
Memory Lower Bounds of Reductions Revisited

Yuyu Wang1,2,3, Takahiro Matsuda2, Goichiro Hanaoka2, and Keisuke Tanaka1

1 Tokyo Institute of Technology, Tokyo, Japan
wang.y.ar@m.titech.ac.jp, keisuke@is.titech.ac.jp

2 National Institute of Advanced Industrial Science and Technology (AIST), Tokyo,
Japan

t-matsuda@aist.go.jp, hanaoka-goichiro@aist.go.jp
3 IOHK, Tokyo, Japan

Abstract. In Crypto 2017, Auerbach et al. initiated the study on
memory-tight reductions and proved two negative results on the memory-
tightness of restricted black-box reductions from multi-challenge security
to single-challenge security for signatures and an artificial hash function.
In this paper, we revisit the results by Auerbach et al. and show that for a
large class of reductions treating multi-challenge security, it is impossible
to avoid loss of memory-tightness unless we sacrifice the efficiency of their
running-time. Specifically, we show three lower bound results. Firstly, we
show a memory lower bound of natural black-box reductions from the
multi-challenge unforgeability of unique signatures to any computational
assumption. Then we show a lower bound of restricted reductions from
multi-challenge security to single-challenge security for a wide class of
cryptographic primitives with unique keys in the multi-user setting. Fi-
nally, we extend the lower bound result shown by Auerbach et al. treating
a hash function to one treating any hash function with a large domain.

Keywords. memory, tightness, lower bound, uniqueness, black-box re-
duction

1 Introduction

1.1 Background

Security proofs for cryptographic primitives are typically supported by the black-
box reduction paradigm. A black-box reduction R, which is a probabilistic
polynomial-time (PPT) algorithm, allows us to convert an adversary A against
some security game (or we say problem) GM1 into an algorithm RA against
another security game GM2. If breaking GM2 is believed to be hard, then the
existence of R implies the security of GM1. The quality of R depends on its
tightness, which measures how close the performances of A and RA are. The
tighter a reduction is, the larger class of adversaries can be ruled out. Tightness
traditionally takes running-time and success probability into account. However,
Auerbach et al. [1] observed that some types of reductions, which are tight in
common sense, are memory-loose, meaning that they incur large increase in
memory usage when converting adversaries. For example, suppose that A use t1

time steps and m1 memory units, and succeed with probability ε1 in GM1. Even
if RA can succeed in GM2 with probability ε2 ≈ ε1 by using t2 ≈ t1 time steps,
it may use m2 � m1 memory units. If the security of GM2 is memory-sensitive,
i.e., it can be broken more quickly with large memory than small memory (when
the running-time of A is reasonably long), then a memory-loose reduction does
not rule out as many attacks as expected. Recall the instance about the learning
parities with noise (LPN) problem in dimension 1024 and error rate 1/4 in [1]. A
memory-loose reduction from some security game to this problem only ensures
that adversaries running in time less than 285 cannot succeed in the game. There
are many memory-sensitive problems besides the LPN problem, such as factor-
ing, discrete-logarithm in prime fields, learning with errors, approximate shortest
vector problem, short integer solution, t-collision-resistance (CRt) where t > 2,
etc., as noted in [1]. When proving security of cryptographic primitives based on
these problems, memory-tightness should be seriously taken into account.

Memory lower bound of restricted reductions. Auerbach et al. initiated
the study on memory-tightness, and provided general techniques helping achieve
memory-tight reductions. Surprisingly, as negative results, they showed a mem-
ory lower bound of reductions from multi-challenge unforgeability (mUF) to stan-
dard unforgeability (UF) for signatures. The former security notion is defined
in exactly the same way as the latter except that it gives an adversary many
chances to produce a valid forgery rather than one chance. Although it is trivial
to reduce mUF security to UF security tightly in both running-time and success
probability, Auerbach et al. showed that some class of reductions between these
two security notions inherently and significantly increase memory usage, unless
they sacrifice the efficiency of the running-time. Specifically, they proved that
such a reduction must consume roughly Ω(q/(p+ 1)) bits of memory, where 2q
is the number of queries made by an adversary and p is the number of times
an adversary is run. The class of black-box reductions they treated is restricted,
in the sense that a reduction R only runs an adversary A sequentially from be-
ginning to end, and is not allowed to rewind A. Moreover, R only forwards the
public keys and signing queries between its challenger and A, and the forgery
made by R should be amongst the ones generated by A. This result implies that
in practice, UF security and mUF security may not really be equivalent. As an
open problem left by Auerbach et al., it is not clear whether this result holds
when a reduction does not respect the restrictions. Moreover, this result does
not rule out the possibility that there exists a memory-tight restricted reduction
that directly derives mUF security from some memory-sensitive problem. There-
fore, it is desirable to clarify whether there exists a memory lower bound of any
natural reduction from mUF security to any common assumption.

Auerbach et al. also showed another similar lower bound of restricted reduc-
tions from multi-challenge t-collision-resistance (mCRt) to standard CRt security
for an artificial hash function that truncates partial bits of its input. Here, both
security notions prevent an adversary from finding a t-collision (i.e., outputting
t distinct elements having the same hash value), while the mCRt (respectively,
CRt) game allows an adversary to have many chances (respectively, only one

2

chance) to find a t-collision. Since CRt security is memory-sensitive, this result
indicates that breaking mCRt security might be much easier than breaking CRt
security in practice. However, since the hash function they considered is spe-
cific and not collision-resistant, it is still not clear whether this result holds for
collision-resistant hash functions.

Finally, it is desirable to clarify whether there exist memory lower bounds
for cryptographic primitives in other settings, which are potentially based on
memory-sensitive problems.

1.2 Our Results

We revisit memory-tightness on black-box reductions, and show several lower
bound results.

Lower bound for unique signatures. In [6], Coron proved a tightness lower
bound of black-box reductions from the security of unique signatures [10,20,19],
in which there exists only one valid signature for each pair of public key (not
necessarily output by the key generation algorithm) and message, to any non-
interactive (computational) assumption. Later, Kakvi and Kiltz [15] and Bader
et al. [4] respectively fixed a flaw in the proof and improved the bound. The
reductions considered in these works are “natural” reductions, in the sense that
they run adversaries only sequentially.

Although the study on the tightness of reductions for unique signatures has
a long history, memory-tightness of such reductions has never been taken into
account until [1], and it is still unclear, when considering natural reductions
or reducing the security of unique signatures to common assumptions, whether
memory-tightness is achievable. In our work, we focus on natural reductions for
unique signatures from the angle of memory, and prove that loss of memory-
tightness is inevitable when reducing their mUF security to computational as-
sumptions. Specifically, we show the existence of a memory lower bound of any
natural reduction from the mUF security of unique signatures to any compu-
tational assumption (rather than only UF security).4 Here, a natural black-box
reduction can interact with its challenger in any way it wants, and can adap-
tively rewind an adversary. We do not allow reductions to modify the internal
state of an adversary, which is a very natural restriction. Similarly to [1], the
bound is roughly Ω(q/(p+1)) bits of memory, where 2q is the number of queries
made by an adversary and p is the number of times an adversary is rewound.
This result indicates that for a unique signature scheme, any natural reduction
from its mUF security to a memory-sensitive problem may not rule out as many
attacks as expected. Therefore, when using a unique signature scheme based on
a memory-sensitive problem in practice, one should make its security parameter
larger than indicated by traditional security proofs. As far as we know, this is the

4 Note that all the memory-sensitive problems discussed in [1] fall under the notion
of computational assumptions.

3

first negative result on memory-tight reductions to any computational assump-
tions, and also the first one treating memory-tightness of natural reductions.

Moreover, we give our result in a generalized way so that it also captures some
other assumptions that do not fall under the definition of computational assump-
tions. By slightly modifying our proof, we can also show memory lower bounds
for the notions of verifiable unpredictable functions (VUFs) and re-randomizable
signatures, which are more general primitives and hence capture more instanti-
ations (e.g., [20,19,23,13]).

Lower bound for unique-key primitives in the multi-user setting. Secu-
rity notions of cryptographic primitives are usually considered in the single-user
setting, where an adversary only sees one challenge public key. However, in prac-
tice, an attacker may see many public keys and adaptively corrupt secret keys.
Hence, considering security of primitives in the multi-user setting [2,3] is nec-
essary. In [4], Bader et al. showed that in this setting, it is impossible to avoid
loss of tightness when deriving the security of unique-key primitives, in which
there exists only one valid secret key for each public key, from non-interactive
assumptions.

In this work, we give the first negative result on memory-tightness in the
multi-user setting. Specifically, we show a memory lower bound of restricted
black-box reductions from multi-challenge one-wayness in the multi-user set-
ting (mU-mOW) to standard one-wayness in the multi-user setting (mU-OW)
for unique-key relations. Compared with [1], the reductions we treat are less re-
stricted. We only require them to forward the public keys and corruption queries
between the challengers and adversaries, while they can forge secret keys in any
way they want (i.e., a forgery is not necessarily amongst the ones output by an
adversary). The bound is roughly Ω(max{q/(p+ 2), n/(p+ 2)}), where 2q is the
number of queries, n is the number of users, and p is the number of rewinding
procedures. Since unique-key relations are very fundamental primitives, from
this result, we can easily derive lower bounds for a large class of primitives
with unique keys (including public key encryption (PKE) schemes, signatures,
trapdoor commitment schemes (with collision-resistance), etc.), which capture
many constructions (e.g., [22,8,5,12,8,7,17,23,14,18]). These results imply that
for unique-key primitives in the multi-user setting, the gaps between their multi-
challenge security notions and single-challenge security notions might be wider
than indicated by conventional security proofs via restricted reductions.

As a by-product result, our result can be extended for primitives with re-
randomizable keys [4], where secret keys can be efficiently re-randomized and
the distribution of a re-randomized key is uniform.

Lower bound for large-domain hash functions. Finally, we revisit the
memory lower bound of restricted reductions from mCRt security to CRt secu-
rity for an artificial hash function shown in [1]. We firstly show a streaming lower
bound for all the CRt secure large-domain hash functions. Specifically, we show
that determining whether there exists a t-collision in a data stream consumes
large memory. Following from this fact, we extend the result in [1] to a lower

4

bound for all the large-domain hash functions. Here, a hash function is said to
have a large domain if its range is negligibly small compared with its domain
(e.g., H : {0, 1}2λ → {0, 1}λ where λ is the security parameter). It is a natu-
ral property satisfied by most practical hash functions. The bound is roughly
Ω(min{(q − κ)/(p + 1)}) where q is the number of queries, κ is the length of
the hash key, and p is the number of rewinding procedures. Since CRt security
(where t > 2) is memory-sensitive, this result implies that for any natural hash
function, its mCRt security directly derived from its CRt security via restricted
reductions does not rule out as many attacks as its CRt security does in practice.

