
Block Ciphers and Systems of Quadratic
Equations?

Alex Biryukov and Christophe De Cannière??

Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,
Kasteelpark Arenberg 10,

B–3001 Leuven-Heverlee, Belgium
{alex.biryukov, christophe.decanniere}@esat.kuleuven.ac.be

Abstract. In this paper we compare systems of multivariate poly-
nomials, which completely define the block ciphers Khazad, Misty1,
Kasumi, Camellia, Rijndael and Serpent in the view of a potential
danger of an algebraic re-linearization attack.
Keywords: Block ciphers, multivariate quadratic equations, lineariza-
tion, Khazad, Misty, Camellia, Rijndael, Serpent.

1 Introduction

Cryptanalysis of block ciphers has received much attention from the crypto-
graphic community in the last decade and as a result several powerful methods
of analysis (for example, differential and linear attacks) have emerged. What
most of these methods have in common is an attempt to push statistical pat-
terns through as many iterations (rounds) of the cipher as possible, in order to
measure non-random behavior at the output, and thus to distinguish a cipher
from a truly random permutation. A new generation of block-ciphers (among
them the Advanced Encryption Standard (AES) Rijndael) was constructed
with these techniques in mind and is thus not vulnerable to (at least a straight-
forward application of) these attacks. The task of designing ciphers immune to
these statistical attacks is made easier by the fact that the complexity of the
attacks grows exponentially with the number of rounds of a cipher. This en-
sures that the data and the time requirements of the attacks quickly become
impractical.

A totally different generic approach is studied in a number of recent pa-
pers [5, 7], which attempt to exploit the simple algebraic structure of Rijndael.
These papers present two related ways of constructing simple algebraic equations
that completely describe Rijndael. The starting point is the fact that the only
non-linear element of the AES cryptosystem, the S-box, is based on an inverse

? The work described in this paper has been supported in part by the Commission of
the European Communities through the IST Programme under Contract IST-1999-
12324 and by the Concerted Research Action (GOA) Mefisto.

?? F.W.O. Research Assistant, sponsored by the Fund for Scientific Research – Flanders
(Belgium)



function (chosen for its optimal differential and linear properties). This allows
to find a small set of quadratic multivariate polynomials in input and output
bits that completely define the S-box. Combining these equations, an attacker
can easily write a small set of sparse quadratic equations (in terms of intermedi-
ate variables) that completely define the whole block-cipher. Building on recent
progress in re-linearization techniques [4, 8] which provide sub-exponential algo-
rithms to solve over-defined systems of quadratic (or just low degree) equations,
Courtois and Pieprzyk [5] argue that a method called XSL might provide a
way to effectively solve this type of equations and recover the key from a few
plaintext-ciphertext pairs. The claimed attack method differs in several respects
from the standard statistical approaches to cryptanalysis: (a) it requires only
few known-plaintext queries; (b) its complexity doesn’t seem to grow exponen-
tially with the number of rounds of a cipher. However, no practical attack of this
type was demonstrated even on a small-scale example, so far. Research on such
attacks is still at a very early stage, the exact complexity of this method is not
completely understood and many questions concerning its applicability remain
to be answered.

In this paper we will not try to derive a full attack or calculate complexi-
ties. Our intention is merely to compare the expected susceptibility of different
block ciphers to a hypothetical algebraic attack over GF (2) and GF (28). For
this purpose we will construct systems of equations for the 128-bit key ciphers1

Khazad [3], Misty1 [9], Kasumi [10], Camellia-128 [2], Rijndael-128 [6]
and Serpent-128 [1] and compute some properties that might influence the
complexity of solving them.

2 Constructing Systems of Equations

The problem we are faced with is to build a system of multivariate polynomials
which relates the key bits with one or two (in the case of the 64-bit block ciphers)
plaintext-ciphertext pairs and which is as simple as possible. The main issue here
is that we have to define what we understand by simple.

Since we do not know the most efficient way of solving such systems of equa-
tions, our simplicity criterion will be based on some intuitive assumptions:

1. Minimize the total number of free terms (free monomials). This is the number
of terms that remain linearly independent when considering the system as a
linear system in monomials. For example, adding two linearly independent
equations which introduce only one new monomial will reduce the number
of free terms by one. In order to achieve this, we will try to:
(a) Minimize the degree of the equations. This reduces the total number of

possible monomials.
(b) Minimize the difference between the total number of terms and the total

number of (linearly independent) equations. This is motivated by the
fact that each equation can be used to eliminate a term.

1 For ciphers which allow different key sizes, we will denote the 128-bit key version by
appending “128” to the name of the cipher.

2



2. Minimize the size of individual equations. This criterion arises from the
observation that sparse systems are usually easier to solve. Note that point 1
already assures the “global sparseness” of the system and that point 2 adds
some local sparseness if it is possible.

