
Cryptanalysis of the Modified Version of the

Hash Function Proposed at PKC’98

Daewan Han, Sangwoo Park, and Seongtaek Chee

National Security Research Institute
161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350, Korea

{dwh,psw,chee}@etri.re.kr

Abstract. In the conference PKC’98, Shin et al. proposed a dedicated
hash function of the MD family. In this paper, we study the security of
Shin’s hash function. We analyze the property of the Boolean functions,
the message expansion, and the data dependent rotations of the hash
function. We propose a method for finding the collisions of the modified
Shin’s hash function and show that we can find collisions with probability
2−30.

1 Introduction

Hash functions are used for many cryptographic applications, such as message
authentication and digital signature. A hash function is a computationally effi-
cient function which maps binary strings of arbitrary length to binary strings
of some fixed length. Cryptographic hash functions should satisfy the following
properties [3]:

– pre-image resistance: given a y in the image of a hash function h, it is com-
putationally infeasible to find any pre-image x such that h(x) = y.

– 2nd pre-image resistance: given x and h(x), it is computationally infeasible
to find a x′ 6= x such that h(x) = h(x′).

– collision resistance: it is computationally infeasible to find any two distinct
inputs x, x′ which hash to the same output.

Since the hash function MD4 [6] was introduced by R. Rivest, many dedicated
hash functions based on design principles of MD4 have been proposed. MD5 [7],
HAVAL [10], RIPEMD [5], RIPEMD-160 [2], and SHA-1 [4] are the dedicated
hash functions of the MD family.
In the conference PKC’98, Shin et al. proposed a dedicated hash function of

the MD family [8]. We call it Shin’s hash function. The compression function
of Shin’s hash function processes a message block of 512 bits and consists of 4
rounds. Each of the rounds consists of 24 steps. Shin’s hash function employs the
message expansion similar to SHA-1, and Boolean functions similar to HAVAL.
Another feature of Shin’s hash function is to adopt the data-dependent rotations:
rotations are processed by variable amounts determined by message words.

254

In this paper, we study the security of Shin’s hash function. We analyze the
property of the Boolean functions, the message expansion, and the data depen-
dent rotations of Shin’s hash function. We indicate that, unlike the designer’s
intention, some of the Boolean functions of Shin’s hash function fail to satisfy
the Strict Avalanche Criterion(SAC) [9]. Also, we point out that there can be
some weakness of the message expansion and the data dependent rotations. We
consider the modified Shin’s hash function which is Shin’s hash function whose
Boolean functions all satisfy the SAC, and propose a method for finding the
collisions for the modified Shin’s hash function.

2 The compression function of Shin’s hash function

Throughout this paper, the symbol + represents a modulo 232 addition, X ⊕Y ,
X∧Y and X∨Y represent the bitwise exclusive OR, AND, and OR of X and Y ,
respectively. The symbol X¿s denotes the left cyclic shift of X by s bit positions
to the left.
The compression function of Shin’s hash function processes a 16-word mes-

sage block of 512 bits, (X0, X1, . . . , X15), and consists of 4 rounds. The 16-word
message block is expanded to a 24-word message block, (X0, X1, . . . , X23). In the
24-word message block, Xi(i = 0, 1, . . . , 15) are the same as the message words
of the original 16-word message blocks and the additional 8 message words,
Xi(i = 16, 17, · · · , 23) are determined by the 16-word message blocks as follows:

X16+i = (X0+i ⊕X2+i ⊕X7+i ⊕X12+i)
¿1, i = 0, 1, · · · , 7. (1)

With the expanded 24-word message block, the compression function trans-
forms a 5-word(160 bits) initial value (A, B, C, D, E) into a 160-bit output
value. The 5-word initial values are the followings:

A = 0x67452301, B = 0xefcdab89, C = 0x98badcfe,

D = 0x10325476, E = 0xc3d2e1f0.