1.3 High-Level Ideas

Like in [1], our lower bound for unique signatures follows from a streaming lower
bound result implying that determining the output of a specific function G(y)
consumes large memory. Here, y is a data stream that does not occupy local
memory and can be accessed sequentially. We construct an inefficient adversary
Ay (storing y) breaking the mUF security of any unique signature scheme iff
G(y) = 1. Let R be a black-box reduction from mUF security to a cryptographic
game GM. RAy is likely to succeed in GM when G(y) = 1. On the other hand,
when G(y) = 0, we use the meta-reduction method to show that RAy will fail.
Roughly, we construct a PPT simulator Sy that is indistinguishable from Ay due
to uniqueness. If RAy succeeds in GM, then the PPT algorithm RSy succeeds in
GM as well, which gives us the conflict. As a result, we can obtain an algorithm
that determines G(y) with high probability by simulating the game GM and
RAy . Such an algorithm must consume large memory due to the streaming
lower bound. Moreover, Ay can be simulated by accessing the stream y with
small memory usage. Therefore, R must use large memory if simulating the
challenger in GM does not consume large memory. This is the case in most
computational assumptions (including all the memory-sensitive problem noted
in [1]), where the challenger saves an answer, which only occupies small memory,
when sampling a challenge, and checks whether the final output of an adversary
is equal to that answer.

The lower bound of restricted reductions from mU-mOW security to mU-OW
security for unique-key primitives is shown in a similar way by constructing an
inefficient adversary and its simulator in the mU-mOW game. However, in this
case, we face a problem that it consumes large memory to store public keys of
users when running the mU-OW and mU-mOW games. This spoils our result since
the streaming lower bound does not imply that R consumes large memory any
more. We deal with this problem by running a pseudorandom function (PRF)
to simulate random coins used to generate public keys, which is similar to the
technique used in [1] for achieving memory-tightness. Whenever a public key is
needed, we only have to run the PRF to obtain the corresponding random coin
and generate the key again, and hence there is no need to store public keys any
more. Here, it might seem that outputs of PRF are not indistinguishable from
real random coins since an inefficient adversary is involved in the interaction.

5

However, we can show that the adversary can be simulated in polynomial-time
(PT) due to the uniqueness of secret keys.

Extending the lower bound result for a specific hash function in [1] to all
the large-domain hash functions satisfying CRt security (where t is a constant)
involves three steps. Firstly, we prove a theorem saying that for a large-domain
hash function satisfying CRt security, there exist many hash values with more
than t pre-images. Intuitively, for a large-domain hash function (using randomly
chosen key), if there are few hash values with more than t pre-images, then there
should exist some hash value with many pre-images. We prove that the set of
all pre-images of such a hash value is so large that t randomly chosen inputs are
very likely to fall into this set, which conflicts with CRt security. Therefore, we
conclude that a CRt secure large-domain hash function should have many hash
values with more than t pre-images. Then by exploiting this theorem and the
technique used in previous works [16,21,1], we prove the existence of a memory
lower bound for determining whether there exists a t-collision in a stream, based
on the disjointness problem [16,21]. Following from this result, we achieve a
memory lower bound of restricted reductions from mCRt security to CRt security
for large-domain hash functions.

1.4 Outline of This Paper

In Section 2, we recall some notation and describe the computational model and
data stream model. In Section 3, we show a lower bound of black-box reductions
from the mUF security of unique signatures to cryptographic games. In Sec-
tion 4, we show a lower bound of restricted reductions from mU-mOW security
to mU-OW security for unique-key cryptographic primitives. In Section 5, we
show a lower bound of restricted reductions from mCRt security to CRt security
for large-domain hash functions.

2 Preliminaries

In this section, we give several terminologies that are necessary to describe our
results, describe the computational model and data stream model, and recall the
disjointness problem and a streaming lower bound.

2.1 Notation and Computational Model.

In this paper, all algorithms are RAMs having access to memory and registers
that each holds one word. Rewinding random bits used by RAMs is not per-
mitted, so if an algorithm wants to access previously used random bits it must
store them. If A is a deterministic (respectively, probabilistic) algorithm, then
y = A(x) (respectively, y ← A(x)) means that A takes as input x and outputs
y. By AO we mean that A has access to an oracle O. By Az we mean that z is
stored in the memory of A. We denote the code and memory consumed by A
(but not its oracle) by LocalMem(A), where the consumption is measured in

6

bits. negl denotes an unspecified negligible function. If Z is a finite set, then |Z|
denotes the number of (distinct) elements in Z, and z ← Z denotes the process
of sampling z at uniformly random from Z.

2.2 Data Stream Model

Now we recall stream oracles. To a stream oracle, an algorithm is allowed to make
queries to access a large stream of data sequentially, while the local memory
consumption remains small. We adopt the notation in [1] to describe stream
oracles as follows.

A stream oracleOy is parameterized by a vector y = (y1, · · · , yn) ∈ Un where
U is some finite set. Whenever receiving a query, Oy runs i = i+1 mod n (where
i is initialized with 0), and returns yi. Let q be the total number of queries. The
number of passes is defined as p = dq/ne.

2.3 Disjointness Problem and Streaming Lower Bound

Now we recall the disjointness problem, which derives streaming lower bounds.

Theorem 1 ([16,21]). Let x1, x2 ∈ {0, 1}n and DISJ(x1, x2) be defined by

DISJ(x1, x2) =

{
1 if ∃i : x1[i] = x2[i] = 1
0 otherwise

,

where xb[j] denotes the jth bit of xb for j ∈ {1, · · · , n} and b ∈ {0, 1}. Then any
two-party protocol (P1, P2), such that Pr[DISJ(x1, x2) ← (P1(x1) � P2(x2))] ≥
c holds for some constant c > 1/2 and every (x1, x2) ∈ {0, 1}n, must have
communication Ω(n) in the worst case. Here, by DISJ(x1, x2) ← (P1(x1) �
P2(x2)) we mean that the interaction between P1 and P2 respectively on input
x1 and x2 outputs DISJ(x1, x2).

In [1], Auerbach et al. gave a streaming lower bound result, which is a corol-
lary of prior works [16,21] based on the disjointness problem. It shows that
determining whether the second half of a stream contains an element not in
the first half requires large memory. We now follow [1] to define G(y), where
y = y1||y2 and y1,y2 ∈ Uq, and recall the streaming lower bound.

G(y) =

{
1 if ∃j ∀i : y2[j] 6= y1[i]
0 otherwise

.

Theorem 2. Let B be a probabilistic algorithm and λ be a (sufficiently large)
security parameter. Assuming that there exists some constant c > 1/2 such that
Pr[BOy (1λ) = G(y)] ≥ c holds for polynomials q = q(λ) and n = n(λ), and all
y ∈ ({0, 1}n)2q (respectively, y ∈ ({i}ni=1)2q). Then we have LocalMem(B) =
Ω(min{q/p, 2n/p}) (respectively, LocalMem(B) = Ω(min{q/p, n/p})), where p
is the number of passes B makes in the worst case.

7

The above theorem is slightly different from the one in [1], in the sense that we
let y ∈ ({0, 1}n)2q or y ∈ ({i}ni=1)2q (instead of y ∈ U2q for all sufficiently large
q and |U|), and require q and n be polynomials in λ. However, the proof for the
streaming lower bound in [1, Appendix A] can be directly applied to prove the
above theorem. We refer the reader to [1, Appendix A] for details.

3 Lower Bound of Reductions from the mUF Security of
Unique Signatures to Cryptographic Games

In this section, we show a memory lower bound of black-box reductions from the
mUF security of unique signatures to assumptions captured by cryptographic
games. We start by recalling the definition of unique signatures and mUF security,
and then show the lower bound.

3.1 Unique Signatures and mUF Security

We now recall the definition of (digital) signatures.

Definition 1 (Digital signature). A signature scheme consists of PT algo-
rithms (Gen,Sign,Verify). (a) Gen is a probabilistic algorithm that takes as input
1λ, and returns a public/secret key pair (pk, sk). (b) Sign is a probabilistic al-
gorithm that takes as input a secret key sk and a message m ∈ {0, 1}δ where
δ = δ(λ) is some polynomial, and returns a signature σ. (c) Verify is a determin-
istic algorithm that takes as input a public key pk, a message m, and a signature
σ, and returns 1 (accept) or 0 (reject).

A signature scheme is required to satisfy correctness, which means that
Verifypk(m,σ) = 1 holds for all λ ∈ N, all (pk, sk) ← Gen(1λ), all m ∈ {0, 1}δ,
and all σ ← Signsk(m).

Next we recall the definition of unique signatures, in which there exists only
one valid signature for each pair of public key (not necessarily output by Gen(1λ))
and message.

Definition 2 (Unique signature [19]). A signature scheme (Gen,Sign,Verify)
is said to be a unique signature scheme if for all λ ∈ N, all pk (possibly out-
side the support of Gen), and all m ∈ {0, 1}δ, there exists no pair (σ, σ′) that
simultaneously satisfies σ 6= σ′ and Verifypk(m,σ) = Verifypk(m,σ′) = 1.

Now we recall mUF security. In the mUF game, an adversary has many
chances to produce a valid forgery rather than one chance. Although mUF secu-
rity can be tightly reduced to UF security straightforwardly in common sense,
it is shown in [1] that restricted reductions between these two security notions
inherently require increased memory usage.

Definition 3 (mUF [1]). A signature scheme (Gen,Sign,Verify) is said to
be mUF secure if for any PPT adversary A, we have AdvAmUF(λ) =
Pr[CH outputs 1] ≤ negl(λ) in the following game.

8

1. The challenger CH sets w = 0 and Q = ∅, samples (pk, sk) ← Gen(1λ),
and runs A on input (1λ, pk). A may make adaptive signing and verification
queries to CH, and CH responds as follows:
– On receiving a signing query m, CH computes σ ← Signsk(m), adds m

to Q, and sends σ to A.
– On receiving a verification query (m∗, σ∗), if Verifypk(m∗, σ∗) = 1 and
m∗ /∈ Q, CH sets w = 1.

