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Abstract. We present a new stream cipher, Rabbit, based on iterating
a set of coupled non-linear functions. Rabbit is characterized by a high
performance in software with a measured encryption/decryption speed
of 3.7 clock cycles per byte on a Pentium III processor. We have per-
formed detailed security analysis, in particular, correlation analysis and
algebraic investigations. The cryptanalysis of Rabbit did not reveal an
attack better than exhaustive key search.
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1 Introduction

Stream ciphers are an important class of symmetric encryption algorithms. Their
basic design philosophy is inspired by the One-Time-Pad cipher, which encrypts
by XOR’ing the plaintext with a random key. However, the need for a key of
the same size as the plaintext makes the One-Time-Pad impractical for most
applications. Instead, stream ciphers expand a given short random key into a
pseudo-random keystream, which is then XOR’ed with the plaintext to generate
the ciphertext. Consequently, the design goal for a stream cipher is to efficiently
generate pseudo-random bits which are indistinguishable from truly random bits.

The aim of the present work is to design a secure stream cipher which is
highly efficient in software.

1.1 The History Behind Rabbit

The design of Rabbit was inspired by the complex behavior of real-valued chaotic
maps. Chaotic maps are primarily characterized by an exponential sensitivity to
small perturbations causing iterates of such maps to seem random and long-
time unpredictable. Those properties have also previously lead to suggestions
that chaotic systems can be used for cryptographical purposes, see [1], [2] and
references therein. However, even though chaotic systems exhibit random-like



behavior, they are not necessarily cryptographically secure in their discretized
form, see e.g. [3,4]. The reason partly being that discretized chaotic functions
do not automatically yield sufficiently complex behavior of the corresponding
binary functions, which is a prerequisite for cryptographic security. It is therefore
essential that the complexity of the binary functions is considered in the design
phase such that necessary modifications can be made. Moreover, many suggested
ciphers based on chaos suffer from reproducibility problems of the keystream due
to the different handling of floating-point numbers on various processors, see e.g.
[5].

The design goal of Rabbit was to take advantage of the random-like properties
of real-valued chaotic maps and, at the same time, secure optimal cryptographic
properties when discretizing them. More precisely, the design was initiated by
constructing a chaotic system of coupled non-linear maps. This system was then
restricted to be fixed-point valued!. This ensured reproducibility, and made the
system analyzable from a binary point of view using well-known cryptographic
techniques (see e.g. [7]). The analysis gave reason to some systematic improve-
ments of the equation system, some of which were strictly binary in nature, e.g.
adoption of rotations and the XOR operator. Those changes were advantageous
for the complexity of the binary functions as well as the performance.

1.2 Rabbit in General

The Rabbit algorithm can briefly be described as follows. It takes a 128-bit
secret key as input and generates for each iteration an output block of 128
pseudo-random bits from a combination of the internal state bits. The encryp-
tion/decryption is carried out by XOR’ing the pseudo-random data with the
plaintext/ciphertext. The size of the internal state is 513 bits divided between
eight 32-bit state variables, eight 32-bit counters and one counter carry bit.
The eight state variables are updated by eight coupled non-linear integer valued
functions. The counters secure a lower bound on the period length for the state
variables.
The specific design goals of Rabbit were as follows:

— Security: The cipher should justify a key size of 128 bits for encrypting up
to 254 bytes of plaintext.
— Speed: It should be faster than commonly used ciphers.

1.3 Summary of Results

The cryptanalysis of Rabbit resulted in the following. To investigate the possi-
bilities for Divide-and-Conquer and Guess-and-Determine types of attacks, an
algebraic analysis was performed with special attention on the non-linear parts
of the next-state function, as they are the main sources for mixing input bits.

! This means that each variable is represented by an integer type number, where a
virtual decimal point is introduced manually, see [6] for details.



No such attacks better than exhaustive key search were found. To verify the
resistance against correlation and distinguishing types of attacks, a correlation
analysis was performed by calculating the Walsh-Hadamard spectra of the non-
linear parts. Based on the correlation analysis we do not believe there exists a
correlation-type attack, which requires less work than exhaustive key search for
an output sequence shorter than 254 bytes.

We measured an encryption/decryption speed of Rabbit of 3.7 clock cycles
per byte on a Pentium IIT processor. For an ARMY processor the measured
performance was 10.5 clock cycles per byte.

1.4 Organization and Notation

In section two we describe the design of Rabbit in detail. We discuss the crypt-
analysis of Rabbit in section three, and in section four the performance results
are presented. We conclude and summarize in section five. Appendix A contains
the ANSI C code for Rabbit. Note that the description below and the source
code are specified for little-endian processors (e.g. most Intel processors). Ap-
pendix B contains test vectors. Appendix C discusses important properties of
the counter system in detail.

We use the following notation: @ denotes logical XOR, & denotes logical
AND, « and > denote left and right logical bit-wise shift, <€ and >> denote
left and right bit-wise rotation, and ¢ denotes concatenation of two bit sequences.
Alo-h] means bit number g through h of variable A. When numbering bits of
variables, the least significant bit is denoted by 0. Hexadecimal numbers are
prefixed by ”0x”. Finally, we use integer notation for all variables and constants.

2 The Design of Rabbit

In this section we provide a detailed description of the algorithm design.

2.1 The Cipher Algorithm

The internal state of the stream cipher consists of 513 bits. 512 bits are divided
between eight 32-bit state variables x;; and eight 32-bit counter variables c; ;,
where z;; is the state variable of subsystem j at iteration ¢, and c;; denote
the corresponding counter variables. There is one counter carry bit, ¢7 ;, which
needs to be stored between iterations. This counter carry bit is initialized to
zero. The eight state variables and the eight counters are derived from the key
at initialization.