Another criterion, which is used in [8] and [4], is to minimize the ratio between
the total number of terms and the number of equations. This is equivalent to
the criterion above when the system involves all terms up to a certain degree
(as would be the case for a random quadratic system, for example). We believe,
however, that this criterion is less natural in cases where the number of terms
can be reduced, which is the case for the systems considered in this paper.

The most straightforward way of constructing a system of equations for a
block cipher is to derive equations for each individual component and to insert
them in a single system. In the next subsections we will briefly discuss the
contribution of each component.

2.1 S-boxes

In most block ciphers, the S-boxes are the only source of nonlinearity and the
equations describing them will be the main obstacle that prevents the system
from being easily solved.

For any S-box of practical size, one can easily generate a basis of linearly inde-
pendent multivariate polynomials that spans the space of all possible equations
between the input and the output bits. This is illustrated for a small example
in Appendix A.1. In this space we would like to find a set of equations that is
as simple as possible (according to our criterion), but still completely defines
the S-box. In some cases, this optimal set of equations might be an over-defined
system.2

Performing an exhaustive search over all possible sets of equations is infeasi-
ble, even for small S-boxes. In this paper, we will therefore restrict our search to
systems consisting only of equations from the basis. It appears that this restric-
tion still produces sufficiently simple systems for small S-boxes, although the
results rapidly deteriorate when the size of the S-boxes increases. Fortunately,
many large S-boxes used in practice are derived from simple algebraic functions,
and this usually directly leads to simple polynomial systems (see Sect. 3.2, for
example). Nothing guarantees however that these systems are optimal and the
results derived in this paper should therefore be considered as an approximation
only. An efficient way of finding optimal systems for arbitrary S-boxes is still an
interesting open problem.

2 In this paper, we do not consider “over-definedness” to be a criterion on itself. The
reason is that it is not clear whether an over-defined system with a lot of free terms
should be preferred over a smaller, defined system with less free terms. We note
however that the systems of all S-boxes studied below can easily be made over-
defined, should the solving algorithm require it.

3



2.2 FL-blocks

Both Misty1 and Camellia-128 contain an additional nonlinear component
called FL-block. It is a function of an input word X and a key word K and it
is defined as

YR = XR ⊕ [(XL ∩ KL) ≪ s] (1)

YL = XL ⊕ (YR ∪ KR) (2)

with X, Y and K 2w-bit words. The constant s is 0 for Misty1 and 1 for
Camellia-128 and the word size w is 16 and 32 for Misty1 and Camellia-128
respectively. The definition above can directly be translated into a system of
quadratic equations in GF (2):

yR,i = xR,i + yL,j · kL,j (3)

yL,i = xL,i + yR,i + kR,i + yR,i · kR,i (4)

for

0 ≤ i < w (5)

j = i − s mod w (6)

What should be remembered is that the 2w nonlinear equations of this system
contain 6w linear and 2w quadratic terms.

2.3 Linear layers

The linear layers of a block cipher consist of both linear diffusion layers and key
additions. Writing a system of equations for these layers is very straightforward.
The number of equations and the number of terms in such a linear system
are fixed and the only property we can somewhat control is the density of the
individual equations, for example by combining equations that have many terms
in common.

In cases where a linear layer only consists of bit permutations, we will not
insert separate equations, but just rename the variables accordingly.

3 Comparison of Block Ciphers

The block ciphers we intend to compare are Khazad, Misty1, Kasumi,
Camellia-128, Rijndael-128 and Serpent-128. The characteristics of these
ciphers are summarized in Table 1 and Table 2. For each of them we will con-
struct a system of equations as described in the previous section, and compute
the total number of terms and the number of equations. The final results are
listed in Table 3.

4



Table 1. Characteristics of the ciphers (without key schedule).

Khazad Misty1 Camellia-128 Rijndael-128 Serpent-128

Block size 64 bit 64 bit 128 bit 128 bit 128 bit
Key size 128 bit 128 bit 128 bit 128 bit 128 bit
Rounds 8 8 18 10 32

S-boxes 384/64 24 + 48 144 160 1024
S-box width 4/8 bit 7 bit and 9 bit 8 bit 8 bit 4 bit
Nonlinear ordera 3/7 3 and 2 7 7 2

FL-blocks - 10 4 - -
FL-block width - 32 bit 64 bit - -

a The non-linear order of an S-box is the minimal degree required to express a linear
combination of output bits as a polynomial function of input bits.

Table 2. Characteristics of the key schedules.