2. At some point, A makes a stopping query stp to CH, and CH returns w.

The definition of UF security is exactly the same as the above one except that A
is allowed to make only one verification query and the advantage of A is denoted
by AdvAUF(λ).

3.2 Lower Bound for Unique Signatures

Before giving the main theorem, we recall the definition of cryptographic games.

Definition 4 (Cryptographic game [11]). A cryptographic game GM con-
sists of a (possibly inefficient) random system (called the challenger) CH and a
constant c. On input security parameter 1λ, CH(1λ) interacts with some adver-
sary A(1λ), and outputs a bit b. This interaction is denoted by b ← (A(1λ) �
CH(1λ)), and the advantage of A in GM is AdvAGM(λ) = Pr[1 ← (A(1λ) �
CH(1λ))]− c.

A cryptographic game GM = (CH, c) is said to be secure if for any PPT
adversary A, we have AdvAGM(λ) ≤ negl(λ).

All commonly used assumptions and most security games in cryptography fall
under the framework of cryptographic games. We call a cryptographic game
GM = (CH, c) a computational assumption if c = 0.

Black-box reduction. Now we follow [1] to describe black-box reductions.
Unlike in [1], we do not fix the random tape of an adversary, and do not give
any restriction on the queries made by a reduction.5

LetR be a black-box reduction from GM1 to GM2. We writeRA to mean that
R has oracle access to a (stateful) adversary A playing game GM1. Whenever
receiving a query from R, A returns the “next” query to R. R is not able
to modify the current state of A (i.e., A runs sequentially), but is allowed to
adaptively rewind A to previous states.

Definition 5 (c-black-box reduction). Let GM1 and GM2 be cryptographic
games and c > 0 be a constant. An oracle-access PPT machine R(·) is said to be
a c-black-box reduction from GM1 to GM2, if for any (sufficiently large) security

parameter λ and any (possibly inefficient) adversary A, we have AdvR
A

GM2
(λ) ≥

c ·AdvAGM1
(λ).

5 Auerbach et al. requires a reduction to preserve the advantage of an adversary even
if the random tape of the adversary is fixed. However, we observe that this restriction
is not necessary in their work as well, which we will discuss after giving the proof.

9

Like many previous works (e.g., [6,15,4,1]), we do not consider reductions that
can modify the current state of an adversary. This is a natural restriction, which
is respected by most black-box reductions.

We now give a theorem showing a memory lower bound of cr-black-box re-
ductions from the mUF security of unique signatures to cryptographic games
GM = (CH, cg), where cg < 1/2 and cr + cg > 1/2. When cg = 0, our result cap-
tures cr-black-box reductions where cr > 1/2 to any computational assumption.
When cr = 1, it captures 1-black-box reductions to any cryptographic game such
that cg < 1/2.6

Theorem 3. Let λ be a (sufficiently large) security parameter, Σ =
(Gen,Sign,Verify) be a unique signature scheme with message length δ, GM =
(CH, cg) be a secure cryptographic game, LocalMem(CH) be the amount of
memory consumed by CH, and R be a cr-black box reduction from the mUF se-
curity of Σ to the security of GM. Let q = q(λ) be the maximum numbers of
signing queries and verification queries made by an adversary in the mUF game.
If (a) R rewinds the adversary for at most p = p(λ) times and (b) cg < 1/2 and
cr + cg > 1/2, then we have

LocalMem(R) =Ω(min{q/(p+ 1), 2δ/(p+ 1)})−O(log q)

− LocalMem(CH)− LocalMem(Verify).

Roughly, this theorem implies that when the maximum number of signing queries
made by an adversary in the mUF game is very large, R must consume large
memory unless it rewinds A many times, which increases its running-time.

High-level idea. We firstly construct an inefficient adversary Ay where y =
(y1, · · · , y2q). Ay makes signing queries y1, · · · , yq, checks the validity of the an-
swers, and then makes verification queries (yq+1, σ

∗
1), · · · , (y2q, σ∗q) which are gen-

erated by using brute force. Consider the interaction RAy (1λ) � CH(1λ). When
G(y) = 1 (see Section 2.3 for the definition of G), we have {yq+i}qi=1 * {yi}qi=1,
which means that Ay is a deterministic algorithm breaking mUF security. Since
R is a black-box reduction, CH is likely to output 1 in this case. When G(y) = 0,
we have{yq+i}qi=1 ⊆ {yi}

q
i=1, in which case we can construct a PT algorithm Sy

running in the same way as Ay does, except that Sy uses the answers of signing
queries as its forgeries instead of exploiting brute force. Due to uniqueness, Sy
perfectly simulates Ay. If CH outputs 1 with probability that is non-negligibly
greater than cg in the interaction with RAy , then we have a PPT algorithm RSy
breaking the security of GM, which gives us the conflict. Therefore, CH is likely
to output 0 when G(y) = 0.

Then we can construct an algorithm B with access to a stream y that simu-
lates the interaction RAy (1λ) � CH(1λ) and outputs G(y) with high probabil-
ity. According to Theorem 2, the memory consumed by B is inherently large (to

6 There are several typical cryptographic games with 0 < cg < 1/2, such as recipient-
anonymity for IBE schemes [9] and one-wayness for encryption schemes with con-
stantly large message spaces.

10

some extent). Moreover, although Ay consumes a large amount of memory to
store y, B does not have to use large memory when simulating Ay by accessing
its stream. As a result, if the memory consumed by CH is small (which is often
the case in computational assumptions), then R must consume large memory.

Proof (of Theorem 3). Assuming the existence of the reduction R stated in
Theorem 3, we show the existence of a probabilistic algorithm B such that
Pr[G(y) ← BOy (1λ)] ≥ c for all y = (y1, · · · , y2q) ∈ ({0, 1}δ)2q and some con-
stant c > 1/2 by giving hybrid games.

Game 0: In this game, R has access to an adversary Ay and interacts with
CH, where Ay runs as follows.

1. On receiving (1λ, pk), Ay stores (1λ, pk) and makes a signing query y1.
2. For i = 1, · · · , q − 1, on receiving the answer σi to the ith signing query, if

Verifypk(yi, σi) 6= 1, Ay aborts. Otherwise, Ay makes a signing query yi+1.
3. On receiving the answer σq to the qth signing query, if Verifypk(yq, σq) 6=

1, Ay aborts. Otherwise, Ay exhaustively searches σ∗1 such that
Verifypk(yq+1, σ

∗
1) = 1, and makes a verification query (yq+1, σ

∗
1).

4. For i = 1, · · · , q − 1, when invoked (with no input) for the ith time, Ay

exhaustively searches σ∗i+1 such that Verifypk(yq+i+1, σ
∗
i+1) = 1, and makes

a verification query (yq+i+1, σ
∗
i+1).

5. When invoked (with no input) for the qth time, Ay makes a stopping query
stp.

We now show the following lemma.

Lemma 1. Pr[G(y) ← (RAy (1λ) � CH(1λ))] ≥ c for all y ∈ ({0, 1}δ)2q and
some constant c > 1/2 in Game 0.

Proof (of Lemma 1). Firstly, we show the existence of a PT algorithm Sy per-
fectly simulating Ay on condition that G(y) = 0. Sy runs in the same way as Ay

except that it uses the answers of the signing queries as its verification queries.
Formally, it runs as follows. (Below, the difference from Ay is emphasized.)

1. On receiving (1λ, pk), Sy stores (1λ, pk) and makes a signing query y1.
2. For i = 1, · · · , q − 1, on receiving the answer σi to the ith signing query, if

Verifypk(yi, σi) 6= 1, Sy aborts. Otherwise, Sy stores (yi, σi) in its internal
list L (initialized with ∅), and makes a signing query yi+1.

3. On receiving the answer σq to the qth signing query, if Verifypk(yq, σq) 6= 1,
Sy aborts. Otherwise, Sy stores (yq, σq) in L, searches a pair (m,σ) in L
such that m = yq+1, and makes a verification query (m,σ). If the searching
procedure fails, Sy aborts.

4. For i = 1, · · · , q − 1, when invoked (with no input) for the ith time, Sy
searches a pair (m,σ) in L such that m = yq+i+1, and makes a verification
query (m,σ). If the searching procedure fails for some i, Sy aborts.

5. When invoked (with no input) for the qth time, Sy makes a stopping query
stp.

11

When G(y) = 0, we have {yq+i}qi=1 ⊆ {yi}
q
i=1, which means that the searching

procedures executed by Sy (in Steps 3 and 4) will not fail. Moreover, due to the
uniqueness of Σ, the verification queries made by Sy are exactly the same as
those made by Ay. Hence, Sy perfectly simulates Ay in the view of R.

Due to the security of GM, we have AdvR
Ay

GM (λ) = AdvR
Sy

GM (λ) ≤ negl(λ)
when G(y) = 0, which implies Pr[1← (RAy (1λ) � CH(1λ)) | G(y) = 0]− cg ≤
negl(λ), i.e., Pr[0 ← (RAy (1λ) � CH(1λ)) | G(y) = 0] ≥ 1 − cg − negl(λ). On
the other hand, when G(y) = 1, there exists some 1 ≤ j ≤ q such that yq+j /∈
{yi}qi=1, which implies Adv

Ay

mUF(λ) = 1. Since R is a cr-black-box reduction,
we have Pr[1 ← (RAy (1λ) � CH(1λ)) | G(y) = 1] − cg ≥ cr. Since cg < 1/2,
cr+cg > 1/2, and λ is sufficiently large, there exists some constant c > 1/2 such
that Pr[G(y) ← (RAy (1λ) � CH(1λ))] ≥ c for all y ∈ ({0, 1}δ)2q, completing
the proof of Lemma 1. ut

Game 1: This game is exactly the same as Game 0 except that there exists
an algorithm A′ with access to the stream oracle Oy simulating Ay as follows.
(Below, the difference from Ay is emphasized.)

1. On receiving (1λ, pk), A′ stores (1λ, pk), queries Oy to obtain y1, and makes
a signing query y1.

2. For i = 1, · · · , q − 1, on receiving the answer σi to the ith signing query, if
Verifypk(yi, σi) 6= 1, A′ aborts. Otherwise, A′ queries Oy to obtain yi+1 and
makes a signing query yi+1.

3. On receiving the answer σq to the qth signing query, if Verifypk(yq, σq) 6= 1,
A′ aborts. Otherwise, A′ queries Oy to obtain yq+1, exhaustively searches σ∗1
such that Verifypk(yq+1, σ

∗
1) = 1, and makes a verification query (yq+1, σ

∗
1).