Key Setup Scheme

The algorithm is initialized by expanding the 128-bit key into both the eight state
variables and the eight counters such that there is a one-to-one correspondence
between the key and the initial state variables, z; 0, and the initial counters, c; .



The key, K['27-0 is divided into eight subkeys: kg = K150l k; = K316,
vy k7 = KU27-1121 The gtate and counter variables are initialized from the
subkeys as follows:

Tjo = {k(Hl mod s) ©Kj for j even )
(j+5 mod s) © k(j+4 mod s) for j odd
and
Cio = {k(j+4 mod 8) © k(].+5 mod 8) for j even )
, ki <>k(j+1 mod 8) for 7 odd.

The system is iterated four times, according to the next-state function defined
below, to diminish correlations between bits in the key and bits in the internal
state variables. Finally, the counter values are re-initialized according to:

Cj,a = Cia DT 4 mod 8)4 (3)
to prevent recovery of the key by inversion of the counter system.

Next-state Function
The core of the Rabbit algorithm is the iteration of the system defined by the
following equations:

97,; K 16) + (g6,; <K 16)
go.i K 8) + gr.i
g1,; K 16) + (go,; <« 16)
3541 = g3,i + (92,1 K 8) + 1.5

T0,i+1 = go,i + (
+(
+ (g1
+ (92
Tait1 = Gai + (93,6 K 16) + (g2,; <« 16) (4)
+ (g4
+ (g5
+(

T1,i+1 = G1,i

T2i+1 = 92,0

g4, K 8) + 93,
g5, K 16) + (g4, K 16)
g6,i K 8) + gs.i

Ts5,i+1 = g5,
T6,i+1 = J6,i

T7i+1 = g7,

951 = ((zji + ¢;1)” ® (24 + ¢j1)” > 32)) mod 2°2 (5)
where all additions are modulo 232. This coupled system is schematically illus-
trated in Fig. 1. Before an iteration the counters are incremented as described
below.



Fig. 1. Graphical illustration of the system.

Counter System

The dynamics of the counters is defined as follows:
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Furthermore, the a; constants are defined as:

ap = 0x4D34D34D a1 = 0xD34D34D3
as = 0x34D34D34 az = 0x4D34D34D
a; = 0xD34D34D3 a5 = 0x34D34D34 (8)
ag = 0x4D34D34D a; = 0xD34D34D3.

Extraction Scheme
After each iteration 128 bits of output are generated as follows:

s£15"0] _ R?..o] @ wga:;..w] S£31..16] _ m([)a:ly.lﬁ]e9 mg’?..o]
s£47"32] _ $[217?..0] o $[73:Z;..16] S£63.48] _ x[;:ly.lﬁ]e9 a:[;j"o]
s£79..64] _ 37[117?..0] @ 37[1?:11'"16] Sggs..so] _ 33[;3,2”16]@ a:[717?"0] 9)
5£111..96] _ a?g?"()] o 37:[3?:11'"16] S£127..112] _ x%”w]@ 33[11,?”0]

where s; is the 128-bit keystream block at iteration i.

Encryption/decryption Scheme
The extracted bits are XOR’ed with the plaintext/ciphertext to encrypt/decrypt.

C; = pi D si, (10)
pi = ¢; D sy, (11)

h

where ¢; and p; denote the it ciphertext and plaintext blocks, respectively.

3 Security Analysis

The security analysis is divided into six parts. First we discuss the key setup
function and counter properties. We then perform an algebraic analysis of the
next-state function, a correlation analysis of the binary functions and discuss
statistical properties of Rabbit. In the last part the results of the investigations
are used in specific types of attacks such as Guess-and-Determine, Divide-and-
Conquer, Distinguishing and Correlation attacks.

3.1 Key Setup Properties

In this section we describe specific properties of the key setup scheme. The setup
can be divided into three stages: Key expansion, system iteration and counter
modification.

Key Expansion
In the key expansion stage we ensure two properties. The first one being a one-to-
one correspondence between the key, the state and the counter, which prevents



key redundancy. The other property is that after one iteration of the next-state
function, each key bit has affected all eight state variables. More precisely, for a
given key bit there exists a j such that this key bit affects the output from g; o,
9(j+1 mod 8),0> 9(j+4 mod 8),0 and 9(j+5 mod 8),0° In each of the eight next-state
subfunctions at least one of those g-functions enter.

System Iteration

The key expansion scheme ensures that after two iterations of the next-state
function, all state bits are affected by all key bits with a measured probability
of 0.5. A safety margin is provided by iterating the system four times.

Counter Modification

Even though the counters should be known to an attacker, the counter modifi-
cation makes it hard to recover the key by inverting the counter system as this
would require additional knowledge of the state variables. Due to the counter
modification we cannot guarantee that every key results in unique counter val-
ues. However, we do not believe this to cause a problem as will be discussed later
on.

3.2 Counter Properties

In this section we describe the dynamics of the counters, i.e. the period length
and bit-flip probabilities of individual bit values.

Period Length

The most important feature of counter assisted stream ciphers [8] is that strict
lower bounds on the period lengths can be provided. The adopted counter system
in Rabbit has a period length of 2256 — 1. Since it can be shown that the input to
the g-functions has at least the same period, a highly conservative lower bound
on the period of the state variables, N, > 258 can be secured (see Appendix C).

Probabilities for Bit-flips in the Counters

For a 256-bit counter incremented by one, the period length for bit position i
is 2°*t1. This implies that the least significant bit has a bit-flip probability of 1
and the most significant bit has a bit-flip probability of 272%%. Consequently, the
value of the most significant bit will remain constant for 225 iterations, thereby
making it very predictable.