Khazad Misty1 Camellia-128 Rijndael-128 Serpent-128

Key size 128 bit 128 bit 128 bit 128 bit 128 bit
Expanded key 576 bit 256 bit 256 bit 1408 bit 4224 bit

S-boxes 432/72 8 + 16 32 40 1056
S-box width 4/8 bit 7 bit and 9 bit 8 bit 8 bit 4 bit

3.1 Khazad

Khazad [3] is a 64-bit block cipher designed by P. Barreto and V. Rijmen, which
accepts a 128-bit key. It consists of an 8-round SP-network that makes use of
an 8-bit S-box and a 64-bit linear transformation based on an MDS code. The
8-bit S-box is in turn composed of 3 times two 4-bit S-boxes called P and Q,
which are connected by bit-permutations. The key schedule is a 9-round Feistel
iteration based on the same round function as in the cipher itself.

For both P and Q we can generate 21 linearly independent quadratic equa-
tions in 36 terms (excluding ‘1’). As discussed before, we want to find a subset
of these equations which forms a system that is as simple as possible. A possi-
ble choice can be found in Appendix A. The system describing P consists of 4
equations in 16 terms. For Q, the best set we found is an over-defined system of
6 equation in 18 terms.

Constructing the system

Cipher

Variables. The variables of the system are the inputs and outputs of the 4-bit
S-boxes. After combining six 4-bit S-boxes into a 8-bit S-box and renaming
the variables according to the bit-permutations, we obtain a system in 32
variables. This is repeated for each of the 64 8-bit S-boxes.

5



Linear equations. The S-box layers are connected to each other and to the
(known) plaintext and ciphertext by 9 64-bit linear layers, each including a
key addition. Their contributions in the system are 9 times 64 linear equa-
tions.

Nonlinear equations. The only nonlinear equations are the S-box equations.
For each 8-bit S-box we obtain a system of 30 equations in 32 linear and 54
quadratic terms. Note that a better system may be obtained if one optimizes
the sets of the equations, used in the neighboring 4-bit S-boxes, trying to
maximize the number of common terms between the two S-boxes.

Key schedule

Variables. In order to take the key schedule into account, we need to include
extra variables for the first 64 bits of the key (called K−2) and for the inputs
and outputs of the 4-bit S-boxes in the key schedule (which will include the
64 variables for K−1).

Linear equations. The linear layers between the 9 S-box layers in the key
schedule define 8 times 64 linear equations.

Nonlinear equations. Again, the nonlinear equations are just the S-box equa-
tions.

The number of equations and terms in the final system are listed in Table 3.
Note that we need to build a system for two different 64-bit plaintext-ciphertext
pairs in order to be able to solve the system for the 128-bit key.

3.2 Misty1 and Kasumi

Misty1 [9] is a 64-bit block and 128-bit key block cipher designed by M. Matsui.
It is an 8-round Feistel-network based on a 32-bit nonlinear function. Addition-
ally, each pair of rounds is separated by a layer of two 32-bit FL-blocks. The
nonlinear function itself has a structure that shows some resemblances with a
Feistel-network and contains three 7-bit S-boxes S7, and six 9-bit S-boxes S9.
The key schedule derives an additional 128-bit key K ′ from the original key K
by applying a circular function which contains 8 instances of S7 and 16 of S9.

The 9-bit S-box S9 is designed as a system of 9 quadratic equations in 54
terms (derived from the function y = x5 in GF (29)) and this is probably the
best system according to our criterion. The 7-bit S-box S7 is defined by 7 cubic
equations in 65 terms (see Appendix A), but it appears that its input and output
bits can also be related by a set of 21 quadratic equations in 105 terms. In this
set, our search program is able to find a subset of 11 equations in 93 terms which
completely defines the S-box.

The substitution S7 was not selected at random, however, as it was designed
to be linearly equivalent with the function y = x81 in GF (27). This information
allows to derive a much simpler system of quadratic equations: raising the pre-
vious expression to the fifth power, we obtain y5 = x405 = x24, which can be
written as y · y4 = x8 · x16. This last equation is quadratic, since y4, x8 and x16

6



are linear functions in GF (27). Next, we express x and y as a linear function of
the input and output bits of S7 and obtain a system of 7 quadratic equations
in 56 terms over GF (2).3 This is a considerable improvement compared to what
our naive search program found.

Kasumi [10] is a 64-bit block and 128-bit key block cipher derived from
Misty1. It is built from the same components and uses S-boxes which are based
on the same power functions and are equivalent up to an affine transform. Its
structure is slightly different: relevant for the derivation of the equations is the
fact that it uses 24 more instances of the 7-bit S-boxes, that the placement of
its 8 FL-blocks is different, and that the key schedule is completely linear.

Constructing the system for Misty1

Cipher

Variables. The variables of the system are chosen to be the inputs and outputs
of the S-boxes, the output bits of the first pair of FL-blocks, both the input
and the output bits of the 6 inner FL-blocks and the input of the last pair
of FL-blocks. We expect however that the variables for some of the output
bits of the first FL-blocks can be replaced by constants, as about 3/8 of
them will only depend on the (known) plaintext bits. This is also true for
the output bits of the last FL-blocks.