4. For i = 1, · · · , q − 1, when invoked (with no input) for the ith time,
A′ queries Oy to obtain yq+i+1, exhaustively searches σ∗i+1 such that
Verifypk(yq+i+1, σ

∗
i+1) = 1, and makes a verification query (yq+i+1, σ

∗
i+1).

5. When invoked (with no input) for the qth time, A′ makes a stopping query
stp.

Whenever R executes a rewinding procedure, A′ makes another pass on its
stream so that it can access the message for the next signing or verification
query. Since A′Oy perfectly simulates Ay, we immediately obtain the following
lemma.

Lemma 2. Pr[G(y)← (RA′Oy
(1λ) � CH(1λ))] ≥ c for all y ∈ ({0, 1}δ)2q and

some constant c > 1/2 in Game 1.

Game 2: This game is exactly the same as Game 1 except that there exists a
stream-access algorithm BOy that simulates CH, R, and A′Oy and returns the
output of CH. Since the view of R does not change at all, we have the following
lemma.

Lemma 3. Pr[G(y) ← BOy (1λ)] ≥ c for all y ∈ ({0, 1}δ)2q and some constant
c > 1/2 in Game 2.

12

Since B makes p + 1 passes on its stream in total, according to Theorem 2
and Lemma 3, we have

LocalMem(B) = Ω(min{q/(p+ 1)}, 2δ/(p+ 1)).

Furthermore, the memory used to simulate CH and A′ is O(log q) +
LocalMem(CH)+LocalMem(Verify), where O(log q) is the amount of memory
used to record q and the index of the next query A′ will make. Therefore, we
have

LocalMem(B) = O(LocalMem(R)) +O(log q)

+ LocalMem(CH) + LocalMem(Verify).

Combining the above two bounds completes the proof of Theorem 3. ut

Remark on security parameter. Theorem 3 holds only when the security
parameter λ is sufficiently large, while one may wonder why memory-tightness
makes sense when λ is already required to be very large. In fact, λ only has to be

large enough to ensure cg + AdvR
Sy

GM (λ) < 1/2 in the proof of Lemma 1. When

cg is small (e.g., cg = 1/4), it is obvious that cg +AdvR
Sy

GM (λ) < 1/2 should hold
even if λ is small (to some extent) and RSy may consume large memory, due to
the security of GM. Therefore, λ is not necessarily very large unless cg is very
close to 1/2.

Remark on advantage-preserving reductions. In [1], it is required that the
black-box reductions are advantage-preserving, which means that they should
work well for adversaries with fixed random tapes. However, we observe that
this restriction is not necessary. The reason is that we can treat adversaries with
fixed random tapes as deterministic ones, for which any black-box reduction
should work well. Furthermore, although a deterministic adversary consumes
large memory in this case (compared with an adversary with fixed random tape),
simulating it with stream does not, hence our result is not spoiled. The same
argument is made for our results in other sections.

Remark on reductions to UF security. Auerbach et al. [1] showed a lower
bound on the memory usage of restricted reductions from mUF security to UF
security. A restricted reduction forwards the public keys generated by CH to
Ay, and forwards the signing queries y and one of the forgery made by Ay to
the challenger CH in the UF game. One can see that CH uses large memory to
store y so that it can check whether RA succeeds later. Since LocalMem(CH)
is very large in this case, the result in [1] is not directly captured by Theorem 3.
However, one can easily modify our proof by letting CH in Game 2 access to
the stream y instead of storing y. By doing this, LocalMem(CH) can remain
small when R forwards signing queries from A to CH, and hence, the lower
bound in [1] or ones in other similar cases can be derived from our result (when
treating unique signatures). We do not take this into account in our formal proof
only for simplicity.

13

Re-randomizable signatures and VUFs. If we give an additional restric-
tion that a reduction does not control the random tape of an adversary, i.e.,
an adversary uses real random coins (but not ones from the reduction), then
by slightly modifying our proof, we can also show a memory lower bound
for re-randomizable signatures [23,13], where signatures can be efficiently re-
randomized (we refer the reader to [13] for the formal definition). In this case,
we only have to let both the inefficient adversary and the simulator re-randomize
the forged signatures so that R cannot distinguish them.

We can also extend our result for the notion of VUFs [20,19], which is exactly
the same as the notion of unique signatures except that a proof (which is not
necessarily unique) is needed when verifying the validity of a signature. We omit
the details since the extension is straightforward.

4 Lower Bound of Restricted Reductions from mU-mOW
to mU-OW for Unique-Key Cryptographic Primitives

In this section, we give a memory lower bound of restricted reductions from
mU-mOW security to mU-OW security for unique-key one-way primitives. For
simplicity, we treat a basic primitive called unique-key relation [24] and argue
that this result can be easily extended for other unique-key primitives. We start
by recalling the definition of unique-key relations and their security in the multi-
user setting, and then show the lower bound.

4.1 Unique-Key Relations

We now recall the definition of a unique-key relation. In a unique-key relation,
there exists at most one valid secret key for every public key in the support of
the key generation algorithm.7

Definition 6 (Unique-key relation). A unique-key relation consists of PT
algorithms (Gen,Check). (a) Gen is a probabilistic algorithm that takes as input
1λ, and returns a public/secret key pair (pk, sk). (b) Check is a deterministic
algorithm that takes as input a public/secret key pair (pk, sk), and returns 1
(accept) or 0 (reject).

A unique-key relation is required to satisfy correctness and uniqueness.
Correctness is satisfied if Check(pk, sk) = 1 holds for all λ ∈ N and all
(pk, sk) ← Gen(1λ). Uniqueness is satisfied if for all λ ∈ N and all pk in the
support of Gen(1λ), there exists no pair (sk, sk′) that simultaneously satisfies
sk 6= sk′ and Check(pk, sk) = Check(pk, sk′) = 1.

Now we give the definitions of the mU-mOW and mU-OW security of unique-
key relations [2,3]. In these security games, an adversary sees many public keys
and can adaptively corrupt the secret keys. It succeeds if it outputs a valid secret
key that is not corrupted.

7 Unlike the definition of unique signatures, here we do not require uniqueness for
public keys outside the support of the key generation algorithm.

14

Definition 7 (mU-mOW). A unique-key relation (Gen,Check) is said to be
mU-mOW secure if for any PPT adversary A, we have AdvAmU-mOW(λ) =
Pr[CH outputs 1] ≤ negl(λ) in the following game.

1. The challenger CH sets w = 0 and Q = ∅, and runs A on input 1λ. Then A
may make sampling queries to CH, and CH responds as follows.

– On receiving the ith sampling query sp, CH samples (pki, ski)← Gen(1λ)
and sends pki to A.

2. Then A may make adaptive corruption and verification queries to CH, and
CH responds as follows:

– On receiving a corruption query i, CH adds i to Q, and sends ski to A.
– On receiving a verification query (i∗, sk∗), if Check(pki∗ , sk

∗) = 1 and
i∗ /∈ Q, CH sets w = 1.

3. At some point, A makes a stopping query stp to CH, and CH returns w.

Definition 8 (mU-OW). mU-OW security is defined in exactly the same way as
mU-mOW security except that A is allowed to make only one verification query
and the advantage of A is denoted by AdvAmU-OW(λ).

4.2 Lower Bound for Unique-Key Relations

In this section, we define restricted reductions from the mU-mOW security to
mU-OW security of unique-key relations and show a memory lower bound of
such reductions.

Restricted black-box reductions from mU-mOW to mU-OW. Let R be
a black-box reduction from mU-mOW security to mU-OW security. As before,
we write RA to mean that R has oracle access to a (stateful) adversary A
playing the mU-mOW game. Whenever receiving a query from R, A returns the
“next” query to R. R is not able to modify the current state of A (i.e., A runs
sequentially), but is allowed to adaptively rewind A to previous states.

Definition 9 (c-restricted black-box reduction from mU-mOW to
mU-OW). Let c > 0 be a constant. An oracle-access PPT machine R(·) is said to
be a c-restricted black-box reduction from the mU-mOW security to the mU-OW
security of a unique-key relation, if for any (possibly inefficient) adversary A,

we have AdvR
A

mU-OW(λ) ≥ c · AdvAmU-mOW(λ), and R respects the following re-
striction.

– The public keys (pk1, · · · , pkn) that R sends to A are the ones generated by
the challenger and given to R in the mU-OW game.

– The set of corruption queries {y1, · · · , yq} made by R is the same as the set
of all corruption queries made by A.

Before showing the lower bound, we recall the definition of PRFs which will
be exploited in our proof.

15

Definition 10 (Pseudorandom function (PRF)). F : {0, 1}κ(λ) ×
{0, 1}δ(λ) → {0, 1}ρ(λ), where κ = κ(λ), δ = δ(λ), and ρ = (λ) are polyno-
mials, is said to be a pseudorandom function, if for any PPT adversary A, we
have

AdvAPR(λ) = |Pr[1← AOk(1λ) | k ← {0, 1}κ]− Pr[1← AO(1λ)]| ≤ negl(λ).

Here, Ok(i) returns F(k, i). O(i) returns r if there exists (i, r) in its internal list
(initiated with ∅). Otherwise, O(i) returns r ← {0, 1}ρ and adds (i, r) to its list.

The main theorem is as follows.

Theorem 4. Let λ be a (sufficiently large) security parameter, Φ =
(Gen,Check), where the internal randomness space of Gen is {0, 1}ρ, be a mU-OW
secure unique-key relation, F : {0, 1}κ × {0, 1}λ → {0, 1}ρ be a PRF, and R be
a cr-restricted black-box reduction from the mU-mOW security to the mU-OW
security of Φ. Let n = n(λ) be the maximum number of sampling queries and
q = q(λ) be the maximum numbers of corruption and verification queries made
by an adversary in the mU-mOW game, and U = {i}ni=1. If (a) R rewinds the
adversary for at most p = p(λ) times and (b) cr > 1/2, then we have

LocalMem(R) = Ω(max{q/(p+ 2), n/(p+ 2)})−O(log q)−O(log n)− κ
−max{LocalMem(Gen),LocalMem(Check),LocalMem(F)}.

Roughly, this theorem implies that when the maximum number of users and
that of corruption queries made by an adversary in the mU-mOW game are very
large, R must consume large memory unless it rewinds A many times, which
increases its running-time.