In contrast, all bits in the counter defined in Eqgs. (6) and (7), will have equal
period length, as each bit is indirectly influenced by all other bits, due to the
feedback of the carry, ¢; 7 into the counter ¢; 0. This implies that all bits have
the same period length as the full system.

In Appendix C we calculate the bit-flip probabilities in the counter system.
The most important findings are as follows. For the chosen a; constants, Eq.
(8), bit-flip probabilities for the individual bit positions are all in the interval
[0.17;0.91]. Furthermore, the probabilities are unique for each bit position. Since



all the counter bits have full period and unique bit-flip probabilities, it seems
difficult to predict bit patterns of the counter variables.

3.3 Algebraic Analysis

In this section we analyze a given output byte’s dependence on its input bytes.
The counter is ignored in the following. We first analyze the g-function defined
by

9(y) = (v* ® (y* > 32)) mod 2°*. (12)

By dividing y into four bytes, (a,b,c,d), we can write y? as:

(a€244+b<16+c<8+d)? =(a®> <48+ ab < 41 +ac < 33 +
b <32+ad <25+bc<25+bd < 17T+ <16+ cd < 9+d*). (13)

The similar form of g(y) follows directly from above. By collecting terms corre-
sponding to each of the four g(y) output bytes their dependencies on the four
input bytes can be obtained. These dependencies are summarized in Table 1.

Table 1. The influences of the input bytes on the output bytes of the g-function. The
subscripts, H,L, denotes the eight most,least significant bits of the 16-bit result for
the multiplication of the two 8-bit numbers. For simplicity, carries from additions are
ignored and the shifts are changed to nearest multiple of eight.

‘ g(y)[Sl..24] g(y)[23 16] g(y)[158] g(y)[70]
a = yPBr24 (ad)r + (a®)u|(a®)L + (ab)u|(ab)L + (ac)u|(ac)L + (ad)u
b=y 1 (be)r, + (bd)u |(bd)r + (ab)u|(ab)r + (b7)u| (b")r + (be)m
c =y (o) + (D) m |(D)r + (ed)u|(cd)r, + (ac)u| (ac)r + (be)u
d =y |(ad)r, + (bd)u|(bd)r. + (cd)u|(cd)r. + (d*)u|(d*)r. + (ad)mu

To quantitatively examine a given output byte’s dependence on its input
bytes, we define an input mask function, M;(y) = y&m; and a similar output
mask function Mo (y) = y&mo where mp and mo are masks selecting specific
byte-patterns. For all input values, y, we calculate

2= Mo (9(Mi(y)) ® g(y))- (14)

This function characterizes the error in the output byte based on the input bytes
defined by the mask mj. We can define a measure for this error by calculating
its corresponding entropy.

The specific investigation consisted of calculating the 16 entropies obtained
by using all combinations of four 8-bit rotations of m; =0x00FFFFFF and four
8-bit rotations of mo =0x000000FF. The results are shown in Table 2.

The table shows the entropy of z for the 16 different byte-wise combinations.
We clearly observe the expected behavior from Table 1. Hence, we conclude that



Table 2. The entropy of the error, maximally 8 bits, for an estimated output byte
when removing a given input byte.

g(y)[31..24] g(y)[23..16] g(y)[158] g(y)[70]
a=yP2 799 7.99 7.99 7.99
b=y23101 799 7.99 7.99 7.99
c = ylto-8 7.99 7.99 7.99 7.99
d =yl 7.99 7.99 7.99 7.98

all four output bytes of the g-function each depend on four input bytes. Removing
any of those input bytes will result in nearly maximal entropy of the error of
the output bytes. We also performed a similar analysis based on individual bits
instead of individual bytes leading to similar conclusions.

Using the above results, we analyze the next-state subfunctions given by

feven(ylayQayS) = g(yl) + (g(yQ) K 16) + (g(yS) K 16)7 (15)

and
foad(y1,Y2,¥3) = g(y1) + (9(y2) K 8) + g(y3)- (16)

Each function depends on three independent g-functions of which one or two
have been rotated. Therefore, we can easily construct a table similar to Table 1
and use the results shown in Table 2 to obtain the corresponding entropies of
the errors for the next-state function. Clearly, all output bytes of the next-state
function depend on the maximal 12 input bytes. Consequently, removing any of
those input bytes will result in nearly maximal entropy of error of the output
bytes.

3.4 Linear Correlation Analysis

The aim of the correlation analysis is to find the best linear approximations
between bits in the input to the next-state function and the extracted output.

Each of the eight next-state functions takes three 32-bit state variables and
three 32-bit counter values as input and returns the corresponding updated 32-
bit state variable. Each bit position in z;;;1 defines a binary function from
{0,1}'92 to {0,1}. Thus, assuming that all 192 input bits are independently and
uniformly distributed random variables, all correlations from output bits to lin-
ear combinations of input bits can be found via the Walsh-Hadamard Transform
(WHT) [10, 11]. Clearly, we cannot numerically perform such a complete WHT
of a 192-bit binary function. However, from analyzing the basic building block
of the next-state function, i.e. the g-function, we obtain linear approximations
of the cipher and their corresponding correlations coefficients. Note that all cor-
relation coefficients are represented as absolute values.

