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Abstract. We construct the first homomorphic signature scheme that is capable
of evaluating multivariate polynomials on signed data. Given the public key and a
signed data set, there is an efficient algorithm to produce a signature on the mean,
standard deviation, and other statistics of the signed data. Previous systems for
computing on signed data could only handle linear operations. For polynomials of
constant degree, the length of a derived signature only depends logarithmically on
the size of the data set.
Our system uses ideal lattices in a way that is a “signature analogue” of Gentry’s
fully homomorphic encryption. Security is based on hard problems on ideal lattices
similar to those in Gentry’s system.
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1 Introduction

While recent groundbreaking work has shown how to compute arbitrary functions on
encrypted data [17, 33, 12], far less is known about computing functions on signed data.

Informally, the problem of computing on signed data is as follows. Alice has a
numerical data set m1, . . . ,mk of size k (e.g., final grades in a course with k students).
She independently signs each datum mi, but before signing she augments mi with a tag
and an index. More precisely, Alice signs the triple (“grades”,mi, i) for i = 1, . . . , k
and obtains k independent signatures σ1, . . . , σk. Here i is the index of mi in the data
set and the tag “grades” serves as a label that names the data set and binds its members
together. For convenience we write ~σ := (σ1, . . . , σk). The data set and the k signatures
are stored on some untrusted remote server.

Later, the server is asked to compute authenticated functions of the data, such as the
mean or standard deviation of subsets of the data. To compute a function f , the server
uses an algorithm Evaluate(pk, ·, f, ~σ) that uses ~σ and f to derive a signature σ on the
triple (

“grades”, m := f(m1, . . . ,mk), 〈f〉
)
, (1.1)

where 〈f〉 is an encoding of the function f , i.e., a string that uniquely describes the
function. Note that Evaluate does not need the original messages — it only acts on
signatures. Now the pair (m,σ) can be published and anyone can check that the server
correctly applied f to the data set by verifying that σ is a signature on the triple (1.1).
The derived signature authenticates both the function f and the result of applying f to
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the data. The pair (m,σ) can be used further to derive signatures on functions of m and
other signed data. We give precise definitions of the system’s syntax and security below.

Our focus here is on functions that perform arithmetic operations on the data set,
such as mean, standard deviation, and other data mining algorithms. Current methods
for computing on signed data can handle only linear functions [23, 11, 38, 7, 16, 6]. In
these systems, given k independently signed vectors v1, . . . ,vk defined over some finite
field Fp, anyone can compute a signature on any vector v in the Fp-linear span of
{v1, . . . ,vk}, and no one without the secret key can compute a valid signature on a
vector v outside this span. The original motivation for these linear schemes comes from
the network coding routing mechanism [14].

In this paper we present the first signature system that supports computing polynomial
functions on signed data. Specifically, our system supports multivariate polynomials of
bounded degree. For a constant-degree polynomial with bounded coefficients, the length
of a derived signature only depends logarithmically on the size of the data set. Thus, for
example, given a signed data set as input, anyone can compute a short signature on the
mean, standard deviation, least squares fit, and other functions of arbitrary subsets of
the data. Note that computing standard deviation requires only a quadratic multivariate
polynomial; other applications, discussed in Section 2.4, may require cubic or higher
degree polynomials. While our system intrinsically computes on data defined over a
finite field Fp, it can be used to compute on data defined over the integers by choosing a
sufficiently large field size p.

Our system’s functionality and security derive from properties of certain integer
lattices. As a “warm-up” to our main result, we describe in Section 4 a linearly homo-
morphic scheme built from random integer lattices that uses the same underlying ideas
as our polynomial scheme. Interestingly, this construction gives a homomorphic system
over F2 that allows linear functions of many more inputs than the best previous such
system [6]. In Section 6 we show how replacing the random lattices in the linear scheme
with ideal lattices leads to a polynomially homomorphic scheme — our main result.

We note that a trivial solution to computing on signed data is to have the server send
the entire data set to the client along with all the signatures and have the client compute
the function itself. With our constructions only the output of the function is sent to the
client along with a short signature. Beyond saving bandwidth, this approach also limits
the amount of information revealed to the client about the data set, as formalized in
Section 2.2.

Related work. Before delving into the details of our construction, we mention the
related work on non-interactive proofs [26, 37, 20] where the prover’s goal is to output
a certificate that convinces the verifier that a certain statement is correct. Micali’s
computationally sound (CS) proofs [26] can solve the problem discussed above as
follows: Alice signs the pair (τ,D) where D is a data set and τ is a short tag used to
name D. She sends D, τ and the signature σ to the server. Later, for some function f , the
server publishes

(
τ, σ, t := f(D), π

)
where π is a short proof that there exists a data

set D such that t = f(D) and that σ is a valid signature by Alice on (τ,D). This tuple
convinces anyone that t is the result of applying f to the original data set D labeled τ
by Alice. Security is proved using Valiant’s witness extractor [37] to extract a signature
forgery from a cheating server. The construction of π uses the full machinery of the
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PCP theorem and soundness is in the random oracle model. Note that computational
soundness is sufficient in these settings since the server is given signed data and is
therefore already assumed to be computationally bounded.

Our approach eliminates the proof π. The server only publishes (τ, σ′, t := f(D)
)
,

where σ′ is derived from σ and authenticates both t and f . Constructing σ′ is straightfor-
ward and takes about the same amount of work as computing f(D). Moreover, anyone
can further compute t′ := g(t) = g(f(D)) for some function g and use σ′ to derive a
signature on t′ and the function g(f(·)). While further computation can also be done
with CS proofs [37], it is much simpler with homomorphic signatures.

More recently Goldwasser, Kalai, and Rothblum [20] and Gennaro, Gentry, and
Parno [15] show how to outsource computation securely. In both [15] and [20] (in
the non-interactive setting) the interaction between the server and the client is tailored
to the client and the client uses a secret key to verify the results. In our settings the
server constructs a publicly verifiable signature on the result and anyone can verify that
signature using Alice’s public key.

We also mention another line of related work that studies “redactable” signatures [35,
22, 21, 4, 29, 28, 10, 9, 8, 1, 31]. These schemes have the property that given a signature
on a message, anyone can derive signatures on subsets of the message. Our focus
here is quite different — we look at computing arithmetic functions on independently
authenticated data, rather than computing on a subset of a single message. We also
require that the derived signature explicitly authenticate the computed function f .

1.1 Overview of our techniques

The intersection method. Our system uses two n-dimensional integer lattices Λ1 and
Λ2. The lattice Λ1 is used to sign the data (e.g., a student’s grade or the result of a
computation), while the lattice Λ2 is used to sign a description of the function f applied
to the data. The message space for these signatures is Zn/Λ1, which for the lattices we
consider is simply a vector space over the finite field Fp for some prime p.