Each round of the compression function consists of 24 steps and each step
processes a different word. The orders in which the words are processed differ
from round to round. The word processing orders are determined by the follow-
ing:

Round 1 Round 2 Round 3 Round 4
id ρ ρ2 ρ3

and the permutation ρ is as follows:

i 0 1 2 3 4 5 6 7 8 9 10 11
ρ(i) 4 21 17 1 23 18 12 10 5 16 8 0

i 12 13 14 15 16 17 18 19 20 21 22 23
ρ(i) 20 3 22 6 11 19 15 2 7 14 9 13

255

In addition, each round employs a different constant. The constant Ki(i =
1, 2, 3, 4) is adopted by i-th round.

K1 = 0x0, K2 = 0x5a827999, K3 = 0x6ed9eba1, K4 = 0x8f1bbcdc.

In each round, one of the following Boolean functions is employed.

f0(x1, x2, x3, x4, x5) = (x1 ∧ x2)⊕ (x3 ∧ x4)⊕ (x2 ∧ x3 ∧ x4)⊕ x5

f1(x1, x2, x3, x4, x5) = x2 ⊕ ((x4 ∧ x5) ∨ (x1 ∧ x3))

f2(x1, x2, x3, x4, x5) = x1 ⊕ (x2 ∧ (x1 ⊕ x4))⊕ (((x1 ∧ x4)⊕ x3) ∨ x5)

The Boolean functions perform bitwise operations on words. f0, f1, f2, f0 are
adopted by the 1st, 2nd, 3rd, and 4th round, respectively.
Now, we describe the step function of Shin’s hash function. Let Ti,j(j =

0, 1, · · · , 4) be the input of the step function at step i. Then, the step function
of Shin’s hash function has a transformation of the form

Ti,0 = (f(Ti,0, Ti,1, Ti,2, Ti,3, Ti,4) +Xi +K)¿s, Ti,1 = T¿10
i,1

Ti+1,1 = Ti,0, Ti+1,2 = Ti,1, Ti+1,3 = Ti,2, Ti+1,4 = Ti,3, Ti+1,0 = Ti,4.

The rotation amount si at the step i is determined by the following:

si = Xord(i) mod 32,

where ord(i) is determined by the following permutations:

Round 1 Round 2 Round 3 Round 4
ρ3 ρ2 ρ id

3 Some properties of Shin’s hash function

In this section, we analyze the property of the Boolean functions, the message
expansion, and the data dependent rotations of Shin’s hash function.

3.1 The property of the Boolean functions

The designers of Shin’s hash function claimed that each of the Boolean functions
of the hash function is 0-1 balanced, has a high nonlinearity, and satisfies the
SAC [8]. Yet, it is easy to find out that some of the Boolean functions of Shin’s
hash function fail to satisfy the SAC.
We define the Boolean function f as satisfying the SAC if whenever one input

bit of f is changed, each output bit is changed with probability 1/2[9]. In case
of Shin’s hash function, it is easy to know that the Boolean function f0 and f1

do not satisfy the SAC. In case of f0, we can know that, whenever the input bit,
x5, is changed, the output bit is changed with probability 1. Similarly, in case

256

of f1, whenever the input bit, x2, is changed, the output bit is changed with
probability 1.

f0(x1, x2, x3, x4, x5) = (x1 ∧ x2)⊕ (x3 ∧ x4)⊕ (x2 ∧ x3 ∧ x4)⊕ x5,

f1(x1, x2, x3, x4, x5) = x2 ⊕ ((x4 ∧ x5) ∨ (x1 ∧ x3)).

Since the designers of Shin’s hash function intended that each of the Boolean
functions satisfies the SAC, it can be adequate that we consider the Shin’s hash
function whose Boolean functions all satisfy the SAC. We call it the modified
Shin’s hash function.

3.2 The property of the message expansion

The additional 8 message words X16, X17, · · · , X23 are determined by the 16-
word message block by the equation (1). The equation (1) can be restated as
follows:

X16 = (X0 ⊕X2 ⊕X7 ⊕X12)
¿1

X17 = (X1 ⊕X3 ⊕X8 ⊕X13)
¿1

X18 = (X2 ⊕X4 ⊕X9 ⊕X14)
¿1

X19 = (X3 ⊕X5 ⊕X10 ⊕X15)
¿1

X20 = (X4 ⊕X6 ⊕X11 ⊕X16)
¿1

X21 = (X5 ⊕X7 ⊕X12 ⊕X17)
¿1

X22 = (X6 ⊕X8 ⊕X13 ⊕X18)
¿1

X23 = (X7 ⊕X9 ⊕X14 ⊕X19)
¿1

For two 32-bit words X and X̃, we will define the difference of X and X̃ as
follows:

∆X = X − X̃ (mod 232).

