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Abstract. Using EasyCrypt, we formalize a new modular security proof
for one-round authenticated key exchange protocols in the random or-
acle model. Our proof improves earlier work by Kudla and Paterson
(ASIACRYPT 2005) in three significant ways: we consider a stronger
adversary model, we provide support tailored to protocols that utilize
the Naxos trick, and we support proofs under the Computational DH
assumption not relying on Gap oracles. Furthermore, our modular proof
can be used to obtain concrete security proofs for protocols with or with-
out adversarial key registration. We use this support to investigate, still
using EasyCrypt, the connection between proofs without Gap assump-
tions and adversarial key registration. For the case of honestly generated
keys, we obtain the first proofs of the Naxos and Nets protocols under the
Computational DH assumption. For the case of adversarial key registra-
tion, we obtain machine-checked and modular variants of the well-known
proofs for Naxos, Nets, and Naxos+.
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1 Introduction

Cryptographic protocols, like TLS, SSH, and VPNs, are one of the main build-
ing blocks of the Internet. At the heart of these protocols lies a key exchange
protocol, which allows two parties to establish a shared session key used for
building a secure channel. Traditionally, key exchange has often been realized
using key transport protocols. Here, one participant generates the session key
and uses public key encryption and signatures to transport it to the peer. Since
this approach usually uses a longterm public key for encryption, it lacks resilience
against leakage of the corresponding secret key, either through cryptanalysis or
coercion. Concretely, if an adversary obtains the longterm secrets of a partici-
pant, he can obtain all his session keys. Resilience against such attacks is called



2

forward secrecy [24]. While long known in the cryptographic community, forward
secrecy has recently come under public light following revelations about mass
surveillance and implementation bugs such as Heartbleed. As a consequence, we
expect that the ongoing shift from key transport protocols to key agreement
protocols that achieve forward secrecy will accelerate; for instance, there is con-
sensus to deprecate RSA key transport in TLS 1.3.

One solution to achieve forward secrecy is to use protocols that use an
ephemeral Diffie-Hellman (DH) exchange. Since the ephemeral DH exchange
uses fresh exponents for each session, protocols using them can provide forward
secrecy. In order to provide authentication, most popular protocols such as TLS
and SSH sign the exchanged DH messages. Theoretically, key agreement proto-
cols based on signed DH are well understood and allow for relatively straight-
forward proofs of the classical security properties and forward secrecy [10,18].
In practice, their usage in real-world protocols poses additional problems and
there is a large body of work on analyzing the security of the combined channel
establishment protocol [27,32,13].

Nevertheless, the use of signatures has several disadvantages. First, standard-
ization and implementation must include a signature scheme which might not
be required otherwise. Second, the use of signatures might compromise deniabil-
ity [30]. Third, signing and verification time might be a bottleneck. Furthermore,
several realistic attacks are still possible for one-round versions of such protocols.
For example, leakage of session randomness can lead to the compromise of future
sessions in signed DH protocols [31, Section 1.6].

To address these deficiencies, implicitly authenticated key exchange (IAKE)
protocols have been introduced in [40]. Such protocols enhance an ephemeral DH
exchange with static DH keys that are only used in the key computation. Many
protocols of this type have been proposed, such as HQMV [31], Naxos [36], and
Nets [38], and they often surpass signature-based protocols in terms of perfor-
mance and security. For example, the HMQV protocol, which is a hashed variant
of the MQV [37] protocol, adds authentication to the ephemeral Diffie-Hellman
protocol at a very low cost if Shamir’s trick [25] is used for multi-exponentiation.
Prominent instances of deployed systems based on such protocols include the
EMV [17] chip based payment system, which uses a custom protocol and Black-
berry phones, which use the elliptic curve version of MQV [37]. One of the main
adversary models for IAKE protocols is the extended Canetti-Krawczyk (eCK)
model [36], which provides very strong security guarantees such as (weak) per-
fect forward secrecy and session key secrecy even in the case where the session’s
randomness is leaked.

However, a number of concerns with the provable security of this class of pro-
tocols remain. First, only some of them achieve efficient designs and tight reduc-
tions under standard assumptions such as computational DH (CDH). Instead,
known proofs of efficient protocols often use the Forking Lemma (and therefore
give non-tight reductions), or strong assumptions such as Gap-CDH [43]. Sec-
ond, and probably more importantly, the security definitions for key exchange
protocols are an order of magnitude more complex than standard definitions for
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most cryptographic primitives, such as IND-CCA. This results in long proofs
that few people understand or check for flaws. Unsurprisingly, numerous attacks
have been discovered on key exchange protocols [28,31,41,42], even on those
claimed provably secure. This second problem is not exclusive to key exchange
protocols. In fact, two approaches have been developed to tame the complexity
of cryptographic proofs in the computational model.

The first approach is to develop generic results that can be applied to many
concrete instances. While genericity does not eliminate the possibility of flaws,
it allows to build a reduced corpus of results on which the security of proto-
cols depends, and gives greater incentive to examine their proofs carefully. One
popular class of generic results in cryptography are protocol transformations. If
a protocol Π is secure with respect to an adversary model M, then Π can be
transformed into a (more complicated) protocol Π ′ that is secure with respect
to a stronger adversary model M′. For key exchange, this approach was pio-
neered by Bellare, Canetti, and Krawczyk [8] and other transformations have
been proposed by Kudla and Paterson [33], Cremers and Feltz [23], and Boyd et
al. [16]. However, existing transformations have several drawbacks, in particular:
the transformation in [8] cannot be applied to many protocols of interest; the
transformations in [23,16] assume that the initial protocol is already secure in
the eCK model; and the transformation in [33] only supports proofs under Gap
assumptions, predates the eCK model and is only applicable to weaker security
models.

The second approach is to build machine-checked, independently verifiable
proofs of security; this approach has been suggested notably by Halevi [26], and
more recently by Hales4 in the context of verifying the absence of trapdoors
in NIST standards. Assuming that the verification tool is correct, one can gain
trust in a formal proof simply by checking the definitions it uses and the the-
orem statement, since the tool ensures the correctness of the reasoning steps.
There are two mature tools to perform machine-checked cryptographic proofs
in the computational model: CryptoVerif [14] and EasyCrypt [6,5]. CryptoVerif
is an automatic prover in the computational model and has been applied to
cryptographic constructions such as the Full Domain Hash signature scheme,
Kerberos, and the One-Encryption Key Exchange. EasyCrypt is a toolset for the
construction and verification of game-based cryptographic proofs and has mostly
been applied to cryptographic primitives, such as the Cramer-Shoup encryption
scheme, and the OAEP padding scheme. So far neither of these tools have been
used to obtain machine-checked proofs of modern key exchange protocols with
respect to their intended security definitions.

Both approaches are complementary. Indeed, machine-checked proofs make
checking proofs efficient, but they also significantly increase the cost of building
proofs. As a consequence, generic results are ideal targets for machine-checked
proofs, for two reasons. First, the cost of building proofs for generic results is
justified by their multiple applications. Second, the level of abstraction required

4 https://jiggerwit.wordpress.com/2013/11/04/formalizing-nist-standards/

https://jiggerwit.wordpress.com/2013/11/04/formalizing-nist-standards/
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to obtain generic proofs combined with the explicit tracking of assumptions in
machine-checked proofs often provides new insights.

Contributions

We develop a new generic proof of security for key-exchange protocols, and in-
stantiate it to obtain security proofs for known protocols with respect to different
adversary models and hardness assumptions. In the cases of Naxos and Nets, we
show that it is possible to obtain a CDH proof (without GAP) if static keys are
honestly generated. We also formalize our generic proof and its instantiations
using EasyCrypt. We elaborate on these points below.

Generic Proof for eCK security. We consider the class of one-round
Diffie-Hellman protocols defined in the random oracle model where the session
key is the output of a hash function. We reduce eCK-security of a key exchange
protocol in this class to a condition on the key computation function and four
simple games, in which the adversary can access at most one oracle. For protocols
that employ the Naxos trick and use h(x, a) as the exponent of the DH message,
we provide an even simpler reduction with three games.

Concretely, we structure our generic proof in terms of protocol transforma-
tions and different versions of the security game. We are interested in eCK secu-
rity. As proof tools, we also use three additional security games:

eCK: Adversary must distinguish the session key of a fresh test session from
random key.

eCKnt: Variant of eCK where adversary must provide the actor’s static secret
key as input to the ephemeral reveal oracle.

CSK: Simplified game for protocols that do not use the Naxos trick where
adversary must compute session key of test session (4 cases).

CSKnt: Simplified game for protocols that use the Naxos trick where adversary
must compute session key of test session (3 cases).

