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Abstract. In this paper, we apply multiple linear cryptanalysis to a
reduced round RC6 block cipher. We show that 18-round RC6 with weak
key is breakable by using the multiple linear attack.

1 Introduction

The block cipher RC6 was proposed by Rivest et al. in [17] to meet the require-
ments of the Advanced Encryption Standard (AES) and is one of the finalists
of the AES candidates. It has been admired for its high-level security and high-
speed software implementation especially on Intel CPU. RC6 enters also the
NESSIE Project selection and it has been nominated to the Phase II evaluation.
RC6 is designed based on the block cipher RC5 [16] which makes essential use

of arithmetic key additions and data-dependent rotations. Kaliski and Robshaw
[7] evaluated the resistance of RC5, which introduced data-dependent rotations
as primitive operations, against Linear Attack [14]. Borst, Preneel, and Vande-
walle [2] refined the linear attack of RC5. As additional primitive operations to
RC6, the inclusion of arithmetic multiplications and fixed rotations is believed
to contribute the strength of the security of RC6. There are some cryptanalyses
of RC6: resistance against Differential Attack, Linear Attack, and Related Key
Attack by Contini et al. [3], Mod n Attack [11], Linear Attack [2], and Statisti-
cal Attack [5]. One of most effective attacks is χ2 attack by Knudsen and Meier
[13] which can break up to 15-round RC6 with general keys and 17-round RC6
with weak keys. We note that their estimation is inferred from experimental
results for at most 6-round RC6 and is not relied on any theoretical evidence.
The cryptanalysis by Contini et al. [4] is actually is not only of RC6 itself but
also of reduced variants of RC6. We enumerate attacks on RC6 in Table 1.
In [3], Contini et al. showed some upper bound of complexity to break RC6

against the linear attack on the assumption that the attacker uses the bias of
the linear equations with respect to 1-bit masks both on input and output to
arithmetic additive operations and the number of equations among multiple
linear approximation, which are derived based on the notion of “linear hulls”, to
advantage.
In this paper, we evaluate the resistance of RC6 with 256-bit key against

multiple linear attack. In order to do this, we use the technique of the linear
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Attack Rounds Data size Comments

Linear Attack [2] 16 2119 Upper bound of complexity
Differential Attack [3] 12 2117 Upper bound of complexity
Mod n Cryptanalysis [11] — — —
χ2 Cryptanalysis [13] 15 2119.0 Lower bound of complexity

(estimation)
17 ≤ 2118 Lower bound

(estimation, 1/280 weak keys)
Multiple Linear Attack 18 2127.423 Lower bound

[This paper] (1/290 weak keys)

Table 1. Attacks on RC6

probability that we obtain by taking multiple paths into account and the the-
ory of multiple linear approximation and evaluate rigorously the complexity to
break RC6. To do that, we introduce a novel technique to use a “Matrix Rep-
resentation” that is a generalization of the piling up lemma to obtain the linear
probability. This technique ease us to count the multiple path and to estimate
more exactly the linear probability that might depend on the extended-keys. As
a result, we show that the target key of 14-round RC6 can be recovered and
also that the target key of 18-round RC6 with weak keys, which exists with
probability 1/290 at least, can be recovered.

2 Preliminary

For any function Y = F (X), input mask ΓX and output mask ΓY , we define
the bias of linear equations BiasF () and the linear probability LPF () as follows.

BiasF (ΓX → ΓY ) = 2 ·
#{X|(ΓX ·X)⊕(ΓY · F (X)) = 0}

#{X}
− 1

LPF (ΓX → ΓY ) = (BiasF (ΓX → ΓY ))2

It is well known that for any r functions Xi+1 = Fi(Xi) (i = 1, ..., r) the
composite function H(X) = Fr ◦· · ·◦F1(X) has the expected (w.r.t. keys) linear
probability satisfying1

LPH(ΓX1 → ΓXr+1) =
∑

ΓX2,...,ΓXr

{
r

∏

i=1

LPFi
(ΓXi → ΓXi+1)}.

Let e0, ..., e31 denote unit vectors over GF (2)
32 such that the ith element of

ei is 1 and the other elements of ei are 0. Here we adopt the description of the
descending order for vectors (e.g., e0 = (0, ..., 0, 1)).
In this paper, we identify 32-bit values, which are used in RC6 encryption,

with elements of GF (2)32, unless otherwise specified.