To find a collision for Shin’s hash function, we should find two distinct mes-
sage blocksX and X̃ which have the same hash value. In the two distinct message
blocks X and X̃, if non-zero difference occurs between Xi and X̃i (0 ≤ i ≤ 15),
non-zero difference can occur between some of the additional 8 message words
which are generated from Xi and X̃i. For example, if non-zero difference oc-
curs between X0 and X̃0, then non-zero difference can occur between X16 and
X̃16. Furthermore, non-zero difference between X16 and X̃16 can make non-zero
difference between X20 and X̃20. Thus, the message expansion can increase the
difficulty of finding collisions for the hash function.
Table 1 shows the property of the message expansion of Shin’s hash function.

It shows that X10 and X15 affect X19 and X23 simultaneously. It means that,
although ∆X10 and ∆X15 are non-zero, we can have ∆X19 = ∆X23 = 0 in the
case X10 = X15 and X̃10 = X̃15. Similarly, although ∆X17, ∆X21, and ∆X22

are non-zero, we can have ∆X8 = ∆X13 = 0 in the case X17 ⊕X21 ⊕X22 = 0
and X̃17 ⊕ X̃21 ⊕ X̃22 = 0.

257

Table 1. The effect of message expansion of the SHF

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

X16 X17 X16 X17 X18 X19 X20 X16 X17 X18 X19 X20 X16 X17 X18 X19

X20 X21 X18 X19 X20 X21 X22 X20 X21 X22 X23 X20 X21 X22 X23

X20 X21 X22 X23 X21 X22 X23 X21 X22 X23

X22 X23 X23

Now, we know that there are instances in Shin’s hash function where non-zero
difference between some original message words cannot be diffused to non-zero
difference between some additional message words. We can use this property of
the message expansion to find the collisions for the modified Shin’s hash function.

3.3 The property of the data dependent rotations

In Shin’s hash function, the data dependent rotations are adopted by the equa-
tion

si = Xord(i) mod 32,

at step i. We can know that in the 1st round, ord(i) is determined by the word
processing orders of the 4th round, and ord(i) of the 2nd round is determined
by the word processing orders of the 3rd round, and so on.

For example, at step 1, s1 is determined by the word X13(see Appendix
A). So, if we have the word X13 such that X13 = 0 mod 32, then, s1 = 0. It
means that we can make the data dependent rotations ineffective by choosing the
appropriate message block, i.e. if we have the message block (Xi, i = 0, 1, . . . , 15)
such that Xi = 0 mod 32, we can have all si equal to 0.

Also, if we have Xi and X̃i such that ∆Xi 6= 0 and Xi = X̃i mod 32, then we
know that the shift amounts determined by Xi and X̃i are the same although
Xi and X̃i are different.

4 Attack on the modified Shin’s hash function

Although some of the Boolean functions of Shin’s hash function do not satisfy
the SAC, since the designers of Shin’s hash function intended that each of the
Boolean functions satisfies the SAC, it seems to be adequate that we study
the security of the modified Shin’s hash function. In this section, we propose a
method for finding the collisions for the modified Shin’s hash function.

We define some notations. Ai, Bi, Ci, Di, Ei represent the chaining variables
after step i for a message block X = (X0, . . . , X23), and Ãi, B̃i, C̃i, D̃i, Ẽi repre-
sent the chaining variables after step i for a message block X̃ = (X̃0, . . . , X̃23).
si and s̃i represent the shift value used in step i for X and X̃, respectively.