A signature in our system is a short vector σ in Zn in the intersection of Λ1 + u1

and Λ2 + u2 for certain u1,u2 ∈ Zn. In other words, we have σ = u1 mod Λ1 and
σ = u2 mod Λ2. Loosely speaking, this single signature σ “binds” u1 and u2 — an
attacker cannot generate a new short vector σ′ from σ such that σ = σ′ mod Λ1 but
σ 6= σ′ mod Λ2. We refer to this method of jointly signing two vectors u1 and u2 as
the intersection method.

More precisely, let τ be a tag,m be a message, and 〈f〉 be an encoding of a function f .
A signature σ on a triple (τ,m, 〈f〉) is a short vector in Zn satisfying σ = m mod Λ1

and σ = ωτ (〈f〉) mod Λ2. Here ωτ is a hash function defined by the tag τ that maps
(encodings of) functions to vectors in Zn/Λ2. This ωτ not only must preserve the
homomorphic properties of the system, but also must enable simulation against a chosen-
message adversary. Note that the Λ1 component of the signature σ is essentially the
same as a Gentry-Peikert-Vaikuntanathan signature [19] on the (unhashed) message m.

It is not difficult to see that these signatures are additively homomorphic. That
is, let σ1 be a signature on (τ,m1, 〈f1〉) and let σ2 be a signature on (τ,m2, 〈f2〉).
With an appropriate hash function ωτ , we can ensure that σ1 + σ2 is a signature on
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(
τ, m1 +m2, 〈f1 + f2〉

)
. If we set Λ1 = (2Z)n, we obtain a more efficient linearly

homomorphic signature over F2 than previously known [6].
Now let g ∈ Z[x] be a polynomial of degree n and let R be the ring Z[x]/(g). Then

R is isomorphic to Zn and ideals in R correspond to integer lattices in Zn under the
“coefficient embedding.” We choose our two lattices Λ1 and Λ2 to be prime ideals p
and q in R and a signature on the triple (τ,m, f) to be a short element in R such that
σ = m mod p and σ = ωτ (〈f〉) mod q. With this setup, let σ1 and σ2 be signatures on
(τ,m1, 〈f1〉) and (τ,m2, 〈f2〉) respectively. Then for an appropriate hash function ωτ ,

σ1 + σ2 is a signature on
(
τ, m1 +m2, 〈f1 + f2〉

)
and

σ1 · σ2 is a signature on
(
τ, m1 ·m2, 〈f1 · f2〉

)
.

More generally, we can evaluate any bounded degree polynomial with small coefficients
on signatures. In particular, the quadratic polynomial v(m1, . . . ,mk) :=

∑k
i=1(kmi −∑k

i=1mi)
2 that computes a fixed multiple of the variance can easily be evaluated this

way. Anyone can calculate the standard deviation from v(m1, . . . ,mk) and k by taking
a square root and dividing by k.

Our use of ideal lattices is a signature analogue of Gentry’s “somewhat homomor-
phic” encryption system [17]. Ideal lattices also appear in the lattice-based public key
encryption schemes of Stehle, Steinfeld, Tanaka, and Xagawa [34] and Lyubashevsky,
Peikert, and Regev [25] and in the hash functions of Lyubashevsky and Micciancio [24].

Unforgeability. Loosely speaking, a forgery under a chosen message attack is a valid
signature σ on a triple (τ,m, 〈f〉) such that m 6= f(m1, . . . ,mk), where m1, . . . ,mk

is the data set signed using tag τ . We show that a successful forger can be used to solve
the Small Integer Solution (SIS) problem in the lattice Λ2, which for random q-ary
lattices and suitable parameters is as hard as standard worst-case lattice problems [27].
When Λ2 is an ideal lattice we can then use the ideal structure to obtain a solution to
the Shortest Independent Vectors Problem (SIVP) for the (average case) distribution of
lattices produced by our key generation algorithm. As is the case with existing linearly
homomorphic signature schemes, our security proofs are set in the random oracle model,
where the random oracle is used to simulate signatures for a chosen message attacker.

Privacy. For some applications it is desirable that derived signatures be private. That
is, if σ is a signature on a message m := f(m1, . . . ,mk) derived from signatures on
messages m1, . . . ,mk, then σ should reveal no information about m1, . . . ,mk beyond
what is revealed by m and f . Using similar techniques to those in [6], it is not difficult to
show that our linearly homomorphic signatures satisfy a privacy property (also defined
in [6]) called weak context hiding. Demonstrating this property amounts to proving that
the distribution obtained by summing independent discrete Gaussians depends only on
the coset of the sum.

Interestingly, we can show that our polynomially homomorphic signature is not
private. It is an open problem either to design a polynomially homomorphic signature
scheme that is also private, or to modify our scheme to make it private.

Length efficiency. We require that derived signatures be not much longer than the
original signatures from which they were derived; we define this requirement precisely
in Section 2.3. All of our constructions are length efficient.
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2 Homomorphic Signatures: Definitions and Applications

Informally, a homomorphic signature scheme consists of the usual algorithms KeyGen,
Sign, Verify as well as an additional algorithm Evaluate that “translates” functions on
messages to functions on signatures. If ~σ is a valid set of signatures on messages ~m, then
Evaluate(f, ~σ) should be a valid signature for f(~m).

To prevent mixing of data from different data sets when evaluating functions, the
Sign, Verify, and Evaluate algorithms take an additional short “tag” as input. The tag
serves to bind together messages from the same data set. One could avoid the tag by
requiring that a new public key be generated for each data set, but simply requiring a
new tag for each data set is more convenient.

Formally, a homomorphic signature scheme is as follows:

Definition 2.1. A homomorphic signature scheme is a tuple of probabilistic, polynomial-
time algorithms (Setup,Sign,Verify,Evaluate) as follows:

– Setup(1n, k). Takes a security parameter n and a maximum data set size k. Outputs
a public key pk and a secret key sk. The public key pk defines a message spaceM,
a signature space Σ, and a set F of “admissible” functions f :Mk →M.

– Sign(sk, τ,m, i). Takes a secret key sk, a tag τ ∈ {0, 1}n, a message m ∈ M and
an index i ∈ {1, . . . , k}, and outputs a signature σ ∈ Σ.

– Verify(pk, τ,m, σ, f). Takes a public key pk, a tag τ ∈ {0, 1}n, a message m ∈M,
a signature σ ∈ Σ, and a function f ∈ F , and outputs either 0 (reject) or 1 (accept).

– Evaluate(pk, τ, f, ~σ). Takes a public key pk, a tag τ ∈ {0, 1}n, a function f ∈ F ,
and a tuple of signatures ~σ ∈ Σk, and outputs a signature σ′ ∈ Σ.

Let πi :Mk → M be the function πi(m1, . . . ,mk) = mi that projects onto the ith
component. We require that π1, . . . , πk ∈ F for all pk output by Setup(1n, k).