High-level idea of the proof. We firstly construct an inefficient adversary Ay

where y = (y1, · · · , y2q). Ay takes as input and stores public keys pk1, · · · , pkn,
makes corruption queries y1, · · · , yq, checks the validity of the answers, and
then makes verification queries (pkyq+1 , sk

∗
1), · · · , (pky2q , sk∗q) generated by us-

ing brute force. When G(y) = 1, RAy is likely to succeed in the mU-OW game,
since R is a black-box reduction and Ay is a deterministic algorithm breaking
mU-mOW security. When G(y) = 0, we can construct a PT algorithm Sy, which
runs in the same way as Ay does except that Sy uses the answers of corruption
queries to make verification queries. Due to uniqueness, Sy perfectly simulates
Ay. Since the PPT algorithm RSy is likely to fail in the mU-OW game, RAy is
likely to fail as well.

Then, similarly to the proof of Theorem 3, we can construct an algorithm B
with access to a stream y that simulates the mU-OW game withRAy and outputs
G(y) with high probability. Therefore, we can show the lower bound on memory
consumed by R since the memory consumed by B is inherently large, due to
Theorem 2. However, one may notice that B uses a large amount of memory
to store pk1, · · · , pkn, which spoils our result since B using large memory does
not imply R using large memory any more. We deal with this problem by using

16

a PRF to simulate random coins used by the challenger, and runs the PRF to
output the corresponding random coin used to generate a public key when the
key is needed. In this way, B does not store the public keys anymore. Here, there
is a point that B can simulate Ay efficiently by using secret keys generated by
the challenger in the mU-OW game, so that the whole interaction B simulates
only runs in polynomial-time and cannot distinguish outputs of the PRF with
real random coins.

Proof (of Theorem 4). Assuming the existence of the reduction R stated in
Theorem 4, we show the existence of a probabilistic algorithm B such that
Pr[G(y) ← BOy (1λ)] ≥ c for all y = (y1, · · · , y2q) ∈ U2q and some constant
c > 1/2 by giving hybrid games.

Game 0: In this game, R has access to an adversary Ay and interacts with the
challenger CH in the mU-OW game. Ay runs as follows.

1. On receiving 1λ, Ay makes a sampling query sp.
2. For i = 1, · · · , n− 1, on receiving pki, Ay stores pki and makes a sampling

query sp.
3. On receiving pkn, Ay stores pkn and makes a corruption query y1.
4. For i = 1, · · · , q−1, on receiving the answer sk′i to the ith corruption query,

if Check(pkyi , sk
′
i) 6= 1, Ay aborts. Otherwise, Ay makes a corruption query

yi+1.
5. On receiving the answer sk′q to the qth corruption query, if

Check(pkyq , sk
′
q) 6= 1, Ay aborts. Otherwise, Ay exhaustively searches sk∗1

such that Verify(pkyq+1
, sk∗1) = 1, and makes a verification query (yq+1, sk

∗
1).

6. For i = 1, · · · , q − 1, when invoked (with no input) for the ith time, Ay

exhaustively searches sk∗i+1 such that Check(pkyq+i+1 , sk
∗
i+1) = 1, and makes

a verification query (yq+i+1, sk
∗
i+1).

7. When invoked (with no input) for the qth time, Ay makes a stopping query
stp.

We now show the following lemma.

Lemma 4. Pr[G(y) ← (RAy (1λ) � CH(1λ))] ≥ cr for all y ∈ U2q in Game
0.

Proof (of Lemma 4). Firstly, we show the existence of a PT algorithm Sy per-
fectly simulating Ay on condition that G(y) = 0. Sy runs as follows. (Below,
the difference from Ay is emphasized.)

1. On receiving 1λ, Sy makes a sampling query sp.
2. For i = 1, · · · , n − 1, on receiving pki, Sy stores pki and makes a sampling

query sp.
3. On receiving pkn, Sy stores pkn and makes a corruption query y1.
4. For i = 1, · · · , q−1, on receiving the answer sk′i to the ith corruption query, if

Check(pkyi , sk
′
i) 6= 1, Sy aborts. Otherwise, Sy stores (yi, sk

′
i) in its internal

list L (initialized with ∅), and makes a corruption query yi+1.

17

5. On receiving the answer sk′q to the qth corruption query, if
Check(pkyq , sk

′
q) 6= 1, Sy aborts. Otherwise, Sy stores (yq, sk

′
q) in L, searches

a pair (i∗, sk) in L such that i∗ = yq+1, and makes a verification query
(yq+1, sk). If the searching procedure fails, Sy aborts.

6. For i = 1, · · · , q − 1, when invoked (with no input) for the ith time, Sy
searches a pair (i∗, sk) in L such that i∗ = yq+i+1, and makes a verification
query (yq+i+1, sk). If the searching procedure fails for some i, Sy aborts.

7. When invoked (with no input) for the qth time, Sy makes a stopping query
stp.

When G(y) = 0, we have {yq+i}qi=1 ⊆ {yi}
q
i=1, which means that the searching

procedures executed by Sy (in Steps 5 and 6) will not fail. Moreover, due to the
uniqueness of Φ, the verification queries made by Sy are exactly the same as
those made by Ay. Hence, Sy perfectly simulates Ay in the view of R.

Due to the mU-OW security of Φ, we have AdvR
Ay

mU-OW(λ) = AdvR
Sy

mU-OW(λ) ≤
negl(λ) when G(y) = 0, which implies Pr[1 ← (RAy (1λ) � CH(1λ)) | G(y) =
0] ≤ negl(λ), i.e., Pr[0 ← (RAy (1λ) � CH(1λ)) | G(y) = 0] ≥ 1 − negl(λ).
On the other hand, when G(y) = 1, there exists some 1 ≤ j ≤ q such that

yq+j /∈ {yi}qi=1, which implies Adv
Ay

mU-mOW(λ) = 1. Since R is a cr-restricted
black-box reduction, we have Pr[1 ← (RAy (1λ) � CH(1λ)) | G(y) = 1] ≥ cr.
Since cr > 1/2 and λ is sufficiently large, we have Pr[G(y) ← (RAy (1λ) �
CH(1λ))] ≥ cr, completing the proof of Lemma 4. ut

Game 1: This game is exactly the same as Game 0 except that for each i, CH
generates the ith key pair by computing (pki, ski)← Gen(1λ;F(k, i)) where k is
randomly chosen from {0, 1}κ at the beginning of the game.

Lemma 5. Pr[G(y) ← (RAy (1λ) � CH(1λ))] ≥ c for all y ∈ U2q and some
constant c > 1/2 in Game 1.

Proof (of Lemma 5). Let Pr[G(y) ← (RAy (1λ) � CH(1λ))] be cy0 (respec-
tively, cy1) in Game 0 (respectively, Game 1). For any y, we can construct
a PPT adversary D breaking the pseudorandom property of F with advantage
AdvDPR(λ) = |cy0 − c

y
1 | as follows.

D has access to an oracle Ok parameterized by k ← {0, 1}κ or an oracle O
(see Definition 10 for the descriptions of Ok and O). D runs RAy (1λ) � CH(1λ)
in exactly the same way as in Game 0, except that Ay receives secret keys
generated by CH from D to make verification queries, instead of using brute
force to recover them. This is possible due to the restriction that all the public
keys R sends to A are generated by CH. Furthermore, when CH requires the ith
random coin, D makes a query to its oracle and sends the answer of the query
back. If CH outputs G(y), D outputs 1. Otherwise, D outputs 0.

When the oracle is O (respectively, Ok), the view of CH is exactly the same
as its view in Game 0 (respectively, Game 1) due to the unique key property.
Therefore, we have AdvDPR(λ) = |cy0 − c

y
1 |. Due to the pseudorandom property

of F, we have |cy0 − c
y
1 | ≤ negl(λ). Since λ is sufficiently large, combining this

bound with Lemma 4 completes the proof of Lemma 5. ut

18

Game 2: This game is exactly the same as Game 1 except that there exists
an algorithm A′ with access to the stream oracle Oy simulating Ay as follows.
(Below, the difference from Ay is emphasized.)

1. On receiving 1λ, A′ makes a sampling query sp.
2. For i = 1, · · · , n − 1, on receiving pki, A′ stores pki and makes a sampling

query sp.
3. On receiving pkn, A′ stores pkn, queries Oy to obtain y1, and makes a cor-

ruption query y1.
4. For i = 1, · · · , q−1, on receiving the answer sk′i to the ith corruption query,

if Check(pkyi , sk
′
i) 6= 1, A′ aborts. Otherwise, A′ queries Oy to obtain yi+1,

and makes a corruption query yi+1.
5. On receiving the answer sk′q to the qth corruption query, if

Check(pkyq , sk
′
q) 6= 1, A′ aborts. Otherwise, A′ queries Oy to obtain yq+1,

exhaustively searches sk∗1 such that Check(pkyq+1
, sk∗1) = 1, and makes a

verification query (yq+1, sk
∗
1).

6. For i = 1, · · · , q− 1, when invoked (with no input), A′ queries Oy to obtain
yq+i+1, exhaustively searches sk∗i+1 such that Check(pkyq+i+1

, sk∗i+1) = 1,
and makes a verification query (yq+i+1, sk

∗
i+1).

7. When invoked (without input) for the qth time, A′ makes a stopping query
stp.

Whenever R executes a rewinding procedure, A′ makes another pass on its
stream to obtain the index for the next corruption or verification query. Since
A′Oy perfectly simulates Ay, we have the following lemma.

Lemma 6. Pr[G(y) ← (RA′Oy
(1λ) � CH(1λ))] ≥ c for all y ∈ U2q and some

constant c > 1/2 in Game 2.

Game 3: This game is the same as Game 2 except that there exists a stream
access algorithm A′′Oy that runs k ← {0, 1}κ, stores k, simulates CH, R, and
A′Oy , and generates the ith key pair by computing (pki, ski)← Gen(1λ;F(k, i)).
When R makes a verification query (i, sk∗), CH makes another pass on the
stream y throughA′′, and checks whether i ∈ {y1, · · · , yq} and Check(pki, sk

∗) =
1.8 If the check works, CH outputs 1. Otherwise, CH outputs 0. Then A′′ returns
the output of CH. Since the view of CH in this game is identical to its view in
Game 2, we have the following lemma.

Lemma 7. Pr[G(y) ← A′′Oy (1λ)] ≥ c for all y ∈ U2q and some constant
c > 1/2 in Game 3.