We then define protocol transformations T nt (use Naxos trick) and T hsk (hash
session key) and prove that the following implications hold for all protocols Π:

Π is eCKnt-secure =⇒ T nt(Π) is eCK-secure
Π is CSKnt-secure =⇒ T hsk(Π) is eCKnt-secure
Π is CSK-secure =⇒ T hsk(Π) is eCK-secure

As an example, consider the Naxos protocol which uses the Naxos trick and
hashes its session key. We first define the “core” of Naxos and call it Naxoscore.
Since it holds that Naxos = T hsk(T nt(Naxoscore)), it suffices to prove that Naxoscore

is CSKnt-secure to obtain that Naxos is eCK-secure. While the original eCK secu-
rity definition consists of a game with seven oracles where the winning condition
contains a complicated freshness condition, the CSKnt game has a very simple
winning condition and only provides a decision oracle that allows the adversary
to confirm session key guesses.
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Protocol Existing Proof Our Proofs EasyCrypt
Naxos [36] eCK/Gap-CDH eCKkr/Gap-CDH, eCKnkr/CDH yes
Nets [38] eCKkr/Gap-CDH eCKkr/Gap-CDH, eCKnkr/CDH yes
Naxos+ [39] eCKkr/Gap-CDH eCKkr/CDH yes
HMQV [31]∗ CKHMQV/Gap-CDH+KEA1 eCKkr/Gap-CDH no

Fig. 1. Obtained proofs for Key Exchange Protocols (∗see explanation, nt=non-tight).

To compare different models of key distribution, we support two versions of
the eCK model: The eCKnkr model where all static keys are honestly generated
and the eCKkr model that allows the adversary to adaptively register arbitrary
public keys for dishonest parties without providing a proof of possession. The
original eCK model [36] sits in between our two versions. The adversary can
register arbitrary public keys for dishonest parties before activating the first
session, i.e., the registered public keys can depend on public keys of honest
parties, but not on protocol messages, as, for example, required for Kaliski’s
attack [28] on MQV.

Our proof improves [33] in several ways: it uses the stronger eCK adversary
model (with and without adversarial key registration); it supports proofs under
standard assumptions (whereas the proof from [33] requires Gap assumptions),
and; it exploits the Naxos trick resulting in simpler proof obligations for proto-
cols that use it.

Concrete Proofs.We instantiate the generic proof to obtain security proofs
for existing protocols; in all cases, the proofs of the simplified games are short by
the standards of machine-checked proofs. Our results are summarized in Figure 1.
Concretely, we prove that:

– Naxos and Nets are secure in the eCK model under the CDH assumption if
keys are honestly generated. If we allow arbitrary adversarial key registra-
tion, we require the Gap-CDH assumption as in the original proof.

– The Naxos variant Naxos+ [39] is secure in the eCK model with arbitrary
adversarial key registration under the CDH assumption. Here we obtain a
similar result to the original proof using our generic proof method.

– A version of HMQV is secure in the eCK model under the Gap-CDH assump-
tion. The version we analyze includes the identities and exchanged message
in the input of the key derivation hash. The proof does not need KEA1
(knowledge of exponent assumption).

EasyCrypt Formalization. We have formalized all models, our generic
proof for protocols using the Naxos trick, and the proofs for Nets, Naxos, and
Naxos+ in EasyCrypt. Our formalization constitutes the biggest case study de-
veloped with the tool so far; e.g. the generic proof for protocols using the Naxos
trick takes about 30,000 lines of code, including game definitions (about 50 of
them), specifications, and proofs. On the other hand, the instantiation of the
proof for concrete protocols is short and takes less than 1,000 lines each. Our
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formalization also includes several reusable libraries that deal with random or-
acles, Twin DH, and common proof techniques such as plug and pray, that we
discuss in Section 2.3.

Future Work

There are several directions for future work, including:
1. Automation and synthesis. The next logical step of this work is to extend

our library of high-level principles to reason about AKE proofs in the random
oracle model and provide more automation to simplify their application. These
high-level principles will serve as a useful basis for future formalizations in Easy-
Crypt (beyond AKE), but will also make it faster to extend the current proof
to support new features. They could also serve as a basis for fully automated
proof methods and allow for the use of synthesis to generate secure protocols,
following [3].

2. Extensions. We plan to strengthen our results in different directions. Possi-
ble extensions include adversary models with a more precise model of the CA [16],
adversary models that allow reveal of different parts of state, and models of weak
randomness. Moreover, we are also interested in using our framework to analyze
larger protocols that use AKE as a subprotocol. This will be valuable to evaluate
existing [45] and future proposals for secure transport-layer protocols.

3. Implementations. Our model provides a precise specification of the pro-
tocol. Using the techniques from [2], we intend to carry the security proof to
executable implementations.

Related work

There is a vast body of literature on key-exchange protocols and on their asso-
ciated security models; for a comparison between some existing models we refer
to [34,20,22]. In addition to Naxos+, which we already mentioned, there are other
protocols that achieve eCK-security under the CDH assumption, e.g., by Kim,
Fujioka, and Ustaoglu [29] or by Pan and Wang [44].

There has been extensive work on the formal verification of key exchange
protocols, see for instance the recent survey [15]. A significant amount of work is
carried in the symbolic model, a high-level model which idealizes the treatment
of cryptographic primitives. This level of abstraction makes the symbolic model
amenable to automated analysis, and many tools have been developed for proving
protocol security. Recent results focusing on DH-based key exchange protocols
include [7], [35] and [46]. Over the last decade, many results on computational
soundness results [1,21] have shown that under certain conditions, protocols
deemed secure in the symbolic model remain secure in the computational model.
Another related line of research (see, e.g., [12]) deals with the verification of
implementations of security protocols such as TLS in the computational model.
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2 Background

In this section, we give some background on notation, authenticated key ex-
change protocols, and EasyCrypt.

2.1 Notation

A∗ denotes the set of all sequences with elements taken from A. For two sequences
s1 and s2, we use S1 ++S2 to denote their concatenation. We use s1 ←++ s2 as a
shorthand for the assignment s1 ← s1 ++ s2. In the special case of bitstrings b1
and b2, we also use b1 ‖b2 to denote their concatenation.

We use A ⇀ B to denote the set of partial functions from A to B. If
f is a (partial) function, we define f [a := b] as the function x 7→ if x =
a then b else f(x). In games, we use f [a] ← b as a shorthand for f ← f [a := b]
(update f at key a). For a finite set A, we use x $← A to denote that x is uniformly
sampled from A.

We use G to denote a cyclic group of prime order p with generator g. We use
Fp to denote the field of integers modulo p. We use dlog(Y ) to denote the discrete
logarithm of Y with respect to the basis g. We define dh(X,Y )

.
= Xdlog(Y ) and

ddh(X,Y, Z)
.
= (dh(X,Y ) = Z). Based on the previous definitions, we define the

following cryptographic assumptions. The challenger for DLOG gives X $← G to
the adversary who must return dlog(X). The challenger for CDH gives X,Y $← G
to the adversary who must return dh(X,Y ). For SCDH, the adversary is given
the same challenge, but must return a set containing dh(X,Y ). We also define
Gap versions [43] of these assumptions where the adversary is given access to an
oracle that returns ddh(X,Y, Z) for arbitrary X,Y, Z ∈ G.

2.2 One-Round Authenticated Key Exchange Protocols

In the following, we focus on one-round key exchange protocols. We believe most
of our results can be extended to a more general notion of protocol. Further note
that our results are not restricted to DH-based protocols and the formal defini-
tions in Section 3.1 will generalize some of the notions we introduce informally
in this section.

Figure 2 shows the computations and exchanged messages for a typical DH-
based key exchange protocol. We assume a protocol consists of three components.
First, there is a protocol component for key generation, which we show in the
first line. Here, a participant Â samples the static secret key a and computes the
corresponding static public key A. Second, there is a component responsible for
the distribution of the static public keys. We ignore the details for now and just
assume that an agent can obtain the public key of another agent.

Finally, there is a component responsible for establishing the session key.
This component consists of an initiator role and a responder role. If an agent
Â executes an instance of the initiator (resp. responder) role with the goal of
establishing a session key with B̂, we call this execution a session with role
initiator (resp. responder), actor Â, and peer B̂.
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Â : a
$← Fp, A = ga B̂ : b

$← Fp, B = gb

x
$← Fp receive X

receive Y y
$← Fp

compute session key

KeyI (x, a, Y,B, Â, B̂)

compute session key

KeyR(y, b,X,A, B̂, Â)

gx gh(x,a)

gy gh(y,b)

Fig. 2. Generic two pass protocol. Protocols using the Naxos trick use boxed messages.

When the initiator role is activated with actor Â and peer B̂, it first generates
an ephemeral secret key x, computes the ephemeral public key X, sends it to B̂,
and waits for a reply. When the responder B̂ is activated with a received message
from Â, he stores the received message as X, generates y and Y in the same way
as the initiator, sends Y to Â, and computes the session key using the KeyR
function. When the initiator is activated with the received message, he computes
the session key using KeyI .