The g-function
In the following we ignore the counter system and focus only on the correlation



between the output of the g-function and its 32-bit input, y = x +¢. The WHTs
of all single output bits of the g-function revealed that the largest correlation

coefficients for all output bits of g(y) are in the interval [279:74;279:09]. Among
those the best linear approximation is:
g[e] ~ y[o] @® y[3] @® (y[5] @® y[e] B...0 y[lﬁ] P y[17]) P
(y[19] ® y[20] ... y[30] ® y[31])‘ (17)

In general, linear approximations for linear combinations of binary functions can
be obtained by a convolution of the involved WHT spectra, [11]. An exhaustive
investigation of all 232 possible convolutions of WHT spectra from the individ-
ual output bits in the g-function is not feasible. However, investigations of all
convolutions of 16-, 18- and 20-bit g-functions show that the largest resulting
correlation coefficients are of similar magnitude as the non-combined output bits
and we expect the 32-bit g-function to behave similarly.

Non-Combined Output Bits

To determine linear approximations between the input to the next-state subfunc-
tions and single output bits of the next-state subfunctions, we applied the follow-
ing strategy. The next-state function includes the addition of three g-functions.
To take those additions into account, we determined the best linear approxima-
tions for the function, f(a,b,c) = a + b + ¢, for each bit position. For instance,
for each bit position j = 3 the best linear approximations are:

11 ~ ol @ bl @ cli]

FUl s bl @ Ul @ il @ gl =11 g pli—1]

fll s all @ bl @ 1 @ pli=1 gy i1

U ~ ol @ bl @ i @ gli—1 @ cli1l,

Their corresponding correlation coefficients are given by: 37—} 2727

The next step is to substitute a, b and ¢ by the corresponding binary functions
of the g-function, i.e. al @ali—1 — glil @ g1 By determining the WHT spec-
tra of the independent parts, we obtain linear approximations for the output bits
of the next-state function. Each corresponding correlation coefficient is found by
multiplying the product of the correlation coefficients for the independent parts
with each correlation coefficient for the addition approximations. This results in
a largest correlation coefficient of 27286 for filo. In the extraction function
two bits from independent subsystems are XOR’ed, and the largest correlation
coefficient can therefore be determined by the product of their largest individ-
ual correlation coefficients, yielding a largest correlation coefficient of 27°7-8 for

1 17
fiba o £

Linearly Combined Output-Bits
We assume that the best linear approximations for combined output bits are
those that depend on the least number of g-functions. At the same time we



assume that for a given number of g-function dependencies, the best approxi-
mations are those which include the fewest number of combinations of extracted
output bits. To find these g-function dependencies, additions were replaced by
XORs and the output from each g-function were divided into 8-bit blocks. Then
an exhaustive search among all combinations of extracted output bytes were per-
formed to find those with the least g-function dependencies. It was found that
all combinations of output bytes depend on at least four different g-functions
which can only be obtained by combining at least five extracted output bits. On
the other hand, it was found that by combining two extracted output bits, the
least number of g-function dependencies is five.
For instance, combining the extracted output sl7-01 and s[127-120] yields:

SO0 gy 1271200 — (g 4 (g7 < 16) + (g6 <& 16))[7% &

g5 + (g1 < 8) + g3)2* 101 g
g1 + (90 < 8) + gn)'5-8l @
96 + (91 < 16) + (g5 << 16))F">1 (22)

~ I~ o~

and using Eq. (18) for each parenthesis, i.e. replacing addition with XOR, we
obtain:

15..8 23..16 15..8 23..16
§[7-0 gy gl127..120] gg ] @gg ] @gé ] @gé g
23..16 31..24 15..8 23..16
95> @ gf" @ gl @ g1 (23)
which depends on five different g-functions. The largest corresponding correla-
tion coefficient is 27598, All other combinations of two output bits depending
on five g-functions have smaller correlation coefficients.
An example of a linear approximation that only depends on four g-functions
is:

sl7--0] ® 5[23--16] ® 5l79--72] ® 5[55--48] ® gl111..104] g£23..16] ® gg..o] @QE&M] o

31..24 7..0 15..8
gl g gl g L1l g

23..16 7..0 31..24
g3 @ gl g gl g

g, (24)

with a largest correlation coefficient of 2759-2, All other byte-wise combinations
of five output bits depending on four g-functions have smaller correlation coef-
ficients.

3.5 Statistical Tests

The statistical tests on Rabbit were performed using the NIST Test Suite [12],
the DIEHARD battery of tests [13] and the ENT test [14]. Tests were performed
on the internal state as well as on the extracted output. Furthermore, we also
conducted various statistical tests on the key setup function. Finally, we per-
formed the same tests on a version of Rabbit where each state variable and
counter variable was only 8 bit wide. No weaknesses were found in any case.



3.6 Resulting Attacks

This subsection discusses relevant attacks based on the above analysis.

Attacks on the Key Setup Function

Due to the four iterations after key expansion and the final counter modification,
both the counter bits and the state bits depend strongly and highly non-linearly
on the key bits. This makes attacks based on guessing parts of the key difficult.
Furthermore, even if the counter bits were known after the counter modification,
it is still hard to recover the key. Of course, knowing the counters makes other
types of attacks easier.

As the non-linear map in Rabbit is many-to-one, different keys could poten-
tially result in the same keystream. This concern can basically be reduced to the
question whether different keys result in the same counter values, since different
counter values must necessarily lead to different keystreams. The reason is that
when the periodic solution has been reached, the next-state function, including
the counter system, is one-to-one on the set of points in the period. The key
expansion scheme was designed such that each key leads to unique counter val-
ues. However, the counter modification might result in equal counter values for
two different keys. Assuming that the output after the four initial iterations is
essentially random and not correlated with the counter system, the probability
for counter collisions is essentially given by the birthday paradox, i.e. for all
2128 keys one collision is expected in the 256-bit counter state. Thus, we do not
believe counter collisions to cause a problem. Another possibility for related key
attacks is to exploit the symmetries of the next-state and key setup functions.
For instance, consider two keys, K and K related by K11 = Ki+32 for all i. This
leads to the relation, ;0 = Z;42,0 and ¢jo = ¢j42,0. If the a; constants were
related in the same way, the next-state function would preserve this property. In
the same way this symmetry could lead to a set of bad keys, i.e. if K[il = Kli+32]
for all ¢, then z;0 = ®j42,0 and cjo = cjt2,0. However, the next-state function
does not preserve this property due to the counter system as a; # a;i2.