Game 4: In this game, there exists an algorithm BOy which runs in ex-
actly the same way as A′′Oy except that it does not store (pki)

n
i=1 generated

by CH. Instead, whenever BOy needs to see pki, BOy computes (pki, ski) ←
Gen(1λ;F(k, i)). Since the view of CH in Game 4 is identical to its view in
Game 3, we have the following lemma.

8 According to the second restriction in Definition 9, the corruption queries R has
made are {y1, · · · , yq}.

19

Lemma 8. Pr[G(y)← BOy (1λ)] ≥ c for all y ∈ U2q and some constant c > 1/2
in Game 4.

Since B makes p + 2 passes on its stream in total, according to Theorem 2
and Lemma 8, we have

LocalMem(B) = Ω(min{q/(p+ 2), n/(p+ 2)}).

Furthermore, the memory used to simulate CH, A′′, and random
coins is O(log q) + O(log n) + max{LocalMem(Gen),LocalMem(Check),
LocalMem(F)} + κ, where O(log q) + O(log n) is the amount of memory used
to record q, n, and the index of the next query A′′ will make. Therefore we have

LocalMem(B) = O(LocalMem(R)) +O(log q) +O(log n) + κ

+ max{LocalMem(Gen),LocalMem(Check),LocalMem(F)}.

Combining the above two bounds completes Theorem 4. ut

Remark on security parameter. Similarly to the case of Theorem 3, Theo-
rem 4 holds only when the security parameter λ is sufficiently large, while one
may wonder why memory-tightness makes sense when λ is already required to

be large. In fact, λ only has to be large enough to ensure 1 −AdvR
Sy

mU-OW(λ) −
AdvDPR(λ) > 1/2 and cr −AdvDPR(λ) > 1/2 in the proofs of Lemmas 4 and 5.
When cr is large, these two inequations should hold even if λ is small (to some
extent) and RSy and D may consume large memory, due to mU-mOW security
and pseudorandomness. Therefore, λ is not necessarily very large unless cr is
very close to 1/2.

Lower bound for other unique-key and re-randomizable primitives.
It is not hard to see that the above result can be easily extended to lower
bound results for (one-way secure) PKE schemes, signatures, and many other
primitives in the multi-user setting, in which key pairs satisfy unique-key re-
lations. Since unique-key primitives capture many existing natural construc-
tions [22,8,5,12,8,7,17,23,14,18], a very wide class of memory lower bounds in
the multi-user setting can be directly derived from our result stated in Theo-
rem 4. For ease of understanding, we take unique-key PKE schemes and unique-
key signatures as examples in Appendix A. Concretely, we give the definitions
of unique-key PKE schemes and unique-key signatures and their security no-
tions in the multi-user setting. Then we give two corollaries showing that in this
setting, reductions from multi-challenge security to single-challenge security for
these two types of primitives must consume large memory unless they increase
running-time.

Similarly to the case of unique signatures, this result can also be extended
for primitives with key re-randomization [4] if reductions do not control random
tapes of adversaries.9

9 Similarly to the definition of unique-key relations, we do not require re-randomization
for public keys outside the support of the key generation algorithm.

20

5 Lower Bound of Restricted Reductions from mCRt to
CRt for Large-Domain Hash Functions

In [1], Auerbach et al. showed a memory lower bound of restricted reductions
from mCRt security to CRt security for an artificial function which just truncates
last λ bits of its input, while such a function does not satisfy CRt security itself.
In this section, we extend this result to a lower bound for all the large-domain
hash functions satisfying CRt security (where t is a constant). To achieve the
goal, we prove a streaming lower bound with respect to hash functions.

5.1 Hash Functions

In this section, we define large-domain hash functions, recall mCRt security and
CRt security, and show a theorem for large-domain hash functions.

Definition 11 (Large-domain hash function). A hash function H : {0, 1}κ×
{0, 1}δ → {0, 1}ρ, where κ = κ(λ), δ = δ(λ), and ρ = ρ(λ) are polynomials, is
said to have a large domain if 2ρ−δ ≤ negl(λ).

Definition 12 (mCRt [1]). A hash function H : {0, 1}κ × {0, 1}δ → {0, 1}ρ
is said to satisfy mCRt security (where t is some constant independent of the
security parameter λ), if for any PPT adversary A, we have AdvAmCRt(λ) =
Pr[CH outputs 1] ≤ negl(λ) in the following game.

1. The challenger CH sets Q = ∅, randomly chooses k ← {0, 1}κ, and runs A
on input (1λ, k). A may make adaptive input queries to CH. Every time on
receiving a query m ∈ {0, 1}δ from A, CH adds m to Q.

2. At some point, A makes a stopping query stp to CH. If there exists
{m∗i }ti=1 ⊆ Q such that Hk(m∗1) = · · · = Hk(m∗t) and |{m∗i }ti=1| = t, CH
outputs 1. Otherwise, CH outputs 0.

Definition 13 (CRt [1]). The definition of CRt security is defined in exactly
the same way as that of mCRt security, except that that A is allowed to make at
most t input queries and the advantage of A is denoted by AdvACRt(λ).

Next we give a theorem that will be used to prove a streaming lower bound
later. This theorem shows that for a large-domain hash function satisfying CRt
security, there exist “many” hash values with more than t pre-images. Intuitively,
if this theorem does not hold, then there will be some hash value with many pre-
images, so that t randomly chosen inputs are likely to fall into the class of these
pre-images, which breaks its CRt security.

Theorem 5. Let λ be a (sufficiently large) security parameter, H : {0, 1}κ ×
{0, 1}δ → {0, 1}ρ be a large-domain hash function satisfying CRt security, and
n = n(λ) be any polynomial in λ. For k ← {0, 1}κ, the probability that there
exist more than n elements in {0, 1}ρ with more than t pre-images (with respect
to Hk) is 1− negl(λ).

21

Proof (of Theorem 5). Let n′ ≤ n and E be the event that the number of
elements in {0, 1}ρ that have more than t pre-images is exactly n′. To prove
Theorem 5, we just need to prove Pr[E] ≤ negl(λ).

Let k ← {0, 1}κ, m← {0, 1}δ, and E0 be the event that the number of pre-
images of Hk(m) is more than t. Since the number of elements in {0, 1}δ, the
hash values of which respectively have less than t pre-image, is at most 2ρ, we
have Pr[E0 | E] ≤ t · 2ρ/2δ, i.e., Pr[E0 | E] ≥ 1 − t · 2ρ/2δ. Let Ei be event
that Hk(m) is the ith lexicographically smallest value in {0, 1}ρ with more than
t pre-images. Since Pr[E1 ∨ · · · ∨ En′ | E] = Pr[E0 | E], there must exist some
i∗ ∈ {1, · · · , n′} such that

Pr[Ei∗ | E] ≥ 1/n′ · Pr[E0 | E] ≥ (1/n) · (1− t · 2ρ/2δ).

Now we construct a PPT adversary A in the CRt game of H. On receiving
k ← {0, 1}κ, A randomly chooses m1, · · · ,mt ← {0, 1}δ, and uses them as input
queries. Let E′ be the event that there exist some i, j ∈ {1, · · · , t} such that
mi = mj . We have Pr[E′] ≤ 1− (1− (t−1)/2δ)t ≤ O(t2/2δ). Therefore, we have

AdvACRt(λ) = Pr[E′ ∧ Hk(m1) = · · · = Hk(mt)]

= Pr[Hk(m1) = · · · = Hk(mt)]− Pr[E′ ∧ Hk(m1) = · · · = Hk(mt)]

≥Pr[Hk(m1) = · · · = Hk(mt) ∧ E]− Pr[E′]

= Pr[Hk(m1) = · · · = Hk(mt) | E] · Pr[E]− Pr[E′]

≥Pr[Ei∗ |E]t · Pr[E]−O(t2/2δ)

≥(1/n · (1− t · 2ρ/2δ))t · Pr[E]−O(t2/2δ).

As a result, the probability that A breaks CRt security is larger than (1/n ·(1−t ·
2ρ/2δ))t ·Pr(E)−O(t2/2δ), where t is some constant. Since (1/n·(1−t·2ρ/2δ))t ≥
1/nt − negl(λ) and O(t2/2δ) ≤ negl(λ), we have Pr[E] ≤ negl(λ), completing
the proof of Theorem 5. ut

5.2 Streaming Lower Bound for Hash Functions

In this section, we give a theorem, which is another corollary of prior
works [16,21] based on the disjointness problem. It it also a variant of a stream-
ing lower bound shown in [1]. It shows the existence of a memory lower bound
for determining whether there exists a t-collision, with respect to a CRt secure
large-domain hash function, in a data stream. Before giving the main theorem,
we define the function FH,t(y) as follows.

Let y ∈ ({0, 1}δ)q, FH(y) be defined as FH(y) = maxs∈{0,1}ρ |{yi : H(yi) =
s}|, and FH,t(y) be defined as

FH,t(y) =

{
1 if FH(y) ≥ t
0 otherwise

.

22

Theorem 6. Let B be a probabilistic algorithm, λ be a (sufficiently large) secu-
rity parameter, and H : {0, 1}κ ×{0, 1}δ → {0, 1}ρ be a large-domain hash func-
tion satisfying CRt security. Assuming that there exists some constant c > 1/2
such that Pr[BOy (1λ, k) = FHk,t(y) | k ← {0, 1}κ] ≥ c holds for polynomial
q = q(λ) and all y ∈ ({0, 1}δ)q. Then LocalMem(B) = Ω((q − κ)/p), where p
is the number of passes B makes in the worst case.

Proof (of Theorem 6). Let n = bq/tc. We now construct a two-party protocol
(P1, P2) by using B as follows. Taking as input x1 ∈ {0, 1}n, P1 samples k ←
{0, 1}κ and sends k to P2. If there do not exist n elements in {0, 1}ρ with more
than t pre-images for the hash function Hk(·), P1 aborts. Let hi be the ith
lexicographically smallest element in {0, 1}ρ with more than t pre-images, mij

be the jth smallest pre-image of hi, and m be an element in {0, 1}δ such that

Hk(m) /∈ {hi}ni=1. For i = 1, · · · , n, if the ith bit of x1 is 1, P1 adds (mij)
bt/2c
j=1

to y1. Taking as input x2 ∈ {0, 1}n, for i = 1, · · · , n, if the ith bit of x2 is 1, P2

adds (mij)
t
j=dt/2e to y2. Then P1 and P2 respectively pad y1 and y2 with m so

that y = y1||y2 consists of q elements in total.
Then (P1, P2) starts to run B(1λ, k) in multiple rounds until B stops and

returns b ∈ {0, 1}. More specifically, in each round, P1 runs B(1λ, k), answers
queries from B to the stream y1, and sends the local memory state of B denoted
by s to P2 after all the elements in y1 having been queried by B. P2 runs B(1λ, k)
starting from state s, answers queries from B to the stream y2, and then sends
the local memory state of B back to P1 after all the elements in y2 having been
queried. The final output of (P1, P2) is B’s output b.