We can define the HMQV protocol by using KeyI /KeyR that compute the
key as H(σ) for σ = dh(X,Y ) dh(X,B)e dh(A, Y )d dh(A,B)de, e = h̄(X, B̂),
and d = h̄(Y, Â). We can define the Naxos and Nets protocols by using the
boxed expressions from Figure 2 to compute X and Y . These protocols both
utilize the Naxos trick which combines the static and the ephemeral secret using
the hash function h to obtain the exponent of ephemeral public key. Since the
hash output is never stored and recomputed when required, these protocols are
analyzed with respect to possible leakage of x or a, but leakage of h(x, a) is not
considered. The Naxos protocol defines the session key asH(σ) for σ = dh(A, Y )‖
dh(X,B) ‖ dh(X,Y ) ‖ Â ‖ B̂. The Nets protocol defines the session key as H(σ)
for σ = dh(X,Y ) dh(X,B) dh(A, Y ) dh(A,B) ‖ dh(X,Y ) ‖ Â ‖ B̂ ‖ X ‖ Y . The
Naxos+ protocol extends the Naxos protocols with the additional group element
dh(A,B), i.e., the session key is defined as H(σ) for σ = dh(A, Y ) ‖ dh(X,B) ‖
dh(X,Y )‖dh(A,B)‖Â‖B̂.

Informally, the security notion expected of such protocols is the following. If
Â completes a session with (honest) peer B̂, then the session string computed
by Â is indistinguishable from a random bitstring for everyone except B̂. It has
been shown by Canetti and Krawczyk [18] that this is sufficient to establish a
secure channel between Â and B̂. The secure channel can then be used for key
confirmation. Recent adversary models like eCK build on this definition, but also
allow for many scenarios where the adversary learns additional information such
as ephemeral secret keys, static secret keys, or session keys. The eCK-model
guarantees resilience against Unknown Key Share Attacks, Key Compromise
Impersonation Resilience, and Weak Perfect Forward Secrecy, which we discuss
at the end of Section 3.1.
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2.3 EasyCrypt

EasyCrypt [6,5] is a machine-checked framework for building and verifying se-
curity proofs of cryptographic constructions. EasyCrypt follows the code-based,
game-based approach to reductionist arguments: a proof consists of a series of
probabilistic programs with adversarial code, called games, and of probabilis-
tic claims relating the probability of one or more events in one or more games.
However, EasyCrypt adopts a foundational approach, meaning that probabilistic
claims, and the overall security statement, must all be justified to the last detail
by means of elementary rules. Leveraging the state of the art in program verifi-
cation, all probabilistic claims are proved using a probabilistic Relational Hoare
Logic (pRHL), which generalizes Relational Hoare Logic [11] to a probabilistic
setting. pRHL is a program logic whose judgments are of the form

{Φ}c1 ∼ c2{Ψ}

where c1 and c2 are games and Φ and Ψ are relations on program states. The
rules of pRHL allow to derive valid judgments, where a judgment as above is
valid if for every initial memories m1 and m2 that are related by Φ, the output
sub-distributions obtained by executing c1 on m1 and c2 on m2 respectively are
related by Ψ#, where # is an operator that lifts relations on states to relations on
sub-distributions over states. The definition of # is inspired from probabilistic
process algebra. For suitable choices of Ψ , this implies inequalities of the form

Pr [c1,m1 : E1] ≤ Pr [c2,m2 : E2]

which are typical in game-based proofs, i.e., the probability of event E1 after
executing c1 in initial memory m1 is upper-bounded by the probability of event
E2 after executing c2 in m2.

Although pRHL captures common patterns of reasoning in cryptographic
proofs, there is an impedance mismatch between cryptographic practice and
proofs built using pRHL; in particular, pRHL lacks mechanisms to instantiate
previous results, and to apply high-level principles in proofs. To make matters
precise, consider for instance the reduction of SCDH to CDH: using pRHL, one
can prove that any instance of SCDH can be reduced to CDH, but one cannot
perform the proof once and for all, and reuse the result. Fortunately, EasyCrypt
now features a module system; the module system combines the power of module
systems, as they exist in functional programming languages, with a system of
capabilities that is used to restrict access to oracles or fragments of memories,
as required in cryptography. The module system can be used for performing
successive reductions locally, as often featured in pen-and-paper proofs. Mod-
ule systems are essential to formalize complex proofs such as the ones consid-
ered here; indeed, previous attempts to carry out the generic proof without the
module system were unsuccessful, because the adversary was carried explicitly
throughout the proof, making reasoning unwieldy.

Additionally, the module system allows to prove general principles once and
for all, and to carry out proofs simply by applying high-level principles. In our
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formalization underlying this paper, we make extensive use of the following prin-
ciples:
– lazy and eager sampling: this is used to switch back and forth between an im-

plementation of a random function in which images are sampled on demand
(lazily), or during initialization of the game (eagerly);

– plug and pray: if some event Φ happens for some 0 ≤ i < n, randomly sample
a value j in this range and consider the event Φ ∧ i = j instead of Φ; and

– adversary prescience: this is used to provide an upper bound to the proba-
bility that an adversary guesses an unused value in the range of a random
function

3 Model and Generic Proof

In this section, we first introduce our generic protocol model and our versions
of the eCK model with and without adversarial key registration. Afterwards, we
present our generic proof for protocols that employ the Naxos trick.

3.1 eCKkr Security and eCKnkr Security

We assume given a set ID of agent identities. We also define the set Role = {I,R}
and the function (·)? : Role→ Role such that I? = R and R? = I.

Generic Protocol Model. A protocol definition consists of instantiations for
the types and functions given in the first column of Figure 3. These types and
functions are instantiated as follows:
– The sequence H1 : I1 → O1, . . . ,Hk : Ik → Ok defines the types of hash

functions used by the protocol.
– Sk defines the type of static secret keys, Pk defines the type of static public

keys, Esk defines the type of ephemeral secret keys, Epk defines the type of
ephemeral public keys, and Key defines the type of session keys.

– The function Pk defines how the static public key is computed from the
static secret key and the function Epk defines how the ephemeral public key
is computed from the ephemeral secret key and the static secret key.

– The functions KeyI and KeyR define how the session key is computed from
the actor’s secret data, the peer’s public data, and the participants’ identities.
We use partial functions to capture failure, e.g., if a subgroup element check
fails for one of the arguments.

We keep the distributions according to which the static and ephemeral secret keys
are sampled implicit and assume they are uniformly sampled unless otherwise
stated. The functions Epk , KeyI , and KeyR can use the hash functions Hi. See
Figure 3 for the Naxoscore instantiation of the generic model. In the next section,
we will demonstrate how Naxoscore can be transformed into Naxos.
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Types/Functions Naxoscore Naxos = T hsk(T nt(Naxoscore))
Hash functions ∅ H : G3×ID2 → {0, 1}l, h : F2

p → Fp

Sk, Pk, Esk, Epk, Key Fp, G, Fp, G, G3 × ID2 Fp, G, Fp, G, {0, 1}l

Pk : Sk→ Pk a 7→ ga a 7→ ga

Epk : Esk× Sk→ Epk (x,_) 7→ gx (x, a) 7→ gh(x,a)

KeyI : Esk× Sk× Epk
× Pk× ID× ID→ Key⊥

(x, a, Y,B, Â, B̂) 7→
Y a ‖Bx ‖Y x ‖Â‖B̂

(x, a, Y,B, Â, B̂) 7→
H(Y a ‖Bh(x,a) ‖Y h(x,a) ‖Â‖B̂)

KeyR : Esk× Sk× Epk
× Pk× ID× ID→ Key⊥

(y, b,X,A, B̂, Â) 7→
Ay ‖Xb ‖Xy ‖Â‖B̂

(x, a, Y,B, B̂, Â) 7→
H(Ah(y,b) ‖Xb ‖Xh(y,b) ‖Â‖B̂)

Fig. 3. Generic Protocol Model with Naxoscore instantiation and transformation.

Protocol Transformations. We define two transformations T hsk and T nt.
The first transformation T hsk modifies a protocol to hash the session key. The
second transformation T nt modifies a protocol to utilize the Naxos trick. Fig-
ure 3 demonstrates how the Naxos protocol can be obtained by applying the two
transformations to Naxoscore. We assume T hsk is implicitly parameterized by a
positive integer l defining the size of the hash function output.

Given a protocol Π using hash functions H, defining types Sk, Pk, Esk,
Epk, Key, and defining functions Pk , Epk , KeyI , KeyR, the transformed pro-
tocols T hsk(Π) and T nt(Π) are defined as follows. We obtain T hsk(Π) from Π
by adding a hash function H : Key → {0, 1}l to H, changing the type Key to
{0, 1}l, redefining KeyI in terms of the original KeyI as ki 7→ H(KeyI (ki)),
and redefining KeyR analogously. We obtain T nt(Π) from Π by adding a hash
function h : Esk × Sk → Esk to H and redefining Epk in terms of the original
Epk as (x, a) 7→ Epk(h(x, a), a). We also redefine the key computation to use
h(x, a) instead of x. Note that the original Epk usually ignores its second input
and a is therefore only used as input to h in the computation of the ephemeral
public key. We denote the composition of T nt and T hsk with T nt,hsk.