258

4.1 Attack on the 6 consecutive steps of the modified Shin’s hash

function

We analyze the 6 consecutive steps of the modified Shin’s hash function and show
how to find the collisions for 6 consecutive steps. For convenience, we consider
the 6 consecutive steps from step 1 to step 6.
To find the collisions for 6 consecutive steps, we should find two distinct

message blocks X = (X0, X1, . . . , X5) and X̃ = (X̃0, X̃1, . . . , X̃5) which have the
same chaining variables after step 6, i.e. A6 = Ã6, B6 = B̃6, C6 = C̃6, D6 = D̃6,
and, E6 = Ẽ6.
We consider two distinct message blocks X and X̃ such that ∆X0 = 1

¿31

and ∆X1 = ∆X2 = ∆X3 = ∆X4 = ∆X5 = 0. Then, we can have a situation
that si = s̃i(i = 1, 2, . . . , 6). We assume that A0 = Ã0, B0 = B̃0, C0 = C̃0,
D0 = D̃0, and, E0 = Ẽ0. Note that the Boolean function f satisfies the SAC.
Now, we analyze each step from step 1 to step 6 and find the probability with

which (X, X̃) can be a collision of the 6 consecutive steps. Table 2 shows the
updated chaining variables at each step of the 6 consecutive steps. The boxed
variables represent the updated chaining variables at each step.

Table 2. chaining variables updated in each step

Step A0 B0 C0 D0 E0 Input message

1 A1 B1 C1 D1 E1 X0

2 A2 B2 C2 D2 E2 X1

3 A3 B3 C3 D3 E3 X2

4 A4 B4 C4 D4 E4 X3

5 A5 B5 C5 D5 E5 X4

6 A6 B6 C6 D6 E6 X5

A1 and Ã1 are updated at step 1 as follows:

A1 = (f(A0, B0, C0, D0, E0) +X0 +K)¿s1 , B1 = B¿10
0

Ã1 = (f(Ã0, B̃0, C̃0, D̃0, Ẽ0) + X̃0 +K)¿s̃1 , B̃1 = B̃¿10
0

Since∆X0 = 1
¿31, we can have a situation thatX0⊕X̃0 = 1

¿31 with probability
1. Also, we know that ∆A0 = ∆B0 = ∆C0 = ∆D0 = ∆E0 and s1 = s̃1. So, we
have the following:

A1 ⊕ Ã1 = 1
¿s1(or s̃1)−1.

At step 2, E2 and Ẽ2 are updated as follows:

E2 = (f(E1, A1, B1, C1, D1) +X1 +K)¿s2 , A2 = A¿10
1 ,

Ẽ2 = (f(Ẽ1, Ã1, B̃1, C̃1, D̃1) + X̃1 +K)¿s̃2 , Ã2 = Ã¿10
1 .

259

Since ∆E1 = ∆B1 = ∆C1 = ∆D1 = 0, ∆X1 = 0, s2 = s̃2, we can have the
following equation:

∆E2 = 0⇐⇒ f(E1, A1, B1, C1, D1) = f(E1, Ã1, B1, C1, D1).

Note that A1 ⊕ Ã1 = 1
¿s1(or s̃1)−1. Since f satisfies the SAC, we can have a

result such that

f(E1, A1, B1, C1, D1) = f(E1, Ã1, B1, C1, D1)

with probability 1/2, i.e. ∆E2 = 0 with probability 1/2.
We assume that we have ∆E2 = 0 at step 2. At the next step, D3 and D̃3

are updated as follows:

D3 = (f(D2, E2, A2, B2, C2) +X2 +K)¿s3 , E3 = E¿10
2 ,

D̃3 = (f(D̃2, Ẽ2, Ã2, B̃2, C̃2) + X̃2 +K)¿s3 , Ẽ3 = Ẽ¿10
2 .

Since ∆D2 = ∆E2 = ∆B2 = ∆C2, ∆X2 = 0, and s3 = s̃3, we can have the
following equation:

∆D3 = 0⇐⇒ f(D2, E2, A2, B2, C2) = f(D2, E2, Ã2, B2, C2).