1 Strictly speaking, we need more structural information of functions Fi for holding
the equation.
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Fig. 1. Original RC6 and its equivalent transformation

3 RC6 and Its Equivalent Transformation

RC6 is a block cipher proposed by Rivest et al. [17]. It has a variable number of
rounds denoted r and key size of 8b bits. The design is word-oriented for word
sizes w and the block size is 4w. Currently RC6 with r = 20, 4w = 128 and
8b = 128, 192, 256 is recommended to give sufficient resistance against possible
attacks. (See Figure 1). In this paper, we refer n-round RC6 to RC6(n). We leave
the key scheduling of RC6, which generates extended keys from private keys, out
of consideration.

In this paper, we use a Feistel-like description of RC6 which is obtained by
exchanging input-output words B and C equivalently. It is easy to see that the
new description help us to capture structural properties of RC6. (As long as the
authors know, the new description is not shown.)

We consider a block cipher RC6⊕ that is obtained by replacing arithmetic
additions of extended-keys of RC6 by exclusive-oring of extended-keys.

Moreover, we consider weak-keys of 2r-round RC6. We define two types of
weak keys. “Type I weak keys” are ones such that lsb5(S[4i− 3]) = lsb5(S[4i−
4]) = 0, and “Type II weak keys” are ones such that lsb4(S[4i−3]) = lsb4(S[4i−
4]) = 0. It is easy to see that Type I weak-keys is of the fraction 2−10r, and Type
II weak-keys is of the fraction 2−8r. Later, we will show that those of weak-keys
are actually “weak”.
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Fig. 2. Linear mask of R

4 Linear Probabilities of Data-Dependent Rotation

We consider a partial function R of RC6 as follows. (See also Figure 2).

R : (A,C, t, u) ∈ (GF (2)32)4 → (A′′, C ′′) ∈ (GF (2)32)2.
A′′ = (A⊕t)<<<u
C ′′ = (C⊕u)<<<t

Let ΓA, ΓC, Γ t, Γu, ΓA′′, ΓA′′ be masks for the variables A,C, t, u,A′′, C ′′

of R, respectively. We consider linear approximation with significant linear prob-
ability such that Γt = Γu = 0.
Let us consider, for example, the case where ΓA = ΓC = ΓA′′ = ΓC ′′ = e0.

Then, if lsb5(t) = lsb5(u) = 0 then Ae0⊕A
′′e0 = 0 and Ce0⊕C

′′e0 = 0. Only
if the case where lsb5(t) = lsb5(u) = 0 occurs (its probability is 2−10), the
probability that the equation Ae0⊕Ce0⊕A

′′e0⊕C
′′e0 = 0 holds is biased. Thus,

we have

LPR((e0, e0, 0, 0)→ (e0, e0)) = 2
−20.

Similarly, we obtain the following equations for i, j, k, l ∈ {0, 1, 2, 3, 4}

LPR((ei, ej , 0, 0)→ (ek, el)) = 2
−20.

5 Linear Probability of RC6 with weak keys

In this section, we consider the linear probability of 2r-round RC6 with Type
II weak keys by taking “multiple paths”. In general, the linear characteristic
probability depends on the key-value. Here, for simplicity, we consider RC6⊕.
We assume that key is randomly distributed. In the case that the least significant
five bits of extended-key related to linear approximation is fixed (especially, in
the case of weak-keys), we can calculate the precise linear probability for each
linear approximation. We will discuss how to calculate it in Section 7.
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round output mask of (A,C)
0 (ei, ej)

↙ ... ↘
2 (e0, e0) .... (e4, e4)

↘ ... ↙
4 (ek, el)

LP 2−40 ... 2−40

Table 2. 4-round multiple linear path of RC6⊕

Let us consider 4-round RC6⊕. If we set the input mask for (A,C) being
(ei, ej) (i, j ∈ {0, ..., 4}) and its output mask being (ek, el) (k, l ∈ {0, ..., 4}),
then for any i, j, s, t ∈ {0, ..., 4} the following holds:

|BiasR((ei, ej , 0, 0)→ (es, et))| = 2
−10.

Thus we can show that the absolute value of linear characteristic per path of
4-round RC6⊕ is 2−40 by the piling up lemma in average of the key.
Since there exist at least 25 = 52 linear characteristic paths such that input

mask (ei, ej) and output mask (ek, el) are equal but any other intermediate
masks are different from the input mask, we can calculate linear characteristic
over multiple paths. (See Table 2.)