Security Experiments. To define the games eCKkr and eCKnkr (with and with-
out adversarial key registration), we first define the type St for the state of pro-
tocol sessions and the type Ev for the events required to express the security
definition. We define St as Role×Esk×Epk× ID× ID×Epk⊥×Key⊥. We define
Ev as the data type generated by the constructors

EphRev : Epk→ Ev, KeyRev : Epk→ Ev,StaticRev : ID→ Ev,
Accept : Role× Epk× ID× ID× Epk→ Ev, and Dishonest : ID→ Ev,

The main procedure of the games eCKkr,Π(A) and eCKnkr,Π(A) is given in the
first column of Figure 4. We assume that the adversary A consists of the two
procedures A1 and A2 sharing state. In the games, the adversary is provided
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with access to the oracles defined in the second column of Figure 4 and with
random oracle access using wrappers HA1 , . . . ,HAk . The oracles establishHonest
and establishDishonest (only in eCKkr,Π) allow the adversary to establish honest
agents for which the keys are sampled and dishonest agents where the public
key can be chosen. For honest agents, the adversary can control the execution
of initiator and responder sessions using init1 , init2 , and resp. Dishonest agents
can be used as peers of protocol sessions, but cannot be used as actors since the
static secret key is required to execute the protocol. The remaining oracles allow
the adversary to reveal static secrets, ephemeral secrets, and session keys.

The adversary wins if he can distinguish the session key of the test session
from a random session key and the test session is fresh, i.e., he did not perform
forbidden reveal queries. The freshness condition is formalized using the fresh
predicate given in Figure 5. We use the ephemeral public key to identify a session
for session key reveals and ephemeral reveals.

Discussion. In eCKkr, we allow the actor of the test session to execute sessions
with dishonest users, but the actor and peer of the test session itself must be
honest. In both eCKkr and eCKnkr, we disallow Â = B̂ because many deployed
protocols disallow this case or use distinct keys for different roles. It would be
possible to lift this limitation at the cost of additional proof obligations for users
of the generic proof.

The freshness condition captures Unknown Key Share Attacks because if Â
establishes a key with B̂, but B̂ believes that he shares this key with Ĉ 6= Â, then
there are two non-matching sessions with the same session key and one of them
can be revealed. It captures Key Compromise Impersonation because leakage of
the actors static secret key is allowed for the test session. It also captures Weak
Perfect Forward Secrecy because for all sessions where the adversary is passive
(there is a matching session), reveals for all ephemeral secrets, except for those
of the test session and its matching session, and for all static secrets are allowed.
The stronger notion of Perfect Forward Secrecy requires changes to the freshness
condition and we leave such an extension of our results open for future work.

In our definition of Naxos, we use the type G for ephemeral and static public
keys. This models an implementation ensuring that these values are elements
of G. It is also possible to use a “larger type” and explicitly model the required
checks using failure in the key computation functions.

3.2 Generic Proof

Before presenting our generic proof, we define three properties of core protocols:

(P1) The functions Pk and Epk are injective.
(P2) KeyI (x, a, Y,B, Â, B̂) is efficiently computable fromKeyR(x, a, Y,B, Â, B̂).
(P3) If two distinct sessions (X,Y, Â, B̂, r) and (X ′, Y ′, Â′, B̂′, r′) compute the

same session key, then (X,Y, Â, B̂) = (Y ′, X ′, B̂′, Â′) and {r, r′} = {I,R}.
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Game: Oracles (eCKnkr does not include establishDishonest):
var evs : Ev∗ = [ ]
var ses : Nat⇀ St = ∅
var sks : ID⇀ Sk = ∅
var pks : ID⇀ Pk = ∅
var i : Nat = 0

t← A1()

(r, ,X, Â, B̂, Y, k)
← ses[t]

b
$← {0, 1}

k′
$← Key

b′ ← A2(b ? k : k′)

t← (r,X, Â, B̂, Y )
return
b = b′ ∧ freshevs(t)

init1 (Â, B̂) : Epk =
i← i+ 1

a← sks[Â]

if a = ⊥ ∨ Â = B̂ then
return ⊥

x
$← Esk; X ← Epk(x, a)

ses[i]← (I, x,X, Â, B̂,⊥,⊥)
return (i,X)

init2 (i, Y ) =

(I, x,X, Â, B̂, Ȳ , )← ses[i]
if Ȳ 6= ⊥ then return ⊥
a← sks[Â]; B ← pks[B̂]

k ← KeyI (x, a, Y,B, Â, B̂)

ses[i]← (I, x,X, Â, B̂, Y, k)
if k = ⊥ then return ⊥
evs ←++Accept(I, X, Â, B̂, Y )

resp(B̂, Â,X) : Epk =
i← i+ 1

if Â = B̂ then return ⊥
b← sks[B̂]; A← pks[Â]

y
$← Esk; Y ← Epk(y, b)

k ← KeyR(y, b,X,A, B̂, Â)
if k = ⊥ then return ⊥
ses[i]← (R, y, Y, B̂, Â,X, k)

evs ←++Accept(R, Y, B̂, Â,X)
return (i, Y )

establishHonest(Â) : Pk =

if pks[Â] 6= ⊥ then
return ⊥

sks[Â]
$← Sk

pks[Â]← Pk(sks[Â])

return pks[Â]

establishDishonest(Â, A) =

if pks[Â] 6= ⊥ then
return ⊥

pks[Â]← A

evs ←++Dishonest(Â)

staticRev(Â) : Sk =

evs ←++StaticRev(Â)

return sks[Â]

ephRev(i) : Esk =
( , x,X, , , , )← ses[i]
evs ←++EphRev(X)
return x

keyRev(i) : Key =
( , , X, , , , k)← ses[i]
evs ←++KeyRev(X)
return k

Fig. 4. Games eCKkr,Π(A) and eCKnkr,Π(A) for A = (A1,A2) and protocol Π.

We assume the second property for simplicity. For core protocols, which we
consider here, it usually suffices to reorder the key string elements to obtain
KeyI (ki) from KeyR(ki). The third property is called strong partnering in [33]
and ensures key independence.

Exploiting the Naxos Technique. We exploit that for protocols T nt(Π) using
the Naxos technique, both x and a are required to learn the secret input h(x, a)
of Epk . This is a consequence of the fact that the value h(x, a) cannot be revealed
by the adversary in the eCK model. This decision is motivated by the assumption
that honest agents executing the protocol never store the value h(x, a). We can
therefore prove security of Π in a restricted eCKnt game to obtain eCK-security
of T nt(Π). For m ∈ {kr, nkr}, we obtain eCKnt

m from eCKm by replacing ephRev
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freshevs(r,X, Â, B̂, Y )
.
=

There is no session key reveal for t, not both ephemeral and static reveal for t,
KeyRev(X) /∈ evs ∧ ¬(EphRev(X) ∈ evs ∧ StaticRev(Â) ∈ evs)

and the adversary did not register Â’s or B̂’s public keys.
∧ Dishonest(Â) /∈ evs ∧ Dishonest(B̂) /∈ evs

If there is a matching session t′, then
∧ (Accept(r?, Y, B̂, Â,X) ∈ evs =⇒

there is no key reveal for t′ and not both ephemeral and static reveal for t′.
(KeyRev(Y ) /∈ evs ∧ ¬(EphRev(Y ) ∈ evs ∧ StaticRev(B̂) ∈ evs)))

If there is no matching session, then there is no static reveal for B.
∧ (Accept(r?, Y, B̂, Â,X) /∈ evs =⇒ StaticRev(B̂) /∈ evs)

Fig. 5. Freshness condition for a trace evs and a test session t = (r,X, Â, B̂, Y ).

with ephRevnt as defined below:

ephRevnt(i, a) : Esk =

(_, x,X, Â,_,_,_)← ses[i]

if a 6= sks[Â] then return ⊥
evs ←++EphRev(X)
return x

Informally, our reduction exploits that x forΠ in eCKnt corresponds to h(x, a) for
T nt(Π) in eCK and a query ephRevnt(i, a) in eCKnt corresponds to the sequence
of queries x← ephRev(i); hA(x, a) in eCK.

To state our lemma, we define A to be a (qse , qag , qH) eCKm (or eCKnt
m)

adversary if A activates at most qse sessions involving at most qag agents and
performs at most qHi

queries to the random oracle HAi . We use qh to denote the
number of queries to the random oracle hA introduced by the T nt transformation.