Since f satisfies the SAC, we can have a result such that

f(D2, E2, A2, B2, C2) = f(D2, E2, Ã2, B2, C2)

with probability 1/2, i.e. ∆D3 = 0 with probability 1/2.
Similarly, we can have that ∆C4 = 0 with probability 1/2 at step 4. Also,

we can have that ∆B5 = 0 with probability 1/2 at step 5, and ∆A6 = 0 with
probability 1/2 at step 6.
As a result, for two distinct message blocks X = (X0, X1, . . . , X5) and X̃ =

(X̃0, X̃1, . . . , X̃5) such that ∆X0 = 1
¿31 and ∆X1 = ∆X2 = ∆X3 = ∆X4 =

∆X5 = 0, we can have that ∆A6 = 0, ∆B6 = 0, ∆C6 = 0, ∆D6 = 0, ∆E6 = 0
with probability 2−5. So, we can find a collision for the 6 consecutive steps of
the modified Shin’s hash function with about 25 operations.

4.2 Attack on the full steps of the modified Shin’s hash function

Now, we propose a method for finding a collision for the full steps of the modified
Shin’s hash function. We consider two distinct message blocks X = (X0, X1, . . .
, X15) and X̃ = (X̃0, X̃1, . . . , X̃15) which satisfy the following conditions.

– Condition 1 : Xi is arbitrary for i 6= 8, 9, and 10.
– Condition 2 : X8 = 0x00000016 and X9 = X2 ⊕X4 ⊕X14⊕ 0x0000000b
– Condition 3 : X10 = X15

– Condition 4 : X̃i = Xi for i 6= 10, 15
– Condition 5 : X̃10 = X̃15 = X15 + 1

¿31

260

Condition 2 implies that X8 = 22 mod 32 and X18 = 22 mod 32. So, the
shift amounts determined by X8 and the shift amounts determined by X18 are
equal to 22. From Condition 3, 4, and 5, we can have that Xi = X̃i(i = 16, 17,
· · · , 23) from the property of the message expansion. Also, since Xi = X̃i mod
32(0 ≤ i ≤ 23), it is easy to know that si = s̃i (1 ≤ i ≤ 96). Finally, we notice
that ∆X10 = ∆X15 = 1

¿31.
We denote Ii as the section of the 6 consecutive steps from step i to step

i+5 and consider the sections I11, I32, I43, I54, I69, and, I81. Note that the first
input message word of the sections is X10 or X15, and ∆X10 = ∆X15 = 1

¿31(see
Appendix A).
First, we consider the section I32. We have two distinct message blocks (X10,

X5,X16,X8,X0,X20) and (X̃10, X̃5, X̃16, X̃8 , X̃0, X̃20) such that∆X10 = 1
¿31

and ∆X5 = ∆X16 = ∆X8 = ∆X0 = ∆X20 = 0. So, to the section I32, we can
apply the attack on the 6 consecutive steps of the modified Shin’s hash function,
i.e. if∆A31 =∆B31 =∆C31 =∆D31 =∆E31 = 0, we can have ∆A37 =∆B37 =
∆C37 = ∆D37 = ∆E37 = 0 with probability 2

−5. Similarly, the attack on the 6
consecutive steps can be applied to I43, I54, and I69 with the same probability.
However, to the section I11, the attack on the 6 consecutive steps cannot be

directly applied because ∆X15 6= 0, where X15 and X̃15 are the input message
words of the last step of I11. However, by using the property of the data depen-
dent rotations, this problem can be solved. Note that, at step 16, A16 and Ã16

are updated as follows:

A16 = (f0(A15, B15, C15, D15, E15) +X15 +K1)
¿s16 , B16 = B¿10

15

Ã16 = (f0(Ã15, B̃15, C̃15, D̃15, Ẽ15) + X̃15 +K1)
¿s16 , B̃15 = B̃¿10

15

We can have that ∆B15 = ∆C15 = ∆D15 = ∆E15 = 0 with probability 2
−4.