Divide-and-Conquer Attack

This type of attack is feasible if only a part of the state needs to be known in
order to predict a significant fraction of the output bits. An attacker will guess
a part of the state, predict the output bits and compare them with actually
observed output bits. Our strategy is to accurately predict one extracted output
byte based on guessing as few input bytes as possible.

According to section 3.3 the attacker must guess 2 - 12 input bytes for the
different g-functions. Thus, 192 bits in total must be guessed. Furthermore, we
have verified that calculating less extracted bits than a byte still results in more
work than exhaustive key search. Finally, when replacing all additions by XORs,
all byte-wise combinations of the extracted output still depend on at least four
different g-functions, see section 3.4. To conclude, it is not possible to verify a
guess on fewer bits than the key size.



Guess-and-Determine Attack

The strategy for this attack is to guess a few of the unknown variables of the
cipher and from those deduce the remaining unknowns. For simplicity, we assume
that the counters are static.

A simple attack of this type consists of guessing the remaining 128 bits of the
internal state from the extracted 128 bits for each of two consecutive iterations.
This amounts to guessing the remaining 128 + 128 bits and derive the counter
values. Each of the resulting systems must then be iterated a couple of times to
verify the output.

However, in the above attack it is assumed that no advantage is gained by
dividing the counters and state variables into smaller blocks. An attack exploiting
this possibility can be formulated as follows. Divide the 32-bit state variables
and counters into 8-bit variables. Construct an equation system consisting of the
8 -4 8-bit subsystems for N iterations together with the corresponding (N +1)-8
extraction functions which are split into (N + 1) - 16 8-bit functions. In order
to obtain a closed system of equations, output from 4 - 8 extraction functions is
needed, i.e. N = 3. Thus, the equation system consists of 160 coupled equations
with 8 - 4 unknown counter bytes and (3 + 1) - 8 - 4 unknown state bytes, i.e. a
total of 160 unknowns.

A strategy for solving this equation system must be found by guessing as
few input bytes as possible and determining the remaining unknown bytes. The
efficiency of such a strategy depends on the amount of variables that must be
guessed before the determining process can begin. This amount is given by the
8-bit subsystem with the fewest number of input variables. Neglecting the coun-
ters, the results of section 3.3 illustrate that each byte of the next-state function
depends on 12 input bytes. When the counters are included, each output byte of
a subsystem depends on 24 input bytes. Consequently, the attacker must guess
more than 128 bits before the determining process can begin, thus, making the
attack infeasible. Dividing the system into smaller blocks than bytes results in
the same conclusion.

Distinguishing and Correlation Attacks

In case of a distinguishing attack the attacker tries to distinguish a sequence gen-
erated by the cipher from a sequence of truly random numbers. A distinguishing
attack using less than 254 bytes of output cannot be applied using only the best
linear approximation found in section 3.4 because the corresponding correla-
tion coefficient is 27°7-8, This implies that in order to observe this particular
correlation, output from 2! iterations must be generated [9].

The independent counters have very simple and almost linear dynamics.
Therefore, large correlations to the counter bits may cause a possibility for a
correlation attack (see e.g. [15]) for recovering the counters. It is not feasible to
exploit only the best linear approximation in order to recover a counter value.
However, more correlations to the counters could be exploited. As this requires
that there exists many such large and useable correlations, we do not believe
such an attack to be feasible. Knowing the values of the counters may signifi-



cantly improve both the Guess-and-Determine attack, the Divide-and-Conquer
attack as well as a Distinguishing attack even though obtaining the key from the
counter values is prevented by the counter modification in the setup function.

4 Performance

In this section we provide performance results from implementations of Rabbit
on 32-bit processors and discuss 8-bit implementation aspects.

4.1 32-bit Processors

Encryption speeds for the specific processors were obtained by encrypting 200
kilobytes of data stored in RAM and measuring the number of clock cycles
passed. Memory requirements and performance results are listed in the tables
below. For convenience, all 513 bits of the internal state are stored in an instance
structure, occupying a total of 68 bytes. The presented memory requirements
show the amount of memory allocated on the stack for calling conventions (func-
tion arguments, return address and preserved registers) and temporary data. No
memory requirements for storing the key, the instance, the ciphertext and the
plaintext have been included.

Intel Pentium III Architecture

The performance was measured on a 1000 MHz Pentium IIT processor. The
speed-optimized version of Rabbit was programmed in assembly language inlined
in C using MMX instructions and compiled using the Intel C++ 7.0 compiler.
The results are listed in Table 3 below. A memory-optimized version (where
calling conventions are ignored) eliminates the need for memory, including the
instance structure, since the entire instance structure and temporary data can
fit into the CPU registers.

Table 3. Code size, memory requirements and performance for Pentium III.

Function Code size|Memory| Performance
Key Setup 617 bytes|32 bytes| 350 cycles
Encryption/Decryption|440 bytes|36 bytes|3.7 cycles/byte

ARMT Architecture

A speed optimized ARM implementation was compiled and tested using ARM
Developer Suite version 1.2 for ARM7TDMI. Performance was measured us-
ing the integrated ARMulator. The performance results, code size and memory
requirements are listed in Table 4 below:



Table 4. Code size, memory requirements and performance for ARM7.