LPRC6⊕(4)
((e0, e0, 0, 0)→ (e0, e0, 0, 0))

=
∑

s,t

LPR((e0, e0)→ (es, et))LPR((es, et)→ (e0, e0))

= 25 · (2−40) = 2−35.356

Moreover, the linear probability of 2r-round RC6⊕ is derived as follows.

LPRC6⊕(2r)
((ei, ej , 0, 0)→ (ek, el, 0, 0))

≥ 2−20(25 · (2−20))r−1

= 2−20−15.356(r−1)

It is easy to consider the linear approximation of (2r+1)-round RC6⊕ from
the linear approximation of 2r-round RC6⊕ obtained above. (See Table 3.)
Next, we consider Type II weak-keys of RC6. It is easy to see that if lsb4(K) =

0 then arithmetic addition of some fixed 32-bit value K (say, Y = X +K mod
232) does not cause any carry-over in the least significant 5 bits. In this case, the
equation LPaddK

(ei → ei) = 1 always holds for i ∈ {0, ..., 4}. Such keys can be
generated with probability 2−4 if K is randomly distributed.
This implies that the linear probability of RC6 with weak key of Type II is

independent of keys. Thus, we can say that the resistance of RC6 with such keys
against multiple linear attack is reduced to the one of RC6⊕ against multiple
linear attack. In this sense, we can regard such keys as weak ones. (For example,
some weak keys of 3-round RC6 are characterized as ones with least significant
four bits each of S[0], S[1], S[4], S[5] is 0. So, the fraction of such weak keys is
2−16.)
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round
input
mask

output
mask

linear
probability (log2)

fraction of
weak keys of RC6

3 (0, 0, ei, ej) (ek, el, 0, 0) -20.000 2−16

5 (0, 0, ei, ej) (ek, el, 0, 0) -35.356 2−24

7 (0, 0, ei, ej) (ek, el, 0, 0) -50.712 2−32

9 (0, 0, ei, ej) (ek, el, 0, 0) -66.068 2−40

11 (0, 0, ei, ej) (ek, el, 0, 0) -81.424 2−48

13 (0, 0, ei, ej) (ek, el, 0, 0) -96.780 2−56

15 (0, 0, ei, ej) (ek, el, 0, 0) -112.136 2−64

17 (0, 0, ei, ej) (ek, el, 0, 0) -127.492 2−72

Note that i, j, k, l range over {0, ..., 4}.

Table 3. The linear probability of RC6 with Type II weak keys (or RC6⊕)

Input mask (ΓA, ΓC) (ei, ej), i, j ∈ {0, ..., 4}
Output mask (ΓA′, ΓC′) (e0, e0) (ek, e0) (e0, el) (ek, el)

Linear prob. of addition 1 2−2 2−2 2−4

Linear prob. of 1-round RC6 2−20 2−22 2−22 2−24

Note that k 6= 0, l 6= 0.

Table 4. The linear probability of 2-round RC6

6 Linear Probability of RC6

There are several researches about success probability of linear approximation
for arithmetic addition Y = X+K on the assumption thatK is randomly chosen
but fixed ([7, 10, 15, 4]). In this paper, we consider linear approximation only of
the form Xei⊕Y ei = 0, which is a relation between a 1-bit of input and a 1-bit
of output. Let us see it more precisely.

It is well known that the expectation (w.r.t. keys) of the bias of linear equa-
tions satisfies that LPaddK

(e0 → e0) = 1, and LPaddK
(ei → ei) = 2

−2, (i 6= 0)
on the average of K. By utilizing these equations, it is easy to calculate the
linear probability of 2-round RC6 with the key addition. We note that the linear
probability of key addition can be obtained only from output masks. The linear
probability of 2-round RC6 follows from the linear probability of addition, the
linear probability of 1-round RC6⊕, obtained in the previous section, and the
piling up lemma. (See Table 4.)

Any output mask (ΓA′, ΓC ′) corresponds with one of (e0, e0), (ek, e0), (e0, el)
and (ek, el). The number of output masks of each type is 1, 4, 4 and 16, respec-
tively. Thus we have the linear probability of 4-round RC6 over multiple paths
such that the input mask is of the form (ei, ej , 0, 0) and the output mask is of
the form (e0, e0, 0, 0) as follows.