For correctness, we require that for each (pk, sk) output by Setup(1n, k), we have:

1. For all tags τ ∈ {0, 1}n, all m ∈M, and all i ∈ {1, . . . , k},
if σ ← Sign(sk, τ,m, i), then with overwhelming probability
Verify(pk, τ,m, σ, πi) = 1 .

2. For all τ ∈ {0, 1}n, all tuples ~m = (m1, . . . ,mk) ∈Mk, and all functions f ∈ F ,
if σi ← Sign(sk, τ,mi, i) for i = 1, . . . , k, then with overwhelming probability

Verify
(
pk, τ, f(~m), Evaluate

(
pk, τ, f, (σ1, . . . , σk)

)
, f
)
= 1.

We say that a signature scheme as above is F-homomorphic.

While the Evaluate algorithm in our schemes can take as input derived signatures
themselves produced by Evaluate, doing so for a large number of iterations may even-
tually reach a point where the input signatures to Evaluate are valid, but the output
signature is not. Therefore, to simplify the discussion we limit the correctness property
to require only that Evaluate produce valid output when given as input signatures ~σ
produced by the Sign algorithm.
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For ease of exposition we describe our systems as if all data sets consist of exactly
k items. It is straightforward to apply the systems to data sets of size ` for any ` ≤ k,
simply by interpreting a function on ` variables as a function on k variables that ignores
the last k − ` inputs. The definitions of unforgeability and privacy below can be adapted
accordingly.

2.1 Unforgeability

The security model for homomorphic signatures allows an adversary to make adaptive
signature queries on data sets of his choosing, each containing (up to) k messages,
with the signer randomly choosing the tag τ for each data set queried. Eventually the
adversary produces a message-signature pair (m∗, σ∗) as well as an admissible function
f and a tag τ∗. The winning condition captures the fact that there are two distinct types
of forgeries. In a type 1 forgery, the pair (m∗, σ∗) verifies for some data set not queried
to the signer; this corresponds to the usual notion of signature forgery. In a type 2 forgery,
the pair (m∗, σ∗) verifies for some data set that was queried to the signer, but for which
m∗ does not equal f applied to the messages queried; in other words, the signature
authenticates m∗ as f(~m) but in fact this is not the case.

Our security model requires that all data in a data set be signed at once; that is, the
adversary cannot request signatures on new messages after seeing signatures on other
messages in the same data set.

Definition 2.2. A homomorphic signature scheme S = (Setup,Sign,Verify,Evaluate)
is unforgeable if for all k the advantage of any probabilistic, polynomial-time adversary
A in the following game is negligible in the security parameter n:

Setup: The challenger runs Setup(1n, k) to obtain (pk, sk) and gives pk to A. The
public key defines a message spaceM, a signature space Σ, and a set F of admissible
functions f :Mk →M.

Queries: Proceeding adaptively, A specifies a sequence of data sets ~mi ∈ Mk. For
each i, the challenger chooses τi uniformly from {0, 1}n and gives to A the tag τi and
the signatures σij ← Sign(sk, τi,mij , j) for j = 1, . . . , k.

Output: A outputs a tag τ∗ ∈ {0, 1}n, a message m∗ ∈ M, a function f ∈ F , and a
signature σ∗ ∈ Σ.

The adversary wins if Verify(pk, τ∗,m∗, σ∗, f) = 1 and either

(1) τ∗ 6= τi for all i (a type 1 forgery), or
(2) τ∗ = τi for some i but m∗ 6= f(~mi) (a type 2 forgery).

The advantage of A is the probability that A wins the security game.

2.2 Privacy

As in [6] we define privacy for homomorphic signatures using a variation of a definition
of Brzuska et al. [9]. The definition captures the idea that given signatures on a number
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of messages derived from two different data sets, the attacker cannot tell which data set
the derived signatures came from, and furthermore that this property holds even if the
secret key is leaked. We call signatures with this privacy property weakly context hiding.
The reason for “weak” is that we assume the original signatures on the data set are not
public. The concept is similar to that of witness indistinguishability [13], where in our
setting we treat the original data set as the witness.

Ahn et al. [1] define a stronger notion of privacy, called strong context hiding, that
requires derived signatures to be distributed as independent fresh signatures on the same
message; this requirement ensures privacy even if the original signatures are exposed.

Definition 2.3. A homomorphic signature scheme S = (Setup,Sign,Verify,Evaluate)
is weakly context hiding if for all k, the advantage of any probabilistic, polynomial-time
adversary A in the following game is negligible in the security parameter n:

Setup: The challenger runs Setup(1n, k) to obtain (pk, sk) and gives pk and sk toA. The
public key defines a message spaceM, a signature space Σ, and a set F of admissible
functions f :Mk →M.

Challenge:A outputs (~m∗0, ~m
∗
1, f1, . . . , fs) with ~m∗0, ~m

∗
1 ∈Mk. The functions f1, . . . , fs

are in F and satisfy

fi
(
~m∗0
)
= fi

(
~m∗1
)

for all i = 1, . . . , s.

In response, the challenger generates a random bit b ∈ {0, 1} and a random tag τ ∈
{0, 1}n. It signs the messages in ~m∗b using the tag τ to obtain a vector ~σ of k signatures.
Next, for i = 1, . . . , s the challenger computes a signature σi := Evaluate(pk, τ, fi, ~σ)
on fi(~m∗b). It sends the tag τ and the signatures σ1, . . . , σs to A. Note that the functions
f1, . . . , fs can be output adaptively after ~m∗0, ~m

∗
1 are output.

Output: A outputs a bit b′.

The adversary A wins the game if b = b′. The advantage of A is the probability that A
wins the game.

Winning the weak context hiding game means that the attacker was able to determine
whether the challenge signatures were derived from signatures on ~m∗0 or from signatures
on ~m∗1. We say that the signature scheme is s-weakly context hiding if the attacker cannot
win the privacy game after seeing at most s signatures derived from ~m∗0 or ~m∗1.

2.3 Length efficiency

We say that a homomorphic signature scheme is length efficient if for a fixed security
parameter n, the length of derived signatures depends only logarithmically on the size k
of the data set. More precisely, we have the following:

Definition 2.4. Let S = (Setup,Sign,Verify,Evaluate) be a homomorphic signature
scheme. We say that S is length efficient if there is some function µ : N → R such

7



that for all (pk, sk) output by Setup(1n, k), all ~m = (m1, . . . ,mk) ∈ Mk, all tags
τ ∈ {0, 1}n, and all functions f ∈ F , if

σi ← Sign(pk, τ,mi, i) for i = 1, . . . , k,

then for all k > 0, the derived signature σ := Evaluate
(
pk, τ, f, (σ1, . . . , σk)

)
has bit

length at most µ(n) · log k with overwhelming probability.

2.4 Applications

Before describing our constructions we first examine a few applications of computing
on signed data. In the Introduction we discussed applications to computing statistics on
signed data, and in particular the examples of mean and standard deviation. Here we
discuss more complex data mining algorithms.