Linear equations. These include all linear relations between different S-boxes
and between FL-blocks and S-boxes. Moreover, 3/8 of the equations of the
outer FL-blocks will turn out to be linear. The total number of linear equa-
tions can be found in Table 3.

Nonlinear equations. Apart from the nonlinear equations of the S-boxes, we
should also include the equations of the inner FL-blocks and equations of
the outer FL-blocks that remained nonlinear (about 1/4).

Key schedule

Variables. The additional variables in the key schedule are the input and out-
put bits of the S-boxes (which include K) and the 128 bits of K ′.

Linear equations. The linear equations are formed by the additions after each
S-box.

Nonlinear equations. These are just the S-box equations.

In the same manner, we can derive a system for Kasumi. The final results
are listed in Table 3 and here again we need two plaintext/ciphertext pairs if we
want to be able to extract the 128-bit key.

3 Fourteen more quadratic equations can be derived from the relations x64 ·y = x2 ·x16

and x · y64 = y2 · y4, but these would introduce many new terms.

7



3.3 Camellia-128

The 128-bit block cipher Camellia-128 [2] was designed by K. Aoki et al. It is
based on an 18-round Feistel-network with two layers of two 64-bit FL-blocks
after the 6th and the 12th round. The 64-bit nonlinear function used in the
Feistel iteration is composed of a key addition, a nonlinear layer of eight 8-bit
S-boxes and a linear transform. An additional 128-bit key KA is derived from
the original key KL by applying four Feistel iterations during the key scheduling.

Camellia-128 uses four different S-boxes which are all equivalent to an
inversion over GF (28) up to an affine transform. As pointed out in [5], the input
and output bits of such S-boxes are related by 39 quadratic polynomials in 136
terms. By taking the subset of equations that does not contain any product of
two input or two output bits, one can build a system of 23 quadratic equations
in 80 terms (excluding the term ‘1’), which is probably the optimal system.

Constructing the system

Cipher

Variables. The variables of the system will be the inputs and outputs of all
S-boxes and FL-blocks.

Linear equations. All linear layers between different S-boxes and between
FL-blocks and S-boxes will insert linear equations in the system. Their exact
number is given in Table 3.

Nonlinear equations. The only nonlinear equations are the equations of the
S-box and the FL-block.

Key schedule

Variables. The key schedule adds variables for the inputs and outputs of its 32
S-boxes and for KL and KA.

Linear equations. These are all linear layers between different S-boxes or be-
tween an S-box and the bits of KL and KA.

Nonlinear equations. Again, the only nonlinear equations included in the sys-
tem are the S-box equations.

3.4 Rijndael-128

Rijndael-128 [6] is a 128-bit block cipher designed by J. Daemen and V. Rijmen
and has been adopted as the Advanced Encryption Standard (AES). It is a 10-
round SP-network containing a nonlinear layer based on a 8-bit S-box. The linear
diffusion layer is composed of a byte permutation followed by 4 parallel 32-bit
linear transforms. The 128-bit key is expanded recursively by a key scheduling
algorithm which contains 40 S-boxes.

The 8-bit S-box is an affine transformation of the inversion in GF (28), and
as mentioned previously, it is completely defined by a system of 23 quadratic
equations in 80 terms.

8



Constructing the system

Cipher

Variables. As variables we choose the input and output bits of of each of the
160 S-boxes.

Linear equations. Each of the 11 linear layers (including the initial and the
final key addition) correspond to a system of 128 linear equations.

Nonlinear equations. These are just the S-box equations.

Key schedule

Variables. The variables in the key schedule are the inputs and outputs of the
S-boxes (which include the bits of W3) and the bits of W0, W1 and W2.

Linear equations. The linear equations are all linear relations that relate the
input of the S-boxes to the output of another S-boxes or to W0, W1 and W2.

Nonlinear equations. The S-box equations.

3.5 Serpent-128

Serpent-128 [1] is a 128-bit block cipher designed by R. Anderson, E. Biham
and L. Knudsen. It is a 32-round SP-network with nonlinear layers consisting of
32 parallel 4-bit S-boxes and a linear diffusion layer composed of 32-bit rotations
and XORs. In the key schedule, the key is first linearly expanded to 33 128-bit
words and then each of them is pushed through the same nonlinear layers as the
ones used in the SP-network.

Serpent-128 contains 8 different S-boxes and for each of them we can gen-
erate 21 linearly independent quadratic equations in 36 terms. The best subsets
of equations we found allow us to build systems of 4 equations in 13 terms for
S0, S1, S2 and S6. S4 and S5 can be described by a system of 5 equations in 15
terms, and S3 and S7 by a system of 5 equations in 16 terms. As an example,
we included the systems for S0 and S1 in Appendix A.