LPRC6(4)((ei, ej , 0, 0)→ (e0, e0, 0, 0))

= 2−20(2−20 + 4 · 2−22 + 4 · 2−22 + 16 · 2−24)

= 2−38
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round input mask output mask linear probability
(A,C,B,D) (A’,C’,B’,D’) (log2)

3 (0, 0, ei, ej) (ek, el, 0, 0) −20− 2µ({i, j, k, l})
5 (0, 0, ei, ej) (ek, el, 0, 0) −38− 2µ({i, j, k, l})
7 (0, 0, ei, ej) (ek, el, 0, 0) −56− 2µ({i, j, k, l})
9 (0, 0, ei, ej) (ek, el, 0, 0) −74− 2µ({i, j, k, l})
11 (0, 0, ei, ej) (ek, el, 0, 0) −92− 2µ({i, j, k, l})
13 (0, 0, ei, ej) (ek, el, 0, 0) −110− 2µ({i, j, k, l})

Note that i, j, k, l ∈ {0, ..., 4}, µ(X) = #{x 6= 0|x ∈ X}.

Table 5. The linear probability of RC6

Similarly, we have the linear probability of 2r-round RC6 over the same
multiple paths as follows.

LPRC6(2r)
((ei, ej , 0, 0)→ (e0, e0, 0, 0)) ≥ 2

−20−18(r−1)

Furthermore, we have the linear probability of 2r-round RC6 over multiple paths
of the other types.

LPRC6(2r)
((ei, ej , 0, 0)→ (ek, e0, 0, 0)) ≥ 2

−22−18(r−1)

LPRC6(2r)
((ei, ej , 0, 0)→ (e0, el, 0, 0)) ≥ 2

−22−18(r−1)

LPRC6(2r)
((ei, ej , 0, 0)→ (ek, el, 0, 0)) ≥ 2

−24−18(r−1)

By utilizing the linear approximation of 2r-round RC6, it is not hard to
consider the linear approximation of 2r+1-round RC6, We note that the linear
probability is affected by the extended-key that is added to input data B and
D to the first round. Namely, we have to take into account that the linear
probability depends on the bit position of the input mask. We illustrate an
estimation of the linear probability of reduced-round RC6 in Table 5.

7 Linear Probability of a Fixed Key

In this section, we give a way to calculate the more precise linear probability
of the linear approximation Aei⊕Cej⊕A

′ek⊕C
′el = 0 for RC6 with any fixed

key. In Section 5 and Section 6, we calculated the linear probability in average
of keys.
On the other hand, especially as in the case of Type I weak keys, that is the

least significant five bits of the extended key is 0, then, by keeping the sign of
the bias of linear equation in mind when summing the bias of linear equation,
we can generalize the piling up lemma to calculate the bias of linear equation
more precisely.
Now, we consider the linear probability of RC6 with Type I weak key. For a

simpler exposition, we calculate the linear probability of 4-round RC6 with the
weak keys such that the input and the output mask are both (e0, e0, 0, 0). We
show the bias of each linear characteristic in Table 6. For example, the linear
characteristic for paths from the 0th round through the second round to the
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Input mask 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

1st R. Bias (×2−10) 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1
2nd R. mask 00 01 02 03 04 10 11 12 13 14 20 21 22 23 24 30 31 32 33 34 40 41 42 43 44

3rd R. Bias (×2−10) 1 -1 1 -1 1 -1 1 1 -1 -1 1 1 1 1 1 -1 -1 1 1 1 1 -1 1 1 1
Output mask 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Total Bias (×2−20) 1 1 1 1 1 1 1 -1 -1 1 1 -1 1 -1 1 1 -1 -1 1 -1 1 1 1 -1 1

Table 6. The bias of linear characteristic path such that the input and output
masks are both (e0, e0, 0, 0) (4-round RC6 with Type I weak key)

Input Output Mask (k, l)
(i, j) 00 01 02 03 04 10 11 12 13 14 20 21 22 23 24 30 31 32 33 34 40 41 42 43 44