Least squares fits. Recall that given an integer d ≥ 0 and a data set {(xi, yi)}ki=1

consisting of k pairs of real numbers, the degree d least squares fit is a polynomial
f ∈ R[x] of degree d that minimizes the quantity

∑k
i=1(yi − f(xi))2. The vector of

coefficients of f is denoted by ~f and is given by the formula

~f = (XTX)−1XT~y ∈ Rd+1,

where X ∈ Rk×(d+1) is the Vandermonde matrix of the xi, whose jth column is the
vector (xj−11 , . . . , xj−1k ), and ~y is the column vector (y1, . . . , yk). The degree d is usually
small, e.g. d = 1 for a least squares fit with a line.

Using homomorphic signatures, a server can be given a set of individually signed
data points and derive from it a signature on the least squares fit f (or more precisely,
a signature on the vector of coefficients ~f ). If the signature is length efficient, then for
fixed d the length of the derived signature depends only logarithmically on the number
of data points k. If the signatures are private, then the derived signature on f reveals
nothing about the original data set beyond what is revealed by f .

We consider two types of data sets. In the first type, the x-coordinates are universal
constants in Z and need not be signed. For example, the data set might contain the
temperature on each day of the year, in which case the x-coordinates are simply the days
of the year and need not be explicitly included in the data. Only the y-coordinates are
signed. Then the least squares fit is simply a linear function of ~y, namely ~f := A · ~y
for some fixed matrix A. The signature on ~f can thus be derived using any linearly
homomorphic signature scheme. To handle fractional entries in A we can pre-multiply A
by a known scalar to cancel denominators.

The second type of data set is one in which both the x-coordinate and the y-coordinate
are signed. More precisely, an integer data set {(xi, yi)}ki=1 is signed by signing all 2k
values separately (but with the same tag) to obtain 2k signatures. The server is given
the data set and these 2k signatures. In the full version of this paper [5] we show that a
homomorphic signature scheme for polynomials of degree d2+d+1 over the integers is
sufficient for deriving a signature on the least squares fit. In particular, for a least squares
fit using a line it suffices for the signature to be homomorphic for cubic polynomials.
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In summary, linearly homomorphic signatures are sufficient when the x-coordinates
are absolute constants and polynomially homomorphic signatures are needed for general
data sets.

More advanced data mining. If we had fully homomorphic signatures (i.e., supporting
arbitrary computation on signed data), then an untrusted server could run more complex
data mining algorithms on the given data set. For example, given a signed data set, the
server could publish a signed decision tree (e.g., as generated by the ID3 algorithm [32]).
Length efficiency means that the length of the resulting signature depends only logarith-
mically on the size of the data set. If the signatures were private, then publishing the
signed decision tree would leak no other information about the original data set.

3 Preliminaries

Notation. For any integer q ≥ 2, we let Zq denote the ring of integers modulo q. If q is
prime, Zq is a field and is denoted by Fq. We let Z`×nq denote the set of `× n matrices
with entries in Zq . We say a function f(n) is negligible if it is O(n−c) for all c > 0, and
we use negl(n) to denote a negligible function of n. We say f(n) is polynomial if it is
O(nc) for some c > 0, and we use poly(n) to denote a polynomial function of n. We
say an event occurs with overwhelming probability if its probability is 1− negl(n). The
function lg x is the base 2 logarithm of x.

Lattices. An n-dimensional lattice is a full-rank discrete subgroup of Rn. Standard
results on lattices that we use appear in the full version of this paper [5]. Here we note
briefly that our schemes will use an algorithm SamplePre [19, Theorem 5.9] that takes
as input a basis T of an n-dimensional lattice Λ, a parameter ν, and a vector t ∈ Zn, and
outputs a vector in the coset Λ+ t sampled from a Gaussian distribution. SamplePre is
itself built from an algorithm SampleGaussian [19, Theorem 4.1] that outputs a vector
in the lattice Λ sampled from a Gaussian distribution.

Our linearly homomorphic schemes will use “q-ary” lattices defined as follows:
for any integer q ≥ 2 and any A ∈ Z`×nq , we define Λ⊥q (A) :=

{
e ∈ Zn : A · e =

0 mod q
}

. Our schemes will use an algorithm TrapGen [3, Theorem 3.2] that samples
an (almost) uniformly random matrix A ∈ Z`×nq along with a “short” basis for Λ⊥q (A).

Complexity assumption. We define a generalization of the now-standard Small Integer
Solution (SIS) problem, which is to find a short nonzero vector in a certain class of
lattices.

Definition 3.1. Let L = {Ln} be a distribution ensemble of integer lattices, where
lattices in Ln have dimension n. An instance of the L-SISn,β problem is a lattice
Λ← Ln. A solution to the problem is a nonzero vector v ∈ Λ with ‖v‖ ≤ β.

If B is an algorithm that takes as input a lattice Λ, we define the advantage of B,
denoted L-SIS-Adv[B, (n, β)], to be the probability that B outputs a solution to an
L-SISn,β problem instance Λ chosen according to the distribution Ln.

We say that the L-SISn,β problem is infeasible if for all polynomial-time algorithms
B, the advantage L-SIS-Adv[B, (n, β)] is a negligible function of n.
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When Ln consists of Λ⊥q (A) for uniformly random A ∈ Z`×nq , the L-SISn,β problem is
the standard SISq,n,β problem defined by Micciancio and Regev [27]. For this distribution
of lattices, an algorithm that solves the L-SISn,β problem can be used to solve worst-case
problems on arbitrary `-dimensional lattices [27, §5].

4 Homomorphic Signatures for Linear Functions over Small
Fields

As a “warm-up” to our polynomially homomorphic scheme, we describe a signature
scheme that can authenticate any linear function of signed vectors defined over small
fields Fp. Previous constructions can only achieve this functionality for vectors defined
over large fields [11, 7] or for a small number of vectors [6]. In particular, our scheme
easily accommodates binary data (p = 2). Linearly homomorphic signatures over F2

are an example of a primitive that can be built from lattices, but cannot currently be
built from discrete-log or RSA-type assumptions. In the full version of this paper [5] we
describe a variant of the scheme in which the data can take values in large fields Fp.

Security is based on the SIS problem on q-ary lattices for some prime q; Micciancio
and Regev [27], building on the work of Ajtai [2], show that this problem is as hard as
standard worst-case problems on arbitrary lattices of dimension approximately n/ lg q.
The system in this section is only secure for small p, specifically p = poly(n) with
p ≤ √q/nk for data sets of size k.

Overview of the scheme. Since our system builds on the “hash-and-sign” signatures of
Gentry, Peikert, and Vaikuntanathan [19], let us recall how GPV signatures work in an
abstract sense. The public key is a lattice Λ ⊂ Zn and the secret key is a short basis of Λ.
To sign a message m, the secret key holder hashes m to an element H(m) ∈ Zn/Λ and
samples a short vector σ from the coset of Λ defined by H(m). To verify σ, one checks
that σ is short and that σ mod Λ = H(m).