Constructing the system

Cipher

Variables and equations The system for the SP-network of Serpent-128 is
derived in exactly the same way as for Rijndael-128. The results are shown
in Table 3.

Key schedule

Variables. The variables of the system are the inputs and outputs of the
S-boxes, i.e. the bits of the linearly expanded key and the bits of the fi-
nal round keys.

Linear equations. These are the linear equations relating the bits of linearly
expanded key.

Nonlinear equations. These are the S-box equations.

9



4 Equations in GF (28) for Rijndael and Camellia

In [7], S. Murphy and M. Robshaw point out that the special algebraic structure
of Rijndael allows the cipher to be described by a very sparse quadratic system
over GF (28). The main idea is to embed the original cipher within an extended
cipher, called BES (Big Encryption System), by replacing each byte a by its

8-byte vector conjugate in GF (28)
8
:

(

a2
0

, a2
1

, a2
2

, a2
3

, a2
4

, a2
5

, a2
6

, a2
7
)

(7)

The advantage of this extension is that it reduces all transformations in
Rijndael to very simple GF (28) operations 8-byte vectors, regardless of whether

these transformations were originally described in GF (28) or in GF (2)
8
. The pa-

rameters of the resulting system in GF (28) are listed in Table 4. Note that the
results are in exact agreement with those given in [7], though the equations and
terms are counted in a slightly different way.

The fact that Camellia uses the same S-box as Rijndael (up to a linear
equivalence) suggests that a similar system can be derived for this cipher as
well. The only complication is the construction of a system in GF (28) for the
FL-blocks. This can be solved as follows: first we multiply each 8-byte vector at
the input of the FL-blocks by an 8 × 8-byte matrix [bi,j ]

−1
where bi,j = xi·2j

are elements of GF (28) written as polynomials. The effect of this multiplication
is that vectors constructed according to (7) are mapped to an 8-byte vector
consisting only of 0’s and 1’s, corresponding to the binary representation of the
original byte a. This implies that we can reuse the quadratic equations given in
Section 2.2, but this time interpreted as equations in GF (28). Finally, we return
to vector conjugates by multiplying the results by the matrix [bi,j ]. Note that
these additional linear transformations before and after the FL-blocks do not
introduce extra terms or equations, as they can be combined with the existing
linear layers of Camellia.

Table 4 compares the resulting system with the one obtained for Rijndael

and it appears that both systems have very similar sizes. We should note, how-
ever, that certain special properties of BES, for example the preservation of
algebraic curves, do not hold for the extended version of Camellia, because of
the FL-blocks.

5 Interpretation of the Results, Conclusions

In this section we analyze the results in Tables 3 and 4, which compare the
systems of equations generated by the different ciphers. Each table is divided
into three parts: the first describes the structure of the cipher itself, the second
describes the structure of the key-schedule and the third part provides the total
count. Each part shows the number of variables, the number of equations (we
provide separate counts for non-linear and linear equations) and the number of
terms (with separate counts for quadratic and linear terms). The bottom line

10



Table 3. A comparison of the complexities of the systems of equations in GF (2)

Khazad Misty1 Kasumi Camellia-128 Rijndael-128 Serpent-128

Cipher (×2) (×2) (×2)
Variables 2048 1664 2004 2816 2560 8192

Linear eqs. 576 904 1068 1536 1408 4224
Nonlinear eqs. 1920 824 1000 3568 3680 4608
Equations 2496 1728 2068 5104 5088 8832

Linear terms 2048 1664 2004 2816 2560 8192
Quadratic terms 3456 2960 3976 9472 10240 6400
Terms 5504 4624 5980 12288 12800 14592

Key schedule
Variables 2368 528 256 768 736 8448

Linear eqs. 512 200 128 384 288 4096
Nonlinear eqs. 2160 200 0 736 920 4752
Equations 2672 400 128 1120 1208 8848

Linear terms 2368 528 256 768 736 8448
Quadratic terms 3888 912 0 2048 2560 6600
Terms 6256 1440 256 2816 3296 15048

Total
Variables 6464 3856 4264 3584 3296 16640

Linear eqs. 1664 2008 2264 1920 1696 8320
Nonlinear eqs. 6000 1848 2000 4304 4600 9360
Equations 7664 3856 4264 6224 6296 17680

Linear terms 6464 3856 4264 3584 3296 16640
Quadratic terms 10800 6832 7952 11520 12800 13000
Terms 17264 10688 12216 15104 16096 29640

Free terms 9600 6832 7952 8880 9800 11960

provides the number of free terms, which is the difference between the total
number of terms and the total number of equations.