Lemma 1. Let m ∈ {kr, nkr}, Π be a protocol, and A a (qse , qag , qH) eCKm
adversary. Then there is a (qse , qag , qH) eCKnt

m adversary B such that

Pr
[
eCKm,T nt(Π)(A) = 1

]
≤ Pr

[
eCKnt

m,Π(B) = 1
]

+ εT nt

where εT nt = 2 qh qse/|Esk| + q2se/2 |Esk|. Furthermore, the adversary B runs in time
at most O(qh tPk + tA) where tPk is the time required to compute Pk .

In our EasyCrypt formalization, we explicitly construct the simulator S sketched
in the proof below and prove the probability statement for B = S(A).

Proof (Sketch). After bounding the probability of collisions for ephemeral se-
crets and bounding the probability of the adversary querying hA(x, ∗) for an
ephemeral secret x before revealing it, we define a simulator B that calls A and
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Ghsk,nt
1,m (a secret): Ghsk,nt

2,m (x, b secret): Ghsk,nt
3 (x, y secret):

a
$← Sk; A← Pk(a)

z
$← Eskqse ; Z ← Epk(z)

c
$← Skqag−1

a′ ← B1(A,Z, c)
return (a = a′)

eqS kr(i, Y, C, Â, Ĉ, k) =

ki← (zi, a, Y, C, Â, Ĉ)
return (k = KeyI (ki))

eqS nkr(i, Y, j, Â, Ĉ, k) =

C ← Pk(cj)

ki← (zi, a, Y, C, Â, Ĉ)
return (k = KeyI (ki))

x
$← Esk; X ← Epk(x)

b
$← Sk; B ← Pk(b)

z
$← Eskqse−1; Z ← Epk(z)

c
$← Skqag−1

(i, Y, Â, B̂, S)← B2(X,B, c,Z)

k ← KeyI (x, ci, Y, B, Â, B̂)
return (k ∈ S ∧ k 6= ⊥)

eqS kr(j,W,C, B̂, Ĉ, k) =

ki← (zj , b,W,C, B̂, Ĉ)
return (k = KeyI (ki))

eqS nkr(j,W, u, B̂, Ĉ, k) =
C = Pk(cu)

ki← (zj , b,W,C, B̂, Ĉ)
return (k = KeyI (ki))

x
$← Esk; X ← Epk(x)

y
$← Esk; Y ← Epk(y)

c
$← Skqag

(i, j, Â, B̂, S)← B3(X,Y, c)
C ← Pk(cj)

k ← KeyI (x, ci, Y, C, Â, B̂)
return (k ∈ S ∧ k 6= ⊥)

Fig. 6. Games defining CSKnt
kr,Π(B) and CSKnt

nkr,Π(B) for B = (B1,B2,B3) with alterna-
tive eqS -oracle definitions for kr and nkr.

handles queries as follows: On queries init1 and resp, B updates a mapping from
the session index i of the started session to the public key Ai of i’s actor. For
queries ephRev(i), B samples and stores the value x̄i ensuring that there are no
collisions and that answers are consistent, i.e., B simulates the ephemeral secrets
in eCKm,T nt(Π). On query hA(z, c), B checks if there is an i such that z = x̄i
and Pk(c) = Ai (which implies ai = c, i.e., c is equal to the static secret key
of the i-th session) and returns ephRevnt(i, ai) if the check succeeds and h(z, c)
otherwise. All other queries are just forwarded. In the reduction, the ephemeral
secrets xi in eCKnt

m,Π correspond to hash values h(xi, ai) in eCKm,T nt(Π). ut

Exploiting the Hashing of the Session Key. The CSKnt
nkr and CSKnt

kr models
for protocols that employ the Naxos technique are defined by the three games
given in Figure 6. The winning conditions state that the adversary must compute
certain keys. They result from case distinctions where we show that the adversary
cannot win unless he queries these keys to ephRevnt or the random oracle H. We
first describe the games and then explain how they are used in the reduction.

Ghsk,nt
1,m : The adversary is given a static public key A, a vector Z of ephemeral
public keys, and a vector c of static secret keys. To win, he must return
the static secret key a for A. He is given access to a decision oracle that
returns 1 if the given k is the session key for a session with session data
(zi, a, , Y, C, Â, Ĉ) where zi must be an element of z, a is fixed, and Â, Ĉ,
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and Y can be arbitrary. For m = kr, C can be arbitrary. For m = nkr, C
must be an element of Pk(c) reflecting that keys are honestly generated.

Ghsk,nt
2,m : The adversary is given an ephemeral public key X, a static public key B,
a vector Z of ephemeral public keys, and a vector c of static secret keys. He
chooses a static secret key ci from c, an arbitrary ephemeral public key Y ,
and arbitrary agent identities Â and B̂. To win, he must return a set S that
contains the session key for (x, ci, Y, B, Â, B̂). He is provided with access to
a decision oracle that returns 1 if the given k is the session key for a session
with session data (zj , b,W,C, B̂, Ĉ) where zj must be an element of z, b is
fixed, and W , B̂, and Ĉ can be arbitrary. For m = kr, the static public key
C of the peer can be arbitrary. For m = nkr, C must be an element of Pk(c).

Ghsk,nt
3 : The adversary is given ephemeral public keys X, Y and a vector c of
static secret keys. He chooses static secret keys ci, cj in c and arbitrary
Â, B̂. To win, he must return a set S that contains the session key for
(x, ci, Y,Pk(cj), Â, B̂).

In the reduction, we use Ghsk,nt
1,m to handle the case where the adversary queries

ephRevnt(i, a) without revealing the static secret a for some Â. For the remaining
cases, we know that the ephemeral secret x of the test session must be secret. We
use Ghsk,nt

2,m to handle the case where the static secret b of the test session’s peer
remains unrevealed and Ghsk,nt

3 to handle the case where b is revealed and there is
a matching session with unrevealed ephemeral secret y. The eqS oracle in Ghsk,nt

1,m

is used to synchronize queries to HA and keyRev for Â’s sessions. Analogously,
eqS in Ghsk,nt

2 is used for B̂’s sessions. We can now state our main theorem using
qh (resp. qH) to denote the number of queries to the oracle introduced by T nt

(resp. T hsk).

Theorem 1 Let m ∈ {kr, nkr} and Π be a protocol satisfying properties P1–P3.
Let A be a (qse , qag , qH) eCKm adversary. Then there are CSKnt

m adversaries B1–
B3 such that

2 Pr
[
eCKm,T nt,hsk(Π)(A) = 1

]
− 1

≤ δ1 Pr
[
Ghsk,nt

1,m,Π(B1) = 1
]

+ δ2 Pr
[
Ghsk,nt

2,m,Π(B2) = 1
]

+ δ3 Pr
[
Ghsk,nt

3,Π (B3) = 1
]

+ εT nt,hsk

for εT nt,hsk = (2 qh qse+ 2 q2se)/|Esk|, δ1 = qag , δ2 = qag qse , and δ3 = q2
se . Further-

more, the adversaries B1 and B2 perform at most qH qse queries to eqS and the
adversaries B2 and B3 return sets of size at most 2 qH . The adversaries B1–B3

run in time at most O((qh + qag) tPk + qse tproto + qse qH + tA) where tproto
denotes the time to execute a protocol session.

Proof (Sketch). We first apply Lemma 1. Then it remains to prove that CSKnt
m-

security of Π implies eCKnt
m-security of T hsk(Π). Let σ denote the input to H
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Game: Oracles:
var evs : Ev∗ = [ ]
var sks : ID⇀ Sk = ∅
var pks : ID⇀ Pk = ∅
var ses : Nat⇀ St = ∅
var i : Nat = 0
(S, t)← A1()

(r,_, X, Â, B̂, Y, k)← ses[t]

ts← (r,X, Â, B̂, Y )
return (k ∈ S ∧ k 6= ⊥ ∧ freshevs(ts))

Replace keyRev and hA with
eqS . Keep other oracles.

eqS(i, k) : Key =

(r,_, X, Â, B̂, Y, k′)← ses[i]

evs ←++KeyRev(r,X, Â, B̂, Y )
return (k = k′)

Fig. 7. Intermediate game GI used in reductions (eCKnt to CSKnt and eCK to CSK).

used to compute the session key of the test session. We first bound the probability
that the adversary wins without querying σ to HA by 1/2. First, note that he
cannot reveal a session key with hash input σ since condition P3 for Π implies
that the corresponding session is either a matching session or the test session
itself (up to collisions of ephemeral secrets and guessing of unused ephemeral
secrets). He therefore receives a key that is sampled independently of his view
for both values of b and cannot do better than guessing b in this case.

We now proceed by bounding the probability of σ ∈ QH ∧ freshevs(sid) in
eCKnt

m,T hsk(Π) where sid = (r,X, Â, B̂, Y ) and QH is the set of values queried to
H by the adversary. Our goal is to perform a reduction to the intermediate game
GIm,Π shown in Figure 7. The simulator will use the eqS oracle in GIm,Π to
simulate the oracles HA and keyRev and return (t, QH). The eqS oracle is used
to synchronize values returned in keyRev and H, but it cannot be used for the
call to H for σ in the main body. We therefore perform a sequence of steps that
includes enforcing a (monotonous version of) freshness to remove this call before
performing the reduction.