Recall that in a homomorphic signature scheme we wish to authenticate triples
(τ,m, 〈f〉), where τ is a “tag” attached to a data set, m is a message in Fnp , and 〈f〉 is an
encoding of a function f acting on k-tuples of messages. We encode a linear function
f : (Fnp )k → Fnp defined by f(m1, . . . ,mk) =

∑k
i=1 cimi by interpreting the ci as

integers in (−p/2, p/2] and defining 〈f〉 := (c1, . . . , ck) ∈ Zk.
To authenticate both the message and the function as well as bind them together, we

compute a single GPV signature that is simultaneously a signature on the (unhashed)
message m ∈ Fnp and a signature on a hash of 〈f〉.

This dual-role signature is computed via what we call the “intersection method,”
which works as follows. Let Λ1 and Λ2 be n-dimensional integer lattices with Λ1+Λ2 =
Zn. Suppose m ∈ Zn/Λ1 is a message and ωτ is a hash function (depending on the
tag τ ) that maps encodings of functions f to elements of Zn/Λ2. Since the message m
defines a coset of Λ1 in Zn and the hash ωτ (〈f〉) defines a coset of Λ2 in Zn, by the
Chinese remainder theorem the pair

(
m, ωτ (〈f〉)

)
defines a unique coset of Λ1 ∩ Λ2

in Zn. We can thus use a short basis of Λ1 ∩ Λ2 to compute a short vector in this coset;
i.e., a short vector σ with the property that σ mod Λ1 = m and σ mod Λ2 = ωτ (〈f〉).
The vector σ is a signature on (τ,m, 〈f〉).
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The Sign(sk, τ,m, i) algorithm uses the procedure above to generate a fresh sig-
nature on the triple (τ,m, 〈πi〉) where πi is the ith projection function defined by
πi(m1, . . . ,mk) = mi and encoded as 〈πi〉 = ei, the ith unit vector in Zk.

The homomorphic property is now obtained as follows. To authenticate the linear
combinationm =

∑k
i=1 cimi for integers ci, we compute the signature σ :=

∑k
i=1 ciσi.

If k and p are sufficiently small, then σ is a short vector. Furthermore, we have

σ mod Λ1 =
∑k
i=1 cimi = m , and

σ mod Λ2 =
∑k
i=1 ciωτ (〈πi〉) =

∑k
i=1 ciωτ (ei).

Now suppose that ωτ is linear, namely
∑k
i=1 ciωτ (ei) = ωτ

(
(c1, . . . , ck)

)
for all

c1, . . . , ck in Z. Then since (c1, . . . , ck) is exactly the encoding of the function f defined
by f(m1, . . . ,mk) =

∑k
i=1 cimi, the signature σ authenticates both the message m

and the fact that it was computed correctly (i.e., via f ) from the original messages
m1, . . . ,mk.

The linearly homomorphic scheme. We now describe the scheme.

Setup(1n, k). On input a security parameter n and a maximum data set size k, do the
following:
1. Choose two primes p, q = poly(n) with q ≥ (nkp)2. Define ` := bn/6 log qc.
2. Set Λ1 := pZn.
3. Use TrapGen(q, `, n) to generate a matrix A ∈ F`×nq along with a short basis Tq of
Λ⊥q (A). Define Λ2 := Λ⊥q (A) and T := p ·Tq .

4. Set ν := p ·
√
n log q · log n.

5. Let H : {0, 1}∗ → F`q be a hash function (modeled as a random oracle).
6. Output the public key pk := (Λ1, Λ2, ν, k,H) and the secret key sk = T.

The public key pk defines the following system parameters:
– The message space is Fnp and signatures are short vectors in Zn.
– The set of admissible functions F is all Fp-linear functions on k-tuples of messages

in Fnp .
– For a function f ∈ F defined by f(m1, . . . ,mk) =

∑k
i=1 cimi, we encode f by

interpreting the ci as integers in (−p/2, p/2] and defining 〈f〉 = (c1, . . . , ck) ∈ Zk.
– To evaluate the hash function ωτ on an encoded function 〈f〉 = (c1, . . . , ck) ∈ Zk,

do the following:
(a) For i = 1, . . . , k, compute αi ← H(τ‖i) in F`q .
(b) Define ωτ (〈f〉) :=

∑k
i=1 ciαi ∈ F`q .

Sign(sk, τ,m, i). On input a secret key sk, a tag τ ∈ {0, 1}n, a message m ∈ Fnp , and
an index i, do:
1. Compute αi := H(τ‖i) ∈ F`q . Then, by definition, ωτ (〈πi〉) = αi.
2. Compute t ∈ Zn such that t mod p = m and A · t mod q = αi.
3. Output σ ← SamplePre(Λ1 ∩ Λ2,T, t, ν) ∈ (Λ1 ∩ Λ2) + t .

Verify(pk, τ,m, σ, f). On input a public key pk, a tag τ ∈ {0, 1}n, a message m ∈ Fnp ,
a signature σ ∈ Zn, and a function f ∈ F , do:

11



1. If all of the following conditions hold, output 1 (accept); otherwise output 0 (reject):
(a) ‖σ‖ ≤ k · p2 · ν

√
n.

(b) σ mod p = m.
(c) A · σ mod q = ωτ (〈f〉).

Evaluate(pk, τ, f, ~σ). On input a public key pk, a tag τ ∈ {0, 1}n, a function f ∈ F
encoded as 〈f〉 = (c1, . . . , ck) ∈ Zk, and a tuple of signatures σ1, . . . , σk ∈ Zn, output
σ :=

∑k
i=1 ciσi.

In the full version of this paper [5], we show that this linearly homomorphic signature
scheme is correct with overwhelming probability and that it is length efficient; i.e., the
bit length of a derived signature depends logarithmically on the data set size k.

Unforgeability. We will show that an adversary that forges a signature for the linearly
homomorphic scheme can be used to compute a short vector in the lattice Λ2 chosen in
Step 3 of Setup. By [3, Theorem 3.2], the distribution of matrices A used to define Λ2

is statistically close to uniform over F`×nq . Thus the distribution of lattices Λ2 output by
Setup is statistically close to the distribution of challenges for the SISq,n,β problem (for
any β). Our security theorem is as follows.

Theorem 4.1. If SISq,n,β is infeasible for β = k · p2 · n log n
√
log q, then the linearly

homomorphic signature scheme above is unforgeable in the random oracle model.

Sketch of Proof. Let A be an adversary that plays the security game of Definition 2.1.
Given a challenge lattice Λ2 := Λ⊥q (A) for A ∈ Z`×nq , we simulate the Sign algorithm
on input (τ,m, i) for random τ by sampling a short vector σ from a Gaussian distribution
on Λ1+m and definingH(τ‖i) := A ·σ mod q. Then σ is a valid signature on (τ,m, i).
Other queries to H are answered similarly, but with a random message m. The Gaussian
parameter ν is large enough so that H(τ‖i) is statistically close to uniform in F`q .