Function Code size|Memory| Performance
Key Setup 516 bytes|44 bytes| 679 cycles
Encryption/Decryption|424 bytes|52 bytes|10.5 cycles/byte

4.2 8-bit Processors

The simplicity and small size of Rabbit makes it suitable for implementation
for processors with limited resources such as 8-bit microcontrollers. Multiply-
ing 32-bit integers is rather resource demanding using plain 32-bit arithmetics.
However, as seen in Eq. (13) in section 3.3, squaring involves only ten 8-bit
multiplications which reduces the workload by approximately a factor of two.
Finally, the rotations in the algorithm have been chosen to correspond to simple
byte-swapping.

5 Conclusion

In this paper we presented a new stream cipher called Rabbit. A complete de-
scription of the algorithm, an evaluation of its security properties, performance
and implementation aspects were given. Our most important findings include
the following: In terms of security, Guess-and-Determine attacks, Divide-and-
Conquer attacks as well as Distinguishing and Correlation attacks were consid-
ered, but no attack better than exhaustive key search was found. The measured
encryption/decryption performance was 3.7 clock cycles per byte on a Pentium
IIT processor and 10.5 clock cycles per byte on an ARM7 processor.
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A ANSI C Source Code
This appendix presents the ANSI C source code for Rabbit.

rabbit.h
Below the rabbit.h header file is listed:

#ifndef _RABBIT_H
#define _RABBIT_H

#include <stddef.h>

// Type declarations of 32-bit and 8-bit unsigned integers
typedef unsigned int uint32;
typedef unsigned char byte;

// Structure to store the instance data (internal state)
typedef struct
{
uint32 x[8];
uint32 c[8];
uint32 carry;
} t_instance;

void key_setup(t_instance *p_instance, const byte *p_key);
void cipher(t_instance *p_instance, const byte *p_src,
byte *p_dest, size_t data_size);

#endif
rabbit.c

In the C file, rabbit.c, the logical rotation function, _rotl, is used, however, for
some compilers it may not be defined. In such case, the logical rotation function
can be defined as:

uint32 _rotl(uint32 x, int rot) { return (x<<rot) | (x>>(32-rot)); }
Below the rabbit.c file is listed:

#include <stdlib.h>
#include "rabbit.h"

// Square a 32-bit number to obtain the 64-bit result and return
// the upper 32 bit XOR the lower 32 bit
uint32 g_func(uint32 x)
{
// Construct high and low argument for squaring
uint32 a = x&O0xFFFF;



// Calculate the next internal state

uint32 b = x>>16;

// Calculate high and low result of squaring

uint32 h =

uint32 1 = x*x;

// Return high XOR low;

return h™1;

((((a*a)>>17) + (a*b))>>15) + bxb;

void next_state(t_instance *p_instance)

{

// Temporary data
uint32 g[8, c_old[8], i;

// Save old counter values
for (i=0; i<8; i++)

c_old[i] = p_instance->c[il;

// Calculate new
p_instance->c[0]
p_instance->c[1]
p_instance->c[2]
p_instance->c[3]
p_instance->c[4]
p_instance->c[5]
p_instance->c[6]
p_instance->c[7]

counter values

+=

p_instance->carry =

0x4D34D34D
0xD34D34D3
0x34D34D34
0x4D34D34D
0xD34D34D3
0x34D34D34
0x4D34D34D
0xD34D34D3

+
+
+
+
+
+
+

+

p_instance->carry;

(p_instance->c[0]
(p_instance->c[1]
(p_instance->c[2]
(p_instance->c[3]
(p_instance->c[4]
(p_instance->c[5]
(p_instance->c[6]

(p_instance->c[7] < c_o0ld[7]);

// Calculate the g-functions

for (i=0;i<8;i++)

AN AN ANANNA

c_old[0]);
c_old[1]);
c_old[2]);
c_old[3]);
c_old[4]);
c_old[5]);
c_old[6]1);

gl[i] = g_func(p_instance->x[i] + p_instance->c[i]);

// Calculate new
p_instance->x[0]
p_instance->x[1]
p_instance->x[2]
p_instance->x[3]
p_instance->x[4]
p_instance->x[5]
p_instance->x[6]
p_instance->x[7]

st

ate values
glo]
gl1]
gl2]
gl3]
gl4]
gl5]
gl6]
gl7]

+

+ + + + + + o+

_rotl(gl7],16)
_rotl(gl[0], 8)
_rotl(gl1],16)
_rotl(gl2], 8)
_rotl(gl[3],16)
_rotl(gl4], 8)
_rotl(g[5],16)
_rotl(gl[6], 8)

gl71;
glil;

gl3];

+ o+ + + + + o+ o+

glsl;

_rotl(gl[6],16);
_rotl(g[0],16);
_rotl(gl2],16);

_rotl(gl4],16);



// key_setup
void key_setup(t_instance *p_instance, const byte *p_key)

{

// Temporary data
uint32 k0, k1, k2, k3, i;

// Generate four subkeys

kO
k1
k2
k3

*(uint32x) (p_key+ 0);
*(uint32+%) (p_key+ 4);
*(uint32x) (p_key+ 8);
*(uint32x) (p_key+12);

// Generate initial state variables

p_instance->x[0]
p_instance->x[2]
p_instance->x[4]
p_instance->x[6]
p_instance->x[1]
p_instance->x[3]
p_instance->x[5]
p_instance->x[7]

k0;
ki;
k2;
k3;
(k3<<16) | (k2>>16);
(k0<<18) | (k3>>186);
(k1<<16) | (k0>>186);
(k2<<18) | (k1>>186);

