
chines with different configurations but belonging to the same microarchitecture
had compatible performance (as is the case with Core i5 and Core i7), software
from [7] was benchmarked and the results compared with the ones reported in [7].
Machines considered equivalent by this criteria are presented in the same col-
umn. We note that Phenom II was not considered in the original study and that
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we could not find a Core 2 Duo machine producing the same timings as in [7]. For
this reason, timings for these two architectures were taken independently by the
authors using the available software. Observe that the Basic Implementation in
Table 3 consistently outperforms Beuchat et al. due to our careful implementa-
tion of an optimal choice of parameters (E(Fp) : y2 = x3 +2, p = 3 mod 4) [10]
combined with optimized curve arithmetic in homogeneous coordinates [9]. When
lazy reduction and faster cyclotomic formulas are enabled, pairing computation
becomes faster than the best previous result by 28%-34%. For extended bench-
mark results and comparisons with previous works on different 64-bit processors,
the reader is referred to our online database [34].

Table 4. Comparison between implementations on 64-bit architectures. Timings are
presented in clock cycles.

Work/Platform
Beuchat et al. [7]

Operation Phenom II Core i7 Opteron Core 2 Duo
Multiplication in Fp2 440 435 443 590
Squaring in Fp2 353 342 355 479
Miller Loop 1,338,000 1,330,000 1,360,000 1,781,000
Final Exponentiation 1,020,000 1,000,000 1,040,000 1,370,000
Optimal Ate Pairing 2,358,000 2,330,000 2,400,000 3,151,000

This work
Operation Phenom II Core i5 Opteron Core 2 Duo

Multiplication in Fp2 368 412 390 560
Squaring in Fp2 288 328 295 451
Miller Loop 898,000 978,000 988,000 1,275,000
Final Exponentiation 664,000 710,000 722,000 919,000
Optimal Ate Pairing 1,562,000 1,688,000 1,710,000 2,194,000
Improvement 34% 28% 29% 30%

8 Conclusion

In this work, we revisited the problem of computing optimal pairings on ordinary
pairing-friendly curves over prime fields. Several new techniques were introduced
for pairing computation, comprised mainly in the generalization of lazy reduction
techniques to arithmetic in extensions above Fp2 and inside curve arithmetic; and
improvements to the final exponentiation consisting of a formula for compressed
squaring in cyclotomic subgroups and an arithmetic trick to remove penalties
from negative curve parameterizations. The faster arithmetic in the cyclotomic
subgroup improved pairing performance by 5%-7% and the generalized lazy re-
duction technique was able to eliminate 40% of the required modular reductions,
improving pairing performance by further 11%-17%. The introduced techniques
allow for the first time a pairing computation under 2 million cycles on 64-bit
desktop computing platforms, improving the state-of-the-art by 28%-34%. The
performance improvements are expected to be even higher on embedded archi-
tectures, where the ratio between multiplication and addition is typically higher.
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