Note that at step 11, A11 and Ã11 are updated by the message words X10 and
X̃10 such that ∆X10 = 1

¿31, and s11 and s̃11 are determined by X18 and X̃18,
respectively. Since we have X18 = X̃18 and X18 = 22 mod 32 from Condition 2,
s11 and s̃11 are equal to 22. Thus, we know that A11 ⊕ Ã11 = 1

¿21. At step 12,
A11 and Ã11 are left-rotated by 10 bit positions, i.e. A12 ⊕ Ã12 = 1

¿31. Since,
from step 13 to step 15, A13 = A14 = A15 and Ã13 = Ã14 = Ã15, the equation
A15 ⊕ Ã15 = 1

¿31 holds. Now, we know that ∆X15 = ∆A15 = 1
¿31, so we can

have the following equation:

∆A16 = 0

⇐⇒ f0(A15, B15, C15, D15, E15)⊕ f0(Ã15, B15, C15, D15, E15) = 1
¿31

Since f0 satisfies the SAC, we can have that

f0(A15, B15, C15, D15, E15)⊕ f0(Ã15, B15, C15, D15, E15) = 1
¿31

with probability 1/2. So, ∆A16 = 0 with probability 2
−5. Similarly, by using

the property of the data dependent rotations, this attack can be applied to
the section I81. In this case, by the value of X8 in Condition 2, we have that
s81 = s̃81 = 22.

261

As our main result, if we have the two distinct message blocks X and X̃

which satisfy the Condition 1,2,3,4, and 5, we can find a collision of the modified
Shin’s hash function with probability (2−5)6 = 2−30.
Now, we find a collision of the modified Shin’s hash function by computer

simulation. We employ the Boolean functions fi(i = 0, 1, 2, 3) which satisfy the
SAC as follows:

f0(x1, x2, x3, x4, x5) = x2 ⊕ (x3 ∧ (x2 ⊕ x5))⊕ (((x2 ∧ x5)⊕ x4) ∨ x1)

f1(x1, x2, x3, x4, x5) = x3 ⊕ (x4 ∧ (x3 ⊕ x1))⊕ (((x3 ∧ x1)⊕ x5) ∨ x2)

f2(x1, x2, x3, x4, x5) = x1 ⊕ (x2 ∧ (x1 ⊕ x4))⊕ (((x1 ∧ x4)⊕ x3) ∨ x5)

f3(x1, x2, x3, x4, x5) = x4 ⊕ (x5 ∧ (x4 ⊕ x2))⊕ (((x4 ∧ x2)⊕ x1) ∨ x3)

fi(i = 0, 1, 2, 3) is the modified version of the Boolean function f2 of Shin’s hash
function, which satisfies the SAC. Note that our attack does not use the specific
properties of the Boolean functions except the SAC.
As a result of computer simulation, we give a collision for the modified Shin’s

hash function in Table 3 which has the following hash value:

0xdfe4e58f, 0x1f21fb34, 0x9956457f, 0x8726dff2, 0x0a45bef3

Table 3. A collision for the modified Shin’s hash function

X0 = 0xe64ec066 X̃0 = 0xe64ec066

X1 = 0xfd126b95 X̃1 = 0xfd126b95

X2 = 0x6d80c03e X̃2 = 0x6d80c03e

X3 = 0x09d32e0c X̃3 = 0x09d32e0c

X4 = 0x767d3ff5 X̃4 = 0x767d3ff5

X5 = 0x2bc1b633 X̃5 = 0x2bc1b633

X6 = 0x40727b94 X̃6 = 0x40727b94

X7 = 0xd7e17540 X̃7 = 0xd7e17540

X8 = 0x00000016 X̃8 = 0x00000016

X9 = 0x278364e1 X̃9 = 0x278364e1

X10 = 0xe7e7d228 X̃10 = 0x67e7d228

X11 = 0x8014bf7d X̃11 = 0x8014bf7d

X12 = 0xd5a3b0de X̃12 = 0xd5a3b0de

X13 = 0x5a70ffd6 X̃13 = 0x5a70ffd6

X14 = 0x3c7e9b21 X̃14 = 0x3c7e9b21

X15 = 0xe7e7d228 X̃15 = 0x67e7d228

5 Conclusion

In this paper, we have studied the security of Shin’s hash function proposed
by Shin et al. in the conference PKC’98. We have pointed out that, unlike the

262

designer’s intention, some of the Boolean functions of Shin’s hash function do
not satisfy the SAC. Also, we have indicated that there are instances in Shin’s
hash function that the message expansion is not effective. We have proposed a
method for finding the collisions with probability 2−30 for the modified Shin’s
hash function. Furthermore, we have found a collision of the modified Shin’s
hash function by computer simulation.
Recently, the collisions of the original Shin’s hash function have been found

by Chang et al.. They have extended our attack, and the complexity of the attack
is 237 hashing operations [1].
This paper has provided a good example that, although it is known that the

SAC is one of the important properties of the cryptographic Boolean functions, it
can be absolutely irrelevant for the dedicated hash functions. So, we recommend
that the Boolean functions of the dedicated hash function of the MD family be
carefully chosen. Also, the message expansion should be carefully designed, and
we conjecture that the data dependent rotations seem to be inadequate for the
dedicated hash functions.