Eventually A outputs a tag τ∗, a message m∗, a function f encoded as 〈f〉 =
(c1, . . . , ck) ∈ Zk, and a signature σ∗. Let σi be the short vector chosen when program-
ming H(τ∗‖i), and let σf :=

∑
i ciσi. We claim that if A outputs a valid forgery, then

with high probability the vector σ∗ − σf is a nonzero vector in Λ2 of length at most β;
i.e., a solution to the SISq,n,β problem.

Suppose A outputs a type 2 forgery, so the simulator has generated signatures
~σ = (σ1, . . . , σk) on messages ~m = (m1, . . . ,mk) using the tag τ∗. First observe that
the verification condition (1a) implies that ‖σ∗‖ and ‖σf‖ are both less than k · p2 · ν

√
n,

and therefore ‖σ∗−σf‖ ≤ β. Next observe that if the forgery is valid, then m∗ 6= f(~m).
The verification condition (1b) implies that (σ∗ − σf ) mod p = m∗ − f(~m) 6= 0,
and thus σ∗ − σf 6= 0. On the other hand, verification condition (1c) implies that
A · σ∗ mod q = A · σf mod q, and thus σ∗ − σf ∈ Λ2. The argument for a type 1
forgery is similar, using random messages ~m instead of queried ones. ut

Worst-case connections. By [19, Proposition 5.7], if q ≥ β · ω(
√
n log n), then the

SISq,m,β problem is as hard as approximating the SIVP problem in the worst case to
within β · Õ(

√
n) factors. Our requirement in the Setup algorithm that q ≥ (nkp)2
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guarantees that q is sufficiently large for this theorem to apply. While the exact worst-
case approximation factor will depend on the parameters k and p, it is polynomial in n
in any case.

Comparison with prior work. Boneh and Freeman [6] describe a linearly homomorphic
signature scheme that can authenticate vectors over Fp for small p, with unforgeability
also depending on the SIS problem. However, for their system to securely sign k mes-
sages, the SISq,2n−k,β problem must be difficult for β = Õ(k3/2 · k! · (n/ lg q)k/2+1),
and therefore their system is designed to only sign a constant number of vectors per
data set (k = O(1)) while maintaining a polynomial connection to worst-case lattice
problems. On the other hand, for the same value of q our system remains secure when
signing k = poly(n) vectors per data set.

Privacy. We now show that our linearly homomorphic signature scheme is weakly
context hiding. Specifically, we show that a derived signature on a linear combination
m′ =

∑k
i=1 cimi depends (up to negligible statistical distance) only on m′ and the ci,

and not on the initial messages mi. Consequently, even an unbounded adversary cannot
win the privacy game of Definition 2.3. The proof of the following theorem can be found
in the full version of this paper [5].

Theorem 4.2. Suppose that ν defined in the Setup algorithm satisfies ν > ps+1 ·
ks · ω(

√
log n). Then the linearly homomorphic signature scheme described above is

s-weakly context hiding for data sets of size k.

5 Background on Ideal Lattices

A number field is a finite-degree algebraic extension of the rational numbers Q. Any
number field K can be represented as Q[x]/(f(x)) for some monic, irreducible polyno-
mial f(x) with integer coefficients (and for each K there are infinitely many such f ).
The degree of a number field K is its dimension as a vector space over Q, and is also the
degree of any polynomial f definingK. For any given f , the set {1, x, x2, . . . , xdeg f−1}
is a Q-basis for K, and we can therefore identify K with Qn by mapping a polynomial
of degree less than n to its vector of coefficients. By identifying K with Qn using this
“coefficient embedding,” we can define a length function ‖·‖ on elements of K simply
by using any norm on Qn. This length function is non-canonical — it depends explicitly
on the choice of f used to represent K. (Here all norms will be the `2 norm unless
otherwise stated.)

Our identification of K = Q[x]/(f(x)) with Qn induces a multiplicative struc-
ture on Qn in addition to the usual additive structure. We define a parameter γf :=

supu,v∈K
‖u·v‖
‖u‖·‖v‖ . This parameter bounds how much multiplication can increase the

length of the product, relative to the product of the length of the factors. For our ap-
plications we will need to have γf = poly(n). If n is a power of 2, then the function
f(x) = xn + 1 has γf ≤

√
n (cf. [17, Lemma 7.4.3]). We will think of this f(x) as our

“preferred” choice for applications.
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Number rings and ideals. A number ring is a ring whose field of fractions is a number
field K. A survey of arithmetic in number rings can be found in [36]; here we summarize
the key points.

Every number field has a subring, called the ring of integers and denoted byOK , that
plays the same role with respect to K as the integers Z do with respect to Q. The ring
of integers consists of all elements of K whose characteristic polynomials have integer
coefficients. Under the identification of K with Qn, the ring OK forms a full-rank
discrete subgroup of Qn; i.e., a lattice. Inside OK is the subring R = Z[x]/(f(x)).
Under our identification of K with Qn, the ring R corresponds to Zn. In general R is a
proper sublattice of OK .

An (integral) ideal of R is an additive subgroup I ⊂ R that is closed under multipli-
cation by elements of R. By our identification of R with Zn, the ideal I is a sublattice of
R and is therefore also called an ideal lattice. Note that this usage of “ideal lattice” to
refer to a rank one R-module differs from that of [34, 24], which use the terminology to
refer to R-modules of arbitrary rank.

An ideal I ⊂ R is prime if for x, y ∈ R, xy ∈ I implies either x ∈ I or y ∈ I . If p
is a prime ideal, then R/p is a finite field Fpe ; the integer e is the degree of p and the
prime p is the characteristic of p. An ideal I is principal if it can be written as α ·R for
some α ∈ R. In general most ideals are not principal; the proportion of principal ideals
is 1 over the size of the class group of R, which is exponential in n. The norm of an
ideal I is the size of the (additive) group R/I .

If p is a prime ideal of R, then by a theorem of Kummer and Dedekind [36, Theorem
8.2] we can write p = p ·R+ h(x) ·R for some polynomial h(x) whose reduction mod
p is an irreducible factor of f(x) mod p. Writing p in this “two-element representation”
makes it easy to compute the corresponding quotient map Z[x]/(f(x)) → Fpe ; we
simply reduce a polynomial in Z[x] modulo both p and h(x). In particular, if p is a
degree-one prime, then h(x) = x− α for some integer α and the quotient map is given
by z(x) 7→ z(α) mod p.

Generating ideals with a short basis. If we are to use ideals as the lattices Λ1 and Λ2

in our abstract signature scheme, we will need a method for generating ideals p and q
in R along with a short basis for p ∩ q (which is equal to p · q if p and q are relatively
prime ideals). Furthermore, our security proof requires that given q without a short basis,
we can still compute a prime p with a short basis.