Note that for 64-bit block ciphers we have to take two plaintext-ciphertext
queries in order to be able to find a solution for the 128-bit key. For such ciphers
the numbers provided in the “Cipher” part of the table have to be doubled,
in order to get the complete number of equations, terms and variables. Note
however, that one does not have to double the number of equations for the key-
schedule, which are the same for each encrypted block. The total for 64-bit block
ciphers shows the proper total count: twice the numbers of the cipher part plus
once the numbers from the key-schedule part.

After comparing systems of equations for different ciphers we notice that
the three ciphers in the 128-bit category (Camellia-128, Rijndael-128,
Serpent-128) don’t differ drastically in the number of free terms.
Camellia-128 and Rijndael-128 in particular have very similar counts of vari-
ables, equations and terms, both in GF (2) and GF (28) which is in part ex-
plained by the fact that they use the same S-box and have approximately equiv-

11



Table 4. A comparison of the complexities of the systems of equations in GF (28).

Camellia-128 Rijndael-128

Cipher 2816 2560

Linear eqs. 1536 1408
Nonlinear eqs. 1408 1280
Equations 2944 2688

Linear terms 2816 2560
Quadratic terms 1408 1280
Terms 4224 3840

Key schedule
Variables 768 736

Linear eqs. 384 288
Nonlinear eqs. 256 320
Equations 640 608

Linear terms 768 736
Quadratic terms 256 320
Terms 1024 1056

Total
Variables 3584 3296

Linear eqs. 1920 1696
Nonlinear eqs. 1664 1600
Equations 3584 3296

Linear terms 3584 3296
Quadratic terms 1664 1600
Terms 5248 4896

Free terms 1664 1600

alent number of rounds (Rijndael-128 has 10 SPN rounds and Camellia-128
has 18 Feistel rounds which is “equivalent” to 9 SPN rounds). On the other
hand Serpent-128 has 3–4 times more SPN rounds than Camellia-128 and
Rijndael-128, and this explains why its system of equations has approximately
3–4 times more variables (at least in the cipher part). The number of quadratic
terms in Serpent-128 is much smaller due to the 4-bit S-boxes, and this keeps
the number of free terms within the range of the other two ciphers.

When one switches to GF (28) for Camellia-128 and Rijndael-128, the
equations for the S-boxes are much sparser and the number of free terms is
reduced. It is not clear however how to make a fair comparison between systems
in GF (2) and GF (28). The number of free terms in Table 4 is several times
smaller, but then again, working in a larger field might increase the complexity
of the solving algorithm.

Comparing Khazad and Misty1, both of which consist of 8 rounds, one
may notice that Khazad has approximately twice more variables and equations
(due to the fact that we write equations for the intermediate layers of the S-

12



box4). On the other hand the number of quadratic terms per nonlinear equation
is considerably higher for Misty1 due to its larger S-boxes.

Finally note, that the results presented in this paper are very sensitive to
the criteria used for the choice of the equations. Our main criterion was to
minimize the number of free terms, for example we did not aim to find the
most over-defined systems of equations. At the moment of this writing one can
only speculate what would be the criteria for a possible algebraic attack (if such
attack will be found to exist at all).

Acknowledgements. We wish to thank the anonymous referees, whose com-
ments helped to improve this paper. We would also like to thank Jin Hong for
pointing out an error in a previous version of this paper.

References

[1] R. Anderson, E. Biham, and L. Knudsen, “Serpent: A proposal for the
advanced encryption standard.” Available from http://www.cl.cam.ac.uk/

~rja14/serpent.html.

[2] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and
T. Tokita, “Camellia: A 128-bit block cipher suitable for multiple platforms.”
Submission to NESSIE, Sept. 2000. Available from http://www.cryptonessie.

org/workshop/submissions.html.

[3] P. Barreto and V. Rijmen, “The KHAZAD legacy-level block cipher.” Submis-
sion to NESSIE, Sept. 2000. Available from http://www.cryptonessie.org/

workshop/submissions.html.

[4] N. Courtois, A. Klimov, J. Patarin, and A. Shamir, “Efficient algorithms for solv-
ing overdefined systems of multivariate polynomial equations,” in Proceedings of

Eurocrypt’00 (B. Preneel, ed.), no. 1807 in Lecture Notes in Computer Science,
pp. 392–407, Springer-Verlag, 2000.

[5] N. Courtois and J. Pieprzyk, “Cryptanalysis of block ciphers with overdefined
systems of equations,” in Proceedings of Asiacrypt’02 (Y. Zheng, ed.), no. 2501
in Lecture Notes in Computer Science, Springer-Verlag, 2002. Earlier version
available from http://www.iacr.org.

[6] J. Daemen and V. Rijmen, “AES proposal: Rijndael.” Selected as the Advanced
Encryption Standard. Available from http://www.nist.gov/aes.