// Generate initial counter values

p_instance->c[0]
p_instance->c[2]
p_instance->c[4]
p_instance->c[6]
p_instance->c[1]
p_instance->c[3]
p_instance->c[5]
p_instance->c[7]

// Reset carry flag

_rotl(k2,16);
_rotl(k3,16);
_rotl1(k0,16);
_rotl(k1,16);

(k0&O0xFFFF0000) | (k1&O0xFFFF);
(k1&0xFFFF0000) | (k2&O0xFFFF);
(k2&0xFFFF0000) | (k3&0xFFFF);
(k3&0xFFFF0000) | (kO&OxFFFF);

p_instance->carry = 0;

// Iterate the system four times

for (i=0;i<4;i++)

next_state(p_instance);

// Modify the counters

for (i=0;i<8;i++)

p_instance->c[(i+4)&0x7] ~= p_instance->x[i];



// Encrypt or decrypt a block of data

void cipher(t_instance *p_instance, const byte *p_src,

{

byte *p_dest, size_t data_size)

uint32 i;

for (i=0; i<data_size; i+=16)

{

// Iterate the system
next_state(p_instance);

// Encrypt 16 bytes of data

* (uint32%) (p_dest+ 0) =

* (uint32%) (p_dest+ 4)

*(uint32%) (p_dest+ 8)

*(uint32%) (p_dest+12)

// Increment pointers to source and destination data

p_src += 16;
p_dest += 16;

B Test Vectors

The keys and outputs are presented byte-wise. The leftmost byte of key is K

key

s[0]
s[1]

* (uint32*) (p_src+ 0) ~
p_instance->x[0] ~

(p_instance->x[5]1>>16)
(p_instance—->x[3]<<16);
* (uint32*) (p_src+ 4) ~
p_instance->x[2] ~

(p_instance->x[7]1>>16)
(p_instance—->x[5]<<16);
* (uint32*) (p_src+ 8) ~
p_instance->x[4] ~

(p_instance->x[1]>>16)
(p_instance->x[7]<<16);
*(uint32%) (p_src+12) ~
p_instance->x[6] ~

(p_instance->x[3]>>16)
(p_instance->x[1]<<16);

[00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00]

[02 F7 4A 1C 26 45 6B F5 EC D6 A5 36 FO 54 57 B1]
[A7 8A C6 89 47 6C 69 7B 39 0C 9C C5 15 D8 E8 88]

7.0]



s[31] = [EF 9A 69 71 8B 82 49 A1 A7 3C 5A 6E 5B 90 45 95]
key = [C2 1IF CF 38 81 CD 5E E8 62 8A CC BO A9 89 0D F8]
s[0] = [3D 02 EO C7 30 55 91 12 B4 73 B7 90 DE EO 18 DF]

s[1] = [CD 6D 73 0C E5 4E 19 FO C3 B5E C4 79 OE B6 C7 4A]

s[31] = [9F B4 92 E1 B5 40 36 3A E3 83 CO 1F 9F A2 26 1A]
key = [1D 27 2C 6A 2D 8E 3D FC AC 14 05 6B 78 D6 33 AO]
s[0] = [A3 A9 7A BB 80 39 38 20 B7 E5 0C 4A BB 53 82 3D]

s[1] = [C4 42 37 99 C2 EF C9 FF B3 A4 12 5F 1F 4C 99 A8]
s[31] [97 CO 73 3F F1 F1 8D 25 6A 59 E2 BA AB C1 F4 F1]

C Counter Properties

In this appendix we discuss important properties of the counter system.

Counter Period

The period of the counter system is IV — 1. This can be shown as follows.
The counter system defined in Egs. (6) and (7) can equivalently be described by
the following recurrence relation:

— 9256

Ci+1 = (Cl + A+ ¢z) mod 2256, (25)

where @, is defined as:

(26)

1 ifCi+ A+ &; > 2256
b1 = .
0 otherwise.

C; is a 256-bit integer obtained by concatenating all eight individual counters,
i.e. Cz =C7,;90C,90C5,;0C4,;90C3,;0C2;0C1,;9Coi, and A is likewise obtained by
concatenating the eight a; constants.

The above recurrence relation is equivalent to the following linear congruen-

tial generator:

Ziv1 = (Z; + A) mod (2256 — 1), (27)
which has a period length of N, = 2256 — 1, since A has been chosen such that
ged(A4,2%56 —1) = 1.

To show that Z is equivalent to C, we consider an initial value Cy = Zy for
Zy > A. The recurrence relation for C; can be defined in terms of Z;:

Z; if (Zifl + A) <226 _1 A Zi 4 #0
C;=<¢2%6_1 if (Zi—1 + A) = 2256 _ 1 (28)
Z; —1 if (Zi—1+A) > 226 _1 v Z;_y =0.



Therefore, C; will run through the same set of numbers as Z; except that C; will
attain the value 2256 — 1 but not the value A. Thus, the period of the recurrence

relation, C, is the same as for the linear congruential generator, Z. In particular,
CZ;AC] le—ijch;éO

Internal State Period
For convenience, we write the next-state function in the following way

Tiy1 = F(.@TJ mod 2%, (29)

where
7 = (G + &) mod 2%, (30)

such that Z; is the internal state variable and ¢; is the counter state.
According to a generalized version of lemma 4.1 in [8], ¢; will have at least
the period of the counter system, N.:

Proof. Given that ¢; = ¢; for i — j mod N. # 0, then ;11 = F(¥;) + & and
¥j+1 = F(§;) + ;. Moreover, we have: ¢; # ¢;, therefore, §;+1 # §j+1. Finally, if
Yi—1 = ¥j—1 this would imply that §; # ¥; which is a contradiction. Thus, also
Yir Y1 B

However, a combination of the internal state, Z;, is extracted as output. It is
not evident that #; will have the same period as the counter system, but a lower
bound for that period is obtained in the following.