To obtain the three games Ghsk,nt
1,m,Π , Ghsk,nt

2,m,Π , and Ghsk,nt
3,Π from GIm,Π , we

perform two case distinctions followed by one reduction for each case. The first
case distinction is for the event that the adversary queries EphRev(i, a) without
performing StaticRev(Â) and revealing a beforehand. To bound this probability,
we first guess Â and then perform a reduction to Ghsk,nt

1,m,Π . Since the adversary can
reveal all secrets except for a and the ephemeral secret keys of Â, the simulator
receives the static secret keys c of the other agents, the ephemeral public keys
of Â’s sessions, and A. The simulator samples all other values himself and can
simulate all oracles on its own, except for eqS where the provided oracle is used
for Â’s sessions. If m = nkr, all keys are honestly generated and for all queries to
eqS , the static public key of the peer is equal to Pk(c) for some c ∈ c. If m = kr,
the static public key of the peer can be arbitrary.

Before performing the second case distinction, we guess the test session. Since
there is no ephemeral reveal without a previous static reveal, the test session’s
ephemeral secret x cannot be revealed. We now perform a case distinction if the
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Game G2DDH: Game G:
x

$← Fp; X ← gx

y
$← Fnp ; Y ← gy

z
$← Fp; Z ← gz

t← A2DDH(X,Y , Z)
return φ(X,Z, t)

2DDH(i, Ẑ, U, V ) = return

ddh(X, Ẑ, U) ∧ ddh(Yi, Ẑ, U)

x
$← Fp; X ← gx

z
$← Fp; Z ← gz

t← B(X,Z)
return φ(X,Z, t)

Fig. 8. Twin DDH games G2DDH and G.

adversary reveals the static secret key b of the peer B̂ of the test session. If not,
then we know that x, b, and the ephemeral secret keys of B̂’s sessions are secret.
To perform the reduction to Ghsk,nt

2,m,Π , we guess B̂ and define a simulator that
receives X, B, the static secret keys c of all agents except B̂, and the ephemeral
public keys of B̂’s sessions. The simulator samples all other values himself and
can simulate all oracles on its own, except for eqS where the provided oracle is
used for B̂’s sessions. Like in the previous case, the static public key of the peer
is equal to Pk(c) for some c ∈ c if m = nkr and arbitrary otherwise.

In the last case, there is a static reveal for the peer B̂ of the test session.
Hence, there must be a matching session with ephemeral secret key y and the
only other value that cannot be revealed is x. We guess the matching session and
since eqS queries for the test session and the matching session are forbidden, the
simulator for Ghsk,nt

3,Π can simulate the eqS oracle on its own in this case. ut

4 Trapdoor Test, Twin DH, and (S)CDH

To minimize the EasyCrypt proof effort, we first prove a generalized version of
the Twin DH Assumption from [19]. We use this result for the protocol proofs
and to obtain a tighter reduction from CDH to SCDH based on Shoup’s self
corrector [47].

Twin DH. In the original Twin DH assumption, the adversary is given chal-
lenges X,Y, Z ∈ G and has to compute the group elements (dh(X,Z), dh(Y,Z))
given oracle access to

2DDH(Ẑ, U, V )
.
= (ddh(X, Ẑ, U) ∧ ddh(Y, Ẑ, V )).

The value Y is called the “twin” of X and the assumption can be seen as a “twin
version” of the Strong DH assumption, which is a variant of Gap CDH where
the first input of the DDH oracle is fixed. In contrast to these two assumptions,
Twin DH follows from CDH in all groups since the 2DDH oracle can be simulated
using the trapdoor test.
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Our generalization uses n twins Y1, . . . , Yn of X instead of a single twin and
consequently provides a 2DDH oracle that can be used with all twins X,Yi.
Concretely, for a predicate φ, we define the two games G2DDH and G given in
Figure 8 and prove the following lemma for which the proof can be found in
Appendix A.

Lemma 2. Let A be a G2DDH adversary that performs at most q queries to
2DDH. Then there exists a G adversary B such that

Pr [G2DDH(A) = 1] ≤ Pr [G(B) = 1] + q/p.

Moreover, B runs in time O(TA+q tG +n tG) where tG denotes the time required
to perform a group operation such as exponentiation or division.

We define the following reductions as instantiations of this lemma:
– CDH2DDH to CDH for φ(X,Z,U)

.
= dh(X,Z) = U .

– DLOG2DDH to DLOG for φ(X,Z, x′)
.
= X = gx

′
.

– SCDH2DDH to SCDH for φ(X,Z, S)
.
= dh(X,Z) ∈ S.

An efficient reduction from SCDH to CDH. We have formalized the proof
following the approach outlined by Cash et al. in [19]. Note that our proof
critically relies on the possibility to relate the probability that an adversary who
is called twice wins both times to the probability for a single win. Support for
this type of reasoning is a recent extension to EasyCrypt. The proof can be found
in Appendix A.

Theorem 2 Let A be an SCDH adversary that returns a set of size at most m.
Then there exists a CDH adversary B such that

Pr [SCDH(A) = 1] ≤
√

Pr [CDH(B) = 1] +m2/q.

Furthermore, the adversary B runs in time O(TA +m2 tG).

5 Case Studies

We first present the application of our generic proof to the Naxos and Naxos+
protocols. Afterwards, we present our proofs for the Nets protocol.

5.1 Proofs for Naxos and Naxos+

We first prove that Naxos is secure in our eCKnkr model with honestly gener-
ated keys under the CDH assumption. In the proof, we discuss why it does not
generalize to the eCKkr model with adversarial key registration. Afterwards, we
describe two ways to obtain a proof in the eCKkr model from the instantiation
of our generic proof. First, the proof can be performed with respect to the Gap-
CDH assumption. Second, the protocol can be extended with an additional group
element in the key yielding the Naxos+ protocol [39] which was proved secure
under the CDH assumption in a model similar to eCKkr.
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eCKnkr-security of Naxos under the CDH assumption. The following
theorem states that Naxos is secure in our model without adversarial key regis-
tration if the CDH problem is hard.

Theorem 3 Let A be a (qse , qag , qH) eCKnkr adversary. Then there exist adver-
saries C1, C2, and C3 such that

2 Pr [eCKnkr,Naxos(A) = 1]− 1 ≤ δ1 (Pr [DLOG(C1) = 1] + qH qse/p)

+ δ2

(√
Pr [CDH(C2) = 1] + 4 q2H/p + qH qse/p

)
+ δ3

(√
Pr [CDH(C3) = 1] + 4 q2H/p

)
+ εT nt,hsk

where δ1, δ2, δ3, and εT nt,hsk are defined as in Theorem 1. Furthermore, C1, C2,
and C3 run in time at most O(n tG + tA) where n = max{qh, qag , qH qse , q2

H}.

Proof. The definition of Naxoscore is given in Figure 3. It is easy to check
that Naxoscore satisfies P1–P3 and Naxos = T nt,hsk(Naxoscore). We can there-
fore apply Theorem 1 to reduce eCKnkr-security of Naxos to CSKnt

nkr-security of
Naxoscore. This step accounts for the loss of εT nt,hsk and yields adversaries B1–B3

that return sets of size at most 2 qH and perform at most qH qse queries to eqS .
In the next step, we will define C1, C2, and C3 and prove that the inequalities

Pr
[
Ghsk,nt

1,nkr (B1) = 1
]
≤ Pr [DLOG(C1) = 1] + qH qse/p

Pr
[
Ghsk,nt

2,nkr (B2) = 1
]
≤
√

Pr [CDH(C2) = 1] + 4 q2H/p + qH qse/p

Pr
[
Ghsk,nt

3,nkr (B3) = 1
]
≤
√

Pr [CDH(C3) = 1] + 4 q2H/p

hold where Ghsk,nt
i,nkr denotes the corresponding CSKnt

nkr game instantiated with
Naxoscore.

Game Ghsk,nt
1,nkr . Instantiating with Naxoscore yields:

a
$← Fp; A← ga

z
$← Fqsep ; Z ← gz

c
$← Fqag−1

p

a′ ← B1(A,Z, c)
return (a = a′)

eqS (i, Y, j, Â, Ĉ, k) =

return k = (dh(A, Y )‖Zcji ‖dh(Zi, Y )‖Â‖ Ĉ)

Since we perform a reduction to DLOG2DDH in the first step, we have already
rewritten eqS such that it does not use a and z. Before continuing, we rename
DLOG2DDH such that X becomes A, Y becomes Z, and Z becomes R. Our
DLOG2DDH adversary C′1 then receives the DLOG-challenge A, the twins Z of A,
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and the value R which is unused in DLOG. C′1 samples c, calls B1 with (A,Z, c),
and returns B1’s return value, which is equal to dlog(A) whenever B1 wins.
C′1 uses the following implementation to simulate eqS :

eqS (i, Y, j, Â, Ĉ, k) =

(U1 ‖U2 ‖U3 ‖D̂‖ Ê)← k
d← 2DDH(i, U1, U3)

return (d ∧ U2 = Z
cj
i ∧ D̂ = Â ∧ Ê = Ĉ)

Since the original eqS returns 1 if and only if U1 = dh(A, Y ) and U3 = dh(Zi, Y )
(which corresponds to the 2DDH result) and the remaining equalities hold, the
simulation is perfect. We can now apply Lemma 2 to obtain a reduction to DLOG
for an adversary C1.