Since the probability that there exist more than n elements with more than
t pre-images is 1− negl(λ), we have Pr[DISJ(x1,x2) = FHk,t(y) | k ← {0, 1}κ] ≥
1 − negl(λ) and Pr[BOy (1λ, k) = FHk,t(y) | k ← {0, 1}κ] ≥ c. As a result, we
have Pr[BOy (1λ, k) = DISJ(x1,x2) | k ← {0, 1}κ] ≥ c − negl(λ), which implies
Pr[P1(x1) ↔ P2(x2) = DISJ(x1,x2)] ≥ c − negl(λ). Since c > 1/2, there must
exist some constant c′ > 1/2 such that c− negl(λ) > c′ for a sufficiently large λ.
Therefore, (P1, P2) solves the disjointness problem.

Since P1 and P2 have communication κ + O(p · LocalMem(B)), and The-
orem 1 implies that the communication must be Ω(n) = Ω(bq/tc) = Ω(q), we
have LocalMem(B) = Ω((q − κ)/p), completing the proof. ut

5.3 Lower Bound for Large-Domain Hash Functions

In this section, we recall the definition of restricted reductions from mCRt secu-
rity to CRt security and show a memory lower bound of these reductions.

Restricted black-box reductions from mCRt to CRt. Let R be a black-box
reduction from mCRt security to CRt security. As before, we write RA to mean
that R has oracle access to a (stateful) adversary A playing the mCRt game.
Whenever receiving a query from R, A returns the “next” query to R. R is not
able to modify the current state of A (i.e., A runs sequentially), but is allowed
to adaptively rewind A to previous states.

23

Definition 14 (c-restricted black-box reduction from mCRt to CRt [1]).
Let c > 0 be a constant. An oracle-access PPT machine R(·) is said to be
a c-restricted black-box reduction from the mCRt security to the CRt secu-
rity of a hash function, if for any (possibly inefficient) adversary A, we have

AdvR
A

CRt(λ) ≥ c ·AdvAmCRt(λ), and R respects the following restrictions.

– The key k that R sends to A is the one generated by the challenger and given
to R in the CRt game.

– The queries made by R are amongst the queries made by A.

Theorem 7. Let λ be a (sufficiently large) security parameter, H : {0, 1}κ ×
{0, 1}δ → {0, 1}ρ be a large-domain hash function satisfying CRt security, and
R be a cr-restricted black-box reduction from the mCRt security to the CRt se-
curity of H. Let q = q(λ) be the maximum numbers of input queries made by
an adversary in the mCRt game. If (a) R rewinds the adversary for at most
p = p(λ) times and (b) cr > 1/2, then we have

LocalMem(R) = Ω(min{(q − κ)/(p+ 1)})−O(log q)− LocalMem(H).

Similarly to before, this theorem implies that when the maximum number of
input queries made by an adversary in the mCRt game is very large, R must
consume large memory unless it rewinds A many times, which increases its
running-time.

Proof (of Theorem 7). Assuming the existence of the reduction R stated in
Theorem 7, we show the existence of a probabilistic algorithm B such that
Pr[BOy (1λ, k) = FHk,t(y) | k ← {0, 1}κ] ≥ cr > 1/2 for all y = (y1, · · · , yq) ∈
({0, 1}δ)q.

Game 0: In this game, R has access to an adversary Ay, and interacts with
the challenger CH in the mCRt game. Ay runs as follows.

– On receiving (1λ, k), Ay makes an input query y1.
– For i = 1, · · · , q − 1, when invoked (with empty input) for the ith time, Ay

makes an input query yi+1.
– When invoked (with empty input) for the qth time, Ay makes a stopping

query stp.

We now show the following lemma.

Lemma 9. Pr[FHk,t(y) ← (RAy (1λ) � CH(1λ))] ≥ cr for all y =
(y1, · · · , yq) ∈ ({0, 1}δ)q in Game 0.

Proof (of Lemma 9). If FHk,t(y) = 0, then CH will output 0. This is due to the
restriction that all the input queries made by R are amongst the elements in y.

On the other hand, one can see that Adv
Ay

mCRt
(λ) = 1 when FHk,t(y) = 1. SinceR

is a cr-restricted black-box reduction, we have AdvR
Ay

CRt (λ) ≥ cr ·Adv
Ay

mCRt
(λ) =

cr, i.e., Pr[FHk,t(y) ← (RAy (1λ) � CH(1λ))] ≥ cr, completing the proof of
Lemma 9. ut

24

Game 1: This game is exactly the same as Game 0 except that there exists an
algorithm B with access to the stream y that simulates Ay, CH, and R. Here,
B takes as input k ← {0, 1}κ from an external party and uses it as the hash key
generated by CH. Moreover, B does not store y in its local memory but queries
Oy to obtain the ith input query yi for i = 1, · · · , q. Whenever R executes a
rewinding procedure, BOy makes another pass on its stream so that it can access
its next input query to R. Since BOy perfectly simulates Ay, we immediately
obtain the following lemma.

Lemma 10. Pr[FHk,t(y)← BOy (1λ, k)] ≥ cr for all y ∈ ({0, 1}δ)q in Game 1.

Since cr > 1/2 and B makes p+ 1 passes on its stream in total, according to
Theorem 6 and Lemma 10, we have

LocalMem(B) = Ω(min{(q − κ)/(p+ 1)}).

Furthermore, the memory used to simulate CH and Ay is O(log q) +
LocalMem(H), where O(log q) is the amount of memory used to record q and
the index of the next input query Ay will make. Therefore, we have

LocalMem(B) = LocalMem(R) +O(log q) + LocalMem(H).

Combining the two bounds completes Theorem 7. ut

Remark on security parameter. Similarly to the case of Theorems 3 and 4,
Theorem 7 holds only when the security parameter λ is sufficiently large, while
one may wonder why memory-tightness makes sense when λ is already required
to be large. Notice that λ is required to be large only when c (in Theorem 6)
is very close to 1/2. However, it is not hard to see that when cr (which is the
parameter of the reduction in Theorem 7) is not close to 1/2, c (in Theorem 6)
is not necessarily close to 1/2. Hence, λ is not necessarily very large, unless cr
(in Theorem 7) is very close to 1/2.

6 Open Problem

The lower bound results shown in Section 4 and Section 5 only treat reductions
which respect restrictions on their queries. It is desirable to clarify whether
memory lower bounds of natural black-box reductions exist with respect to those
security games. Showing some novel streaming lower bounds based on other
problems about parity learning might be a promising way. It is also desirable
to know whether there exist memory lower bounds of reductions for the multi-
challenge security of other class of cryptographic primitives, and whether it is
possible to unify these bounds. Finally, it would be interesting to find memory
lower bounds in the random oracle model.

25

Acknowledgement

A part of this work was supported by Input Output Cryptocurrency Collabora-
tive Research Chair funded by IOHK, Nomura Research Institute, NTT Secure
Platform Laboratories, Mitsubishi Electric, I-System, JSPS Fellowship for Young
Scientists, JST CREST JPMJCR14D6 and JPMJCR1688, JST OPERA, JSPS
KAKENHI JP16H01705, 16J10697, JP17H01695.

References

1. B. Auerbach, D. Cash, M. Fersch, and E. Kiltz. Memory-tight reductions. In
CRYPTO (1), volume 10401 of Lecture Notes in Computer Science, pages 101–
132. Springer, 2017.

2. C. Bader. Efficient signatures with tight real world security in the random-oracle
model. In CANS, volume 8813 of Lecture Notes in Computer Science, pages 370–
383. Springer, 2014.

3. C. Bader, D. Hofheinz, T. Jager, E. Kiltz, and Y. Li. Tightly-secure authenticated
key exchange. In TCC (1), volume 9014 of Lecture Notes in Computer Science,
pages 629–658. Springer, 2015.

4. C. Bader, T. Jager, Y. Li, and S. Schäge. On the impossibility of tight crypto-
graphic reductions. In EUROCRYPT (2), volume 9666 of Lecture Notes in Com-
puter Science, pages 273–304. Springer, 2016.

5. X. Boyen, Q. Mei, and B. Waters. Direct chosen ciphertext security from identity-
based techniques. In ACM CCS 2005, pages 320–329, 2005.

6. J. Coron. Optimal security proofs for PSS and other signature schemes. In EU-
ROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages 272–287.
Springer, 2002.

7. R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption.
ACM Trans. Inf. Syst. Secur., 3(3):161–185, 2000.

8. T. E. Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Information Theory, 31(4):469–472, 1985.

9. C. Gentry. Practical identity-based encryption without random oracles. In EU-
ROCRYPT, pages 445–464, 2006.

10. S. Goldwasser and R. Ostrovsky. Invariant signatures and non-interactive zero-
knowledge proofs are equivalent (extended abstract). In CRYPTO 1992, pages
228–245, 1992.

11. I. Haitner and T. Holenstein. On the (im)possibility of key dependent encryp-
tion. In TCC, volume 5444 of Lecture Notes in Computer Science, pages 202–219.
Springer, 2009.

12. K. Haralambiev, T. Jager, E. Kiltz, and V. Shoup. Simple and efficient public-
key encryption from computational diffie-hellman in the standard model. In Public
Key Cryptography, volume 6056 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2010.

13. D. Hofheinz, T. Jager, and E. Knapp. Waters signatures with optimal security
reduction. In Public Key Cryptography, volume 7293 of Lecture Notes in Computer
Science, pages 66–83. Springer, 2012.

14. S. Hohenberger and B. Waters. Short and stateless signatures from the RSA
assumption. In CRYPTO, volume 5677 of Lecture Notes in Computer Science,
pages 654–670. Springer, 2009.

26

15. S. A. Kakvi and E. Kiltz. Optimal security proofs for full domain hash, revisited. In
EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages 537–553.
Springer, 2012.