First, we note that there are relations between the counter period, N, the
internal state period, Ny and the period of the y variables, Ny:

N, = aNy = bN, (31)
where a and b are integers greater than zero with ged(a, b) = 1.

Proof. Since ;11 = F(y;), we have Ny < Ny. In particular, Ny divides Ny,
because, if we assume that this is not the case, then there would exist an ¢ such

that F(y*i; =Ty #T, =F(y ) which contradicts the Ny, peri-

14 NN, Yit N2 N,
odicity. Thus, there exists an integer, a > 0, such that Ny = aN. We also have
that N divides Ny because if this was not the case then ¢; # EH— . We just

showed that #; = &3y n, for all 4, but ; = Z; + ¢ # $i+%NC + ci+z;%Nc = it N,

N.
y
Ne Ne

which again contradicts the Ny periodicity. Therefore, there exists an integer,
b > 0 such that Ny = bN, and consequently, Ny = aNy = bN. B

We have the relation: Ny = ch. Thus, we want to find an upper bound on
the ratio, a/b. This can be done as follows. Define the degeneracy d to be the
maximal number of pre-images #; 1 can have, i.e. d is the maximal number of
different §; which give the same #;1; and similarly, define d, to be the analogue
for each g function. Then we can obtain the following rather conservative lower



bound for the period:

Let (Zo, £1, T, ..., TN, —1) be a periodic sequence with period Ny, then the upper
bound on a/b is the degeneracy d, i.e.:

Nx

v

Ne
— 2
=, (32

where N, is the counter period.

Proof. We want to show that k = § = % < d. The periodicity gives: Z; =
TiyN, = Tit2N, = - = Tipr—1)N,- On the other hand, the corresponding
counter values are non-equal: ¢; # iy N, 7# CiyaN, 7# -+ 7 Ciy(k—1)N, - Lherefore,
it follows: &; + ¢; # Fixn, + CirnN, # Tiron, + Citan, F# .o # ﬂ_fi+(k71)Nx +
Cis(k-1)N, OF equivalently: §; # Jirn, # YiranN, # - # Yir(k—1)N,- Because of
the periodicity we have F(§;) = F(§isn.) = F(Jiton.) = ... = F(gmk,wj

Since each #'; {1 maximally can have d pre-images, we see that k = 7 xx <dn

To illustrate that the period length is sufficiently large, consider the equation sys-
tem, ¥; 11 = F1(¥;) arising by replacing all the g-functions by identity functions,
but keeping the rotations. Fixing any two of the 32-bit input variables, the result-
ing equation system has a unique output for the remaining six input variables.
Therefore, Fi(#) is maximally 2%4-to-one. This bound can be combined with the
measured degeneracy for the g-function, dy = 18, to obtain d < 204 - 1838 < 298
which shows that the period length of the state variables is sufficiently large, i.e.
Ny 2 (2256 —1)/d > 21%8.

This bound is, of course, highly underestimated. For instance, the 1?1 map
will probably have degeneracy close to one. Furthermore, all points in the peri-
odic solution should have the maximal degeneracy, d, and they should appear in
exact synchronization with the counter. So if the output of F is not correlated
strongly with the counter sequence, the probability for actually realizing this
lower bound is vanishing. Furthermore, for the specific g-function only one point
have a maximal degeneracy of 18 and about half of the points have degeneracy
one. It also follows from above that if a point with a degeneracy one belongs to
the periodic solution then the period cannot be shorter than the counter period.

Bit-flip Probabilities
Below we calculate the bit-flip probabilities for the counter bits.

Let the bit-wise carry #7®] from bit position j to bit position j @ 1 be defined
as:

(33)

g _ 1 if Ol 4 ALl 4 @l > 2
" 10 otherwise

where 2@y = 2 +y mod 256 and C' and A are defined above. The value of Cl/]
only changes when either #U/1 = 1 and AUl = 0 or #l91 = 0 and AUl = 1. The



probability of the carry can be found by solving a system of recursive equations
for carry probability as is shown in the following.
The probability for carry from bit position j is given by:

All 4+ P(@[jEll] = 1)

P(oll = 1) 5

(34)
where 28y =  — y mod 256. Inserting the same expression for P(¢l8 = 1)
into this equation we obtain

, bl AlEl o p(glig] — 1
P2l =1) = é—l + ha 2(2 ). (35)

Continuing like this we get

Alisl glig2] Aligz2ss] Al 4 p(q‘)[j]) = 1)

P(oll =1) S 9255 2256

(36)
which can be rearranged into
(2256 _ I)P(¢[]] — 1) — 2255A[jE|1] + 2254A[jE|2] 4. +21A[jE|255] +20A[J] (37)

This can equivalently be written as

. A>>j
P(ell =1) = o5 1" (38)
Inserting this expression into:
. _ P(oll =0) =1 —P(8l = 1) if AWl =1
P(@[J] # A[J]) - (39)

P(QSU] = 1) if AUl =0
— ‘AU] —p (el = 1)‘

leads to the following equation describing the probability for a bit-flip at position
J.

2256 _ 1 (40)

P (#l # AUl) = ‘Am _A> ‘
The probabilities will be unique for each bit position, as A is formed by repeating
the 6-bit block 110100, which fits unevenly into a 256-bit integer. Consequently,
A>> i # Afor all i mod 256 # 0, thereby making P (®l/1 # All) unique for

each j.