00 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1
01 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1
02 1 -1 1 -1 1 1 -1 1 -1 1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1
03 -1 1 -1 1 -1 -1 1 -1 1 -1 -1 1 -1 1 -1 -1 1 -1 1 -1 -1 1 -1 1 -1
04 1 -1 1 -1 1 1 -1 1 -1 1 1 -1 1 -1 1 1 -1 1 -1 1 1 -1 1 -1 1
10 -1 -1 1 1 -1 1 1 -1 -1 1 -1 -1 1 1 -1 1 1 -1 -1 1 -1 -1 1 1 -1
11 1 -1 -1 1 1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 1 -1 -1 1 1
12 1 1 -1 -1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1
13 -1 1 1 -1 -1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 1 1
14 -1 -1 1 1 -1 1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 1
20 1 1 1 1 -1 -1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 1 1 1 1 1 -1
21 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 1 1 1 1 -1 -1 -1 -1
22 1 1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 1 1 1
23 1 1 1 -1 -1 1 1 1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1
24 1 1 1 1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 1
30 -1 -1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 -1
31 -1 1 1 1 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 1 1 1
32 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 1 1 1 -1 -1 1 1 1
33 1 1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 1
34 1 1 1 1 -1 1 1 1 1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 1
40 1 1 1 1 1 -1 -1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 1 1 1 1 1
41 -1 1 1 1 1 -1 1 1 1 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 1 1
42 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 1 1 1
43 1 1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 -1 -1 -1 1 1
44 1 1 1 1 -1 1 1 1 1 -1 1 1 1 1 -1 1 1 1 1 -1 -1 -1 -1 -1 1

Table 7. Matrix M of the bias (×2−10) of linear equations for 2-round RC6
with weak key

fourth round trace (e0, e0) → (e1, e1) → (e0, e0) is (−2
−10) · (−2−10) = +2−20.

The number of linear characteristic for paths through (es, et, 0, 0) in the second
round is totally 52 = 25. Among them, there are 17 positive (= 2−10) bias of
linear characteristics and 8 negative (= −2−10) bias of linear characteristics. By
taking account of the sign of linear characteristic of each path, we obtain the
linear characteristic and the linear probability as follows. (The validity of this
observation is demonstrated by computer experiments.)

BiasRC6(Type I weak key)((e0, e0, 0, 0)→ (e0, e0, 0, 0))
= (17− 8) · (2−102−10) = 2−16.83

LPRC6(Type I weak key)((e0, e0, 0, 0)→ (e0, e0, 0, 0)) = 2
−33.66

We note that linear probability obtained here is much higher than the linear
probability of RC6 with average keys (2−38) and of RC6⊕ (2−35.356).
Next, we generalize the above method to calculate precisely the linear proba-

bility of the input mask and the output mask pattern (ei, ej , 0, 0)→ (ek, el, 0, 0)
for 2r-round RC6 with Type I weak key.
For i, j, k, l ∈ {0, ..., 4}, let m = (k − i)(mod32), n = (l − j)(mod32). We

consider the 25 × 25 matrix M = (a(ij)(kl)) such that a(ij)(kl) = (−1)
n·ei⊕m·ej .
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lsb5 k4 k3 k2 k1 k0

0 16 16 16 16 16
1 14 12 8 0 -16
2 12 8 0 -16 16
3 10 4 -8 0 -16
4 8 0 -16 16 16
5 6 -4 -8 0 -16
6 4 -8 0 -16 16
7 2 -12 8 0 -16

lsb5 k4 k3 k2 k1 k0

8 0 -16 16 16 16
9 -2 -12 8 0 -16
10 -4 -8 0 -16 16
11 -6 -4 -8 0 -16
12 -8 0 -16 16 16
13 -10 4 -8 0 -16
14 -12 8 0 -16 16
15 -14 12 8 0 -16

lsb5 k4 k3 k2 k1 k0

16 -16 16 16 16 16
17 -14 12 8 0 -16
18 -12 8 0 -16 16
19 -10 4 -8 0 -16
20 -8 0 -16 16 16
21 -6 -4 -8 0 -16
22 -4 -8 0 -16 16
23 -2 -12 8 0 -16

lsb5 k4 k3 k2 k1 k0

24 0 -16 16 16 16
25 2 -12 8 0 -16
26 4 -8 0 -16 16
27 6 -4 -8 0 -16
28 8 0 -16 16 16
29 10 4 -8 0 -16
30 12 8 0 -16 16
31 14 12 8 0 -16

Table 8. The bias (×2−4) of linear equation for addition(+)

(See Table 7.) Then, the bias of linear equation of 2r-round RC6 with Type I
weak key can be calculated as follows.