In our construction we generate ideals using an algorithm of Smart and Vercauteren [33].
This algorithm generates a principal prime ideal p along with a short generator g of p. We
can multiply g by powers of x to generate a full-rank set of vectors {g, xg, x2g, . . . , xn−1g}
that spans p. Since ‖x‖ = 1, we have ‖xig‖ ≤ γf · ‖g‖, so if γf is small then these
vectors are all short.

Theorem 5.1 ([33, §3.1]). There is an algorithm PrincGen that takes input a monic
irreducible polynomial f(x) ∈ Z[x] of degree n and a parameter δ, and outputs a
principal degree-one prime ideal p = (p, x − a) in K := Q[x]/(f(x)), along with a
generator g of p satisfying ‖g‖ ≤ δ

√
n.

The algorithm works by sampling a random g with low norm and seeing if it
generates a prime ideal in OK . Smart and Vercauteren do not give a rigorous analysis
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of the algorithm’s running time, but heuristically we expect that by the number field
analogue of the Prime Number Theorem [30, Theorem 8.9], we will find a prime ideal
after trying O(n log n log δ) values of g.

6 Homomorphic Signatures for Polynomial Functions

In this section we describe our main construction, a signature scheme that authenticates
polynomial functions on signed messages.

Recall the basic idea of our linearly homomorphic scheme from Section 4: messages
are elements of Zn mod Λ1, functions are mapped (via the hash function ωτ ) to elements
of Zn mod Λ2, and a signature on (τ,m, 〈f〉) is a short vector in the coset of Λ1 ∩ Λ2

defined by m and ωτ (〈f〉). To verify a signature σ, we simply confirm that σ is a short
vector and that σ mod Λ1 = m and σ mod Λ2 = ωτ (〈f〉). The homomorphic property
follows from the fact that the maps x 7→ (x mod Λi) are linear maps — i.e., vector
space homomorphisms — and therefore adding signatures corresponds to adding the
corresponding messages and (encoded) functions.

Our polynomial system is based on the following idea: what if the lattice Zn has a
ring structure and the lattices Λ1, Λ2 are ideals? Then the maps x 7→ (x mod Λi) are
ring homomorphisms, and therefore adding or multiplying signatures corresponds to
adding or multiplying the corresponding messages and functions. Since any polynomial
can be computed by repeated additions and multiplications, adding this structure to our
lattices allows us to authenticate polynomial functions on messages.

Concretely, we let F (x) ∈ Z[x] be a monic, irreducible polynomial of degree n. We
define the number fieldK = Q[x]/(F (x)) and letOK be the lattice in Qn corresponding
(via the coefficient embedding) to the ring of integers of K. We now let Λ1 and Λ2 be
(degree one) prime ideals p, q ⊂ OK of norm p, q respectively. We fix an isomorphism
from OK/p to Fp by representing p as pOK + (x− a)OK and mapping h(x) ∈ OK to
h(a) mod p ∈ Fp, and similarly for OK/q ∼= Fq . We can now sign messages exactly as
in the linearly homomorphic scheme.

In our linearly homomorphic scheme we used the projection functions πi as a
generating set for admissible functions, and we encoded the function f =

∑
ciπi by

its coefficient vector (c1, . . . , ck) (with the ci interpreted as integers in (−p/2, p/2]).
When we consider polynomial functions on Fp[x1, . . . , xk], the projection functions πi
are exactly the linear monomials xi, and we can obtain any (non-constant) polynomial
function by adding and multiplying monomials. If we fix an ordering on all monomials
of the form xe11 · · ·x

ek
k , then we can encode any polynomial function as its vector of

coefficients, with the unit vectors ei representing the linear monomials xi for i =
1, . . . , k.

The hash function ωτ is defined exactly as in our linear scheme: for a function f
in Fp[x1, . . . , xk] whose encoding is 〈f〉 = (c1, . . . , c`) ∈ Z`, we define a polynomial
f̂ ∈ Z[x1, . . . , xk] that reduces to f mod p. We then define ωτ (〈f〉) = f̂(α1, . . . , αk),
where αi ∈ Fq are defined to be H(τ, i) for some hash function H .

We use the same lifting of f to f̂ ∈ Z[x1, . . . , xk] to evaluate polynomials on signa-
tures; specifically, given a polynomial f and signatures σ1, . . . , σk ∈ K on messages
m1, . . . ,mk ∈ Fp, the signature on f(m1, . . . ,mk) is given by f̂(σ1, . . . , σk).
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Recall that for v1,v2 ∈ OK , the length of v1 · v2 is bounded by γF · ‖v1‖ · ‖v2‖.
Thus if we choose F (x) so that γF is polynomial in n, then multiplying together a
constant number of vectors of length poly(n) produces a vector of length poly(n). It
follows that the derived signature f(σ1, . . . , σk) is short as long as the degree of f is
bounded and the coefficients of f are small (when lifted to the integers). The system
therefore can support polynomial computations on messages for polynomials with small
coefficients and bounded degree.

The polynomially homomorphic scheme. We now describe the scheme formally.

Setup(1n, k). On input a security parameter n and a maximum data set size k, do the
following:
1. Choose a monic irreducible polynomial F (x) ∈ Z[x] of degree n with γF =

poly(n).
Let K := Q[x]/(F (x)) be embedded in Qn via the coefficient embedding.
Let R = Zn be the lattice corresponding Z[x]/(F (x)) ⊂ OK .

2. Run the PrincGen algorithm twice on inputs F, n to produce distinct principal
degree-one prime ideals p = (p, x − a) and q = (q, x − b) of R with generators
gp, gq, respectively.

3. Let T be the basis {gpgq, gpgqx, . . . , gpgqxn−1} of p · q.
4. Define ν := γ2F · n3 log n. Choose integers y = poly(n) and d = O(1).
5. Let H : {0, 1}∗ → Fq be a hash function (modeled as a random oracle).
6. Output the public key pk = (F, p, q, a, b, ν, y, d,H) and secret key sk = T.

The public key pk defines the following system parameters:
– The message space is Fp and signatures are short vectors in R.
– The set of admissible functions F is all polynomials in Fp[x1, . . . , xk] with coeffi-

cients in {−y, . . . , y}, degree at most d, and constant term zero. The quantity y is
only used in algorithm Verify.

– Let ` =
(
k+d
d

)
−1. Let {Yj}`j=1 be the set of all non-constant monomials xe11 · · ·x

ek
k

of degree
∑
ei ≤ d, ordered lexicographically. Then any polynomial function f ∈ F

is defined by f(~m) =
∑`
j=1 cjYj(~m) for cj ∈ Fp. We interpret the cj as integers in

[−y, y] and encode f as 〈f〉 = (c1, . . . , c`) ∈ Z`.
– To evaluate the hash function ωτ on an encoded function 〈f〉 = (c1, . . . , c`) ∈ Z`,

do the following:
(a) For i = 1, . . . , k, compute αi ← H(τ‖i).
(b) Define ωτ (〈f〉) :=

∑`
j=1 cjYj(α1, . . . , αk) ∈ Fq .