[7] S. Murphy and M. Robshaw, “Essential algebraic structure within the AES,” in
Proceedings of Crypto’02 (M. Yung, ed.), no. 2442 in Lecture Notes in Computer
Science, pp. 17–38, Springer-Verlag, 2002. NES/DOC/RHU/WP5/022/1.

[8] A. Shamir and A. Kipnis, “Cryptanalysis of the HFE public key cryptosystem,” in
Proceedings of Crypto’99 (M. Wiener, ed.), no. 1666 in Lecture Notes in Computer
Science, pp. 19–30, Springer-Verlag, 1999.

[9] E. Takeda, “Misty1.” Submission to NESSIE, Sept. 2000. Available from http:

//www.cryptonessie.org/workshop/submissions.html.

4 There are no quadratic equations for the full 8-bit S-box of Khazad and for the
original S-box (before the tweak). There are many cubic equations, which is true for
any 8-bit S-box.

13



[10] Third Generation Partnership Project, “3GPP KASUMI evaluation report,” tech.
rep., Security Algorithms Group of Experts (SAGE), 2001. Available from http:

//www.3gpp.org/TB/other/algorithms/KASUMI_Eval_rep_v20.pdf.

A Equations

A.1 Constructing a System – Example

This appendix illustrates how a set of linearly independent S-box equations can
be derived for a small example.

The n-bit S-box considered here is a 3-bit substitution defined by the fol-
lowing lookup table: [7, 6, 0, 4, 2, 5, 1, 3]. In order to find all linearly independent
equations involving a particular set of terms (in this example all input and out-
put bits xi and yj together with their products xiyj), we first construct a matrix
containing a separate row for each term. Each row consists of 2n entries, corre-
sponding to the different values of the particular term for all possible input values
(in this case from 0 to 7). The next step is to perform a Gaussian elimination on
the rows of the matrix and all row operations required by this elimination are
applied to the corresponding terms as well (see below). This way, a number of
zero rows might appear and it is easy to see that the expressions corresponding
to these rows are exactly the equations we are looking for. Note also that this set
of equations forms a linearly independent basis and that any linear combination
is also a valid equation.

























































1 1 1 1 1 1 1 1 1
x0 0 1 0 1 0 1 0 1
x1 0 0 1 1 0 0 1 1
x2 0 0 0 0 1 1 1 1
y0 1 0 0 0 0 1 1 1
y1 1 1 0 0 1 0 0 1
y2 1 1 0 1 0 1 0 0
x0y0 0 0 0 0 0 1 0 1
x0y1 0 1 0 0 0 0 0 1
x0y2 0 1 0 1 0 1 0 0
x1y0 0 0 0 0 0 0 1 1
x1y1 0 0 0 0 0 0 0 1
x1y2 0 0 0 1 0 0 0 0
x2y0 0 0 0 0 0 1 1 1
x2y1 0 0 0 0 1 0 0 1
x2y2 0 0 0 0 0 1 0 0

























































→

























































1 1 1 1 1 1 1 1 1
x0 0 1 0 1 0 1 0 1
x1 0 0 1 1 0 0 1 1
1 + x0 + x1 + y0 0 0 0 1 1 1 1 0
x2 0 0 0 0 1 1 1 1
1 + x1 + y1 0 0 0 0 0 1 0 1
1 + x0 + x1 + y0 + y1 + y2 0 0 0 0 0 0 1 1
x0 + x0y2 0 0 0 0 0 0 0 1
x2 + y0 + y1 + x0y1 0 0 0 0 0 0 0 0
1 + x1 + y1 + x0y0 0 0 0 0 0 0 0 0
1 + x0 + x1 + y0 + y1 + y2 + x1y0 0 0 0 0 0 0 0 0
x0 + x0y2 + x1y1 0 0 0 0 0 0 0 0
1 + x1 + x2 + y0 + x0y2 + x1y2 0 0 0 0 0 0 0 0
y0 + y2 + x0y2 + x2y0 0 0 0 0 0 0 0 0
x0 + x2 + y0 + y2 + x2y1 0 0 0 0 0 0 0 0
1 + x0 + x1 + y1 + x0y2 + x2y2 0 0 0 0 0 0 0 0

























