16. B. Kalyanasundaram and G. Schnitger. The probabilistic communication com-
plexity of set intersection. SIAM J. Discrete Math., 5(4):545–557, 1992.

17. D. W. Kravitz. Digital signature algorithm, July 27 1993. US Patent 5,231,668.
18. H. Krawczyk and T. Rabin. Chameleon signatures. In NDSS. The Internet Society,

2000.
19. A. Lysyanskaya. Unique signatures and verifiable random functions from the DH-

DDH separation. In CRYPTO, volume 2442 of Lecture Notes in Computer Science,
pages 597–612. Springer, 2002.

20. S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable random functions. In FOCS,
pages 120–130. IEEE Computer Society, 1999.

21. A. A. Razborov. On the distributional complexity of disjointness. Theor. Comput.
Sci., 106(2):385–390, 1992.

22. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems (reprint). Commun. ACM, 26(1):96–99,
1983.

23. B. Waters. Efficient identity-based encryption without random oracles. In EU-
ROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages 114–127.
Springer, 2005.

24. D. Wichs. Barriers in cryptography with weak, correlated and leaky sources. In
ITCS, pages 111–126. ACM, 2013.

A Lower Bounds for Unique-Key PKE and Signature
Schemes in the Multi-User Setting

In this section, we give the security notions of unique-key signatures and encryp-
tion schemes in the multi-user setting. Then we show two memory lower bounds
of restricted reductions, which are extensions of the result in Section 4.

A.1 Unique-Key PKE Schemes and Signatures

Unique-key primitives. A cryptographic primitive (which can be PKE
scheme, signature scheme, trapdoor commitment scheme (with collision resis-
tance), etc.) with key generation algorithm Gen is called a unique-key primitive
if there exists some algorithm Check such that (Gen,Check) forms a unique-key
relation (see Definition 7). We now recall the definition of PKE schemes and
define unique-key signatures and unique-key PKE schemes as follows.

Definition 15 (Public key encryption (PKE)). A PKE scheme consists of
the PT algorithms (Gen,Enc,Dec). (a) Gen is a probabilistic algorithm that takes
as input 1λ, and returns a public/secret key pair (pk, sk). (b) Enc is a probabilistic
algorithm that takes as input a public key pk and a message m ∈ {0, 1}δ, and
returns a ciphertext ct. (c) Dec is a deterministic algorithm that takes as input
a secret key sk and a ciphertext ct, and returns a message m ∈ {0, 1}δ or ⊥.

A PKE scheme is required to satisfy correctness, which means that Decsk(ct)
= m holds for all λ ∈ N, all (pk, sk) ← Gen(1λ), all m ∈ {0, 1}δ, and all
ct← Encpk(m).

27

Definition 16 (Unique-key signature and PKE). A signature (respectively,
PKE) scheme (Gen,Sign,Verify) (respectively, (Gen,Enc,Dec)) is said to have the
unique-key property if there exists a deterministic PT algorithm Check such that
(Gen,Check) is a unique-key relation.

Now we define the security notions for unique-key signatures and PKE
schemes. We denote mUF security and UF security in the multi-user setting by
mU-mUF and mU-UF. Moreover, we overload the notions mU-mOW and mU-OW
(defined for unique-key relations) so that they apply to PKE schemes.

Definition 17 (mU-mUF). A unique-key signature scheme (Gen,Check,Sign,
Verify) is said to be mU-mUF secure if for any PPT adversary A, we have
AdvAmU-mUF(λ) = Pr[CH outputs 1] ≤ negl(λ) in the following game.

1. The challenger CH sets w = 0, Q = ∅, and Qs = ∅, and runs A on input
1λ. Then A may make sampling queries to CH, and CH responds as follows.
– On receiving the ith sampling query sp, CH samples (pki, ski)← Gen(1λ)

and sends pki to A.
Then A may make adaptive corruption, signing, and verification queries to
CH, and CH responds as follows:
– On receiving a corruption query i, CH adds i to Q, and sends ski to A.
– On receiving a signing query (i,m), CH computes σ ← Signski(m), adds

(i,m) to Qs, and sends σ to A.
– On receiving a verification query (i∗,m∗, σ∗), if Verifypki∗ (m∗, σ∗) = 1,
i∗ /∈ Q, and (i∗,m∗) /∈ Qs, CH sets w = 1.

2. At some point, A makes a stopping query stp to CH, and CH returns w.

Definition 18 (mU-mOW (for PKE)). A unique-key PKE scheme
(Gen,Check,Enc,Dec) is said to be mU-mOW secure if for any PPT ad-
versary A, we have AdvAmU-mOW(λ) = Pr[CH outputs 1] ≤ negl(λ) in the
following game.

1. The challenger CH sets w = 0, Q = ∅, and Qm = ∅, and runs A on input
1λ. Then A may make sampling queries to CH, and CH responds as follows.
– On receiving the ith sampling query sp, CH samples (pki, ski)← Gen(1λ)

and sends pki to A.
2. A may make adaptive corruption and challenge queries to CH, and CH re-

sponds as follows:
– On receiving a corruption query i, CH adds i to Q, and sends ski to A.
– On receiving a challenge query i, CH searches (i,m) ∈ Qm. If the search-

ing procedure fails, CH runs m ← {0, 1}δ and adds (i,m) to Qm. Then
it returns ct← Encpki(m) to A.

– On receiving a verification query (i∗,m′) from A. If i∗ /∈ Q and (i∗,m′) ∈
Qm, CH sets w = 1.

3. At some point, A makes a stopping query stp to CH, and CH returns w.

Definition 19 (mU-UF and mU-OW (for PKE)). The definitions of mU-UF
security (respectively, mU-OW security for PKE) is defined in exactly the same
way as mU-mUF security (respectively, mU-mOW security for PKE) except that
A is allowed to make only one verification query and the advantage of A is
denoted by AdvAmU-UF(λ) (respectively, AdvAmU-OW(λ)).

28

A.2 Lower Bounds for Unique-Key PKE Schemes and Signatures

We now show two memory lower bounds for restricted reductions respectively
from mU-mUF security to mU-UF security and mU-mOW security to mU-OW
security. The definition of the latter type of restricted reductions is exactly the
same as Definition 9. The definition of the former type is also the same as
Definition 9 except that the following restriction is additionally required.

– The set of signing queries made by R is the same as the set of all signing
queries made by A.10

These two by-product results can be treated as two examples of memory lower
bounds derived from our lower bound result for unique-key relations stated in
Theorem 4.

Corollary 1. Let λ be a (sufficiently large) security parameter, Σ =
(Gen,Check,Sign,Verify), where the internal randomness space of Gen is {0, 1}ρ,
be a mU-UF secure unique-key signature scheme, F : {0, 1}κ × {0, 1}λ → {0, 1}ρ
be a PRF, and R be a cr-restricted black-box reduction from the mU-mUF se-
curity to the mU-UF security of Σ. Let n = n(λ) be the maximum number of
sampling queries and q = q(λ) be the maximum numbers of corruption and veri-
fication queries made by an adversary in the mU-mUF game, and U = {i}ni=1. If
(a) R rewinds the adversary for at most p = p(λ) times and (b) cr > 1/2, then
we have

LocalMem(R) = Ω(max{q/(p+ 2), n/(p+ 2)})−O(log q)−O(log n)− κ
−max{LocalMem(Gen),LocalMem(Check),

LocalMem(Sign),LocalMem(Verify),LocalMem(F)}.

Corollary 2. Let λ be a (sufficiently large) security parameter, Π =
(Gen,Check,Enc,Dec) with message space M, where the internal randomness
space of Gen is {0, 1}ρ, be a mU-OW secure unique-key PKE scheme, F :
{0, 1}κ × {0, 1}λ → {0, 1}ρ and F′ : {0, 1}κ × {0, 1}λ → M be PRFs, and R
be a cr-restricted black-box reduction from the mU-mOW security to the mU-OW
security of Π. Let n = n(λ) be the maximum number of sampling queries and
q = q(λ) be the maximum numbers of corruption, challenge, and verification
queries made by an adversary in the mU-mOW game, and U = {i}ni=1. If (a)
R rewinds the adversary for at most p = p(λ) times and (b) cr > 1/2, then we
have

LocalMem(R) = Ω(max{q/(p+ 2), n/(p+ 2)})−O(log q)−O(log n)− 2κ

−max{LocalMem(Gen),LocalMem(Check),LocalMem(Enc),

LocalMem(Dec),LocalMem(F),LocalMem(F′)}.
10 This restriction is made due to the fact that if the signing queries are chosen by
R, then the challenger may consume large memory to store them, which spoils our
result. When considering random message attacks, this restriction can be removed.
Also, this restriction is not made for other primitives such as PKE schemes, trapdoor
commitment, and chameleon hash function schemes (with collision resistance).

29

We omit the proofs of the above two corollaries since they are very similar to
the proof of Theorem 4. The main difference is that instead of directly giving
secret keys to R as verification queries, the adversary playing the mU-mUF or
mU-mOW game uses the secret keys to forge signatures or decrypt challenge
ciphertexts. Moreover, the mU-OW challenger uses F′ to simulate the random
messages chosen for challenge queries so that it does not have to consume large
memory to store the list Qm.

30

	Memory Lower Bounds of Reductions Revisited
	1 Introduction
	1.1 Background
	1.2 Our Results
	1.3 High-Level Ideas
	1.4 Outline of This Paper

	2 Preliminaries
	2.1 Notation and Computational Model.
	2.2 Data Stream Model
	2.3 Disjointness Problem and Streaming Lower Bound

	3 Lower Bound of Reductions from the mUF Security of Unique Signatures to Cryptographic Games
	3.1 Unique Signatures and mUF Security
	3.2 Lower Bound for Unique Signatures

	4 Lower Bound of Restricted Reductions from mU-mOW to mU-OW for Unique-Key Cryptographic Primitives
	4.1 Unique-Key Relations
	4.2 Lower Bound for Unique-Key Relations

	5 Lower Bound of Restricted Reductions from mCRt to CRt for Large-Domain Hash Functions
	5.1 Hash Functions
	5.2 Streaming Lower Bound for Hash Functions
	5.3 Lower Bound for Large-Domain Hash Functions

	6 Open Problem
	A Lower Bounds for Unique-Key PKE and Signature Schemes in the Multi-User Setting
	A.1 Unique-Key PKE Schemes and Signatures
	A.2 Lower Bounds for Unique-Key PKE Schemes and Signatures