While this reasoning step is valid in the eCKkr model, it does not work in the
eCKkr model since the adversary can register arbitrary static public keys. Hence,
the eqS oracle takes C ∈ Pk instead of an index j into c. In this case, we cannot
check if U2 = dh(Zi, C) by performing the test U2 = Z

cj
i in the implementation

of eqS for the simulator.
Game Ghsk,nt

2,nkr . Instantiating with Naxoscore yields:

x
$← Fp; X ← gx

b
$← Fp; B ← gb

z
$← Fqse−1

p ; Z ← gz

c
$← Fqag−1

p

(i, Y, Â, B̂, S)← B2(X,B, c,Z)

return (Y ci ‖dh(B,X)‖dh(X,Y )‖Â‖B̂) ∈ S

eqS (j,W, u, B̂, Ĉ, k) =

return k = (dh(B,W )‖Zcuj ‖dh(Zj ,W )‖B̂ ‖ Ĉ)

For this game, we perform the reduction in three steps. The first reduction is to
SCDH2DDH for which we define the adversary C′2. Then we use Lemma 2 to get rid
of the 2DDH oracle and finally Theorem 2 to transform the SCDH adversary into
a CDH adversary which yields the adversary B2. Before continuing, we rename
SCDH2DDH such that X becomes B, Y becomes Z, and Y becomes X. The CDH
challenge is therefore B,X and Z is the vector of twins of B for which the 2DDH
oracle can be used.

We define the SCDH2DDH adversary C′2 as follows. C′2 gets B,Z, X as input,
samples c, calls B2 with these values, and gets (i, Y, Â, B̂, S). To transform S
into a set that contains dh(B,X) whenever B2 wins, C′2 applies the function
(U1 ‖U2 ‖U3 ‖ Â‖ B̂) 7→ U2. To (perfectly) simulate the orginal eqS , C′2 uses the
implementation

eqS (j,W, u, B̂, Ĉ, k) =

(U1 ‖U2 ‖U3 ‖D̂‖ Ê)← k
d← 2DDH(i, U1, U3)

return (d ∧ U2 = Zcuj ∧ D̂ = B̂ ∧ Ê = Ĉ).
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Since the adversary can register arbitrary static public keys in the eCKkr

model, the eqS oracle in the kr version of this game takes C ∈ Pk instead of an
index u into c. In this case, we cannot check if U2 = dh(Zj , C) by performing
the test U2 = Zcuj in the implementation of eqS for the simulator.

Game Ghsk,nt
3,nkr . Instantiating with Naxoscore yields:

x
$← Fp; X ← gx

y
$← Fp; Y ← gy

c
$← Skqag

(i, j, Â, B̂, S)← B3(X,Y, c)

return (Y ci ‖Xcj ‖dh(X,Y )‖Â‖B̂) ∈ S

We can directly perform a reduction to SCDH and then use Theorem 2 to obtain
a reduction to CDH. For the reduction to SCDH, we use the function (U1 ‖U2 ‖
U3 ‖ D̂ ‖ Ê) 7→ U3 to transform S into a set that contains dh(X,Y ). This case
directly generalizes to eCKkr since the third game is identical in this case. ut

eCKkr-security of Naxos and Naxos+. In the previous proof, we have pointed
out where the proof breaks down in the eCKkr model. We will now describe how
to adapt the proof to (1) prove eCKkr-security of Naxos under the Gap-CDH
assumption and (2) prove eCKkr-security of Naxos+ under the CDH assumption.

For the proof with respect to Gap-CDH, we can deal with all the problematic
cases by calling the DDH oracle with the right input, e.g., with DDH(Zi, C, U2)
for the first game. Note that there is no need for the twinning technique at all
in this case and our generic proof can be instantiated in a very similar way to
the original Naxos proof.

The Naxos+core protocol can be obtained from the Naxoscore protocol by
adding the additional group element dh(A,B) to the key. Concretely, we define

Key = G4 × ID2,
KeyI (x, a, Y,B, Â, B̂) = Y a ‖Bx ‖Y x ‖Ba ‖Â‖B̂, and
KeyR(y, b,X,A, B̂, Â) = Ay ‖Xb ‖Xy ‖Ab ‖Â‖B̂.

The additional group element is only required to simulate the eqS oracle. Ev-
erything else, in particular the case Game Ghsk,nt

3 , can be trivially adapted.

Game Ghsk,nt
1,kr . For Naxos+, we must simulate the following eqS oracle (we

underline the differences to the Naxos version):

eqS (i, Y, C, Â, Ĉ, k) =

return k = (dh(A, Y )‖dh(Zi, C)‖dh(Zi, Y )‖dh(A,C)‖Â‖ Ĉ)
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By using the 2DDH oracle for the group elements 1&3 and 2&4, we obtain the
following implementation of eqS .

eqS (i, Y, j, Â, Ĉ, k) =

(U1 ‖U2 ‖U3 ‖U4 ‖D̂‖ Ê)← k
d1 ← 2DDH(i, U1, U3)
d2 ← 2DDH(i, U2, U4)

return (d1 ∧ d2 ∧ D̂ = Â ∧ Ê = Ĉ)

The simulation is perfect because the 2DDH calls returns 1 if and only if U1 =
dh(A, Y ) ∧ U3 = dh(Zi, Y ) and U4 = dh(A,C) ∧ U2 = dh(Zi, C).

Game Ghsk,nt
2,kr . For Naxos+, we must simulate the following eqS oracle

eqS (j,W,C, B̂, Ĉ, k) =

return k = (dh(B,W )‖dh(Zj , C)‖dh(Zj ,W )‖dh(B,C)‖B̂ ‖ Ĉ)

By using the 2DDH oracle first for the group elements 1 and 3 and then using the
oracle in a second call for the group elements 2 and 4, we obtain the following
implementation of eqS .

eqS (i, Y, j, Â, Ĉ, k) =

(U1 ‖U2 ‖U3 ‖U4 ‖D̂‖ Ê)← k
d1 ← 2DDH(i, U1, U3)
d2 ← 2DDH(i, U4, U2)

return (d1 ∧ d2 ∧ D̂ = Â ∧ Ê = Ĉ)

The simulation is perfect because the first 2DDH calls returns 1 iff U1 = dh(B,W )∧
U3 = dh(Zj ,W ) and the second call returns 1 iff U4 = dh(B,C)∧U2 = dh(Zj , C).

5.2 Proofs for Nets

The proofs for Nets are structured very similarly to the corresponding Naxos
proofs and yield similar bounds. We therefore summarize the required changes
in this section and refer to our EasyCrypt formalization for details.

The proof that Nets is secure in our eCKnkr model with honestly generated
keys under the CDH assumption is follows the corresponding proof for Naxos.
The only significant difference is how the 2DDH oracle is used to simulate the
eqS oracles in the first and second games. Whereas the Naxos protocol uses the
concatenation of three group elements in the key, Nets uses the concatenation
of two group elements U1 ‖U2 where U1 = dh(A,B) dh(A, Y ) dh(X,B) dh(X,Y )
and U2 = cdh(X,Y ). Computing the right queries to 2DDH for simulating eqS
requires divisions. Concretely, the first game uses 2DDH(U1/Acj Z

cj
i U2, U2) and

the second game uses 2DDH(U1/Bcj Z
cj
i U2, U2).