14



A.2 Khazad

P : 4 quadratic equations in 16 terms:

x0y1 + y1 + x0y2 + x0y3 + x2y3 = x0 + x2 + x3 + 1

x3y1 + x0y2 + y2 + x0y3 = x0 + x1 + x2 + x3

x0y1 + x3y2 + y2 + x0y3 + y3 = x2 + x3

y0 + x0y2 + x0y3 + y2y3 + y3 = x0x3 + x1 + 1

Q: 6 quadratic equations in 18 terms:

y0 + x0y1 + y1 + x0y2 = x0x2 + x1x2 + x3 + 1

x1y0 + y1 + x0y2 + y3 = x0x1 + x0x2 + x2 + x3 + 1

x1y0 + y0 + x0y1 + y2 + x3y3 = x0x1 + x0 + x2

y0y1 + y0 + x0y1 + x0y2 + y3 = x0x2 + x0 + x1 + x2 + x3

y0y2 + y1 + y2 + y3 = x0x2 + x1 + x2 + x3 + 1

y0 + y1y2 + y1 + y2 = x0x1 + x1 + x3 + 1

A.3 Misty1

Table 5 shows the original systems of equations which completely define the
S-boxes S7 and S9 of Misty1. We omit the quadratic system of 7 equations in
56 terms used for S7 in Section 3.2 because of its complexity.

A.4 Serpent-128

S0: 4 quadratic equations in 13 terms:

y3 = x0x3 + x0 + x1 + x2 + x3

y0 + y1 = x0x1 + x1x3 + x2 + x3

y0y3 + y1y3 + y1 = x0 + x2 + x3 + 1

y0y3 + y0 + y2 + y3 = x0x1 + x1 + x3 + 1

S1: 4 quadratic equations in 13 terms:

x3 = y0 + y1y3 + y2 + y3

x0 + x1 = y0y1 + y0y3 + y0 + y2 + y3 + 1

x0x3 + x1x3 + x0 + x3 = y1 + y2 + y3 + 1

x0x3 + x2 + x3 = y0y3 + y1 + y3 + 1

15



Table 5. Misty1: S7 and S9.

S7: 7 cubic equations in 65 terms:

y0 = x0 + x1x3 + x0x3x4 + x1x5 + x0x2x5 + x4x5 + x0x1x6 + x2x6 + x0x5x6 + x3x5x6 + 1

y1 = x0x2 + x0x4 + x3x4 + x1x5 + x2x4x5 + x6 + x0x6 + x3x6 + x2x3x6 + x1x4x6 + x0x5x6 + 1

y2 = x1x2 + x0x2x3 + x4 + x1x4 + x0x1x4 + x0x5 + x0x4x5 + x3x4x5 + x1x6 + x3x6 + x0x3x6 + x4x6 + x2x4x6

y3 = x0 + x1 + x0x1x2 + x0x3 + x2x4 + x1x4x5 + x2x6 + x1x3x6 + x0x4x6 + x5x6 + 1

y4 = x2x3 + x0x4 + x1x3x4 + x5 + x2x5 + x1x2x5 + x0x3x5 + x1x6 + x1x5x6 + x4x5x6 + 1

y5 = x0 + x1 + x2 + x0x1x2 + x0x3 + x1x2x3 + x1x4 + x0x2x4 + x0x5 + x0x1x5 + x3x5 + x0x6 + x2x5x6

y6 = x0x1 + x3 + x0x3 + x2x3x4 + x0x5 + x2x5 + x3x5 + x1x3x5 + x1x6 + x1x2x6 + x0x3x6 + x4x6 + x2x5x6

S9: 9 quadratic equations in 54 terms:

y0 = x0x4 + x0x5 + x1x5 + x1x6 + x2x6 + x2x7 + x3x7 + x3x8 + x4x8 + 1

y1 = x0x2 + x3 + x1x3 + x2x3 + x3x4 + x4x5 + x0x6 + x2x6 + x7 + x0x8 + x3x8 + x5x8 + 1

y2 = x0x1 + x1x3 + x4 + x0x4 + x2x4 + x3x4 + x4x5 + x0x6 + x5x6 + x1x7 + x3x7 + x8

y3 = x0 + x1x2 + x2x4 + x5 + x1x5 + x3x5 + x4x5 + x5x6 + x1x7 + x6x7 + x2x8 + x4x8

y4 = x1 + x0x3 + x2x3 + x0x5 + x3x5 + x6 + x2x6 + x4x6 + x5x6 + x6x7 + x2x8 + x7x8

y5 = x2 + x0x3 + x1x4 + x3x4 + x1x6 + x4x6 + x7 + x3x7 + x5x7 + x6x7 + x0x8 + x7x8

y6 = x0x1 + x3 + x1x4 + x2x5 + x4x5 + x2x7 + x5x7 + x8 + x0x8 + x4x8 + x6x8 + x7x8 + 1

y7 = x1 + x0x1 + x1x2 + x2x3 + x0x4 + x5 + x1x6 + x3x6 + x0x7 + x4x7 + x6x7 + x1x8 + 1

y8 = x0 + x0x1 + x1x2 + x4 + x0x5 + x2x5 + x3x6 + x5x6 + x0x7 + x0x8 + x3x8 + x6x8 + 1

16