Sign(sk, τ,m, i). On input a secret key sk, a tag τ ∈ {0, 1}n, a message m ∈ Fp, and an
index i, do:
1. Compute αi := H(τ‖i) ∈ Fq .
2. Compute h = h(x) ∈ R such that h(a) mod p = m and h(b) mod q = αi.
3. Output σ ← SamplePre(p · q,T, h, ν) ∈ (p · q) + h .

Verify(pk, τ,m, σ, f). On input a public key pk, a tag τ ∈ {0, 1}n, a message m ∈ Fp,
a signature σ = σ(x) ∈ R, and a function f ∈ F , do:
1. If all of the following conditions hold, output 1 (accept); otherwise output 0 (reject):

(a) ‖σ‖ ≤ ` · y · γd−1F · (ν
√
n)d.
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(b) σ(a) mod p = m.
(c) σ(b) mod q = ωτ (〈f〉).

Evaluate(pk, τ, f, ~σ). On input a public key pk, a tag τ ∈ {0, 1}n, a function f ∈ F
encoded as 〈f〉 = (c1, . . . , c`) ∈ Z`, and a tuple of signatures σ1, . . . , σk ∈ Zn, do:
1. Lift f ∈ Fp[x1, . . . , xk] to Z[x1, . . . , xk] by setting f̂ :=

∑`
j=1 cjYj(x1, . . . , xk).

2. Output f̂(σ1, . . . , σk).

In the full version of this paper [5], we show that this polynomially homomorphic
signature scheme is correct with overwhelming probability and that it is length efficient;
i.e., the bit length of a derived signature depends logarithmically on the data set size k.

Unforgeability. As in our linearly homomorphic scheme from Section 4, an adversary
that can forge a signature in the above system can be used to find a short vector in the
lattice used to authenticate functions, which in this case is the ideal q.

Theorem 6.1. For fixed n, let Fn be the polynomial chosen in Step (1) of the Setup al-
gorithm above, and let Ln be the distribution of ideals q output by the Smart-Vercauteren
algorithm when given input polynomial Fn(x) and parameter δ = n. Let LF be the
ensemble {Ln}. If LF -SISn,β is infeasible for

β = 2 ·
(
k+d
d

)
· y · γ3d−1Fn

(
n3 log n

)d
,

then the polynomially homomorphic signature scheme defined above is unforgeable in
the random oracle model.

The proof of this theorem uses the same ideas as that of Theorem 4.1; details are in the
full version of this paper [5]. While Theorem 6.1 gives a concrete security result for our
system, the distribution LF of prime ideals output by the Smart-Vercauteren algorithm
is not well understood. It is an open problem to modify the system to use ideals sampled
from a distribution that admits a random self-reduction.

Privacy. The homomorphic signature scheme described above is not weakly context
hiding in the sense of Definition 2.3. To see why, consider an attacker that outputs two
data sets ~m∗0 := (0, 0) and ~m∗1 := (0, 1), each containing two messages in (R/p) ∼= Fp.
The attacker also outputs the function f(x, y) := x · y, which is a valid function to
request since f(~m∗0) = f(~m∗1).

The challenger chooses a random bit b in {0, 1} and generates signatures σ1, σ2 in
R for the two messages in ~m∗b . It gives the attacker σ := σ1 · σ2.

Now, when b = 0 both σ1 and σ2 are in p and therefore the derived siganture
σ = σ1σ2 is in p2. However, when b = 1 we know that σ2 6∈ p and therefore σ ∈ p2 only
if σ1 ∈ p2. But σ1 is in p2 with probability at most 1/2. In other words, Pr[σ ∈ p2] = 1
when b = 0, but Pr[σ ∈ p2] ≤ 1/2 when b = 1. Therefore, an adversary that outputs
b′ = 0 if σ ∈ p2 and b′ = 1 otherwise has advantage at least 1/2 in distinguishing ~m∗0
from ~m∗1 just given σ. Consequently the scheme is not weakly context hiding.
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Using small fields. The signature scheme described above signs messages defined over
a finite field Fp, where p is exponential in n. In the full version [5], we show how to
authenticate polynomial functions of data defined over a field where p is constant or
polynomial in n, as we can for linear computations using the scheme of Section 4.

7 Conclusions and Open Problems

We have presented a homomorphic signature scheme that authenticates polynomial
functions of bounded degree on signed data.

There are many open problems that remain in this area. First, as we explained in
the introduction, we may desire that derived signatures not leak information about the
original data set. This privacy property can be achieved for linear functions (e.g. as in [6]
and in this paper), but is an open problem for quadratic and higher degree polynomials.

Second, the security of our scheme could be strengthened by removing the random
oracle from our construction. All current linearly homomorphic signature schemes use
the random oracle to simulate signatures during a chosen message attack. New ideas are
needed to eliminate the random oracle while preserving the homomorphic properties.

Third, it is an open problem to base the security of our system on worst case problems
on ideal lattices. In particular, we wish to generate ideals for our polynomially homomor-
phic signature scheme from a distribution that admits a random self-reduction. While
Gentry [18] has achieved this result for homomorphic encryption, his key generation
algorithm is not suitable for our scheme: it produces an ideal q and a short vector in q−1,
whereas we require a short vector in q. One direction for future work is to construct a
homomorphic signature scheme that uses Gentry’s key generation algorithm; another is
to construct an algorithm that samples a uniformly random ideal q along with a short
vector in q.

Finally, our construction can be seen as a first step on the road to a fully homomorphic
signature scheme, which could authenticate the computation of any function on signed
data. A fully homomorphic signature scheme would be a useful parallel to existing
fully homomorphic encryption systems. Current constructions of fully homomorphic
encryption are obtained by applying a “bootstrapping” process to a scheme that allows
a limited amount of computation on encrypted data. It is unclear whether Gentry’s
bootstrapping process [17] can be applied to signature schemes such as ours. We leave
this as a beautiful open problem. Even if a fully homomorphic scheme cannot be
immediately realized, it would be useful to enlarge the set of admissible functions F .
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34. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public-key encryption based
on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635.
Springer, Heidelberg (2009)

35. Steinfeld, R., Bull, L., Zheng, Y.: Context extraction signatures. In: Kim, K. (ed.) ICISC 2001.
LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2001)

36. Stevenhagen, P.: The arithmetic of number rings. In: Algorithmic number theory: Lattices,
number fields, curves and cryptography. Math. Sci. Res. Inst. Publ., vol. 44, pp. 209–266.
Cambridge Univ. Press, Cambridge (2008)

37. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18. Springer (2008)

38. Zhao, F., Kalker, T., Médard, M., Han, K.: Signatures for content distribution with network
coding. In: Proc. Intl. Symp. Info. Theory (ISIT) (2007)

20