Φ(r) = 2−10rMr,
BiasRC6(Type I weak key)(2r)

((ei, ej , 0, 0)→ (ek, el, 0, 0)) = Φ(r)(ij)(kl),

where M r means the exponentiation of the integer matrix M .
In case of RC6 with arbitrary key, for the least significant five bits of extended

key lsb5(S[4i− 2]), lsb5(S[4i− 1]), we calculate (ki4, ki3, ki2, ki1, ki0) and (hi4,
hi3, hi2, hi1, hi0) by using Table 8, and also calculate the following matrix.

Ki = diag(ki0hi0, ki0hi1, ...., ki4hi4),

where diag(a0, a1, ...) is the 25×25 matrix whose diagonal elements are a0, a1, ...
and other elements are all 0. For example, when lsb5(S[2]) = 4 and lsb5(S[3]) =
26, then K1 is calculated as follows.

K1 = diag(2−3,−2−2, 0,−2−1, 2−1, 0, 0, 0, 0, 0,−2−2, 2−1, ...,−1, 1)

Then, the bias of linear equation of 2r-round RC6 can be calculated by using a
“Generalized Piling up lemma” of matrix representation as follows.

BiasRC6(2r)
((ei, ej , 0, 0)→ (ek, el, 0, 0))

= Ψ (r)[K](ij)(kl)
Ψ (r)[K] =

∏r
i=1(2

−10M ·Ki)

Table 9 shows linear masks that take the maximum linear probability of RC6
with Type I weak key in the elements of 25×25 matrix calculated as above. Now,
we can get the maximal linear probability of (2r+ 1)-round RC6 with the weak
keys by combining the discussion in the case of 2r-round RC6 and one-round
addition to the input side.

8 Multiple Linear Approximation of RC6

“Multiple Linear Approximation”, which is proposed by Kaliski and Robshaw, is
a technique to enable to attack ciphers using less amount of data. This technique
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Rounds Input Mask Output Mask Bias LP comment
(i, j) (k, l)

3 (*,*) (*,*) 1 · 2−10 2−20 1 in 220

5 (3,8) (2,2) 21 · 2−20 2−31.214 1 in 230

7 (1,1) (3,3) 101 · 2−30 2−46.682 1 in 240

9 (1,1) (0,0) 633 · 2−40 2−61.386 1 in 250

11 (1,1) (2,2) 4449 · 2−50 2−75.760 1 in 260

13 (2,2) (2,2) 24798 · 2−60 2−90.804 1 in 270

15 (2,2) (0,0) 134645 · 2−70 2−105.922 1 in 280

17 (2,2) (0,0) 942657 · 2−80 2−120.306 1 in 290

Table 9. The maximum linear probability of RC6 with Type I weak key

linear approximation linear probability number

Be0⊕De0⊕A
′e0⊕C

′e0 = 0 2−20−18(r−1) 1

Bei⊕De0⊕A
′e0⊕C

′e0 = 0 2−22−18(r−1) 4

Be0⊕Dej⊕A
′e0⊕C

′e0 = 0 2−22−18(r−1) 4

Be0⊕De0⊕A
′ek⊕C

′e0 = 0 2−22−18(r−1) 4

Be0⊕De0⊕A
′e0⊕C

′el = 0 2−22−18(r−1) 4

Table 10. Linear approximations of 2r-round RC6 for multiple linear approximation

is quite effective if there exist several linear approximations that have almost
maximum linear probability.

Let εi be the bias of linear equation Li : XΓXi
⊕Y ΓYi

= 0, (i = 1, ..., n)
with respect to Y = F (X). Then we define weight according to εi as being
wi = εi/(ε0 + ... + εn). Let N be the number of known plaintexts and Ni the
number of known plaintexts that satisfy linear approximation Li. Then by uti-
lizing the difference between wiNi and N/2 it is not hard to distinguish a cipher
from random permutations. The necessary number N of known plaintexts to
distinguish a cipher from random permutations is C/(

∑n
i=1 ε

2
i ), where C is a

parameter which determines the success probability (e.g., C = 4 implies that
the success probability is 95%).

By careful consideration of multiple linear approximation, we can see that it is
sufficient for estimating necessary number of plaintexts to break a cipher that we
get linear approximations whose linear equations are linearly independent. Recall
the linear approximations which are discussed in the previous section. The linear
approximations we should consider are all of the form Bei⊕Dej⊕A

′ek⊕C
′el = 0.