To prove eCKkr-security under the Gap-CDH assumption, it is again possible
to closely follow the original proof and use the DDH oracle to simulate eqS .
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Ghsk
1 (a, b secret, poss. no matching): Ghsk

2 (x, b secret, poss. no matching):

a, b
$← Sk; A← Pk(a); B ← Pk(b)

z
$← Eskqse

(i, Y, Â, B̂, S)← A(z, A,B)

k ← KeyI (zi, a, Y,B, Â, B̂)
return (k ∈ S ∧ k 6= ⊥)

eqS(i, C,W,D, Ĉ, D̂, k) =
if C /∈ {A,B} then return ⊥
if C = A then c← a else c← b

return KeyI (zi, c,W,D, Ĉ, D̂) = k

x
$← Esk; X ← Epk(X)

b
$← Sk; B ← Pk(b)

z
$← Eskqse−1

c
$← Skqag−1

(i, Y, Â, B̂, S)← A(c,z, X,B)

k ← KeyI (x, ci, Y, B, Â, B̂)
return (k ∈ S ∧ k 6= ⊥)

eqS(i,W,D, B̂, D̂, k) =

return KeyI (zi, b,W,D, B̂, D̂) = k

Ghsk
3 (a, y secret): Ghsk

4 (x, y secret):
a

$← Sk; A← Pk(a)

y
$← Esk; Y ← Epk(y)

z
$← Eskqse−1; c

$← Skqag−1

(i, j, Â, B̂, S)← A(c,z, A, Y )

k ← KeyI (zi, a, Y,Pk(cj), Â, B̂)
return (k ∈ S ∧ k 6= ⊥)

eqS(i,W,D, Â, D̂, k) =

return KeyI (zi, a,W,D, Â, D̂) = k

x
$← Esk; X ← Epk(x)

y
$← Esk; Y ← Epk(y)

c
$← Skqag

(i, j, Â, B̂, S)← A(c, X, Y )

k ← KeyI (x, ci, Y,Pk(cj), Â, B̂)
return (k ∈ S ∧ k 6= ⊥)

Fig. 9. Games defining CSKkr.

6 Protocols Without Naxos Trick

In this section, we describe our generic proof for protocols that do no utilize the
Naxos trick and its application to a version of HMQV. The results of this section
have not been formalized in EasyCrypt and we leave this open for future work.

6.1 Model and Generic Proof

We prove a reduction from the eCKkr model to the CSKkr model defined by the
games given in Figure 9.

Theorem 4 Let Π be a protocol that satisfies P1–P3. For all efficient adver-
saries that win the eCKkr,T hsk(Π) game with non-negligible probability, there exists
an efficient adversary that wins one of the CSKkr,Π games with non-negligible
probability .

The proof is analogous to the proof of Theorem 1 and appears in the full ver-
sion of the paper [4]. The proof performs a different case distinction with respect
to the reveal queries performed by the adversary than the proof of Theorem 1.
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6.2 eCKkr-security of mHMQV under the Gap-CDH assumption

We first define our (modified version) mHMQVcore as follows. We use Pk(a) = ga

and Epk(x, a) = gx for ephemeral and static key computation. Using the hash
function h̄ : G→ Fp, we define the session keys:

KeyI (x, a, Y,B, Â, B̂) = (Y Bh̄(Y ))x+a h̄(X) ‖Â‖B̂ ‖X ‖Y

KeyR(y, b,X,A, B̂, Â) = (XAh̄(X))y+b h̄(Y ) ‖Â‖B̂ ‖X ‖Y

We instantiate the types using G for group elements and Fp for exponents. We
then define mHMQV as T hsk(mHMQVcore). A similar version of HMQV has been
proposed in the original paper [31, Remark 9.1] for compatibility between the
variants with one, two, and three passes. We slightly deviate from the original
definition by removing the identities from h̄’s input (like in MQV) and including
Â, B̂, X and Y as input to the key derivation hash. Including additional session
data in the hash is considered a prudent engineering principle [16] because it
ensures agreement on this data. Second, it allows us to apply our generic proof
directly since the resulting protocol satisfies P3. To make the protocol symmet-
ric, it would be possible to sort the tuples Â,X and B̂, Y to determine the order
of these elements. We prove the following theorem for mHMQV.

Theorem 5 If there is an efficient adversary that wins the eCK′mHMQV game
with non-negligible probability, then there is an efficient adversary that wins the
Gap-CDH game with non-negligible probability.

Proof (Sketch). Since mHMQVcore satisfies P1–P3, we can apply Theorem 4
and prove CSKkr-security of mHMQVcore. As in the Nets proof, we ignore the
public part Â‖B̂ ‖X ‖Y in our discussion of winning conditions and eqS . Before
discussing the individual games, we note that under the Gap-CDH assumption
which provides a DDH-oracle, it is possible to simulate the eqS oracle in all of the
games since at least the secret key zi is always known. To simulate eqS queries,
e.g., in Ghsk

1 , it suffices to compute

W zi dh(C,W )h̄(gzi )Dzi h̄(W ) dh(C,D)h̄(gzi ) h̄(W ) = k

for zi in z, C ∈ {A,B}, and W,D, k arbitrary. To achieve this, the DDH oracle
can be used to check

dh(C,W h̄(gzi )Dh̄(gzi ) h̄(W )) =
k

W zi Ezi h̄(W )
.

For gameGhsk
1 , we perform a reduction to Gap-CDH using the Forking Lemma.

We know there exists an adversary A such that for the CDH challenge A,B and
uniformly sampled z, the call A(z, A,B) returns i, Y , and a set S that contains

Y zi dh(A, Y )h̄(Zi)Bzi h̄(Y ) dh(A,B)h̄(Zi) h̄(Y )

with non-negligible probability. To apply the Forking Lemma from [9], we use A
to define a randomized algorithm B that returns v ∈ [qh̄], dh(A, Y ) dh(A,B)h̄(Y ),
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and Y such that Y is the v-th query to h̄ with non-negligible probability. First,
B guesses v, then it calls A with the CDH challenge A,B and uniformly sampled
z. B then computes the result from A’s return values i, Y, S as follows. If Y
is not the v-th query, B returns ⊥. Otherwise, B divides all elements of S by
Y zi Bzi h̄(Y ), exponentiates the result with 1/h̄(gzi), and uses the DDH-oracle
to search for U with ddh(A, Y Bh̄(Y ), U). If there is no such value, B returns ⊥.
Otherwise, B returns v, Y, dh(A, Y ) dh(A,B)h̄(Y ). The Forking Lemma yields a
randomized algorithm C from B that returns

Y, dh(A, Y ) dh(A,B)e, dh(A, Y ) dh(A,B)e
′

with e 6= e′ with non-negligible probability. Intuitively, the algorithm first calls B
to obtain v, Y, dh(A, Y ) dh(A,B)e for e = h̄(Y ). Then, it calls B again using the
same randomness, but resampling the values returned by h̄ for all query-indices
greater or equal than v, i.e., e′ = h̄(Y ) is the first value that differs. We can then
compute

dh(A,B) =

(
dh(A, Y ) dh(A,B)e

dh(A, Y ) dh(A,B)e′

) 1
e−e′

.

For game Ghsk
2 , we also reduce to Gap-CDH. We know there exists an adver-

sary A such that for the CDH challenge X,B and uniformly sampled c and z,
the call A(c, z, X,B) returns i, Y , and a set S that contains

dh(X,Y )Y cih̄(X) dh(X,B)h̄(Y )Bci h̄(X) h̄(Y )

with non-negligible probability. Using a similar approach as before, we can obtain
an algorithm that returns the group element dh(X,Y ) dh(X,B)e and the group
element dh(X,Y ) dh(X,B)e

′
for e 6= e′ with non-negligible probability. We can

then compute dh(X,B) like in the previous case.
For Ghsk

3 , the reduction to Gap-CDH is simpler than the previous two cases
since we know two secret keys instead of only one. We can call A with randomly
sampled c, z, and a CDH challenge A, Y . Since A returns i, j, and a set S that
contains

Y zi dh(A, Y )h̄(gzi ) gzi cj h̄(Y )Acj h̄(gzi ) h̄(Y )

with non-negligible probability, we can then use the DDH oracle to find dh(A, Y ).
For Ghsk

4 , we can perform a similar reduction to Gap-CDH for the CDH challenge
X,Y . ut
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A Proofs For Twin DH and (S)CDH

In this appendix, we present the proofs for Lemma 2 and Theorem 2.

Proof (of Lemma 2). We define B as

B(Z, Y )
.
=

r
$← Fnp ; s

$← Fnp ; Y1 ← gs1/Xr1 ; . . . ; Yn ← gsn/Xrn

return A2DDH(X,Y , Z)

and note that the distribution on (X,Y , Z) is the same as in G2DDH. To sim-
ulate the 2DDH oracle, B uses the test UriV = Ẑsi instead of ddh(X, Ẑ, U) ∧
ddh(Yi, Ẑ, V ). The probability that these tests do not agree is at most 1/p. Since
the adversary can perform q queries to 2DDH, the probability of distinguishing
the simulator is at most q/p. ut

Proof (Theorem 2). We first prove that

Pr [SCDH(A) = 1] =
√

Pr [CDH2DDH(B) = 1]

where n = 1 for CDH2DDH, i.e., there is only one twin. To achieve this, we define:

B(X,Y, Z)
.
= u

$← F∗p; S1 ← A(X,Z); S2 ← A(Y, Zu)
foreach (Z1, Z2) ∈ S1 × S2 :

if 2DDH(Z,Z1, Z
1/u
2 ) then return Z1

Since B wins whenever A wins both times, B’s winning probability is equal to
the square of A’s winning probability. We then conclude the proof by applying
Lemma 2 and observing that the given simulator calls the 2DDH oracle at most
m2 times. ut


	Mind the Gap: Modular Machine-checked Proofs of One-Round Key Exchange Protocols