References

1. Donghoon Chang, Jaechul Sung, Soo Hak Sung, Sangjin Lee, and Jongin Lim. Full-
Round Differential Attack on the Hash Function Proposed at PKC’98. Proceedings
of Koreacrypt’01, pages 24–35, 2002.

2. Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160: A strength-
ened version of RIPEMD. ftp.esat.kuleuven.ac.be/pub/COSIC/bossselae/ripemd,
April 1996.

3. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

4. National Institute of Standards and Technology. FIPS PUB 180-1 : Secure Hash
Standard, April 1995.

5. Research and Development in Advanced Communications Technologies in Europe.
RIPE: Integrity primitives for secure information systems. Final Report of RACE
Integrity Primitives Evaluation(R1040),RACE, 1995.

6. Ronald L. Rivest. The MD4 message digest algorithm. In Alfred J. Menezes and
Scott A. Vanstone, editors, Advances in Cryptology - Crypto’90, volume 537 of
Lecture Notes in Computer Science, pages 303–311. Springer-Verlag, 1991.

7. Ronald L. Rivest. The MD5 message digest algorithm. In Request for Com-
ments(RFC) 1321, April. Internet Activities Board, Internet Privacy Task Force,
1992.

8. Sang Uk Shin, Kyung Hyune Rhee, Dae Hyun Ryu, and Sang Jin Lee. A new
hash function based on MDx-family and its application to MAC. In Hideki Imai
and Yuliang Zheng, editors, Public Key Cryptography - PKC’98, volume 1431 of
Lecture Notes in Computer Science, pages 234–246. Springer, 1998.

9. A. F. Webster and Stafford E. Tavares. On the design of S-boxes. In Hugh C.
Williams, editor, Advances in Cryptology - Crypto’85, volume 218 of Lecture Notes
in Computer Science, pages 523–534. Springer-Verlag, New York, 1986.

10. Yuliang Zheng, Josef Pieprzyk, and Jennifer Seberry. HAVAL-A One-Way Hashing
Algorithm with Variable Length of Output. In Jennifer Seberry and Yuliang Zheng,
editors, Advances in Cryptology - Auscrypt’92, volume 718 of Lecture Notes in
Computer Science, pages 83–104. Springer, 1992.

263

A Message processing orders of Shin’s hash function

Step Word Step Word Step Word Step Word
1 X0 25 X4 49 X23 73 X13

2 X1 26 X21 50 X14 74 X22

3 X2 27 X17 51 X19 75 X2

4 X3 28 X1 52 X21 76 X14

5 X4 29 X23 53 X13 77 X3

6 X5 30 X18 54 X15 78 X6

7 X6 31 X12 55 X20 79 X7

8 X7 32 X10 56 X8 80 X5

9 X8 33 X5 57 X18 81 X15

10 X9 34 X16 58 X11 82 X0

11 X10 35 X8 59 X5 83 X18

12 X11 36 X0 60 X4 84 X23

13 X12 37 X20 61 X7 85 X10

14 X13 38 X3 62 X1 86 X21

15 X14 39 X22 63 X9 87 X16

16 X15 40 X6 64 X12 88 X20

17 X16 41 X11 65 X0 89 X4

18 X17 42 X19 66 X2 90 X17

19 X18 43 X15 67 X6 91 X12

20 X19 44 X2 68 X17 92 X19

21 X20 45 X7 69 X10 93 X8

22 X21 46 X14 70 X22 94 X9

23 X22 47 X9 71 X16 95 X14

24 X23 48 X13 72 X3 96 X1