It is not difficult to see that there are at most 17 linearly independent linear
approximations. We utilize 17 linear approximations (shown in Table 10), which
are linearly independent and whose linear probabilities are comparatively high,
in order to improve the efficiency of breaking RC6.

We estimate the necessary number N of plaintexts to distinguish RC6 from
random permutations by applying linear approximations shown in Table 10 to
the technique of multiple linear approximation. We note that the coefficients in
the equations below are introduced in order to increase the success probability
up to 95%.
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round RC6 RC6(Type II weak key)RC6(Type I weak key)

3 221.68 217.912 (1 in 216) 217.912 (1 in 220)
5 239.68 233.268 (1 in 224) 230.1261 (1 in 230)
7 257.68 248.624 (1 in 232) 245.712 (1 in 240)
9 275.68 263.980 (1 in 240) 260.260 (1 in 250)
11 293.68 279.336 (1 in 248) 275.111 (1 in 260)
13 2111.68 294.692 (1 in 256) 290.061 (1 in 270)
15 2129.68 2110.048 (1 in 263) 2104.701 (1 in 280)
17 2147.68 2125.404 (1 in 270) 2119.423 (1 in 290)
19 2165.68 2140.760 (1 in 278) 2134.227 (1 in 2100)

Table 11. Distinguishing attack of RC6

N = 4 · (1/(2−20−18(r−1) + 16 · 2−22−18(r−1)))
= 4 · 1/((1 + 2−2) · 2−18r) = 23.68+18r

Similarly, we estimate the necessary number N of plaintexts to distinguish
RC6⊕ (or RC6 with Type II weak key) from random permutations by seeing
Table 3.

N = 4/(17 · 2−20−15.356(r−1)) = 22.556+(15.356)r

Moreover, in case of RC6 with Type I weak key, we can pick up linearly in-
dependent 17 linear approximations according to the estimation for the linear
probability of each input-output masks in Section 8.
Our attacking method, described in this section, is a known plaintext attack.

It means that we do not restrict the form of inputs and thus that we can make
full use of inputs, that is, the number 2128 of plaintexts. Therefore, we can say
that 13-round RC6 is distinguishable from random permutations and also that
15-round RC6⊕, 17-round RC6 with weak keys whose fraction is 2−90 is distin-
guishable from random permutations. We summarize these results in Table 11.

9 Key Recovery of RC6

In this section, we consider the key recovery of (2r + 2)-round RC6 by utilizing
the distinguishability result of (2r + 1)-round RC6. We adopt a typical method
“1-round elimination attack” as same as the method by Knudsen and Meier
[13] for key recovery in the following: apply multiple linear approximation to
RC6 through the 2nd round to the 2r + 2th round, search exhaustively for the
extended key S[0], S[1] (64 bits in total), and use them and the value in the
position before key addition of the first round to find a target key. (See Figure
3.)
Since the necessary data size for distinguishing attacker to success the attack

is 4p−1 with probability 95%, (which is calculated using the linear approximation
with the linear probability p), we claim by our experience that we need the num-
ber 4np−1 of known plaintexts and the number 4p−12n of computation of the
round-function for the number n(= 64) of the target key bits with probability
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Fig. 3. 1-round elimination attack

Rounds Target #Texts Complexity Comments

4 RC6 229.68 295.68

6 RC6 247.68 2113.68

8 RC6 265.68 2131.68

10 RC6 283.68 2149.68

12 RC6 2101.68 2167.68

14 RC6 2119.68 2185.68

16 RC6 weak key 2118.048 2184.048 1 in 264 (Type II)
18 RC6 weak key 2127.423 2193.423 1 in 290 (Type I)

Table 12. Key recovery of RC6

95% by the one-round elimination method. Thus, we can summarize the neces-
sary data size and complexity to find the target extended key by the one-round
elimination method in Table 12.
Thus we conclude that the 64-bit target extended key of 14-round RC6 can

be recovered with probability 95% by Multiple Linear Attack with the number
2119.68 of known plaintexts and the number 2185.68 of computation of the round-
function. Also that the 64-bit target extended key of 18-round RC6 with weak
key, (the fraction is 2−90), can be recovered with probability 95% by Multiple
Linear Attack with the number 2127.423 of known plaintexts and the number of
264 of memory, and the number 2193.423 of computation of the round-function.
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